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Spectral representation of the heat current in a driven Josephson junction
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We discuss thermal transport through a Josephson junction in a time-dependent situation. We write the spectral
representation of the heat current pumped by a generic drive. This enables separation of the dissipative and
reactive contributions, of which the latter does not contribute to long-time averages. We discuss the physical
interpretation, and note that the condensate heat current identified by Maki and Griffin [Phys. Rev. Lett. 15, 921
(1965)] is purely reactive. The results enable a convenient description of heat exchanges in a Josephson system
in the presence of an external drive, with possible applications for the implementation of cooling devices.
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I. INTRODUCTION

Devices based on quantum mechanical effects could have
a huge technological impact in the next decade. Quantum
computers [1], sensors [2–8], and metrological devices [9–15]
promise to be more efficient, precise, and outperform the
classical ones. However, to work properly they require low and
stable working temperatures. For this reason, it has become of
paramount importance to be able to manipulate, store, and
transport energy at the nanoscale precisely and efficiently.

In this direction, the possibility to coherently control the
heat flowing between two superconductors by manipulating
the superconducting phase difference has attracted much
attention [16–19]. The main advantage with respect to other
nanodevices is that, in some configurations, the supercon-
ducting phase can be controlled directly through an external
magnetic field. This research field is still vastly unexplored but
could be the playground for a new class of quantum devices,
such as coherent coolers and nanoengines [20]. Yet, to fully
understand and exploit the potentialities of phase-coherent
heat control, we need to understand how the energy is
transported when the system is subject to a time-dependent
drive.

The dependence of the heat current flowing through a
temperature-biased Josephson junction on the order parameter
phase difference was predicted soon after the discovery
of the Josephson effect [21,22], but measured only much
later [16]. Several theoretical aspects of the problem were also
clarified only fairly recently [23–28]. Most of the theoretical
studies on the Josephson heat transport have concentrated
on steady-state operation, with only a few works addressing
the microscopic description of effects from time-dependent
driving [28,29].

The heat current through Josephson tunnel junctions
was considered for arbitrary time-dependent phase differ-
ences in Ref. [28] based on a BCS tunneling Hamiltonian
calculation, extending results obtained earlier for constant
voltage [21,22,24]. Some aspects of these results appear
to be not fully understood, in particular, the interpretation
of the “condensate” or “sine” energy current [22,28]. That
this current is associated with the condensate appears clear
from the structure of the tunneling calculation, but its exact
interpretation is less clear, given that it remains nonzero
and can have either sign also at T = 0. Moreover, although

its contribution to steady-state quantities vanishes in the
cases considered, it is not immediately obvious whether it in
general could contribute to time-averaged quantities in other
situations.

In this paper, we revisit the previous results. We write the
currents in a spectral representation, and define associated
causal response functions, which clarifies the general structure.
From this approach, it follows that the condensate component
persisting at T = 0 is purely reactive, and does not contribute
to long-time averages of heat currents, for any form of
drive. We discuss the analytic properties of the reactive
components, and point out a “quasiparticle” part not explicitly
discussed in previous works. Finally, we obtain a simple result
for the heat current driven by an arbitrary periodic drive,
and discuss issues relevant to practical implementation and
physical interpretation of the results.

II. MODEL

We consider two superconductors S1 and S2 with super-
conducting gaps �1 and �2, respectively, connected by a
tunnel junction of resistance RT . The superconducting leads
are assumed to be at temperatures T1 and T2 (see Fig. 1).
We consider the corresponding BCS tunneling Hamiltonian
model,

H = H1 + H2 + HT , (1)

H1 =
∑
kσ

[ξ1kc
†
1kσ c1kσ + (�1c

†
1kσ c

†
1,−k,−σ + H.c.)], (2)

H2 =
∑
kσ

[ξ2kc
†
2kσ c2kσ + (�2c

†
2kσ c

†
2,−k,−σ + H.c.)], (3)

HT =
∑
kqσ

eiϕ(t)/2Mkqσ c
†
1kσ c2qσ + H.c. (4)

The time-dependent phase difference ϕ(t) is gauged to the
tunneling Hamiltonian, so that the order parameters �1,�2 are
real valued. Moreover, a standard unitary transformation [30]
has been made, shifting energies relative to the chemical
potential, ξk = εk − μ.

