
Mechanism and Machine Theory 143 (2020) 103618 

Contents lists available at ScienceDirect 

Mechanism and Machine Theory 

journal homepage: www.elsevier.com/locate/mechmachtheory 

Research paper 

On the modeling of a contact-aided cross-axis flexural pivot 

Pietro Bilancia 

a , ∗, Giovanni Berselli a , Spencer Magleby 

b , Larry Howell b 

a Department of Mechanical, Energy, Management and Transportation Engineering, University of Genova, Genova 16145, Italy 
b Department of Mechanical Engineering, Brigham Young University, Provo, 84602, Utah, United States 

a r t i c l e i n f o 

Article history: 

Received 30 July 2019 

Revised 5 September 2019 

Accepted 12 September 2019 

Keywords: 

Cross-Axis Flexural Pivot 

Contact-aided compliant mechanism 

Chained-beam-constraint model 

Multi software framework 

a b s t r a c t 

This paper reports the study of a planar Cross-Axis Flexural Pivot (CAFP) comprising an 

additional contact pair. The proposed device may be useful for applications requiring a 

revolute joint that behaves differently when deflecting clockwise/anti-clockwise. The pres- 

ence of the contact pair reduces the free length of one flexures, resulting in a considerable 

increment of the overall joint stiffness. The pivot behaviour is investigated, for different 

load cases, via the Chained-Beam-Constraint Model (CBCM), namely an accurate method 

to be applied in large deflection problems. A framework comprising Matlab and ANSYS is 

developed for testing the CAFP performances in terms of rotational stiffness, parasitic shift 

and maximum stress, with different combinations of geometrical aspect ratios and contact 

extensions. Results achieved via CBCM for a pure rotation applied to the CAFP’s output 

link are then verified through Finite Element Analysis. The resulting performance maps 

show good agreement between the numerical results. Furthermore, the CBCM shows an 

improved computational efficiency, which is a crucial aspect for preliminary design steps. 

At last, direct comparison between simulations and experiments, developed by means of 

two custom test rigs, confirms the efficacy of the proposed design method for the model- 

ing of contacts in large deflection problems. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The Cross-Axis Flexural Pivot (CAFP) is a planar beam-based compliant mechanism (CM) [1] , formed by two symmetric

beams, that are connected at both ends to a pair of shared rigid blocks [2] , hereafter referred to as ground and output links.

Two different configurations have been conceived in literature: in the first one the crossing beams are completely indepen-

dent, whereas in the second one, usually referred as cartwheel pivot, the beams are connected to each other where they

cross, producing a single structure. As highlighted by Valentini and Pennestrì [3] , the resulting elasto-kinematic behaviour

shows remarkable differences based on the selected configuration. In particular, the first configuration is characterized by an

increasing nonlinear trend of the equivalent stiffness for very large deflections, whereas the second configuration presents

the typical trend of circular and elliptical flexural hinges, namely a reduction of the equivalent stiffness as the angle of

rotation increases. 

When employed in place of a revolute joint, the CAFP morphology enables a highly selective compliant behaviour [4,5] ,

namely a low stiffness for in-plane motion and high stiffness along other directions. Due to potential advantages over com-

mon rigid kinematic pairs, such as the absence of backlash and friction, the high positioning accuracy, and the reduced
∗ Corresponding author. 
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Fig. 1. Contact-aided parametric CAFP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

number of components (thus the simplified manufacturing process), the CAFP concept is commonly implemented in pre-

cision engineering applications [6] . Examples include measurement systems [7] , precision mechanisms [8–11] , optical in-

struments [12] , bio-inspired devices [13] and space systems [14] . The relatively simple CAFP topology allows to easily form

arrays [15] or to combine the mechanism with additional structural elements to synthesize static-balanced mechanisms

[16–19] . As a result of the advent of efficient additive manufacturing technologies, even more complex shapes can be pro-

duced [11,18,20] . Furthermore, by combining typical origami principles and two-dimensional machining processes, folded

CAFP joints can be manufactured [21] . 

However, as a CM, the CAFP analysis/design is more complex and some critical structural issues have to be considered.

In the literature, several works are focused on the CAFP performance analysis. Apart from the fatigue life [22] , which has

to be carefully investigated in case of dynamic operative conditions, the CAFP’s beams can fail due to buckling in case

of compressive loads acting on the ground and output rigid links [2] . From a kinematic standpoint, the CAFP’s maximum

deflection is naturally limited by the stress field arising within the flexures [23] and it is usually constrained in the range

