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Abstract

We show that the virtual cohomological dimension of a Coxeter group is essentially
the regularity of the Stanley–Reisner ring of its nerve. Using this connection between
geometric group theory and commutative algebra, as well as techniques from the theory
of hyperbolic Coxeter groups, we study the behavior of the Castelnuovo–Mumford reg-
ularity of square-free quadratic monomial ideals. We construct examples of such ideals
which exhibit arbitrarily high regularity after linear syzygies for arbitrarily many steps.
We give a doubly logarithmic bound on the regularity as a function of the number of
variables if these ideals are Cohen–Macaulay.

1. Introduction

The Castelnuovo–Mumford regularity captures the complexity of finitely generated graded R-
modules, where R = k[x1, . . . , xn] is a standard graded polynomial ring in n variables over a
field k. We focus on the case of modules of the kind R/I, where I is a homogeneous ideal of R. A
fundamental question is how big the regularity of R/I can be, when I ⊆ R is generated in fixed
degree. The following are some important results in this area.

i) For any d > 2, Mayr and Meyer [MM82] provided ideals I ⊆ R generated in degrees 6 d
for which regR/I is doubly exponential in the number of variables n, as explained by Bayer
and Stillman in [BS88].

ii) Caviglia and Sbarra showed in [CS05] that regR/I 6 (2d)2n−2 provided I is generated in
degrees 6 d.

iii) Ananyan and Hochster [AH16] proved that, if I is generated by r forms of degrees 6 d, then
projdimR/I 6 φ(r, d) provided the characteristic of k is zero or larger than d (here φ is
a function not depending on the number of variables n). This solves Stillman’s conjecture
[PS09] in characteristic zero or bigger than d. By a result of Caviglia (see for example [MS13,
Theorem 2.4]), projective dimension can be equivalently replaced by regularity in the above
statement.

iv) McCullough and Peeva provided in [MP18] examples of homogeneous prime ideals p ⊆
R such that regR/p is not bounded by any polynomial function in the multiplicity. In
particular, this shows that the Eisenbud–Goto conjecture [EG84] is false.
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v) Caviglia, McCullough, Peeva and the third named author noticed in [CCM+17] that, if k is
algebraically closed, there exists a function φ(e) bounding regR/p from above whenever p
is a homogeneous prime ideal of multiplicity e.

The Castelnuovo–Mumford regularity of R/I can be read off the graded Betti numbers βij
of R/I as regR/I = max{j − i : βij 6= 0} (see Section 2.4 for preliminaries on commutative
algebra). The Mayr–Meyer ideals have the property that β2j 6= 0 for a certain j > d2n/10 . That is,
their eventually high regularity is visible early in the resolution, indicating a possible connection
between different homological degrees. Part of the purpose of the present paper is to investigate
the possibilities for such connections. Specifically, we study the behavior of the regularity of
free resolutions that stay linear until a certain homological degree. As an example for questions
concerning the limit behavior of regularity consider the following open problem.

Question 1.1. Is there a family of quadratically generated ideals {In ⊆ R = k[x1, . . . , xn]}n∈N
with linear syzygies such that

lim
n→∞

regR/In
n

> 0 ?

Following Green and Lazarsfeld [GL86, Section 3a], we say that, given an integer p > 1, R/I
satisfies property Np if βij = 0 for all 1 6 i 6 p and j 6= i + 1. So R/I satisfies property N1 if
and only if I is quadratically generated, it satisfies property N2 if and only if I is quadratically
generated and has linear first syzygies, and so on. The Green–Lazarsfeld index of R/I, denoted
by indexR/I, is the largest p such that R/I satisfies Np where by convention, indexR/I = ∞
if I has a 2-linear resolution, and indexR/I = 0 if I is not quadratically generated. If I is a
Mayr–Meyer ideal, then its Green–Lazarsfeld index is at most one.

As a consequence of Eisenbud–Schreyer’s construction of pure modules, a syzygy degree that
appears in a free resolution can be unrelated to all earlier parts of the resolution [ES09]. A
construction due to Ullery shows that for any p, k ∈ N, k > p + 1, there even is a homogeneous
ideal I ⊆ R such that R/I satisfies Np and βp+1,k 6= 0, see [Ull14]. These constructions need a
large number of variables in R, though, and are not efficient enough for Question 1.1. Due to
the flexibility of resolutions of general ideals, it is interesting to look at more restricted classes.
For example, Koszul algebras cannot exhibit extremal behaviour as above. It is known, however,
that for all p > 2 there exist families of homogeneous ideals In ⊂ R such that R/In is a Koszul
algebra satisfying Np and limn→∞(regR/In)/ p√n > 0 [ACI13, Section 6].

In this paper we are interested in monomial ideals. Here the situation is even more rigid as
the following result by Dao, Huneke and Schweig [DHS13] illustrates. If I ⊂ R is a square-free
monomial ideal such that R/I satisfies Np for some p > 2, then

regR/I 6 log p+3
2

(
n− 1

p

)
+ 2.

In particular, a family which gives a positive answer to Question 1.1 cannot consist of monomial
ideals. In Section 4 we derive a new doubly logarithmic bound when R/I is Cohen–Macaulay.

The main motivation for the present paper is the following question:

Question 1.2. Fix an integer p > 2. Is there a bound r(p) (independent of n) such that regR/I 6
r(p) for all monomial ideals I ⊂ R such that R/I satisfy Np?

For p = 2, a negative answer has been given by the authors in [CKV16]. If R/I is Gorenstein,
the answer is positive by [CKV16, Theorem 4]. If R/I is Cohen–Macaulay, then the answer is
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unknown (Question 4.4). In this paper we give a negative answer for arbitrary p and begin the
search for constructions that realize the negative answer with as few variables as possible.

These investigations lead us to the consideration of a connection between square-free monomial
ideals and Coxeter groups. It starts from the observation that square-free monomial ideals with
property N2 correspond to right-angled hyperbolic Coxeter groups (see Section 2.3.1). The study
of the geometry and topology of such groups contains many ideas that we feel can be useful for
commutative algebra. In Section 5 we start to develop this connection, proving as a cornerstone
the following identity of homological invariants (Theorem 5.2).

vcdW = max
char k
{reg k[N ]}, (1)

where W is a Coxeter group with nerve N (W ), vcdW is the virtual cohomological dimension
ofW , and k[N (W )] is the Stanley–Reisner ring of the simplicial complex N (W ). As the regularity
of a Stanley–Reisner ring depends only on the characteristic of the field, the maximum is taken
over all possible characteristics, choosing one field for each.

We see (1) as a general tool to transfer results from Coxeter group theory to combinatorial
commutative algebra and vice versa. For example, when p = 2, Question 1.2 is equivalent to the
following question of Gromov:

Question 1.3. Is there a global bound on the virtual cohomological dimension of hyperbolic
right-angled Coxeter groups?

In fact, a right-angled Coxeter group W is hyperbolic if and only if k[N (W )] satisfies N2. As
an immediate consequence of (1) and the bound of [DHS13] we get:

Corollary 1.4. If W is a hyperbolic right-angled Coxeter group with n generators, then

vcdW 6 log 5
2

(
n− 1

2

)
+ 2.

Gromov’s question had already been answered negatively in [JŚ03]. Later on, new examples
were constructed by Osajda in [Osa13b]. Let 2(∆) denote the face complex of a simplicial complex
∆ (Definition 2.8). Exploiting ideas from Osajda’s construction and (1), we prove

Theorem 6.11. Let I = I∆ ⊆ R be a square-free quadratic monomial ideal. If char(k) = 0, then
there is a positive integer N and a square-free monomial ideal I ′ = I∆′ ⊆ R′ = k[y1, . . . , yN ] such
that:

i) regR′/I ′ = regR/I + 1;
ii) indexR′/I ′ = indexR/I;
iii) For each vertex v of ∆′, lk∆′ v = 2(∆).

