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Abstract: Despite progress in our understanding of the biology of hepatocellular carcinoma (HCC), this
tumour remains difficult-to-cure for several reasons, starting from the particular disease environment
where it arises—advanced chronic liver disease—to its heterogeneous clinical and biological behaviour.
The advent, and good results, of immunotherapy for cancer called for the evaluation of its potential
application also in HCC, where there is evidence of intra-hepatic immune response activation.
Several studies advanced our knowledge of immune checkpoints expression in HCC, thus suggesting
that immune checkpoint blockade may have a strong rationale even in the treatment of HCC.
According to this background, initial studies with tremelimumab, a cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) inhibitor, and nivolumab, a programmed cell death protein 1 (PD-1) antibody,
showed promising results, and further studies exploring the effects of other immune checkpoint
inhibitors, alone or with other drugs, are currently underway. However, we are still far from the
identification of the correct setting, and sequence, where these drugs might be used in clinical practice,
and their actual applicability in real-life is unknown. This review focuses on HCC immunobiology
and on the potential of immune checkpoint blockade therapy for this tumour, with a critical evaluation
of the available trials on immune checkpoint blocking antibodies treatment for HCC. Moreover,
it assesses the potential applicability of immune checkpoint inhibitors in the real-life setting, by
analysing a large, multicentre cohort of Italian patients with HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common cause of cancer, and ranks fourth
among the causes of cancer-related death [1]. Major risk factors for HCC include chronic infection
with the hepatitis C (HCV) and B (HBV) viruses, heavy alcohol drinking, and aflatoxins B1 exposure,
depending on geographical epidemiology. In recent years, Non-Alcoholic Fatty Liver Disease (NAFLD),
the hepatological aspect of the metabolic syndrome, has been recognised as a relevant cause of advanced
chronic liver disease, and the fastest growing cause of cirrhosis and HCC in Western countries [2].
Although mixed data exist about the exact magnitude of HCC risk in patients with NAFLD, and
different epidemiological and methodological confounders must be taken into account, in a recent
retrospective cohort study involving 130 facilities in the United States Veterans Administration health
service, Kanwal et al. found that the risk of HCC was higher in NAFLD patients than in the general
population, with a 5- and 10-year cumulative incidence rate of HCC of 0.8 and 1.7 per 1000 patients in
NAFLD patients as compared to 0.09 and 0.18 per 1000 patients in controls [3].

HCC represents a unique and peculiar neoplastic setting, as in up to 80% of cases it arises
on the background of cirrhosis and chronic inflammation, which is now considered an important
factor involved in cancer progression [4]. Indeed, liver cirrhosis is a recognised model of local
chronic inflammation driven by infiltrating immune cells and resident liver cells like Kupffer cells,
dendritic cells, liver sinusoidal cells and hepatic stellate cells. Chronic inflammation initiates tissue
remodelling and determines an oxidative microenvironment, triggering DNA damage and genomic
aberrations that eventually culminate in neoplasia, and as a fact it is recognised that cirrhosis and
chronic inflammation act as a favourable preneoplastic setting [4]. Although precise molecular links
between inflammation and HCC have not yet been fully elucidated, most data rely on the activation
of the tumour necrosis factor-nuclear factor-κB axis, transcription target STAT3 and janus kinases
activation as procarcinogenetic in the liver, while another player recently identified in this field is
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the inflammasome, a multiprotein complex and sensor of cellular damage [5,6]. Thus, as in no other
neoplasia, the development of HCC is a multi-event process involving a series of genetic mutations
(pr3RB, β-catenin, chromatin and transcription modulation) and epigenetic events such as hystone
acetylation/deacetylation leading to a dysregulation of various genes, which may also represent
putative therapeutic targets [7,8].

In the past fifteen years, advances in molecular and tumour biology significantly modified the
paradigm of cancer treatment, moving from a histopathological basis to targeting specific molecular
patterns. This review focuses on HCC immunobiology and the rationale for immune checkpoint
blockade in these patients, while a specific discussion has been dedicated to a critical evaluation of the
available trials on immune checkpoint inhibitors, alone or with other therapies, for HCC. Lastly, we
assessed the potential applicability of immune checkpoint inhibitors to the real-life setting analysing a
large cohort of Italian patients with HCC.

2. Cancer Immunotherapy

The principle of tumour immune surveillance presumes that most pre-malignant and early
malignant cells can be eliminated (or controlled) by the immune system [9]. However, a critical
feature of advanced tumours compared to early malignant lesions is their ability to escape adaptive
immune response. During malignant transformation, tumour-associated antigens generated by gene
mutations are created and recognised by the immune system, and adaptive tumour antigen-specific
T-cell responses are generated, leading to cancer-cell elimination [10]. Therefore, to survive, growing
tumours must adapt to their immunological environment by either turning off immune responses,
and/or creating a local microenvironment that inhibits immune cell tumouricidal activity.