[0, π /2], depending on the employed material. This aspect restricts the use of the CAFP to applications that need a limited

well-defined deflection range. Also, the relative rotation between the ground and output links entails a parasitic shift from

the initial center of rotation, i.e. the intersection point between the flexures in the undeflected configuration [24–28] . CAFP

analysis and design can be addressed via various approaches. For example, models employing the linear Euler-Bernoulli

beam theory for small angles of deflections are reported in [2,6] . In [2] , the large deflection problem is solved by means

of elliptic integrals for a pure moment load case. This method provides an exact solution and it is suitable for relative

simple case studies that involve slender beams with an uniform cross section. In [29] , the CAFP is studied resorting to

the Pseudo-Rigid Body (PRB) method, allowing the use of common theories related to rigid-body mechanisms. In [30] , the

dynamic spline formulation is used to simulate both static and dynamic CAFP behaviour. In [23,25] , the CAFP under the

effect of both forces and moment is modeled resorting to the Beam-Constraint Model (BCM) [31,32] , i.e. a closed-form

technique capable of capturing nonlinearities when deflections are within (10 − 15)% of the flexures length. This latter limit

has been recently overcome by the introduction of the so-called Chained-Beam-Constraint Model (CBCM) [33–35] , namely

an innovative discretization-based approach to be applied for the modeling of beam-based CMs under different boundary

conditions and load case scenarios. The CBCM divides a single flexure in more elements, each of them modeled by BCM

equations. The closed-form formulation allows to solve the CAFP deflection via numerical approaches [33] , resulting in a

computational efficiency comparable to 1D Finite Element Analysis (FEA) [27] . 

Building on this solution, the present paper provides the modeling of a contact-aided [36,37] CAFP under various planar

load conditions. The study aims at testing the CBCM efficiency in presence of contact formulation, both in terms of results

accuracy and simulation time. This aspect becomes relevant for parametric studies, in which several simulations have to be

performed to investigate the response of the system with different input parameters. The proposed device, whose principle

schematic is represented in Fig. 1 , is composed of two disconnected independent beams located in parallel planes. A pur-

posely shaped contact member [38] , fixed to the ground link, is introduced to reduce the free length of one flexure and

thus to increment the total CAFP stiffness whenever a deflection is enforced. Overall, the CAFP behaves differently when de-

flecting either clockwise or anti-clockwise. A possible application of this concept may be found in bio-inspired robotic wrist

mechanisms [39] . In fact, as specified in [40] , the human wrist exhibits a major passive stiffness (i.e. the stiffness due to the

presence of the muscles in the forearm) during the radial deviation than that of the ulnar deviation. The aforementioned
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Fig. 2. Effect of the contact member on the pivot deflection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

asymmetry can be obtained by implementing the proposed contact-aided CAFP as a compliant transmission element in the

wrist. 

As a result of the parametric studies, in this paper different performance maps for joint stiffness, parasitic shift and

maximum stress are reported to enable designers to visualize the advantages/limits of the joint during the preliminary de-

sign steps. Numerical data, obtained via a custom software framework [41,42] allowing the use of CBCM and batch 1D FEA,

are finally validated by experimental investigations for different planar loads. Two experimental setups are used to mea-

sure both the rotational stiffness and the parasitic shift. The rest of the paper is organized as follows: Section 2 provides

information about the mechanical system considered in the current study, Section 3 reports the CBCM mathematical for-

mulation, Section 4 describes the software framework architecture and its main features, Section 5 reports the numerical

results achieved on the pivot enforcing a pure rotation, Section 6 reports a comparison between numerical and experimental

results for two different load conditions, whereas Section 7 summarizes the concluding remarks. 

2. Contact-aided pivot 

This section provides a description of the mechanical model, focusing on design variables and performance criteria to

be used for the subsequent analysis. With reference to Fig. 1 , taking into consideration a symmetric CAFP composed of two

independent flexures with constant rectangular cross section, the pivot geometry is completely defined by h, L, w 1 , w 2 , b and

t , namely the pivot height, the flexure length, the lower and upper width, and the cross section dimensions. The semi-angle

between flexures is given by the following trigonometric formula: 

β = arcsin ((w 1 + w 2 ) / 2 L ) (1)

According to Fig. 1 (a) and (b) and Eq. 1 , given w 1 , the aspect ratio, defined as AR = w 2 /w 1 , can be varied by assuming

a constant angle (i.e. β = const ) or a constant flexure length (i.e. L = const ). As evident from Fig. 1 (b), the second option

is characterized by a minor variation range. In this work a purposely shaped contact member, shown in Figs. 1 and 2 ,

is introduced at the base of the pivot, allowing an increment in the joint stiffness. As visible in Fig. 2 (a) and (b), a pure

moment M applied on the upper rigid body provides a deflection θ
′ 
< θ whenever the contact is considered, due to an

evident reduction, in the order of L c , of the flexure (Beam 2) free length. Also the parasitic shift, identified by module

s = P P 0 and phase φ, as in Fig. 2 , is influenced by the presence of the contact. In the following sections, the behaviour

of the contact-aided pivot, in terms of rotational stiffness, parasitic shift and maximum stress is investigated for different

combinations of AR (by considering β = const or L = const ) and L c . The pivot is initially loaded by applying a pure rotation

to the output link. Then, single effects of a horizontal force acting on the output link or of a rotation applied to a constrained

point placed in the initial intersection between the flexures (i.e. P 0 in Fig. 2 ), are studied with both numerical (CBCM and

FEA) and experimental approaches. 