As a corollary, we get a negative answer to Question 1.2:

Corollary 6.12. For any positive integers p and r, there exists a square-free monomial ideal
I ⊆ R = k[x1, . . . , xN(p,r)], such that R/I satisfies Np and regR/I = r.

The proofs of these statements are contained in Section 6. The crux of the corollary is that
the number of indeterminates N(p, r) depends on the desired r and p. In Section 7 we give an
explicit upper bound for the minimal number of variables in the corollary (Theorem 7.4).

The following Section 2 contains some preliminaries that we hope will be useful to readers
not already initiated in commutative algebra and geometric group theory. Section 3 gathers some
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new homological properties of Stanley–Reisner rings inspired by the developments in this paper,
but potentially useful beyond. In Section 4 we prove a new doubly logarithmic upper bound
on the regularity of Stanley–Reisner rings of complexes with top homology and property Np

(Theorem 4.2), which yields the same bound for all Cohen–Macaulay Stanley–Reisner rings with
propertyNp (Corollary 4.3). Section 5 establishes the fundamental equality (1). Finally, Sections 6
and 7 give Theorem 6.11 and an upper bound on the number of variables necessary for arbitrary
regularity with property Np (Theorem 7.4).

2. Preliminaries

As this paper touches upon the somewhat separated topics of geometric group theory, commuta-
tive algebra, and combinatorics, we introduce some preliminaries first.

2.1 Cell complexes
A poset is a partially ordered set (P,6). For every element p ∈ P we define the subposets
P6p = {q ∈ P : q 6 p} and P>p = {q ∈ P : q > p}. We do not assume that P is finite.

Definition 2.1. An (abstract) convex cell complex is a poset P that satisfies the following two
conditions:

i) For each p ∈ P, the subposet P6p is isomorphic to the poset of faces of some finite convex
polytope (including the empty face).

ii) For any p1, p2 ∈ P the poset P6p1 ∩ P6p2 contains a greatest element.

The elements of P are called faces, and the maximal elements are called facets. If each of the
convex polytopes in condition (i) are simplices (respectively cubes), then P is an abstract simplicial
complex (respectively an abstract cubical complex ).

Conditions (i) and (ii) imply that, if P 6= ∅, it has a unique minimal element 0̂, and a
well defined rank function. The minimal element corresponds to the empty face, and the rank
function defines the dimension of a face: dim(p) = rank(p) − 1. The 0-dimensional faces are
called vertices and the 1-dimensional faces are called edges. The 1-skeleton of a complex P is
the subposet of elements of rank at most 2. We also interpret faces as finite sets of vertices:
F = {rank 1 elements of P6F }. In this interpretation, the partial order is inclusion of sets. This
way, a cell complex is a collection of finite subsets of a (possibly infinite) vertex set. A cell complex
is thus a simplicial complex if the collection is closed under taking subsets. We can always speak
of the cardinality of a face; however, the rank corresponds to the cardinality of faces only for
simplicial complexes. Nonfaces are collections of vertices which do not correspond to any face.
These can also be ordered by inclusion, and minimal nonfaces are well defined.

A convex cell complex is a cell if it has a unique maximal element F0; the boundary of the cell
is the poset P \ {F0}. The subcomplex of P induced by a nonempty subset V of its vertex set is
P|V =

⋃
p∈V P>p∪{0̂}. Some authors use the term full subcomplex for our induced subcomplexes.

Not all subcomplexes are induced (e.g. the boundary of the triangle is not an induced subcomplex
of the triangle, but all edges are induced subcomplexes). A cell complex is locally finite if P>p is
a finite poset for every 0̂ 6= p ∈ P.

Definition 2.2. Let P be an abstract convex cell complex and F ∈ P a face. The link lkP F of
F in P is the abstract convex cell complex P>F .
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Remark 2.3. If F is a vertex, Definition 2.2 yields what is commonly known as the spherical
link at the vertex. Here we prefer a combinatorial definition as we do not think of our complexes
as embedded in a metric space.

Remark 2.4. If P is a cubical or a simplicial complex, then every link is a simplicial complex. If
P is locally finite, then the link is a finite complex.

Example 2.5. The link of each vertex in the 3-dimensional cube is a triangle. The link of each
vertex of the octahedron is a square.

2.1.1 Simplicial complexes It is easy to check that, for simplicial complexes, all the "usual"
definitions agree with the ones given above. A simplicial complex ∆ is flag, if all the minimal
nonfaces have cardinality two. Equivalently, no induced subcomplex is the boundary of a sim-
plex. For any integer k > 3, the k-cycle is the 1-dimensional simplicial complex with vertex
set {vi}i=0,...,k−1 and edge set {{vi, vi+1(mod k)}}i=0,...,k−1. The following property of simplicial
complexes is essential to this paper, as it has interpretations in both commutative algebra and
Coxeter group theory.

Definition 2.6. Let k > 4 be an integer. A simplicial complex is k-large, if it is flag and does
not have any induced j-cycles for j < k.

A cubical or simplicial complex is locally k-large if all its vertex links are k-large. In the liter-
ature, 5-largeness is sometimes referred to as flag-no-square or Siebenmann’s condition. We stress
here that all k-large complexes must be flag, and that an induced cycle contains no diagonals.

Example 2.7. Let ∆ be the boundary of the octahedron, i.e. ∆ has vertex set {±vi}i=1,2,3 and
eight 2-dimensional facets: {±v1,±v2,±v3}. This complex is flag, because the minimal nonfaces
are {+vi,−vi}, but it is not 5-large, because the vertex subset {±v1,±v2} induces a 4-cycle.
Adding the edges {+vi,−vi} for i = 1, 2, 3 to ∆, we obtain a simplicial complex without induced
4-cycles, but it is not flag.

Definition 2.8. Let ∆ be a simplicial complex. The face complex 2(∆) is the simplicial complex
whose vertex set is the set of nonempty faces of ∆ and where F1, . . . , Fs ∈ ∆ form a face of 2(∆)

if and only they are all contained in a single face of ∆.

Example 2.9. The face complex of a d-simplex is the (2d+1 − 2)-simplex.

2.2 Coxeter groups
We use the notation from Davis’ book [Dav08]. A Coxeter system is a pair (W,S) consisting of
a finitely generated group W and a finite set of distinct generators S = {s1, . . . , sn}, all different
from the identity, such that W is presented as

W = 〈s1, . . . , sn : (sisj)
mij = e〉

for mij ∈ N∪{∞} with mii = 1, and mij > 2 for i 6= j. The case mij =∞ means no relation. If a
group has a presentation as above, then it is a Coxeter group, and S is a set of Coxeter generators.
The finite Coxeter groups have been classified by Coxeter [Cox35]. The matrix M = (mij)ij is
the Coxeter matrix of (W,S). If mij ∈ {1, 2,∞}, then the Coxeter group (or Coxeter system) is
right-angled. The elements of S are letters, and the elements of W are words.

A special subgroup of W is a subgroup WT generated by a subset T ⊆ S of the Coxeter
generators. In particular, the trivial subgroup is special. By [Dav08, Theorem 4.1.6], (WT , T ) is
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a Coxeter system for all T ⊂ S. A subset T ⊆ S is spherical if WT is finite. In this case, WT and
the words in it are also called spherical. A spherical coset is a coset of a spherical subgroup. All
spherical cosets are finite. Clearly, being spherical is closed under taking subsets.