In normal circumstances, T-cells with a different T-cell receptor (TCR) repertoire circulate in the
body patrolling for evidence of foreign peptides presented on the surface of cells due to infection
or cancer development. The identification of tumoural antigen by T-cell determines an activation,
with clonal proliferation/expansion, and a cytolytic response. On the other hand, the immune system
plays a critical role in promoting tumour progression. This dual role by which the immune system
can suppress and/or promote cancer growth is termed “cancer immunoediting” and consists of three
phases: elimination, equilibrium, and escape [11].

In cancer immunotherapy, agents such as interferon, interleukins, vaccines and oncolytic
viruses are used to enhance the immune system activation to attack tumoural cells through natural
mechanisms. In particular, this goal can be achieved with several drug classes: checkpoint inhibitors,
lymphocyte-promoting cytokines, engineered T-cells such as Chimeric Antigen Receptor T-cell (CAR-T)
and TCR T-cells, agonistic antibodies against co-stimulatory receptors, and cancer vaccines [12].
The efficacy of cancer immunotherapies has been demonstrated, determining the rapid integration
of these treatments into clinical practice. Moreover, one of the most attractive features of many
cancer immunotherapies is that they target malignant cells and spare normal tissues from the damage
often seen with radiation and chemotherapy that contributes to patient morbidity and mortality [13].
These properties of immunotherapy have supported the rapid inclusion of such a treatment into
clinical practice. Currently, antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
(tremelimumab and ipilimumab) and the programmed cell death protein 1 (PD-1) or its ligand PD-L1
(nivolumab, pembrolizumab, atezolizumab, and durvalumab) have been approved for different types
of solid tumours and acute lymphoblastic leukaemia.

However, despite continue advances in the field of cancer immunotherapy, several problems
remain unsolved, including the inability to predict treatment efficacy, the need for additional biomarkers
able to guide treatment, the development of cancer resistance immunotherapies, the lack of clinical
study designs optimised to determine efficacy, and the high cost of treatment [14]. Moreover, due to
the limited results in terms of efficacy and the narrow therapeutic index of some of these drugs, the
adoption of a personalised pharmacogenetic approach would represent a turning point to improve
results [15]. Even though all these findings are particularly relevant in HCC tissue, the limited efficacy
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of systemic therapies in HCC patients, and their poor tolerability to anticancer drugs, prompted the
exploration of the potential of immunotherapy even in this setting, where immunotherapy is expected
to play a pivotal role in the near future.

3. Rationale of Immune Checkpoint Blockade in Hepatocellular Carcinoma

In the last decade, many basic science advancements and discoveries related to tumour biology
have been achieved by transcriptomic, genomic and epigenomic studies [16,17]. However, in the
case of HCC, they poorly translated into clinical practice and only suboptimal results have been
obtained in clinical trials testing many drugs in the last decade. As a result, although targeted systemic
therapies for HCC provided some clinical benefits, the improvement in patient outcome remains
modest, and HCC remains a difficult-to-cure tumour for various reasons: firstly, 70–80% of cases occur
in the context of liver cirrhosis; secondly, intra-tumour morphologic and genetic heterogeneity make
difficult our understanding of liver cancer, and may determine the resistance to targeted therapies;
and, thirdly, either drivers or passengers mutations can be present in the tumour, making an effective
molecularly-targeted therapy quite difficult [16–18]. This can explain why, despite good rationale and
promising Phase II data, drug development in Phase III trials failed in many instances.

Currently, the standard-of-care for first-line treatment for advanced HCC is represented by two
multikinase inhibitors (sorafenib and lenvatinib), and in patients who fail first-line treatment with
these drugs, the second-line treatment is again represented by multikinase inhibitors (regorafenib
and cabozantinib) [19–22]. The survival benefit obtained with multikinase inhibitors over the best
supportive care is limited, and their tolerability is generally poor, indicating the urgent need for more
efficacious and better tolerated therapeutic approaches.