3. CBCM formulation 

3.1. Static modeling under planar loads 

Following the work reported in [33] , a CAFP’s flexure can be discretized into N elements of equal length L el = L/N, each

of them locally described by BCM equations [31,32] . Assuming a constant rectangular cross section, defined by b and t , the
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Fig. 3. CBCM model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

load-deflection characteristic of the i th element, shown in Fig. 3 , is given by the following relations: [
f i 

m i 

]
= 

[
12 −6 

−6 4 

][
δyi 

αi 

]
+ p i 

[
6 / 5 −1 / 10 

−1 / 10 2 / 15 

][
δyi 

αi 

]
+ p 2 i 

[
−1 / 700 1 / 1400 

1 / 1400 −11 / 6300 

][
δyi 

αi 

]
(2) 

δxi = 

t 2 p i 
12 L el 

− 0 . 5 

[
δyi αi 

][ 6 / 5 −1 / 10 

−1 / 10 2 / 15 

][
δyi 

αi 

]
− p i 

[
δyi αi 

][−1 / 700 1 / 1400 

1 / 1400 −11 / 6300 

][
δyi 

αi 

]
(3) 

where δxi , δyi and αi are the displacements and rotation of the i th element at node i (referred to the local i th coordinate

system, placed in the node i -1 as shown in Fig. 3 (b)) normalized with respect to L el , and p i , f i and m i are the forces and

moment normalized with respect to EI/L 2 
el 

and EI / L el , where E is the material elastic modulus and I = bt 3 / 12 is the cross

section moment of inertia. The first terms of Eqs. (2) and (3) define the linear approximation, which is valid for describing

the behaviour of a cantilever beam under tip loads in case of small deflections. The CAFP’s behaviour is well captured in

the middle range of deflections by applying the BCM equations on the flexures, i.e. by using a unique element L el = L for

each of the beams, as proved in [23,25] . The modeling of two series of N elements for the whole CAFP’s structure leads to

a remarkable increment in the number of variables. 

With reference to Fig. 3 (a), being known any combination of three parameters among the global external loads (i.e. F x ,

F y and M ) and the global displacements (i.e. �x , �y and θ ), the total number of variables to be determined for solving the

CBCM problem is 12 N +7, namely: 

• δxi , δyi , αi , p i , f i , m i , for i = 1 , . . . , 2 N (12 N entities); 
• the remaining set containing the undefined global loads and/or displacements (3 entities); 
• the coordinate of point A ( x A , y A ) and point B ( x B , y B ) with respect to the coordinate systems O N+1 x N+1 y N+1 and O 1 x 1 y 1

respectively (4 entities). 

Therefore, to ensure a closed-form solution for the problem, 12 N +7 relations between the aforementioned variables

have to be defined. Besides the 6 N BCM load-deflection characteristics (3 for each of the 2 N CAFP elements), expressed

by Eqs. (2) and (3) , the remaining relations refer to the local and global equilibrium and to the geometrical constraints. 

By analyzing the free-body diagram proposed in Fig. 3 (b), the following local static equilibrium equations for the i th

element hold: [ 

f ′ 
i −1 

p ′ 
i −1 

m 

′ 
i −1 

] 

= 

[ 

1 0 0 

0 1 0 

(1 + δxi ) −δyi 1 

] [ 

f i 
p i 
m i 

] 

(4) 

where p ′ 
i −1 

, f ′ 
i −1 

, m 

′ 
i −1 

are the loads applied by the ( i -1)th element to the i th element at node i -1, mathematically obtained

by applying a vectorial rotation of αi −1 (i.e. the angle between O i x i y i and O i −1 x i −1 y i −1 ) to the tip loads p i −1 , f i −1 and m i −1 : [ 

f i −1 

p i −1 

m i −1 

] 

= 

[ 

cos αi −1 − sin αi −1 0 

sin αi −1 cos αi −1 0 

0 0 1 

] [ 

f ′ 
i −1 

p ′ 
i −1 

m 

′ 
i −1 

] 

(5) 
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Fig. 4. CAFP global equilibrium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

By considering the angle θi = 

∑ i −1 
1 αi between O i x i y i and O 1 x 1 y 1 , the equilibrium equation of the i th element can be re-

written as follows: [ 

f 1 
p 1 

m i −1 

] 