Definition 2.10. The nerve N (W,S) of a Coxeter system (W,S) is the simplicial complex
consisting of the spherical sets ordered by inclusion.

The nerve of a Coxeter system is always a finite simplicial complex, with the Coxeter generators
as vertices.

Remark 2.11. There is a one-to-one correspondence between right-angled Coxeter groups and
flag simplicial complexes given as follows. Every flag simplicial complex ∆ is the nerve of a right-
angled Coxeter group W(∆): the off-diagonal entries of the Coxeter matrix of W(∆) are mij = 2
whenever {i, j} ∈ ∆ and mij = ∞ otherwise. Conversely, if (W,S) is right-angled, and T ⊆ S,
such that any two elements are connected by an edge in the nerve, then WT

∼= (Z/2Z)|T |.

Remark 2.12. In a right-angled Coxeter group a word is spherical if and only if it can be written
with letters that commute pairwise. In particular, if the presentation is reduced (i.e. no subword
is equal to the word), then each letter appears at most once.

Example 2.13. Not every simplicial complex is the nerve of a Coxeter system. The smallest
counterexample occurs on five vertices and is given by the complex with facets {123, 145, 245,
345}. This can be confirmed using the classification of finite Coxeter groups.

Definition 2.14. The Davis complex of a Coxeter system (W,S) is the cell complex Σ(W,S)
given by the poset of spherical cosets.

Remark 2.15. The link of any vertex w of Σ(W,S) is the poset of spherical cosets wWT for all
spherical subsets T . It is thus isomorphic to the nerve N (W,S).

Remark 2.16. Davis and Januszkiewicz have discovered a link between Stanley–Reisner theory
and Coxeter groups that is different from the developments in our paper. The cohomology ring
H∗(W,F2) is isomorphic to the Stanley–Reisner ring F2[N(W,S)]. However, this connection is a
characteristic two phenomenon, as otherwise the product in the cohomology ring need not be
commutative. See [DJ91, Theorem 4.11].

2.3 Geometric group theory
Let Γ be a simple graph on a (possibly infinite) vertex set V . Given two vertices v, w ∈ V , a path
e from v to w is a subset {v = v0, v1, v2, . . . , vk = w} ⊆ V , such that {vi, vi+1} is an edge for all
i = 0, . . . , k − 1. The length of a path is `(e) = k. The distance between v and w is

d(v, w) := min{`(e) : e is a path from v to w}.

If W ⊂ V is a set of vertices, then d(v,W ) := min{d(v, w), w ∈ W}. A path e from v to w is
a geodesic path if `(e) = d(v, w). A geodesic triangle of vertices v1, v2, and v3 consists of three
geodesic paths ei from vi to vi+1(mod 3) for i = 1, 2, 3. For a real number δ > 0, a geodesic triangle
e1, e2, e3 is δ-slim if d(v, ei ∪ ej) 6 δ for all v ∈ ek and {i, j, k} = {1, 2, 3}. The graph Γ is
δ-hyperbolic if each geodesic triangle of Γ is δ-slim, and hyperbolic if it is δ-hyperbolic for some
δ > 0.
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2.3.1 Hyperbolic groups Let G be a group and S a set of distinct generators of G, not con-
taining the identity. The Cayley graph Cay(G,S) is the simple graph with vertex set G and edges
{g, gs} for all g ∈ G and s ∈ S. For example, the vertices of the Davis complex Σ(W,S) of a
Coxeter system (W,S) are the elements of W and the edges are the cosets of the spherical sub-
groups Wsi . Therefore the 1-skeleton of Σ(W,S) is the Cayley graph of (W,S). Gromov proved
that if Cay(G,S) is hyperbolic for some finite set of generators S then it is hyperbolic for any
finite set of generators S [Dav08, Theorem 12.3.5].

This justifies the definition of hyperbolic groups in the following way.

Definition 2.17. A group G is hyperbolic if Cay(G,S) is a hyperbolic graph for some (equiva-
lently for any) finite set of generators S.

It is easy to check that Z2 is not hyperbolic. Therefore, if G contains Z2 as a subgroup, then
G cannot be hyperbolic. By work of Moussong, for a Coxeter group (W,S) this can be reversed:

W is hyperbolic ⇐⇒ Z2 6⊂W.

Combining results of Siebenmann [Dav08, Lemma I.6.5] and Moussong [Dav08, Lemma 12.6.2],
if (W,S) is right-angled then

W is hyperbolic ⇐⇒ N (W,S) has no induced 4-cycles. (2)

2.3.2 Cohomological dimension The cohomological dimension of a group G is

cdG = sup{n : Hn(G;M) 6= 0 for some ZG-module M},

where Hn(G;M) is the n-th group cohomology of G with values in M (see [Dav08, Appendix F]
for equivalent definitions and some properties). If G has nontrivial torsion, then cdG = +∞
(see [Dav08, Lemma F.3.1]). Therefore the notion is not interesting for groups with torsion, but
this can be rectified. A group G is virtually torsion-free if it has a finite index subgroup which is
torsion-free. It follows from a result of Serre [Dav08, Theorem F.3.4] that, if Γ and Γ′ are two finite
index torsion-free subgroups of G, then cd Γ = cd Γ′. Thus the following notion is well-defined.

Definition 2.18. Let G be a virtually torsion-free group, and Γ some (equivalently any) finite
index torsion-free subgroup of G. The virtual cohomological dimension of G is

vcdG = cd Γ.

Each nontrivial Coxeter group has torsion but, admitting a faithful linear representation
(see [Dav08, Corollary D.1.2]), it is virtually torsion-free. Thus the virtual cohomological dimen-
sion is always well-defined for a Coxeter group. By [Dav08, Corollary 8.5.5], and using [Mun84,
Lemma 70.1] to avoid geometric realizations, the vcd of a Coxeter group (W,S) can be read off
the nerve N (W,S), namely:

vcdW = max{i : H̃ i−1(N (W,S) \ σ;Z) 6= 0 for some σ ∈ N (W,S)}, (3)

where N (W,S) \ σ is the restriction of N (W,S) to S \ σ, and H̃ i denotes the reduced simplicial
cohomology modules.

2.4 Commutative Algebra
Let n be a positive integer, R = k[x1, . . . , xn] the polynomial ring in n variables over a field k,
and m = (x1, . . . , xn) its irrelevant ideal. Any quotient R/I by some homogeneous ideal I ⊆ R
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has a minimal graded free resolution.

0→
⊕
j∈Z

R(−j)βkj → · · · →
⊕
j∈Z

R(−j)β2j →
⊕
j∈Z

R(−j)β1j → R→ R/I → 0.

The Betti number βij is the number of minimal generators of degree j of the free module in
homological degree i in the resolution. It is independent of the particular minimal resolution and
can be computed as βi,j(R/I) = dimk Tori(R/I, k)j .

Definition 2.19. The Castelnuovo–Mumford regularity of R/I is

reg(R/I) = max{j − i : βi,j(R/I) 6= 0}

IfH i
m denotes local cohomology with support inm, [Eis95, Proposition 20.16] and Grothendieck

duality imply reg(R/I) = max{j + i : H i
m(R/I)j 6= 0},

Definition 2.20. For any positive integer p, the k-algebra R/I satisfies property Np if:

βi,j(R/I) = 0 ∀ i = 1, . . . , p and j 6= i+ 1.