One of the alternative strategies against the tumour relies on the modulation of the already existing
immune response through the enhancement of activators and the block of inhibitors. T-cell exhaustion,
defined as an impaired T-cell capacity to secrete cytokines and proliferate, with overexpression of
immune checkpoint receptors (e.g., PD-1, CTLA4, and lymphocyte-activating 3) has been observed in
certain types of cancer, including HCC [23]. Immune inhibitory receptors and ligands play a major role
in induction and maintenance of HCC immune tolerance [24–26]. In particular, CTLA-4 is essential for
the activation of helper CD4+ T-cells and the priming phase of the immune response. Upon binding
of its ligands, CTLA-4 decreases T-cell activation following antigen presentation. CTLA-4 also plays
a major role in the function of regulatory T-cells (Treg), a subset of CD4+ T-cells that inhibit the
immune response. Moreover, CTLA-4 expression on CD14+ dendritic cells was associated with IL-10
and indoleamine-2,3-dioxygenase (IDO)-mediated inhibition of T-cell proliferation and induction of
T-cell apoptosis [26]. In HCC patients, high CTLA-4 expression on Tregs in peripheral blood has
been reported in association with a decrease in cytolytic granzyme B production by CD8+ T-cells [27].
Another immune checkpoint pathway is the one regulated by PD-1 receptor. PD-1 is a key factor in
the effector phase of the immune-response, and is expressed by activated T- and B-cells and other
cell types such as in the skin and in the lung: upon binding to its ligands (PD-L1 and PD-L2), PD-1
inhibits T-cell activation and proliferation [28]. The increased expression of PD-1 has been reported
on CD8+ T-cells in patients with HCC, as well as an increase in tumour infiltrating and circulating
PD-1+CD8+ T-cells associated with disease progression after curative hepatic resection [24,29]. In
addition to the upregulation of PD-1 on T-cells, its ligand PD-L1 is highly expressed on peritumoural
stroma cells as well as cancer cells, promoting a PD-L1/PD-1 pathway-driven inhibition of anti-tumour
T-cell responses [29–31].

From a clinical standpoint, there is evidence of a role played by an activated immune-response
in HCC behaviour: (i) the infiltration of T-cells in the tumour is correlated to neoplastic recurrence
after liver transplantation; (ii) the presence of different immune cells infiltrating the tumour have been
correlated to patients’ survival; and (iii) different immune-subtypes of the tumour microenvironment are
variously associated with histological and molecular classification of HCC—with potential prognostic
implications—and the presence of exhausted T-cells was associated with poorer patient survival [32–36].
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The longer experience accrued with immunotherapy for other tumours is essential to guide
clinicians in the HCC landscape. It is known that expression of tumour-infiltrating lymphocytes,
features of inflammatory cells (PD-1 and PD-L1 expression), percentage of mutations in tumour cells
and gene expression profiles correlate with the activity and efficacy of these drugs against several
tumour types [37–40]. In selected neoplasms, tumour mutational burden measured by targeted
next-generation sequencing panels or by whole-exome sequencing, may predict clinical response to
immunotherapy [41,42]. Tumours with high rate mutations present highly immunogenic antigens
and more immune infiltration and they are more suitable to be managed with immune checkpoint
inhibitors. Conversely, tumours with lower mutational burden present less immunogenic antigens
and lower immune infiltration and, therefore, they are better candidates to other therapies [43,44].
Recently, Samstein et al. analysed the genomic data (targeted next generation sequencing) of patients
with several tumour types (but not HCC) treated with immunotherapy or other therapies. Among all
patients, higher somatic tumour mutational burden (highest 20% in each histology) was associated with
better overall survival, but the tumour mutational burden cut-points associated with improved survival
varied markedly among tumour types, indicating that there may not be one universal definition of
high tumour mutational burden [45]. Moreover, Sia et al. focused their attention on HCC and its
microenvironment (interactions among tumour cells, immune cells, and other immunomodulators
present in the microenvironment) showing that 25% of HCC have markers of an inflammatory
response, with high expression levels of PD-L1, markers of cytolytic activity, and fewer chromosomal
aberrations [46]. The authors called this group of tumours the “immune class”, and subdivided this
class in two subtypes, characterised by active or exhausted immune response, the latter representing
the ideal one to receive immunotherapy. Conversely, Harding et al. reported that HCC “cold” tumours
(with Wnt/CTNNB1 mutations) are refractory to immune checkpoint inhibitors [47].