= 

[ 

cos θi − sin θi 0 

sin θi cos θi 0 

(1 + δxi ) −δyi 1 

] [ 

f i 
p i 
m i 

] 

i = 2 , . . . , N (6)

and, for the second CAFP’s flexure, which refers to O N+1 x N+1 y N+1 as visible in Fig. 3 (a), the following relation holds: [ 

f N+1 

p N+1 

m i −1 

] 

= 

[ 

cos θi − sin θi 0 

sin θi cos θi 0 

(1 + δxi ) −δyi 1 

] [ 

f i 
p i 
m i 

] 

i = N + 2 , ., 2 N (7)

Equations (6) and (7) form 6( N -1) relations of the CBCM system. The global equilibrium can be defined by taking into

account the external loads F x , F y and M applied at point C, as well as the tip loads of the elements N and 2 N , which can be

expressed in the coordinate system O 1 x 1 y 1 and O N+1 x N+1 y N+1 respectively, being: [ 

f ∗N 
p ∗N 
m 

∗
N 

] 

= 

[ 

f 1 
p 1 
m N 

] 

= 

[ 

cos θN − sin θN 0 

sin θN cos θN 0 

0 0 1 

] [ 

f N 
p N 
m N 

] [ 

f ∗2 N 
p ∗2 N 
m 

∗
2 N 

] 

= 

[ 

f N+1 

p N+1 

m 2 N 

] 

= 

[ 

cos θ2 N − sin θ2 N 0 

sin θ2 N cos θ2 N 0 

0 0 1 

] [ 

f 2 N 
p 2 N 
m 2 N 

] 

(8)

Therefore, with reference to Fig. 4 , by rotating O 1 x 1 y 1 and O N+1 x N+1 y N+1 of −(π/ 2 − β) and −(π/ 2 + β) respectively,

the following 3 equilibrium relations can be added to the system: [
F x 
F y 

]
= 

EI 

L 2 
el 

[
sin β − cos β
cos β sin β

][
p 1 
f 1 

]
+ 

EI 

L 2 
el 

[
− sin β − cos β
cos β − sin β

][
p N+1 

f N+1 

]
(9)

M = 

EI 

L el 

m N + 

EI 

L el 

m 2 N + w 2 
EI 

L 2 
el 

[
sin θ − cos θ

][− sin β − cos β
cos β − sin β

][
p N+1 

f N+1 

]
+ 0 . 5 w 2 

[
sin θ − cos θ

][
−F x −F y 

]
(10)

For both the pivot’s flexures, the overall displacements and rotation at the extremities A and B (see Fig 3 (a)) are related to

the local entities δxi , δyi and αi . Consequently, 6 constraint geometric equations must be enforced in the model. For the first

flexure, which refers to O 1 x 1 y 1 , it is possible to write: [
x B 
y B 

]
= 

N ∑ 

i =1 

[[
cos θi − sin θi 

sin θi cos θi 

][
L el (1 + δxi ) 

L el δyi 

]]
θN + αN = θ (11)

and, for the second beam, by considering O N+1 x N+1 y N+1 , becomes: [
x A 
y A 

]
= 

2 N ∑ 

i = N+1 

[[
cos θi − sin θi 

sin θi cos θi 

][
L el (1 + δxi ) 

L el δyi 

]]
θ2 N + α2 N = θ (12)
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Note that, for i = 1 and i = N+1, the local reference coincides with the fixed coordinate systems, O 1 x 1 y 1 and O N+1 x N+1 y N+1 ,

and thus θ1 = 0 and θN+1 = 0 . The global displacements of the output link during the pivot deflection, �x and �y , can be

expressed with respect to OXY by the following 2 equations: [
�X 

�Y 

]
= 0 . 5 

[
− sin β − cos β
cos β − sin β

][
x A 
y A 

]
+ 0 . 5 

[
sin β − cos β
cos β sin β

][
x B 
y B 

]
(13) 

The last 2 equations of the model provide the geometric loop closure, written as: [
w 1 + w 2 cos θ

w 2 sin θ

]
= −

[
− sin β − cos β
cos β − sin β

][
x A 
y A 

]
+ 

[
sin β − cos β
cos β sin β

][
x B 
y B 

]
(14) 

The overall nonlinear system of 12 N +7 equations can be numerically solved in Matlab environment resorting to a fsolve

routine. The algorithm provides, as a result of the single analysis, a matrix containing the values of the 12 N +7 variables for

a series of r incremental substeps. 

3.2. Contact force 

Focusing on Figs. 1 and 2 , the interaction between the Beam 2 and the contact triangular member can be modeled at

nodal level by two approaches. The first approach introduces the effect by adding, on the basis of L c , some additional con-

straints (i.e. δyi = 0 ) to the nodes in the range [ N + 1 , N + round (N(L c /L )) ] , where ”round” defines an operator that returns

the integer number of the argument. However, two main issues arise: 

1. the bonded condition on those nodes does not allow to capture the real behaviour of the beam during the anti-clockwise

deflection. In fact, in the contact area, the beam should manifest a limited, but not negligible, curvature. Similar results

can be achieved by modeling a CAFP composed of flexures with different length, i.e. L 1 = L and L 2 = L − Lc; 

2. the convergence is reached after a large number of numerical iterations and thus the CBCM computational efficiency is

considerably decreased. 