Definition 2.21. Let ∆ be a finite simplicial complex with vertex set [n] = {1, . . . , n}. The
Stanley–Reisner ring of ∆, denoted by k[∆], is the quotient of R by the square-free monomial
ideal

I∆ = (
∏
i∈A

xi : A ⊆ [n] and A /∈ ∆).

The ideal I∆ is the Stanley–Reisner ideal of ∆.

There is a one-to-one correspondence between simplicial complexes and ideals generated by
square-free monomials. From the definition it follows that a simplicial complex is flag if and
only if its Stanley–Reisner ideal is quadratic. The Np property for Stanley–Reisner rings was
characterized combinatorially in [EGHP05, Theorem 2.1]:

Theorem 2.22. The Stanley–Reisner ring k[∆] satisfies Np if and only if ∆ is (p+ 3)-large.

The Castelnuovo–Mumford regularity of k[∆] can be computed from the reduced singular
cohomology of either induced subcomplexes or links of ∆. More precisely, Hochster’s formula for
graded Betti numbers [MS05, Corollary 5.12] gives

reg k[∆] = max{i : H̃ i−1(∆|A; k) 6= 0 for some A ⊆ [n]}. (4)

On the other hand, by Hochster’s formula for local cohomology [MS05, Theorem 13.13]:

reg k[∆] = max{i : H̃ i−1(lk∆ σ;k) 6= 0 for some σ ∈ ∆}. (5)

3. Homological remarks on Stanley–Reisner rings

In this section, ∆ is a d-dimensional simplicial complex on n vertices, and a face of ∆ is identified
with its set of vertices. We use some standard algebraic topology (see for example [Mun84, §5]).
For r 6 d let Cr(∆; k) be the k-vector space spanned by the r-dimensional faces of ∆. Let
∂r : Cr(∆;k) → Cr−1(∆; k) be the boundary operator and Zr(∆; k) = Ker ∂r the subspace
spanned by the cycles in Cr(∆; k). Also write Br(∆; k) = im ∂r+1 for the subspace spanned
by the boundaries in Cr(∆; k). An r-cycle C is nontrivial if C /∈ Br(∆; k). A nontrivial r-
cycle C is vertex-minimal if there is no nontrivial r-cycle C ′ with V (C ′) ( V (C), where for
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C =
∑l

i=1 ciFi ∈ Cr(∆;k) we set V (C) = ∪li=1Fi. For every v ∈ V (C) define

Cv =
∑
Fi3v

ci(Fi \ v) ∈ Cr−1(lk∆ v; k).

If C ∈ Zr(∆;k), then all codimension one faces containing v sum to zero when applying ∂,
so ∂(

∑
Fi3v ciFi) = Cv; therefore ∂(Cv) = ∂2(

∑
Fi3v ciFi) = 0 in Cr−2(∆;k) and thus, since the

differentials of (Ci(lk∆ v;k))i are just the restrictions of the differentials of (Ci(∆; k))i, we get
Cv ∈ Zr−1(lk∆ v;k).

Lemma 3.1. Let C =
∑l

i=1 ciFi be a nontrivial r-cycle in ∆ and v ∈ V (C) a vertex.

i) If r = d, then Cv is a nontrivial (d− 1)-cycle in lk∆ v.
ii) If C is vertex-minimal, then Cv is a nontrivial (r − 1)-cycle in (lk∆ v)|V (C).

Proof. i) is clear. For ii), it is harmless to assume that, in the linear order given to the vertices
of ∆, v comes first in V (C). Assume there exists Bv = b1G1 + . . .+ bsGs with bi ∈ k, such that
the Gi are r-dimensional faces in (lk∆ v)|V (C) and ∂(Bv) = Cv. Consider the k-linear combination
of (r + 1)-faces in ∆ defined as B = b1(G1 ∪ v) + . . .+ bs(Gs ∪ v). Then

∂(B) = −
∑
Fi3v

ciFi +Bv.

So A = C+∂(B) is a nontrivial r-cycle of ∆ (otherwise C would be trivial). However, v /∈ V (A) ⊂
V (C) – a contradiction.

Proposition 3.2. There exists a vertex v ∈ ∆ such that

reg k[lk∆ v] > reg k[∆]− 1.

Proof. Let V ′ be a subset of the vertex set of ∆ such that Γ = ∆|V ′ has nontrivial rth homology
with coefficients in k, where reg k[∆] = r + 1. Let C be a vertex-minimal nontrivial r-cycle
of Γ. By Lemma 3.1 ii), Cv is a nontrivial (r − 1)-cycle in (lkΓ v)|V (C), for all v ∈ V (C). Since
(lkΓ v)|V (C) = (lk∆ v)|V (C), the proposition follows.

Proposition 3.3. If I ⊆ R is a homogeneous (not necessarily monomial) ideal such that
√
I is

a square-free monomial ideal, then for any i ∈ N, j ∈ Z the map of k-vector spaces

H i
m(R/I)j → H i

m(R/
√
I)j

is surjective. In particular, regR/
√
I 6 regR/I and projdimR/

√
I 6 projdimR/I.

Proof. Let A denote R/I localized at m. If char k > 0, then the quotient by the nilradical
Ared = A/

√
(0) is F -pure. By [Sch09, Theorem 6.1], in characteristic zero, Ared is DuBois.

So in each case, by [MSS17, Lemma 3.3, Remark 3.4] the map

H i
m(R/I) = H i

mA(A)→ H i
mA(Ared) = H i

m(R/
√
I)

is surjective for any i ∈ N. Since the above map is homogeneous we conclude.

Given two polynomial rings R = k[x1, . . . , xn] and R′ = k[y1, . . . , ym], a map of k-algebras
f : R→ R′ is a monomial map if f(xi) is a monomial in {y1, . . . , ym} for all i = 1, . . . , n.

Lemma 3.4. If f : R→ R′ is a monomial map and I ⊆ R is a monomial ideal, then

projdimR′/
√
f(I)R′ 6 projdimR/I.

9
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Proof. Since
√
I is a square-free monomial ideal, projdimR/I > projdimR/

√
I by Proposi-

tion 3.3. By a classical result of Lyubeznik (see the main theorem of [Lyu84]) the projective di-
mension of R/

√
I equals cd(R, I), the cohomological dimension of I. Since the computation of lo-

cal cohomology is independent of the base ring [BS13, Theorem 4.2.1], cd(R′, f(I)R′) 6 cd(R, I).
Again using [Lyu84], cd(R′, f(I)R′) = projdimR′/

√
f(I)R′.

Proposition 3.5. If 2(∆) is the face complex of ∆, then reg k[∆] = reg k[2(∆)].

Proof. Clearly reg k[∆] 6 reg k[2(∆)] by Definition 2.8 and (4). Let Γ and Γ′ be the Alexander
duals of, respectively, ∆ and 2(∆). Then, by the Eagon–Reiner theorem [MS05, Theorem 5.63],
projdim k[Γ]− 1 = reg k[∆] and projdim k[Γ′]− 1 = reg k[2(∆)]. It can be checked that IΓ is the
following ideal of R = k[x1, . . . , xn]:

IΓ = (
∏

i∈[n]\τ

xi : τ is a facet of ∆).

For IΓ′ ⊆ R′ = k[yσ : σ ∈ ∆] it holds that

IΓ′ = (
∏
σ∈∆
σ 6⊆τ

yσ : τ is a facet of ∆).

The map R
f−→ R′ defined by xi 7→

∏
σ∈∆,i∈σ

yσ gives IΓ′ =
√
f(IΓ)R′, so that the result follows

from Lemma 3.4.