Better characterisation and understanding of increased immune checkpoints expression provide the
rationale for the use of immune checkpoint blocking antibodies in HCC treatment. Figure 1 reports a
schematic representation of the potential factors involved in immune system paralysis in HCC patients,
and the potential pathways of action of various drugs. Binding the targeted molecules, the immune
checkpoint inhibitors block the signalling, putting the immune response on hold, and allowing cytotoxic
T-cells to strike tumour cells. Many Phase III trials testing the efficacy of monoclonal antibodies that target
this pathway in HCC patients are ongoing, but the encouraging results reported in Phase I investigations
has spurred the approval by FDA of immunotherapy even for this cancer [48,49]. Indeed, this therapy is
the most interesting approach proposed according to the new discoveries in HCC biology, and especially
the knowledge that liver has developed intrinsic tolerogenic mechanisms within the innate and adaptive
immune system as a result of its constant exposure to antigens from portal-venous blood [50]. To date, all
immune checkpoint targeted therapies for HCC consist of monoclonal antibodies developed for a specific
immune target. Although several immune checkpoint blocking agents were identified in preclinical
models, the majority of clinically tested therapies rely on antibodies targeting PD-1, PD-L1 and CTLA-4
molecules. The first small Phase II clinical trial using an immune checkpoint inhibitor, tremelimumab
(a CTLA-4 blocking monoclonal antibody), targeted patients with HCC and chronic HCV infection,
including a significant proportion (42.9%) of patients in Child-Pugh stage B [51]. A notable disease
control rate (76.4%) was observed and the safety profile was acceptable. In a second small pilot trial,
tremelimumab was combined with (incomplete) tumour ablation using locoregional therapies with the
aim to synergise the effects by inducing immunogenic tumour cell death [52]. In this study, all aetiologies
patients were included, liver function was preserved in the most patients, and 26.3% achieved a confirmed
partial response. This study represented a proof of concept that immunotherapy in combination with
tumour ablation is a potential way to treat patients with advanced HCC, and leads to the accumulation of
intratumoural CD8+ T-cells. In fact, in tumour biopsies performed at six weeks, a clear increase in CD8+

T-cells occurred in patients showing a clinical response.
In patients with advanced HCC, PD-1 antibodies (nivolumab and pembrolizumab) have shown

promising efficacy in therapy-naïve, as well as pre-treated patients. However, only 10–20% of them
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showed an objective and durable response. Therefore, combination schedules including different
immune-therapies, (e.g., PD-1/PD-L1 and CTLA-4 antibodies) or the combination of immunotherapy
and small molecules, or bifunctional antibodies are likely needed to improve response rates.Cancers 2019, 11 6 of 21 
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Figure 1. Mechanisms of immune system paralysis in patients with hepatocellular carcinoma (HCC).
Inflammatory damage triggered from various factors (alcohol, hepatitis viruses, lipid accumulation, etc.)
and from the gut microbiota is involved in the pathogenesis of HCC both directly and indirectly, through
T-cells exhaustion. Exhausted T-cells express inhibitory receptor proteins and have a diminished capacity
to produce cytokines, proliferate and kill cells. Indeed, antigen presenting cells (APC) and tumour cells
express inhibitory molecules such as programmed cell death ligand 1 (PDL-1) and B7 that interact with
the surface antigens programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) on T-lymphocytes, inhibiting the downstream signalling caused by the T-cell receptor (TCR)/
major histocompatibility complex (MHC) interaction with tumour antigens thus favouring tumour growth.

4. Strategies for Patients Selection

4.1. T-Cell Exhaustion

To select patients who are likely to clinically benefit from immune checkpoint inhibitors and to
establish optimal strategies, a better understanding of T-cell exhaustion in the HCC microenvironment
is crucial. It is known that pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, IL-12, IL-18, and IFN-γ
have been shown to enhance T-cell response, while anti-inflammatory ones, e.g., TGF-β and IL-10,
promote T-cell exhaustion and infiltration in tumours [53].

The exhaustion profile of tumour-infiltrating CD8+ T-cells in HCC patients needs to be
characterised in detail regarding heterogeneous subsets of exhausted T-cells. A recent study suggested
that combination blockade of immune checkpoint receptors additionally restores the functions of
tumour-infiltrating T-cells from HCC patients, although the identification of HCC patients eligible for
a combined approach remains unclear [23]. Interestingly, Kim et al. investigated the heterogeneity
of exhausted tumour-infiltrating CD8+ T-cells and the relationship with clinical features of HCC,
focussing on the different molecular and cellular characteristics of the tumour-infiltrating CD8+ T-cell
subpopulations, distinguished by differential PD-1 expression. They demonstrated that HCCs with
a discrete population of PD-1-high CD8+ T-cells might be more susceptible to combined immune
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checkpoint blockade–based therapies [54]. Recently, Feun et al. performed a correlative study to
investigate the correlation between circulating biomarkers and response to pembrolizumab. They
found that the mean plasma TGF-β levels in responders were lower than in non-responders, and that a
TGF-β level ≥ 200 pg/mL was an indicator of poor response to treatment. Furthermore, low baseline
plasma levels of TGF-β were significantly associated with improved overall survival and progression
free survival after treatment with pembrolizumab. These results support a study showing that TGF-β
signalling diminishes tumour response to PD-1/PD-L1 blockade by excluding CD8-positive effector T
cells from the tumour parenchyma [55,56].