The second approach operates on nodal forces instead of nodal displacements. Taking as a reference the Augmented

Lagrangian algorithm from the ANSYS contact library, the contact normal and tangential forces, to be expressed in the CBCM

nodes, can be written as follows: 

f cn,i = −kδyi , i = N + 1 , . . . , N + round (N(L c /L )) (15)

f ct,i = μ f cn,i , i = N + 1 , . . . , N + round (N(L c /L )) (16)

where k is the contact stiffness and μ is the static friction coefficient. Note that Eq. (15) represents a simplified version

of the penalty class algorithms [43] , in which dynamic effects (e.g. damping) are usually considered. The proposed contact

presents a friction force that is almost null during the CAFP deflection, and thus only Eq. (15) is considered in this paper.

From a practical standpoint, for i = N + 1 , . . . , N + round (N(L c /L )) , Eq. (2) becomes: [
f i 

m i 

]
= 

[
12 −6 

−6 4 

][
δyi 

αi 

]
+ p i 

[
6 / 5 −1 / 10 

−1 / 10 2 / 15 

][
δyi 

αi 

]
+ p 2 i 

[
−1 / 700 1 / 1400 

1 / 1400 −11 / 6300 

][
δyi 

αi 

]
+ 

[
f cn,i 

0 

]
(17) 

In the reported CBCM model, the element length, L el , is constant along the beams and thus round ( N ( L c / L )) is used to en-

sure the stability of the problem, i.e. to select a precise nodes interval to be considered for the contact. To achieve a major

sensibility in the contact analysis, i.e. to study slight variations of L c , a fine mesh can be defined in the model by choos-

ing a high value for N or by adopting the unequal discretization method [35] . However, both these solutions increase the

computational cost, since: 

• for the single candidate, the total number of equations to be solved is 12 N + 7 for each of the r substeps; 
• a variable element length L el (i ) , i = 1 , . . . , 2 N would complicate the software structure because several additional subrou-

tines (e.g. for loops and if-else statements) must be added. 

After a series of preliminary tests, in this work, N = 10 is used to ensure good accuracy and high computational efficiency

(note that in [33] , large deflections without contact analysis are solved with N = 4 ). 

3.3. Performance indexes estimation 

As previously introduced in Section 2 , three different outputs are considered in this paper for the study of the contact-

aided CAFP, namely the pivot stiffness, parasitic shift and maximum stress in deflected state. These performance indexes are

derived from the aforementioned results matrix. Considering a quasi-linear torque deflection law for medium/large deflec-

tions (i.e. θ < 0.883 rad), the stiffness, to be calculated in case of F x = F y = 0 , can be directly obtained as the mean value of

K = ∂ M(θ ) /∂ θ . 



P. Bilancia, G. Berselli and S. Magleby et al. / Mechanism and Machine Theory 143 (2020) 103618 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, by considering a rigid segment CP = C 0 P 0 = (w 2 / 2) / tan β as in Fig. 2 , the position of point P with respect to a

coordinate system placed in P 0 and oriented as OXY , is given by: 

x P = �x + ((w 2 / 2) / tan β) sin θ y P = �y − ((w 2 / 2) / tan β) cos θ − (w 1 / 2) / ( tan β) (18)

and thus the parasitic shift module and phase can be calculated as: 

s = 

√ 

x 2 
P 

+ y 2 
P 

⎧ ⎨ 

⎩ 

φ = arctan 

(
y P 
x P 

)
, x P > 0 

φ = π/ 2 , x P = 0 

φ = arctan 

(
y P 
x P 

)
+ π, x P < 0 

(19)

Lastly, the stress acting on the i th element can be viewed as a superposition of two components: 

σi (x i ) = σb,i (x i ) + σax,i (20)

where σ b,i ( x i ) is the bending stress along the x -coordinate of O i x i y i , whereas σ ax,i is the tensile stress related to the stretch

of the i th element under the axial force p i , such that: 

σb,i (x i ) = 

M(x i ) t/ 2 

I 
σax,i = 

p i EI/L 2 
el 

bt 
(21)

While σ ax,i is uniform along the i th element, σ b,i ( x i ) requires the knowledge of M ( x i ), namely the dimensional moment

acting along the i th element: 

M(x i ) = 

EI 

ρ(x i ) 
(22)

The curvature is estimated for x i ∈ [0, 1] resorting to the following equation [33] : ⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
ρ(x i ) 