4. Regularity from top homology

The main result of this section is an improvement of the [DHS13] bound in the case that ∆ is
a Cohen–Macaulay complex. In this case, a doubly logarithmic bound for the regularity as a
function of the number of vertices is possible (Corollary 4.3). The underlying Theorem 4.2 uses
similar techniques as the proof of [CKV16, Theorem 7]. We use the following technical lemma,
the proof of which is a routine computation using the inequality (i− 1)(i+ 1) < i2 several times.

Lemma 4.1. For any integer k > 3 we have
k−3∏
i=0

(k − i)2i < 122k−3
.

Theorem 4.2. Let ∆ be a simplicial complex of dimension d on n vertices that is (p+ 3)-large
for some p > 2, and has nontrivial top homology. If fi(∆) is the number of i-dimensional faces of
∆, then

fd(∆) >

(
p2 + 6p+ 9

12

)2d−2

and f0(∆) >

(
p2 + 6p+ 9

12

)2d−3

.

Proof. For every d-dimensional simplicial complex ∆ with nontrivial top homology we define

vd(∆) = min{number of vertices in a top-dimensional cycle in ∆},
sd(∆) = min{number of facets in a top-dimensional cycle in ∆}.

Minimizing over all d-dimensional (p+ 3)-large complexes with nontrivial top homology, let

vd = min{vd(∆) : ∆ (p+ 3)-large, with nontrivial top homology},
sd = min{sd(∆) : ∆ (p+ 3)-large, with nontrivial top homology}.

10
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This implies in particular that v1 = s1 = p+ 3.
Fix a complex ∆ satisfying the hypotheses of the theorem. Let C ∈ ∆ be a top-dimensional

cycle with sd(∆) facets. For every vertex v ∈ C, the link lk∆ v is a (d− 1)-dimensional simplicial
complex with nontrivial top homology by item i) in Lemma 3.1. Furthermore, lk∆ v is (p+3)-large.
Counting codimension one faces in ∆|V (C) with multiplicity, we get:

sd(∆) >
1

d+ 1

∑
v∈V (C)

sd−1(lk∆|V (C)
v).

Fix v ∈ V (C). Every facet F of the link of v in ∆|V (C) is contained in at least two facets of C
only one of which can contain v. Thus, a map associating to F ∈ lk∆|V (C)

v a vertex w 6= v, with
F ∪ {w} ∈ ∆ is well defined:

Φv : F(lk∆|V (C)
v) −→ V (∆) \ V (star∆|V (C)

v).

We claim that Φv is injective. To see this, let F1, F2 ∈ F(lk∆|V (C)
v) be distinct faces such that

F1 ∪ {w} and F2 ∪ {w} are faces of ∆. Since ∆ is flag, there exist v1 ∈ F1 and v2 ∈ F2 such
that v, v1, w, v2, v is a 4-cycle and {v1, v2} /∈ ∆. Since lk∆|V (C)

v is flag, also {v, w} /∈ ∆. Because
of this contradiction, Φv is injective. The injectivity yields vd(∆) > sd−1 + vd−1 + 1 and then,
putting together the above inequalities,

sd >
s2
d−1

d+ 1
, vd > sd−1.

Now, since s1 = p+ 3,

sd >
(p+ 3)2d−1∏d−2

i=0 (d+ 1− i)2i
.

Finally, by Lemma 4.1,

fd(∆) > sd >
(p+ 3)2d−1

122d−2 =

(
p2 + 6p+ 9

12

)2d−2

.

Corollary 4.3. Let I ⊆ R be a square-free monomial ideal such that R/I is a Cohen-Macaulay
ring satisfying property Np, for p > 2. Then

regR/I 6 log2 log p2+6p+9
12

n+ 3.

Proof. Let ∆ be a simplicial complex on n vertices such that I = I∆. By Hochster’s formula for
local cohomology [MS05, Theorem 13.13],

reg k[∆] = max{i : H̃ i−1(lk∆ σ;k) 6= 0 : σ ∈ ∆}.

Let σ ∈ ∆ attain the maximum. Because ∆ is Cohen-Macaulay, lk∆ σ has nontrivial top homology.
Therefore reg k[∆]− 1 = dim lk∆ σ =: d. Since ∆ is (p+ 3)-large, so is lk∆ σ. Hence by Theorem
4.2

n > f0(lk∆ σ) >

(
p2 + 6p+ 9

12

)2d−3

and the conclusion follows.

Corollary 4.3 motivates to ask Question 1.2 again with a Cohen–Macaulay restriction. In this
case the answer is not known.

11
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Question 4.4. Fix an integer p > 2. Is there a global bound r(p) (independent of n) such that
regR/I 6 r(p) for all monomial ideals I ⊂ R for which R/I satisfies Np and is Cohen–Macaulay?

5. Virtual cohomological dimension meets regularity

The main theorem of this section establishes a new connection between Coxeter groups and
commutative algebra. Its proof is by a cohomology computation using two spectral sequences
associated to a double complex. A reference and our source of notation is [GM03, Chapter III].

Fix a ring A. For any finite double complex L = (Lp,q)(p,q)∈N2 of A-modules, there are two
spectral sequences both converging to the cohomology of the diagonal complex SL of L, whose
entries are SLn = ⊕p+q=nLp,q. We denote these spectral sequences by (IEp,qr ) and (IIEp,qr ). Both
converge to IEk = IIEk = Hk(SL). By [GM03, III.7, Proposition 10], IEp,q2 is isomorphic to
Hp
I (H•,qII (L•,•)) (vertical cohomology of horizontal cohomology), while IIEp,q2 is isomorphic to

Hp
II(H

q,•
I (L•,•)) (horizontal cohomology of vertical cohomology).

For alignment with existing notation it is convenient to let ∆ be a simplicial complex with
n+ 1 vertices V = {0, . . . , n}. For any s < n and any i ∈ {0, . . . , s}, denote by ∆i = ∆|V \{i}. For
any sequence of integers 0 6 a0 < . . . < ap 6 s, let

∆a0,...,ap =

p⋂
k=0

∆ak .

Then ∆a0,...,ap equals the induced subcomplex ∆|V \{a0,...,ap}. The first notation, however, is more
natural in following. For example, if {0, . . . , s} is not a face of ∆, then {∆i}i=0,...,s forms a
closed cover of ∆, that is ∪si=0∆i = ∆. Denote by C•(∆, A) the cochain complex of a simplicial
complex ∆ with coefficients in the ring A. Consider the double complex of A-modules C(A) =
(Cp,q(A))(p,q)∈N2 with

Cp,q(A) =
⊕

a0<...<ap

Cq(∆a0,...,ap ;A), 0 6 p 6 s, 0 6 q 6 dim ∆. (6)

where the direct sum runs over all sequences of p+ 1 integers 0 6 a0 < . . . < ap 6 s. Throughout
we use the standard convention that all modules with indices outside of defined bounds are zero.
The vertical maps Cp,q(A) −→ Cp,q+1(A) are just the maps defined for each direct summand in the
cochain complex C(∆a0,...,ap , A). The rows

0→ C0,•(A)
d1

−→ C1,•(A)
d2

−→ · · · d
s−1

−−−→ Cs−1,•(A)
ds−→ Cs,•(A)→ 0, (7)

are defined by mapping an element α = (αa0,...,ap)a0<...<ap ∈ Cp,q(A), to dp+1(α) ∈ Cp+1,q(A),
whose (b0, . . . , bp+1)th component is

p+1∑
k=0

(−1)k
(
α
b0,...,b̂k,...,bp+1

)∣∣∣
Cq(∆b0,...,bp+1 )

.