4.2. The Gut Microbiota

The gut microbiota is a well-known modulator of the immune response and is able to mediate
the response to immunological treatments, as shown in patients with melanoma, renal tumour and
non-small cell lung cancer [57–59]. Recent studies also provided evidence that the gut microbiota is
linked with the pathogenesis of HCC. In animal models of HCC, the correlation between circulating
levels of inflammatory mediators and lipopolysaccharides (LPS) and the number and size of tumours
suggests an interplay between the outgrowth of harmful bacteria, such as Gram-negative ones, and
tumourigenesis [60–62]. Administration of antibiotics and probiotics or blocking the expression of
toll-like receptor-4 (the LPS receptor) not only inhibits tumour cells proliferation but also reduces the
infiltration of macrophages and the expression of tumour necrosis factor (TNF)-alpha and IL-6 in the
liver tissue (Figure 1) [62,63].

In cirrhotic patients with HCC and non-alcoholic fatty liver disease (NAFLD), an altered gut
microbiota profile, consisting in the reduction of beneficial and anti-inflammatory bacteria such
as Akkermansia and Bifidobacterium and the increase of harmful ones such as Enterobacteriaceae and
Ruminococcus, was associated with a pronounced intestinal inflammation that, in association with
the increased intestinal permeability typical of cirrhotic patients, led to a systemic inflammatory
response [64]. In these patients, an increase in circulating activated monocytes and monocytic
myeloid-derived suppressor cells expressing PD-1 and PD-L1 points out that the persistence of
an inflammatory stimulation derived from the gut eventually results in the paralysis of the immune
system, favouring the process of hepatocarcinogenesis [65].

Based on these data, it is conceivable that the gut microbiota is implicated in the pathogenesis
of HCC through immunostimulating and immunosuppressive mechanisms. Consequently, it can be
expected that the response to immunotherapy might be modulated by the microbiota composition of
HCC patients. The identification of a microbial signature associated with the response to immunotherapy
could allow implementing modulation strategies, such as faecal microbial transplantation or the use
of prebiotics, probiotics or postbiotics to personalise the therapeutic approach and maximise its
effectiveness. This is an exciting and important field of future research aimed at improving the results
of immunotherapy in HCC patients.

5. Outcome of Current Studies on Immunotherapy in Patients with HCC

5.1. Efficacy

Checkpoint inhibitor-based treatments will be, in the near future, an important enrichment of the
therapeutic armamentarium against HCC, and probably not only as first/second line approach to advanced
stage tumours as a single or combined systemic therapy, but also in early and intermediate stages in
combination with surgery and locoregional treatments. The first drugs of this class tested in HCC were
tremelimumab, a CTLA-4 inhibitor, and nivolumab, a PD-1 antibody [48,51]. Until now, various other
drugs have been tested: CTLA-4 antibodies ipilimumab, pembrolizumab, spartalizumab, tislelizumab
and camrelizumab with a strong PD-1 inhibitory activity, and PD-L1 antibodies durvalumab, avelumab
and atezolizumab [65]. The ongoing clinical trials exploring immune checkpoint inhibitors alone, or in
combination with other drugs or with local therapies are summarised in Table 1.
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Table 1. Ongoing clinical trials exploring immune checkpoint inhibitors: alone, in combination with other drugs or with local therapies.

NCT Phase Drug Procedure Line of Treatment Primary End-Point Estimated Study
Completion Date Company Conducting the Trial

NCT03298451 III Tremelilumab (+Durvalumab) vs Sorafenib - 1 OS 06/2021 Astra Zeneca
NCT02576509 III Nivolumab vs Sorafenib - 1 OS 07/2020 BMS
NCT03412773 III Tislelizumab vs Sorafenib - 1 OS 05/2022 BeiGene
NCT03062358 III Pembrolizumab vs placebo - 2 OS 01/2022 MSD
NCT02702401 III Pembrolizumab vs placebo - 2 OS, PFS 06/2020 MSD
NCT02702414 II Pembrolizumab - 1-2 ORR 05/2021 MSD
NCT02519348 II Tremelilumab (+Durvalumab) - 2 Safety, DLT 04/2021 MedImmune LLC
NCT03163992 II Pembrolizumab - 2 ORR 12/2020 Samsung Medical Center
NCT02658019 II Pembrolizumab - >2 DCR, Safety 11/2020 Lynn Feun
NCT03389126 II Avelumab - >2 ORR 03/2020 Seoul National University Hospital
NCT03419897 II Tislelizumab - >2 ORR 09/2021 BeiGene
NCT03033446 II Nivolumab SIRT Any ORR 12/2019 National Cancer Centre, Singapore
NCT03572582 II Nivolumab TACE 1 ORR 09/2022 AIO-Studien-gGmbH