= 

1 
L el 

(
tanh ( 

√ 

p i ) cosh (x i 
√ 

p i ) −sinh (x i 
√ 

p i ) √ 

p i 
f i + 

cosh (x i 
√ 

p i ) 
cosh ( 

√ 

p i ) 
m i 

)
, p i ≥ 0 

1 
ρ(x i ) 

= 

1 
L el 

(
tan ( 

√ −p i ) cos (x i 
√ −p i ) −sin (x i 

√ −p i ) √ −p i 
f i + 

cos (x i 
√ −p i ) 

cos ( 
√ −p i ) 

m i 

)
, p i < 0 

(23)

At each analysis substep, the maximum stress σ Max acting on the CAFP is then found as follows: 

σMax = max (σi , i = 0 ., 2 N) (24)

4. Software framework 

The behaviour of the parametric contact-aided CAFP was investigated resorting to an integrated software framework

[41,42] , which exploits Matlab as a multi-tasks programming environment and ANSYS APDL as a nonlinear FEA solver ca-

pable of performing batch analysis. The mechanical models are solved employing CBCM method, following the procedure

reported in Section 3 , and then verified by means of the FEA approach. In particular, 1D FEA (beam elements) is used to

test the CBCM performance both in terms of results accuracy and simulation time. A full factorial selection criteria [44] is

used to perform a bi-dimensional Design of Experiments (DOEs) on the contact-aided CAFP, allowing the generation of the

performance maps. 

Based on the schematic depicted in Fig. 5 , the framework is guided by a Matlab file, which is organized in four sections

as follows: 

1. In the first section, the user defines the Input Parameters , which comprise geometrical dimensions ( L or β , w 1 , b and t ),

material properties ( E and ν), external loads ( F x , F y and M ) or displacements ( �x , �y and θ ), number of elements ( N ),

number of substeps ( r ) and DOE spacing (number of points to be tested for each variables, i.e. AR and L c ); 

2. In the second section, a for loop allows to perform the DOE CBCM by singularly testing each of the candidates, i.e. the

AR − L c combinations, thanks to an external Matlab function (CAFP_CBCM.m), which implements all the equations dis-

cussed in Sections. 3.1 and 3.2 . Once the numerical results of the single simulation are available, two additional functions

(CAFP_Shift.m and CAFP_Stress.m) are launched for the evaluation of the performance indexes described in Section 3.3 .

The stiffness evaluation is performed in the main script by means of a simple numerical derivative followed by a mean

value calculation. 

3. In the third section, a for loop is used for the DOE FEA . In particular, by leveraging the ANSYS interfacing capabilities, a

multi-software routine that can automatically solve all the candidates is implemented. For each analysis, Matlab exports

the parameters vector (composed of the entities defined at point 1) into an external file (FEA_Input.txt) and provides the

ANSYS batch launching. The parametric FE model, updated on the basis of the information stored in the previous file,

exports the results of the nonlinear (NLGEOM option) analysis into FEA_Output.txt, which is then processed by Matlab. 
4. In the last section, a Results Comparison is provided. 
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Fig. 5. Schematic of the framework used for the parametric studies. 

Table 1 

CAFP parameters adopted for testing the framework. 

Parameter Unit Value(s) 

N – 10 

t mm 1.6 

b mm 5 

w 1 mm 30 

r – 10 

β = const 

β rad π /4 

AR – [0.5,3] 

L c % L [0,30] 

L = const 

L mm 50 

AR – [0.8,1.3] 

L c % L [0,30] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The FE model, whose geometry is automatically re-defined for each candidate, is composed of two identical beams con-

nected by a rigid segment, characterized by a larger cross section. The lowest node set, composed of nodes 0 in Fig. 3 (a), is

fixed to the ground. A second rigid segment is placed in proximity of the Beam 2 so as to model the contact. To ensure con-

sistency with the CBCM models, the number of elements N is automatically imported in ANSYS. Each of the flexible beams

is discretized with N Beam 188 elements with quadratic shape functions, whereas Conta 176 and Targe 170 elements are

used for the contact interaction. Furthermore, the Augmented Lagrangian contact formulation is enforced ( Key-option(2) = 0 )

in all the simulations. Then, in line with the CBCM, the external loads are applied in a series of r incremental substeps. The

performance indexes are computed resorting to the relations presented in Section 3.3 , except for the maximum Von Mises

stress, which is directly provided by ANSYS. The proposed simulation code can be downloaded from the online reference to

this work. 