Before starting, it is useful to clarify what we mean by
heat current. The observable we are interested in is the
variation of the energy of superconductor i in time. Following
previous works [21,24–28], we define the heat current exiting
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FIG. 1. Schematic setup of two superconductors S1,S2 with
energy gaps �1,�2, separated by a tunnel barrier with resistance
RT . Differences in temperatures T1,T2 and external bias V (t) drive
the heat currents P (1)(t),P (2)(t) between the two superconducting
electrodes.

Si as P (i) ≡ − d
dt

〈Hi〉. Notice that despite the fact that this
is a well-defined observable, its interpretation in terms of
classical thermodynamic quantities, e.g., in relation to entropy
and heat, poses difficulties [24] and will not be discussed
here.

Note that as soon as S1 and S2 are coupled through HT , a
fraction of energy is stored as (Josephson) coupling energy.
This energy is a property of the total system, and cannot
be clearly identified as belonging to either S1 or S2. At the
same time, the energy flowing out of, say, S1 can either go to
S2 or increase the coupling energy. This problem is evident
in the strong coupling regime, where the energy associated
to HT can dominate over the other contributions [31,32].
If the coupling energy, however, is bounded and S1 and S2

are thermodynamically large, the long-time averages P (i) of
energy flows can be expected to be dominated by heat flow to
the bulk of the terminals [33,34].

After this necessary clarification, we can discuss some
general properties of the energy exchanges that occur between
the superconductors. The rate of change of the total energy of
the system is

Ẇ (t) = ∂t 〈H (t)〉 = −P (1)(t) − P (2)(t) + ∂t 〈HT (t)〉
= tr[ρ(t)∂tHT (t)], (5)

where the ensemble average is 〈A〉 = Tr[Aρ], and ρ(t) is the
density matrix of the total system. Above, unitarity of the
time evolution ρ̇ = −i[H,ρ] was used. The time variation
Ẇ (t) of the Hamiltonian is related to the work done on the
system and the power injected in it [33,35]. We can write
∂tHT (t) = i[HT (t),N1] 1

2∂tϕ(t), and, since the electron current
operator I and the voltage V are proportional to [HT (t),N1]
and ∂tϕ, respectively, we obtain the familiar form for the
power injected in a electrical circuit, i.e., Ẇ (t) = I (t)V (t). The
power injected into the total system can thus either increase
the energies of the superconductors or change the coupling
energy. As expected, in the results below the coupling energy
term does not contribute to time-averaged heat currents, and in
the time average, the total absorbed heat current −P (1) − P (2)

is equal to the input power Ẇ .

III. SPECTRAL REPRESENTATION

The heat current P (1)(t) = − d
dt

〈H1〉 was calculated to
leading order in tunneling in Ref. [28] for a general time-

dependent drive. The result reads

P (1)(t) = P
(1)
J (t) + P (1)

qp (t),

P (1)
qp (t) = −i

πRT

∫ t

−∞
dt ′ e−η(t−t ′)[Ẇ qp

1 (t − t ′)Wqp

2 (t − t ′)

+ Ẇ
qp

1 (t ′ − t)Wqp

2 (t ′ − t)
]

cos
ϕ(t) − ϕ(t ′)

2
,

P
(1)
J (t) = −i

πRT

∫ t

−∞
dt ′ e−η(t−t ′)[Ẇ J

1 (t − t ′)WJ
2 (t − t ′)

+ Ẇ J
1 (t ′ − t)WJ

2 (t ′ − t)
]

cos
ϕ(t) + ϕ(t ′)

2
,

WJ
j (t) =

∫ ∞

−∞
dE e−iEtF (E)[1 − fj (E)], (6)

where fj (E) = 1
e
E/Tj +1

, Fj (E) = −Fj (−E) = Re[|�j |(E2 −
|�j |2)−1/2], Wqp

j (t) = Ẇ J
j (t)/(i�j ), and η → 0+. Above, RT

is the tunnel junction resistance, and we set e = kB = h̄ = 1.
General properties of the above result can be more clearly

seen in the spectral representation. Similarly as in standard
discussions of the charge current, we define [36]

eiϕ(t)/2 =
∫ ∞

−∞

dω

2π
e−iωt�(ω). (7)

It will also be convenient to consider the Fourier transform
of the heat current P (1)(ω) = ∫ ∞

−∞ dt eiωtP (1)(t). Long-time

averages can be expressed as P = limτ→∞ [P ]τ , where

[P ]τ ≡
∫ ∞

−∞
dt ′

z(t ′/τ )