NCT03380130 II Nivolumab SIRT 1 Safety 10/2019 Clinica Universidad de Navarra,
Universidad de Navarra

NCT03638141 II Tremelilumab (+Durvalumab) debTACE 1 ORR 11/2020 Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins

NCT02821754 II Tremelilumab Local ablation 1 PFS 04/2021 National Cancer Institute (NCI)

NCT03630640 II Nivolumab Electroporation 1 RFS 09/2020 Assistance Publique—Hôpitaux de
Paris

NCT03482102 II Tremelilumab (+Durvalumab) BRT 2 ORR 10/2025 Massachusetts General Hospital

NCT03316872 II Pembrolizumab SBRT 2 ORR 04/2022 University Health Network,
Toronto

NCT01658878 IB/II Nivolumab vs Sorafenib - 1 ORR 12/2019 BMS
NCT02423343 IB/II Nivolumab + Galunisertib - 2 MTD, Safety 12/2019 Eli Lilly and Company
NCT01658878 IB/II Nivolumab + Ipilimumab - >2 ORR 12/2019 BMS
NCT02940496 I/II Pembrolizumab - 2 Biomarkers 12/2019 M.D. Anderson Cancer Center
NCT03397654 IB Pembrolizumab TACE 1 Safety 12/2020 Imperial College London
NCT02837029 I Nivolumab SIRT Any MTD 07/2020 Northwestern University
NCT03099564 I Pembrolizumab SIRT 1 PFS 01/2020 Autumn McRee, MD

NCT03143270 I Nivolumab debTACE 1 Safety 04/2020 Memorial Sloan Kettering Cancer
Center

NCT03203304 I Nivolumab/Ipilimumab SBRT 1 Safety 08/2020 University of Chicago
NCT01853618 I Tremelilumab Local Ablation 1 Safety 12/2020 National Cancer Institute (NCI)

NCT, number of clinical trial (Clinicaltrials.gov); SIRT, selective intra-arterial radiation treatment; MTD, maximum tolerated dose; ORR, overall response rate; PFS, progression free
survival; TACE, transarterial chemoembolisation; debTACE, drug eluting beads transarterial chemoembolisation; SBRT, stereotactic body radiation therapy; RFS, recurrence free survival.

Clinicaltrials.gov
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5.2. Results of Monotherapy with Checkpoint Inhibitors in HCC

5.2.1. Tremelimumab

In a Phase II open-label, multicentre clinical trial, Sangro et al. treated with this drug, at a
dose of 15 mg/kg IV every 90 days until tumour progression or severe toxicity, 21 patients with
HCV-related HCC (57% with an advanced stage and 76% naïve to sorafenib) [51]. Objective response
and disease control rate were 76.4% and 17.6%, respectively. Median time-to-progression (TTP) was
6.48 months (95% CI: 3.95–9.14). No toxicities requiring systemic steroid treatment were recorded.
These initial results on safety profile and antitumour activity in patients with advanced HCC supported
subsequent studies.

5.2.2. Nivolumab

A Phase I/II trial open-label, non-comparative, dose escalation and expansion trial (CheckMate
040) for the anti-PD-1 antibody nivolumab against HCC was completed [47]. In this trial, patients
naïve to sorafenib, sorafenib intolerant or sorafenib refractory were treated with nivolumab at dose of
0.1–10 mg/kg once every two weeks (dose-escalating cohort) or at a dose of 3 mg/kg once every two
weeks (expansion cohort). In a total of 262 patients, nivolumab 3 mg/kg showed, in the dose-expansion
phase and in the dose-escalation phase, a manageable safety profile and an objective response rate of
20% (95% CI 15–26) vs. 15% (95% CI 6–28), and an overall survival at nine months of 74% vs. 66%.
Despite these favourable data, preliminary results of a Phase III trial of nivolumab vs. sorafenib in
first-line treatment (NCT02576509, CheckMate-459) showed that the study did not meet its primary
end-point of overall survival [Hazard Ratio = 0.85 (95% CI: 0.72–1.02); p = 0.0752] [66,67].