5. Numerical characterization of the pivot 

This section reports the DOE results achieved on the pivot via the proposed numerical framework. Recalling Section 2 ,

several combinations ( AR, L c ) are tested for both the configurations reported in Fig. 1 (a) and (b). All the candidates are

guided in a pure rotation θ = 40 ◦ = 0 . 7 rad. Other load scenarios will be discussed in Section 6 . The adopted material

for the current application is Glycol-Modified Polyethylene Terephthalate (PETG), and the mechanical properties refer to

a 3D printed (fused deposition modeling) bending specimen, obtained with a Prusa i3 Mk2 with 100% infill. The Young’s

modulus and Poisson’s ratio are, respectively, E = 1400 MPa and ν = 0 . 4 , whereas the flexural yield strength is assumed

equal to σs = 45 MPa. Parameter set and allowed range of variation for each geometrical parameter are summarized in

Table 1 . Figures 6 and 7 provide a comparison between the results obtained via CBCM and 1D FEA for the β = const and

L = const configurations respectively. The data show a good agreement for each of the performance indexes, confirming the

suitability of the CBCM for the analysis of large deflections and contact pairs. Moreover, as it may be seen in Fig. 7 (a), the

stiffness shows a remarkable variation in the design domain. This output highlights the possibility to exploit the L = const

configuration (see Fig. 1 (b)) for designing a rotational variable stiffness joint. 
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As discussed in Section 3.2 , restricted ranges of L c can be investigated by changing the value of N or by adopting the

unequal discretization method [35] . The major source of discrepancy between the numerical results, obtained when L c =
30% L, may be attributed to the adopted contact algorithm. In the penalty algorithms, the amount of penetration between

bodies depends on the normal stiffness k . Higher values of k reduce the penetration but can lead to convergence problems.

To overcome this issue, ANSYS refines the value of k during the simulations [45] . On the contrary, in the current framework,

the CBCM is solved with a constant value for k , causing differences in terms of penetration, that influence the processed

results. To avoid this problem, k may be forced to be constant in ANSYS by means of a specific Real Constant , even though the

problem convergence would be compromised, especially since r (i.e. the number of substeps) is kept constant. Alternatively,

an iterative process that aims at refining the value of k can be implemented in the CBCM algoritmh. In both cases, the

computational efficiency of the proposed framework would be considerably decreased. The simulations have been performed

on a Workstation with an Intel(R) Core(TM) CPU @ 2.5 GHz and 16 GB RAM. Each CBCM model is solved in Matlab in 1.8 s,

and a single APDL batch simulation takes 5.7 s to be completed. This aspect becomes relevant in the initial design steps,

where several simulations have to be performed, such as for DOE or simulation purpose. 

6. Experimental assessments 

PETG physical prototypes of the β = const configuration have been manufactured via 3D printing and tested resorting to

two experimental setups. The tests aim at validating the accuracy of the proposed simulation framework for two different

load scenarios: (i) a rotation θ applied to a constrained point P 0 of the workspace that forces the CAFP to follow a circular

deflection path; (ii) a horizontal force F x applied to the output link at point C . 

6.1. Rotational setup 

As visible from the results reported in Figs. 6 (c) and (d) and 7 (c) and (d) and in [29] , the CAFP is subjected to an evident

parasitic shift when a pure torque (or rotation) is applied to the outer link. The error between the resulting deflection path

and an ideal circular path increases with the rotation. From a practical standpoint, this issue limits the use of a pure torque

(or rotation) to the simulations. On the basis of these considerations and similarly to the previous literature [11,18,20] , in

this work, the experiments were conducted via a standard moment-deflection test rig. The system, shown in Fig. 8 (a), is

equipped with a worm-wheel gearset that acts on a main shaft, an Omega TQ103 socket calibrated torque sensor, and a US
Fig. 6. DOE results for β = π/ 4 rad in a pure rotation θ = 0 . 7 rad. 



10 P. Bilancia, G. Berselli and S. Magleby et al. / Mechanism and Machine Theory 143 (2020) 103618 

Fig. 7. DOE results for L = 50 mm in a pure rotation θ = 0 . 7 rad. 

Fig. 8. Experimental setup for stiffness evaluation. 
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Fig. 9. Experimental and numerical results in pure rotation θ = 0 . 52 rad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Digital optical encoder with 50 0 0 counts per revolution. A Labview interface is used to acquire the data from the sensors.

The shaft is supported by bearings and is connected to the CAFP via a shape coupling, as shown in Fig. 8 (b). Each candidate,

characterized by a specific combination of AR and L c , is fixed to the ground through a connection member (shown in blue)

and it is deflected by the shaft. The experimental load scenario is depicted in Fig. 8 (c): a moment M 

∗ is applied by the shaft

to the constrained point P 0 , i.e. the initial intersection point between the CAFP beams. A rigid connection member between

P 0 and C enforces a circular deflection path. As a direct consequence of the applied boundary conditions, the CAFP is not

allowed to manifest the characteristic parasitic shift. The same results would be obtained by applying a set of forces F x and

F y and moment M at point C , as shown in Fig. 8 (c). For a deflection θ , the following relations hold: 

R x = F x R y = F y M 

∗ = M − F x CP 0 cos θ + F y CP 0 sin θ (25)