A routine computation confirms that this defines a double complex. The vertical cohomology is
by definition the direct sum of the cohomologies of the corresponding ∆a0,...,ap . The horizontal
cohomology is nontrivial only in cohomological degree 0 according to the following lemma, whose
proof is standard.
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Lemma 5.1. For each q ∈ {0, . . . ,dim ∆} we have

Hp(C•,q(A)) =

{
Cq(∪i∆i;A) if p = 0,

0 if p > 0.

Theorem 5.2. Let (W,S) be a Coxeter group and N its nerve. Then

vcdW = max
char k
{reg k[N ]}.

Proof. In Section 2, equations (3) and (4) present interpretations of both invariants in terms of
the reduced simplicial cohomology of N , namely

vcdW = max{i : H̃ i−1(N|S\σ;Z) 6= 0 for some σ ∈ N},

reg k[N ] = max{i : H̃ i−1(N|U ; k) 6= 0 for some U ⊆ S}.

Therefore the result is a consequence of the following claim.
Claim. Let ∆ be a simplicial complex on V = {0, . . . , n} and A be a ring. Then

max{i : H i(∆|V \σ;A) 6= 0 for some σ ∈ ∆} =

= max{i : H i(∆|V ′ ;A) 6= 0 for some V ′ ⊆ V }.
(8)

Clearly the left-hand side is less than or equal to the the right-hand side. To see that equality
holds, let r be the maximum on the right and choose V ′ ⊆ V such that Hr(∆|V ′ ;A) 6= 0. If
V \V ′ ∈ ∆ we have nothing to prove, so assume that V \V ′ /∈ ∆ (in particular |V \V ′| > 2). We
can (and will) also assume that H i(∆|U ;A) = 0 for all i > r and V ′ ( U ⊆ V .

After a potential renumbering we can assume that V \V ′ = {0, . . . , s}. For any i ∈ {0, . . . , s},
let ∆i = ∆|V \{i} and consider the double complex defined in (6). By Lemma 5.1 (IEp,qr ) stabilizes
at the second page and

Hp(∪si=0∆i;A) = IEp,02 = IEp,0∞ = IEp.

Since {0, . . . , s} is not a face of ∆, we have ∆ = ∪si=0∆i. Now consider the spectral sequence (IIEp,qr ).
From the maximality assumption on V ′ it follows that

Hr(∆|V ′ ;A) = Hr(∆0,...,s;A) = IIEr,s2 .

In particular, if r′ > r or s′ > s, then IIEr
′,s′

2 = 0, since it is a subquotient of⊕
06a0<...<as′6s

Hr′(∆a0,...,as′ ;A) = 0.

We have IIEr,s2 = IIEr,s∞ = IIEr+s from which we conclude that

Hr+s(∆;A) = IEr+s = IIEr+s = Hr(∆|V ′ ;A) 6= 0.

Since s > 0 (because |V \ V ′| > 2), we obtain a contradiction to the maximality of r and V ′.

6. Arbitrary large regularity with property Np

We now prove Theorem 6.11. To this end, for each k-large simplicial complex ∆ we construct a
k-large simplicial complex S(∆, k) such that, in characteristic zero, reg k[S(∆, k)] = reg k[∆] + 1
(Lemma 6.6). This uses a construction based on a detour through geometric group theory and is
inspired by the work of Osajda [Osa13b, Section 4].

We need to make a few definitions. The first turns a cell complex into a simplicial complex.
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Definition 6.1. The thickening of a convex cell complex P is the simplicial complex Th(P), with
the same vertex set as P, obtained by turning all cells into simplices. In particular, {v1, . . . , vs}
is a face of Th(P), if there is a face of P that contains {v1, . . . , vs}.

Example 6.2. The thickening of the d-dimensional cube is the (2d − 1)-simplex.

The thickening induces a distance between the vertices of a convex cell complex that counts
the minimal number of maximal cells one needs to pass to get from one vertex to another. Namely,
for two vertices v, w ∈ P, the distance d(v, w) is the length of a shortest path connecting v and
w in the 1-skeleton of the thickening Th(P).

A step in our construction is taking a finite quotient of an infinite cubical complex. We clarify
here how this is intended. Let G be a group acting on the vertex set V (P) of a convex cell complex
P such that for every face F = {v1, . . . , vk} ∈ P and every g ∈ G we have

g · F = {g · v1, . . . , g · vk} ∈ P.

This induces an action of G on P. The displacement of the action of G on P is the minimum
distance between the elements in the orbit of a vertex. We can take the quotient P/G, which is
in general only a set.

Remark 6.3. If the displacement of the action is at least 2, then P/G is a poset with the inclusion
given by F̂ ′ ⊆ F̂ if there exists g ∈ G such that g · F ′ ⊆ F . If the displacement of the action is
at least 3, then P/G is a convex cell complex.

An example of such a group action is that of the subgroup of some Coxeter group on the
vertices of the Davis complex. In this case the displacement of the action coincides with the
displacement of the subgroup as defined below.

Definition 6.4. Let W be a Coxeter group. The displacement of an element w ∈ W is the
distance d(e, w) of w to the identity in the (1-skeleton of the) thickening Th(Σ). The displacement
of a subgroup H ⊂W is the minimal displacement among its nontrivial elements.

Let ∆ be a k-large simplicial complex for an integer k > 4. We introduce an iterative con-
struction which produces a new k-large simplicial complex S(∆, k). It works as follows.

(i) Let W be the right-angled Coxeter group with nerve ∆.
(ii) Let Σ be the Davis complex of W .
(iii) Let Y = Th(Σ) be the thickening of Σ.
(iv) Pick a torsion-free finite index subgroup H ⊂W with displacement at least k.
(v) Let S(∆, k) be the quotient Y/H.

Since ∆ is flag, there is a right-angled Coxeter groupW(∆) as described in Remark 2.11. The
group H in iv exists because W is virtually torsion free [Dav08, Corollary D.1.4] and residually
finite [Dav08, Section 14.1]. In Section 7, we take a constructive approach and find a concrete H
using representations of W in GLn(Z). The resulting complex S(∆, k) evidently depends on the
choice of H in step iv. However, the desired properties of S(∆, k), such as Lemma 6.6, do not
depend on this choice.

Lemma 6.5. In the above situation, 2(∆) = lkS(∆,k) v for any vertex v.

Proof. After unraveling definitions, it is visible that if Σ is a cubical complex and v ∈ Σ is a
vertex, then 2(lkΣ v) = lkTh(Σ) v. If Σ is the Davis complex of a right-angled Coxeter group with
nerve ∆, then by Remark 2.15, lkΣ v = ∆ for any vertex v ∈ Σ.
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Lemma 6.6. If k is a field of characteristic zero and k > 4, then reg k[S(∆, k)] = reg k[∆] + 1.

Proof. By the previous lemma 2(∆) = lkS(∆,k) v for any vertex v, and by Proposition 3.2 there
exists a vertex v such that reg k[lkS(∆,k) v] > reg k[S(∆, k)] − 1. Since reg k[2(∆)] = reg k[∆] by
Proposition 3.5, it follows that reg k[S(∆, k)] 6 reg k[∆] + 1.

To show reg k[S(∆, k)] > reg k[∆] + 1, let X = Σ/H. Then S(∆, k) is the thickening of X. By
Hochster’s formula for graded Betti numbers and (8), we have that

reg k[∆] = max{i : H̃ i−1(∆ \ σ;k) 6= 0 for some σ ∈ ∆}.