5.2.3. Pembrolizumab

This anti-PD-1 antibody is being developed primarily as a second-line treatment. In a
non-randomised, multicentre, open-label Phase II trial (KEYNOTE-224, NCT02702414), pembrolizumab
(200 mg intravenously every three weeks for about two years or until disease progression, unacceptable
toxicity, patient withdrawal, or investigator decision), was administered, at three-week intervals, to
104 Child–Pugh class A sorafenib-refractory or sorafenib-intolerant patients. The interim results of
this trial showed an objective response in 18 patients (17%; 95% CI 11–26) and a median survival
of 12.9 months. The best overall responses were one (1%) complete and 17 (16%) partial responses;
meanwhile, 46 patients (44%) had stable disease, 34 (33%) had progressive disease, and 6 patients (6%)
who did not have a post-baseline assessment were considered not to be assessable. Treatment-related
adverse events occurred in 76 patients (73%), which were serious in 16 (15%). Immune-mediated
hepatitis occurred in three (3%) patients, but there were no reported cases of viral flares. According to
the trial, pembrolizumab was effective and tolerable in patients with advanced HCC who had previously
been treated with sorafenib and that the drug might be a treatment option for these patients [68].

In the global Phase III trial allocating patients with advanced HCC who were previously treated
with systemic therapy to pembrolizumab or best supportive care (KEYNOTE-240, NCT02702401),
pembrolizumab improved overall survival (Hazard Ratio: 0.78; one sided p = 0.0238) and
progression-free survival (Hazard Ratio: 0.78; one sided p = 0.0209), although these differences
did not meet significance per the prespecified statistical plan [69]. In the second ongoing, double-blind,
randomised Phase III trial (KEYNOTE-394, NCT03062358), pembrolizumab is being tested against
placebo in Asian patients with advanced HCC who previously received systemic therapy, having as
primary endpoints progression-free and overall survival.

5.2.4. Camrelizumab

A Phase II/III trials is ongoing with this anti-PD-1 antibody in China, enrolling patients with
failure or intolerance to prior systemic treatment. Two-hundred seventeen patients were randomised
(1:1) to camrelizumab 3 mg/kg iv for q2w (n = 109) or q3w (n = 108). Interim results showed an



Cancers 2019, 11, 1689 10 of 22

objective response rate of 13.8% (95% CI 9.5–19.1) (30/217) and six-month overall survival rate of
74.7%. Median time to response was two months (range: 1.7–6.2). Of the 30 responses, 22 were
ongoing, and median duration of response was not reached. Disease control rate was 44.7% (95% CI
38.0–51.6), median time to progression was 2.6 months (95% CI 2.0–3.3), and median progression-free
survival was 2.1 months (95% CI 2.0–3.2). The most common treatment-related adverse events
were reactive cutaneous capillary endothelial proliferation (66.8%, all grade ≤ 2), increased aspartate
(24.4%) or alanine aminotransferase (23.0%), and proteinuria (23.0%). Camrelizumab showed high
objective response rate, durable response and acceptable toxicities in Chinese pretreated advanced
HCC patients [70].

5.2.5. Tislelizumab

A Phase I trial recruiting including 61 patients with various solid cancers (including HCC) showed
safety profile (NCT02407990). In a Phase III trial started in December 2017, patients with HCC were
allocated to tislelizumab (200 mg iv for q3w) or sorafenib (400 mg bid) as first-line treatment. The primary
endpoint is overall survival and this trial is designed to consider the non-inferiority of tislelizumab
compared to sorafenib. The study opened to accrual in December 2017 and is currently recruiting
patients; approximately 640 patients will be recruited from approximately 100 sites globally [71].

5.2.6. Durvalumab

A Phase I/II trial of durvalumab monotherapy for solid cancers, including a cohort of 30 patients
with HCC, was completed (NCT01693562). A 10% objective response rate and a median survival time
of 13.2 months were observed [72].

5.3. Combination of Two Immune Checkpoint Inhibitors

As previously reported, the anti-PD-1/PD-L1 and anti-CTLA-4 antibodies are expected to be
promising agents in HCC immunotherapy not only as single agents, but also by combined with agents
that have different targets. Therefore, several clinical trials evaluating the simultaneous blockade of
multiple immune checkpoints are currently ongoing (Table 1). The high efficacy of combination therapy
has already been shown in other solid tumours. For instance, the inhibition of the PD-1/PD-L1 pathway
alone might not activate tumour immunity as expected if the required CD8+ T cells are not adequately
represented in the tumour microenvironment. However, simultaneous inhibition of the B7-CTLA-4
pathway by an anti-CTLA-4 antibody may increase the number of activated CD8+ T cells in lymph
nodes, followed by an increase in the number of activated CD8+ T cells infiltrating into tumoural
tissues, thereby enhancing their antitumour effects. In addition, anti-CTLA-4 antibody therapy may be
effective against regulatory T cells in the cancer immunosuppressive microenvironment.