To comply with the new load scenario, both CBCM and FEA models have been modified. In particular, a rigid segment

connecting the output link to P 0 is used in the FE model, whereas a new global moment equilibrium, previously described

by Eq. (10) , has been defined in the CBCM with respect to P 0 : 

M 

∗ = 

EI 

L el 

m N + 

EI 

L el 

m 2 N + 

EI 

L 2 
el 

[
−(Y A − (w 1 / 2 tan β)) X A 

][− sin β − cos β
cos β − sin β

][
p N+1 

f N+1 

]

+ 

EI 

L 2 
el 

[
−(Y B − (w 1 / 2 tan β)) X B 

][sin β − cos β
cos β sin β

][
p 1 
f 1 

]
(26)

where, by reference to Fig. 4 (a), X A , Y A , X B and Y B are the coordinate of points A and B with respect to OXY : [
X A 

Y A 

]
= 

[
− sin β − cos β
cos β − sin β

][
x A 
y A 

]
+ 

[
w 1 / 2 

0 

] [
X B 

Y B 

]
= 

[
sin β − cos β
cos β sin β

][
x B 
y B 

]
−

[
w 1 / 2 

0 

]
(27)

The total deflection, θ = 30 ◦ = 0 . 52 rad, is manually imposed to the CAFP in a series of static increments. The geometric

dimensions refer to the values reported in Table 1 . Figure 9 shows the results of the study for AR = [1 , 2] and L c = [0 , 30]% L .

The experimental stiffness, evaluated for each candidate as the mean value of K = ∂ M 

∗(θ ) /∂ θ, shows a good agreement

with the numerical models. In line with the study presented in [46] , the point at which the flexures cross in the undeformed

state, defined by AR , strongly affects the joint stiffness. The influence of L c is limited due to the applied boundary conditions,

that guide the CAFP in an unnatural deflection, in which the contact is partially involved. Also the maximum stress, plotted

in Fig. 9 (b), shows a good overlap between CBCM and FEA. 

6.2. Vertical setup 

A vertical setup [47] is used to validate the framework in case of a single force load. By considering the same AR and

L c combinations of Section 6.1 , the parasitic shift is evaluated in the deflected state. As shown in Fig. 10 (a) and (b), the

CAFP, fixed to the ground via a pair of screws, is vertically loaded by means of a cable and a calibrated mass m = 0 . 4 kg,

resulting in a planar force equal to F x = 3 . 92 N. The geometry of the output link has been designed to apply the force at

point C (see also Fig. 4 (a)). A rigid member that connects the output link to the initial center of rotation has been used

as a simple way to trace the parasitic shift during the deflection of the pivot. Two separate images, acquired by a Canon

EOS Rebel T6s equipped with EF-S 18-135 mm IS STM Lens Kit, are scaled and overlapped in CAD environment (PTC Creo),

allowing the evaluation of the shift module s and phase φ. The results of the experimental activity are reported in Fig. 11

for each combination of AR and L c . In particular, Fig. 11 (a) and (b) show a comparison between numerical and experimental

data, whereas Fig. 11 (c) reports the maximum numerical stress acting on the pivot. Note that, as predicted by the numerical

calculations providing σ < σ s , the structural integrity of each specimen has been preserved during physical testing. In
Max 
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Fig. 10. Vertical experimental setup for parasitic shift evaluation. 

Fig. 11. Experimental and numerical results with a pure force F x = 3 . 92 N. 

 

 

 

 

 

 

 

 

line with the previous scenarios, the experimental assessment confirms the validity of the proposed numerical framework

and underlines the accuracy of the CBCM for the modeling of contacts in large deflection problems. 

7. Conclusions 

This paper reports the modeling of a contact-aided CAFP, namely a system comprising a standard CAFP and a purposely

shaped contact member, connected to the ground link, that acts on a single flexure. During the anti-clockwise deflection, the

interaction between bodies limits the free length of the flexure, allowing a remarkable increment of the overall stiffness. The

parasitic shift is also affected by the presence of the contact, as well as the stress acting on the pivot, which is an important

aspect to be considered for design purposes. As examples of possible applications, the proposed device can be employed

for mimicking the natural stiffness asymmetry of the human wrist, or for designing variable stiffness springs and actuation

systems formed therewith. The behaviour of the pivot is numerically investigated via the CBCM technique. A multi-software
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framework, comprising Matlab and ANSYS APDL, has been developed for validating the CBCM efficacy and efficiency with

different planar load case scenarios. Performance maps for the pivot under a pure rotation are provided, showing a good

agreement between CBCM and batch 1D FEA results for different combinations of aspect ratios and contact extensions. The

limited computational time required to solve a single simulation (less than 2 s) confirms the suitability of the CBCM for

parametric optimization studies. At last, 3D printed specimens of the contact-aided CAFP have been tested experimentally

by means of two special purpose test rigs. All the acquired data showed good agreement with the behaviour predicted by

CBCM and FEA. 
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