Let r = reg k[∆], and fix σ ∈ ∆ for which H̃r−1(∆\σ; k) 6= 0. From now on the argument goes on
the same lines of the proof leading to [Osa13a, Lemma 4.5]. With the same notation used there,
∆ \ σ deformation retracts onto KS\σ, where K is the subcomplex of Σ induced by the spherical
words (including the identity) and, for any subset of generators T ⊆ S, KT is the subcomplex
induced by the spherical words containing some element of T . So we have

H̃r(K,KS\σ;k) 6= 0.

Osajda produces a map of k-vector spaces from the cocycles Zr(K,KS ; k) to the cocycles Zr(X;k).
This uses the assumption char(k) = 0. One can check that the same rule defines a map of k-vector
spaces Zr(K,KS\σ;k) → Zr(X \ A; k), where A = {ŵσ : w ∈ W} and ŵσ is the class in X of
wσ ∈ Σ. By the same argument used in [Osa13a, Lemma 4.5], the above map induces an injection

H̃r(K,KS\σ;k) ↪→ H̃r(X \A; k),

in particular H̃r(X \ A;k) is not zero. By [Mun84, Lemma 70.1], H̃k(X \ A;k) ∼= H̃r(XB; k),
where B are the vertices of X which are not in ŵσ for any w ∈W . Finally, the thickening of XB

is exactly S(∆, k)B, so
H̃r(S(∆, k)B; k) 6= 0.

By Hochster’s formula for graded Betti numbers reg k[S(∆, k)] > r + 1.

Remark 6.7. In the definition of cohomological dimension, Z could be replaced by a field k of
characteristic zero. The resulting notion of virtual rational cohomological dimension vcdQW of a
virtually torsion free group W does not depend on the choice of the field. This notion however,
differs from virtual cohomological dimension. Lemma 6.6, together with Hochster’s formula for
graded Betti numbers and (8), implies that

vcdQW(S(∆, k)) = vcdQW(∆) + 1.

This conclusion for vcd does not follow from Lemma 6.6 because of the assumptions on k.

Lemma 6.8. If a cubical complex is locally k-large, then its thickening is locally k-large.

Proof. Let Σ be a locally k-large cubical complex. As in the proof of Lemma 6.5, each vertex link
lkTh(Σ) v is equal to 2(lkΣ v). By a result of Haglund, a simplicial complex is k-large if and only if
its face complex is k-large [JŚ10, Proposition B.1].

A proof of the Lemma 6.8 also appears in [Osa13a, Lemma 6.7].

Lemma 6.9. Let Σ be the Davis complex of W(∆), where ∆ is k-large for k > 4. Then Th(Σ) is
k-large.

Proof. The Davis complex Σ is a deformation retract of its thickening Th(Σ) and in particular
has the same homotopy type. Therefore Th(Σ) is simply connected. By Lemma 6.8 Th(Σ) is
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locally k-large. According to [JŚ06, Corollary 1.5], a simplicial complex is k-large if and only if all
links are k-large and the systole (the length of the shortest non-contractible loop in the complex)
is at least k. Since there are no non-contractible loops, the proof is complete.

When forming the quotient of the thickening of the Davis complex modulo the finite-index
torsion-free subgroup H ⊂ W in step v of the construction, cycles are created. The quotient by
a group of displacement k creates cycles of length k. By Remark 6.3, k > 4 implies the quotient
is simplicial complex.

Lemma 6.10. Let Σ be the Davis complex of W(∆), where ∆ is k-large for k > 4. If H ⊂ W(∆)
is a torsion-free subgroup of displacement at least k, then Th(Σ)/H is k-large.

Proof. If C ∈ Th(Σ)/H is a cycle of length l < k, then it consists of disjoint orbits and thus
there is a cycle of length l in Th(Σ). This is impossible since by Lemma 6.9 Th(Σ) is k-large.

We are now ready to prove the two main results of this section.

Theorem 6.11. Let I = I∆ ⊆ R = k[x1, . . . , xn] be a square-free quadratic monomial ideal. If
the characteristic of k is zero, then there exists a positive integer N and a square-free monomial
ideal I ′ = I∆′ ⊆ R′ = k[y1, . . . , yN ] such that:

i) regR′/I ′ = regR/I + 1;
ii) indexR′/I ′ = indexR/I;
iii) For each vertex v of ∆′, lk∆′ v = 2(∆).

Proof. Let p = indexR/I. Since I = I∆ is quadratic, p > 1. Let ∆′ = S(∆, p + 3). The first
item is Lemma 6.6. The third item is Lemma 6.5. For the second item, Lemma 6.9 implies that
indexR′/I ′ > p. If indexR′/I ′ > p, then indexk[2(∆)] > p since if there are no induced (p + 3)-
cycles, then no link in ∆ has an induced (p+ 3)-cycle. Furthermore, by [JŚ10, Proposition B.1],
indexk[2(∆)] = index k[∆] = indexR/I.

Corollary 6.12. For any positive integers p and r, there exists a square-free monomial ideal
I ⊆ R = k[x1, . . . , xN(p,r)], such that R/I satisfies Np and regR/I = r.

Proof. Let ∆2 be the (p + 3)-cycle, and inductively ∆r = S(∆r−1, p + 3). Then ∆r satisfies
the conditions of the corollary if char k = 0. To see that the construction is independent of
the field, assume that for some k, reg k[∆r] > regQ[∆r]. By Lemma 6.5, Proposition 3.2, and
Proposition 3.5, reg k[∆r−1] > regQ[∆r−1] and inductively reg k[∆2] > regQ[∆2] which is not
the case.

Remark 6.13. In [JŚ06, Corollary 19.2], Januszkiewicz and Świątkowski proved, for any k > 6
and d ∈ N, the existence of a k-large orientable d-dimensional pseudomanifold. Together with
[JŚ03, Theorem 1] this could be used to give a shorter proof of Corollary 6.12. We feel that such
a proof would have been less insightful for commutative algebra.

Remark 6.14. The results in this section can also be used to strengthen a result of Nevo and Peeva
who studied a question of Francisco, Hà and Van Tuyl. The latter noticed (unpublished) that if
I ⊂ R is a quadratic square-free monomial ideal such that Is has a linear resolution for all s > 2,
then R/I satisfies N2, and wondered if the converse was true. In [NP13, Counterexample 1.10]
Nevo and Peeva gave a square-free monomial ideal I ⊂ R such that R/I has property N2 but I2

does not have a linear resolution. Using our results, this can be extended to Np and any power
as follows.
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Corollary 6.15. For any integers p, t > 2 there exists a square-free monomial ideal I ⊂ R such
that R/I has property Np and Is does not have a linear resolution for all 1 6 s 6 t.

Proof. Set r = 2t and choose I ⊂ R as in Corollary 6.12. Then reg(R/I) = 2t, and reg(R/Is) > 2t
for all s > 1 by Proposition 3.3.

Question 1.11 in [NP13] asks whether Is∆ has a linear resolution for s � 0 whenever k[∆]
satisfies N2. It remains open and the construction yielding Theorem 6.11 provides examples
worth testing. For an experimental investigation with computer algebra, the number of variables
involved would need a vast improvement, though.

7. Counting the number of vertices of S(∆, k)

For complexity theory in commutative algebra a bound on the number of variables N(r, p) in
Corollary 6.12 is necessary. We now derive such a bound by controlling the choice of the torsion-
free subgroup H in step iv of the construction of S(∆, k).