τ
P (t ′) =

∫ ∞

−∞

dω0

2π
z̃(τω0)∗P (ω0),

(8)

where z is some real-valued window function normalized to∫ ∞
−∞ dx z(x) = 1 and z̃ its Fourier transform—for example, a

Gaussian, z(x) = e−x2
/
√

π , z̃(y) = e−y2/4.
Using the definition of � in Eqs. (6) and taking the Fourier

transform produces

P (1)
qp (ω0) = 1

4i

∫ ∞

−∞

dω1

2π

[
J

qp

1 (ω1) − J
qp

1 (ω1 − ω0)∗
]

× [�(ω1)�(ω1 − ω0)∗ + �(−ω1)∗�(ω0 − ω1)],

(9)

P
(1)
J (ω0) = 1

4i

∫ ∞

−∞

dω1

2π

[
J J

1 (ω1) − J J
1 (ω1 − ω0)∗

]

× [�(ω1)�(ω0 − ω1) + �(−ω1)∗�(ω1 − ω0)∗],

(10)

where the J are causal response functions [30] defined as

J
J/qp

1 (ω′) = i

πR

∫ ∞

−∞

dE

2π

wJ/qp(E) + wJ/qp(−E)

ω′ − E + iη
, (11)

and wJ/qp(E) are the Fourier transforms of wJ/qp(t) =
Ẇ

J/qp

1 (t)WJ/qp

2 (t). The response functions have the symmetry

144512-2



SPECTRAL REPRESENTATION OF THE HEAT CURRENT . . . PHYSICAL REVIEW B 95, 144512 (2017)

J J/qp(ω) = −J J/qp(−ω)∗. By using Fj (E) = −Fj (−E), we
can write explicitly

wqp(E) + wqp(−E) = −2πi

∫ ∞

−∞
dE′E′N1(E′)N2(E′ − E)

× [f1(E′) − f2(E′ − E)], (12)

wJ (E) + wJ (−E) = 2πi

∫ ∞

−∞
dE′E′F1(E′)F2(E′ − E)

× [f1(E′) − f2(E′ − E)], (13)

where Nj (E) = Nj (−E) = Re[E(E2 − |�j |2)−1/2] is the re-
duced density of states. The expressions corresponding to P (2)

are obtained by exchanging the labels 1 ↔ 2 in Eqs. (12)
and (13).

The above result has a linear response theory form, as ex-
pected for computation for the change in operator expectation
values in response to a perturbation. Dissipation in the linear
response is associated with a specific component—often the
imaginary part—of the response functions. In the results here
taking the definition in Eq. (11), under quite general conditions
(see below), it is only the imaginary part that contributes to the
long-time average of the heat currents.

The imaginary (“dissipative”) parts can be written as

Im J
qp

1 (ω) = 1

R

∫ ∞

−∞
dE EN1(E)N2(E − ω)

× [f1(E) − f2(E − ω)] (14)

Im J J
1 (ω) = −1

R

∫ ∞

−∞
dE EF1(E)F2(E − ω)

× [f1(E) − f2(E − ω)]. (15)

The form of the result suggests they are both associated with
quasiparticle transport. In the normal state, Im J J

1 (ω)|N = 0
and Im J

qp

1 (ω)|N = −ω2

2 + π2

6 (T 2
1 − T 2

2 ).
In contrast to the imaginary part, the real (“reactive”)

part of the response functions gives only nonzero frequency
contributions to the heat current. The part Re J J

1 corresponds to
the “condensate” heat current [21,22,24], and is related to the
“sine” heat current of Ref. [28] by Re J J

1 (ω) = −P (1)
sin (ω). The

part Re J
qp

1 was not discussed in previous works, as it does not
contribute in the constant-voltage case, but for general drive it
is nonzero.

Since the response functions are causal, the reactive parts
can be obtained via Kramers-Kronig relations [30],

Re J
J/qp

1 (ω) = 1

π

∫ ∞

−∞
dω′ P

ω′ − ω
Im J

J/qp

1 (ω′)

= 2ω

π

∫ ∞

0
dω′ P

(ω′)2 − ω2
Im J

J/qp

1 (ω′), (16)

where P denotes the Cauchy principal value. The part
Re J

qp

1 (ω) is formally divergent (cf. Ref. [36])—the divergence
is regularized by finite bandwidth/momentum dependence of
tunneling. It can also be regularized by subtracting J

qp

1 (ω) �→
J

qp

1 (ω) − α0 − α1ω with a suitable real αj inside the integral:

FIG. 2. Real and imaginary parts of the response functions, for
�1 = �2/2, T1 = T2 = 0.3�2.

Since∫ ∞

−∞

dω1

2π
[�(ω1)�(ω1 − ω0)∗ + �(−ω1)∗�(ω0 − ω1)]

= 4πδ(ω0), (17)

the subtraction does not change the result. We can write

Re J
qp

1 (ω) =2ω

π

∫ ∞

0
dω′ P

(ω′)2 − ω2

×
[

Im J
qp

1 (ω′) − Im J
qp

1 (0) + (ω′)2

2

]
. (18)

The normal-state result is Re J
qp

1 (ω)|N = 0.
Similarly as the charge current response functions, [36]

the J J/qp(ω) functions above have logarithmic singulari-
ties [24,26] that follow from the gap edge divergences of the
BCS density of states. For Im J J/qp(ω), the singularities reside
at ω = ±|�1 − �2| and for Re J J/qp(ω) at ω = ±|�1 + �2|.
By Kramers-Kronig relations, where Im J has a discontinuous
jump, Re J has a log singularity, and vice versa. If the drive
is not resonant, i.e., �(ω) does not have a δ function or
other divergences at exactly these frequencies, the resulting
heat currents remain well defined. The response functions are
plotted in Fig. 2.

Finally, we can comment on the long-time averages. Based
on Eqs. (8)–(10), using the symmetry of J J/qp(ω) and z̃(y) =
z̃(−y)∗, we can write

[
P

(1)
qp

]
τ

= Im
∫ ∞

−∞

dω dω′

8π2
z̃(τ [ω − ω′])∗

× [
J

qp

1 (ω) − J
qp

1 (ω′)∗
]
�(ω)�(ω′)∗, (19)

[
P

(1)
J

]
τ

= Im
∫ ∞

−∞

dω dω′

8π2
z̃(τ [ω − ω′])∗

× [
J J

1 (ω) − J J
1 (ω′)∗

]
�(ω)�(−ω′). (20)
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The average over long-time scales τ → ∞ picks the zero-
frequency component ω − ω′ → 0, and quite generally one
can expand z̃(τ [ω − ω′])∗[J J/qp(ω) − J J/qp(ω′)∗] � z̃(τ [ω −
ω′])∗2i Im J J/qp(ω) inside the integral. As a consequence, only
the imaginary parts of the response functions matter for long-
time averages.

Sum power

Consider now the sum power P (T ) = −P (1) − P (2). It can
be written in the same form as P (1) in Eqs. (9) and (10) but
with different response functions, J

qp/J

T = −J
qp/J

1 − J
qp/J

2 ,
which can also be written as

Im J
qp/J

T (ω) = − ω Im I qp/J (ω), (21)

where [36,37]

Im I qp(ω) = 1

R

∫ ∞

−∞
dE N1(E)N2(E − ω)

× [f1(E) − f2(E − ω)] (22)

Im I J (ω) = − 1

R

∫ ∞

−∞
dE F1(E)F2(E − ω)

× [f1(E) − f2(E − ω)], (23)

are response functions of the charge current,

I (t) = − Im
∫ ∞

−∞

dω

2π

dω′

2π
e−i(ω+ω′)t [�(ω)�(−ω′)∗I qp(ω′)

+ �(ω)�(ω′)I J (ω′)]. (24)

Noting that∫ ∞

−∞

dω

2π
e−iωt�(ω)V (t) =

∫ ∞

−∞

dω

2π
(−ω)e−iωt�(ω), (25)

and comparison with Eqs. (8), (19), and (20) results in

I (t)V (t) = P (T ), i.e., P (1) + P (2) = −Ẇ . There is no average
heat current associated with the tunneling energy.

IV. PERIODIC DRIVE

Experiments to measure the heat current transferred in
superconducting nanosystems are challenging. The physical
observable is the variation of temperature of one lead. Such a
measurement is usually done in the steady-state regime when
the transient dynamics has vanished. Under this condition it is
natural to assume that the system has a periodic evolution and
study what is the heat current transported in a period. Since
the Josephson system dynamics is completely characterized
by the superconducting phase, we consider evolution periodic
in the following sense,

eiϕ(t+T )/2 = eiϕ(t)/2. (26)

In particular, the constant voltage bias discussed in
Refs. [24,28] is periodic in this sense. Then,

�(ω) =
∞∑

k=−∞
2πδ(ω − �k)�k,

�k = 1

T

∫ T

0
dt ei�kt eiϕ(t)/2, � = 2π

T . (27)

FIG. 3. Response function Im J1(ω,φ) for �1 = �1/2 and T1 =
T2 = 0.3�2/kB for varying φ. The NIS case (�1 = 0) is also shown
(dashed line). Inset: Same plot with a larger y-axis range.