Each Coxeter group W can be embedded in GLn(R) by means of its canonical representation
ρ : W → GLn(R) [Dav08, Corollary 6.12.4]. This representation starts from the cosine matrix
C = (cij)ij of a Coxeter system whose entries are cij = − cos(π/mij). A generator si is represented
by the linear map ρ(si) : x 7→ x − 2

∑
j cijxjei. As the order of every product of generators is

2 or ∞, right-angled Coxeter groups embed also in GLn(Z). More specifically, since the cosine
matrix has entries only −1, 0, 1, the canonical representation matrices use only 0,±1, 2. An easy
computation using the definition of the linear map for one generator and cos(π/2) = 0 shows
that whenever w = si1 · · · sil is a spherical word, then it is represented by the linear map

ρ(w) : x 7→ x− 2
∑
j

ci1jxjei1 − · · · − 2
∑
j

ciljxjeil . (9)

We thus showed a simple fact about the entries of ρ(w).

Lemma 7.1. Let W(∆) be a right-angled Coxeter group with nerve ∆ and d = dim ∆. For each
spherical word w ∈ W(∆) of length l, the matrix ρ(w) uses only 0,±1, 2 for its entries and each
of its columns has at most l entries equal to two.

We employ the projection GLn(Z)→ GLn(Z/mZ) to find finite-index torsion-free subgroups
H as in step iv of the construction in Section 6, so that the size of S(∆, k) can be controlled. To
preserve k-largeness, we need to choose m so that no words of displacement < k reduce to the
identity modulo m. This requires information about the orders of elements of GLn(Z/mZ).

Fix k > 4 and a k-large simplicial complex ∆ of dimension d with n vertices. For any m > 2
consider the canonical homomorphism

πm : GLn(Z)→ GLn(Z/mZ).

Denote Γm = Ker(πm) and let Ξm = Γm ∩ ρ(W(∆)) ⊆ ρ(W(∆)) be the subgroup of ρ(W(∆))
that lies in the kernel of πm.

Lemma 7.2. Ξm is torsion free if m > 2.

Proof. It is well known that any torsion element in a right-angled Coxeter group has order two
and is in fact conjugate to a spherical word. Let w ∈ Ξm be an involution and write w = g−1sg
with some spherical word s and g ∈ W(∆). Then 1 = πm(w) = πm(g)−1πm(s)πm(g) implies
πm(s) = 1 which for m > 2 implies s = 1 (by Lemma 7.1) and finally w = 1.
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The subgroup to be used in step iv is H(m) = ρ−1(Ξm). Let w ∈ W(∆). As a function of the
displacement and the dimension d of ∆, we determine an upper bound on a(w) = max{|ρ(w)i,j | :
1 6 i, j 6 n}, the maximum absolute value of the entries of the corresponding matrix ρ(w) ∈
GLn(Z).

Lemma 7.3. Let w be a word of displacement less than k, then a(w) < (2d+ 3)k−1.

Proof. A word of displacement less than k is a product of at most k−1 spherical words. When w
is a spherical word, it has length at most d+ 1, and thus each column of ρ(w) has at most d+ 1
entries 2 and one entry 1 by Lemma 7.1. This yields the recursion a(ws) 6 (2d + 3)a(w). Since
a(s) = 2 for any spherical word, the bound follows.

Our aim is to pick an integer m so that any word in H(m) has displacement at least p+ 3.
Lemma 7.3 shows that m = (2d+ 3)p+2 is sufficient. Given m, the number of vertices of S(∆, p)
is bounded by the size of GLn(Z/mZ) which is of the order mn2 . Iterating the construction of
S(∆, p), we achieve the desired bound for the number of variables needed in Corollary 6.12. To
write it, we use Knuth’s up arrow notation [Knu76] which is convenient for iterative constructions.
Fortunately we can limit ourselves to two up arrows which represent power towers. Specifically,
a ↑↑ b means aaa

...

exactly b times.

Theorem 7.4. For all p, there exists a family of ideals indexed by r realizing Corollary 6.12 with

N(p, r + 1) < (2(2 ↑↑ (r − 1)) + 1)(p+2)N(p,r)2
.

Furthermore, if cp is the smallest integer such that 2 ↑↑ cp > p+ 2, then

N(p, r + 1) < 2 ↑↑ (r(r + cp)).

Proof. Let ∆2 be the (p + 3)-cycle which implies N(p, 2) = p + 3. Let ∆r+1 = S(∆r, p), where
the subgroup in step iv is chosen as H(mr+1) with mr+1 = (2dr + 1)p+2. Here dr = dim ∆r + 1
and thus d2 = 2. We have the recursion dr+1 = 2dr , which yields dr = 2 ↑↑ (r − 1). The number
of vertices of ∆r+1 is bounded by the order of GLn(Z/mr+1Z). Estimating this order as mN(r,p)2

r+1

we obtain the recursive bound.
For the second part we use the fact that removing parenthesis from a power tower does not

make the expression smaller by generalizations of
(
22
)(22)

< 2222

. We thus get

N(p, r + 1) < (2 ↑↑ r)(p+2)N(p,r)2

< (2 ↑↑ r)(2↑↑cp)N(p,r)2

< (2 ↑↑ (r + cp))
N(p,r)2

.

Now by a simple induction, the structure of the expression on the right is continued exponentiation
of 2 for at most r(r + cp) times, but with certain parenthesis inside the tower. Removing the
parentheses we conclude.

We hope that the bound in Theorem 7.4 can be improved significantly. To justify this hope we
illustrate vast improvements in a simple example. Let ∆ be the 5-cycle. The right-angled Coxeter
group with nerve ∆ has the following Coxeter and cosine matrices

1 2 ∞ ∞ 2
2 1 2 ∞ ∞
∞ 2 1 2 ∞
∞ ∞ 2 1 2
2 ∞ ∞ 2 1

 , C =


1 0 −1 −1 0
0 1 0 −1 −1
−1 0 1 0 −1
−1 −1 0 1 0

0 −1 −1 0 1

 .
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The generators of the standard representation of this Coxeter group are

s1 7→


−1 0 2 2 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 . . . s5 7→


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 2 2 0 −1

 .

Table 1 gives the maximum absolute value of entries of words of length l in W(∆). It shows that
the prime number p = 1811 would certainly suffice to guarantee that no word of displacement
6 5 (which all have length 6 10) is in the kernel of the reduction modulo p. However, it can

word length 1 2 3 4 5 6 7 8 9 10
entry size 2 4 8 18 39 84 180 388 836 1801

Table 1. Entry sizes in words

be checked algorithmically (we used the Coxeter group functionality in sage [S+16]) that no
word of length at most 10 is in the kernel of the reduction modulo 7. In the reduction modulo 5,
however, (s1s3)5 maps to the identity. We also checked words of length 12 for the Coxeter group
corresponding to the heptagon. There 7 is not large enough, as for example (s1s3s1s5)3 goes to
the identity.

In the example of the 5-cycle, the bound derived in Theorem 7.4 yields N(2, 3) < 5100, while
using m = 7 yields N(2, 3) < 725. In contrast one can exhibit a 5-large triangulation of a 2-sphere
with 12 vertices. Nevertheless, a good understanding of representations of Coxeter groups in finite
characteristic should yield better estimates than Theorem 7.4.

The integer mr used in the recursive construction of ∆r in Theorem 7.4 currently depends
on the dimension which grows very quickly. It is conceivable that for each p there is a uniform
bound, independent of r.

Question 7.5. Is there a bound for the integer mr that depends only on p and not on r?
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