Substituting this in Eqs. (19) and (20), we obtain

P (1) ≡ P
(1)
qp + P

(1)
J =

∞∑
k=−∞

|�k|2 Im J1(�k,φk), (28)

where the combined response function appearing above is

Im J1(ω,φ) ≡ Im
[
J

qp

1 (ω) + cos(φ)J J
1 (ω)

]
, (29)

and the effective phase difference is

cos φk = 2 Re[�−k�k]

|�k|2 + |�−k|2 . (30)

The long-time average coincides with the average over a
single period—for z(x) = θ (1 − x)θ (x) and τ = T , z̃(τ�[k −
k′])∗ = δk,k′ in (19) and (20). As above, only the imaginary
(“dissipative”) part of the response function [see Eqs. (14)
and (15)] contributes to the heat current, while the real
(“reactive”) contribution vanishes in the periodic average.

From a physical point of view, we see that the heat current
is composed by a standard quasiparticle and an “interference”
contribution, similar to the ones in the steady state [16,24,26].
Both can be interpreted [26] as heat transported by quasipar-
ticles, as can be seen by the presence of the Fermi function in
Eq. (16).

The result in Eq. (16) encompasses the ones in the previous
works [21,24,25,28]. For zero external voltage � = 0, the
result reduces to the expression for the dc heat tunneling

FIG. 4. Response function Im J1(ω,φ) for �1 = �1/2 and vary-
ing T1 = T2 = T at φ = π . Inset: Same plot with a larger y-axis
range.
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current [21,23,25]. For constant voltage, the result recovers
that of Refs. [24,28], and for �1 = 0 the normal-insulator-
superconductor (NIS) junction cooling power [38].

The combined response function is shown in Figs. 3
and 4. At low frequencies ω < �1 + �2, the function remains
positive (cooling), with a logarithmic divergence appearing at
ω = |�1 − �2|. As a function of φ, the maximum is obtained
at φ = π . At high frequencies ω > �1 + �2, quasiparticle
transport activates and leads to a relatively larger but finite
negative (heating) result J ∝ −ω2 due to photoassisted pair
breaking and quasiparticle transport.

V. DISCUSSION AND CONCLUSIONS

The standard spectral representation expresses clearly the
general properties of the tunneling heat current. Here, it
directly indicates that the reactive “condensate” component
cannot contribute to long-time averages. Moreover, a simple
result is obtained relating the dc heat current to the imaginary
part of a response function and the Fourier components of the
drive.

The physical interpretation of the results should be viewed
in the context of discussions on heat currents in coupled quan-
tum systems [32–34]. In particular, the problem of identifying
the coupling energy stored in the junction raises questions on
the status of P (1) defined above as experimentally relevant ob-
servables. While their long-time averages can be argued to be
associated with heat that is accessible to experiments probing
the bulk of the superconducting terminals, what part of the
oscillating components would be accessible by measurements
away from the junction region is not answered by a tunneling
Hamiltonian calculation. Problems in interpretation are also

illustrated by the zero-temperature behavior [39]: Although
for the long-time averages P (1) � 0 at T = 0 (only heating is
possible at T = 0), for the instantaneous currents P (1)(t) > 0
is possible due to the reactive components that do not have a
definite sign at T = 0.

We can also note that arguments similar to the above can
have also some implications on the more general discussion
on the definition of heat currents in coupled quantum systems
[39–41], when the time dependence is in the coupling
Hamiltonian. Based on linear response theory, time-dependent
reactive components are a general feature of energy currents
defined in terms of operator expectation values in such models.
The Kramers-Kronig relations can then imply constraints for
their time-dependent behavior and interpretation.

In summary, we wrote a spectral representation for the
energy current in Josephson junctions, to obtain a clear
picture of the energy currents predicted in tunnel Hamiltonian
calculations. Being relatively simple, the results open the way
to the practical design and optimization of superconductor-
insulator-superconductor (SIS) coolers working on pulsed
drive cycles, and for an improved understanding of their
general performance properties.
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