5.3.1. Durvalumab plus Tremelimumab

This combination, tested in a Phase I/II study in 40 patients, reported a 15% objective response rate,
demonstrating that combined therapy is more effective than durvalamab alone [73]. This combination
also showed manageable safety profile. Currently, a Phase III is ongoing to compare different
regimens as a first-line treatment; the four arms consist of durvalumab monotherapy, two types of
durvalumab plus tremelimumab combination therapies (regimens 1 and 2) and sorafenib monotherapy
(NCT03298451) [74].

5.3.2. Nivolumab plus Ipilimumab

A sub-cohort of the CHECKMATE-040 study is evaluating the combination of nivolumab plus
ipilimumab in sorafenib-treated patients (NCT01658878). Preliminary results showed an objective
response rate of 31%, with a median duration of response of 17 months and a median overall survival
that varies between 12 and 23 months according to the different treatment schedules applied in the
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three arms of the study [75]. There are two other Phase II clinical studies evaluating this combination
regimen: one of these studies is comparing, in USA, nivolumab monotherapy with nivolumab plus
ipilimumab (NCT03222076), while the second study is evaluating, in Taiwan, the combination therapy
alone (NCT03510871).

5.4. Combination of Immune Checkpoint Inhibitors with Molecular-Targeted Agents

The therapeutic outcomes of immune checkpoint inhibitors with molecular target therapies has
demonstrated to be superior to those of monotherapy in other solid tumours. Therefore, even for
HCC, therapies involving an immune checkpoint inhibitor plus a molecular targeted agent was
suggested as a promising strategy in recent years. In particular, interstitial cells (Kupffer cells, dendritic
cells, liver endothelial cells, and liver stellate cells) and immunosuppressive cytokines (e.g., IL-10 or
TGF-β) may contribute to the immunosuppressive environment of HCC, and the PD-1/PD-L1 pathway
plays an important role in the development of the immunosuppressive microenvironment in HCC.
Combining a molecular targeted agent and an immune checkpoint inhibitor is expected to improve
this immunosuppressive microenvironment.

5.4.1. Atezolizumab plus Bevacizumab

A Phase III randomised controlled trial of atezolizumab plus bevacizumab versus sorafenib
as a first-line treatment was started and is currently ongoing to confirm the results of the Phase
Ib trial [76]. Preliminary results of this Phase III study (NCT03434379) have recently been released,
and the combination of atezolizumab (1200 mg on day 1 of each 21-day cycle, intravenously) plus
bevacizumab (15 mg/kg on day 1 of each 21-day cycle, intravenously) met both co-primary end-points
of improvement in overall and progression-free survivals as compared with sorafenib (400 mg twice per
day, on days 1–21 of each 21-day cycle), although survival figures have not yet been communicated [77].

5.4.2. Pembrolizumab plus Lenvatinib

A Phase I trial for this therapy is also underway in patients with HCC. According to preliminary
results, 46% of patients had either partial response or stable disease in the mRECIST criteria among the
patients who had been evaluated [78].

5.4.3. Other Combinations

Currently there are several early stage clinical studies considering various combination of
PD-1 inhibitors and targeted agents for HCC, without available data for the moment. They include:
nivolumab plus lenvatinib (NCT03418922), nivolumab plus cabozantinib (NCT03299946), nivolumab
plus bevacizumab (NCT03382886), pembrolizumab plus regorafenib (NCT03347292), pembrolizumab
plus sorafenib (NCT03211416), and PDR001 (spartalizumab) plus sorafenib (NCT02988440).

5.5. Immune Checkpoint Inhibitors as Neo-Adjuvant or Adjuvant Therapy, or in Combination with Local Treatments

Despite significant improvements in the treatment of early HCC, curative therapies remain
associated with high recurrence rates (≈70% at 5 years), and adjuvant therapies able to curb this
figure currently represent an unmet need. In both settings of surgery and locoregional treatment,
treatment-induced liberation of tumour-associated antigens has previously been demonstrated, thus
providing a strong rationale for a combined treatment with immunostimulating agents, as previously
shown for other solid tumours [79]. Thus, several studies have been recently initiated in HCC
in order to evaluate the safety and efficacy of adjuvant treatments in patients who are at high
risk of recurrence after curative hepatic resection or ablation. As an example, a study is currently
recruiting patients to test nivolumab against placebo in the adjuvant setting following resection or
local ablation (NCT03383458). Similarly, the MK-3475-937/KEYNOTE-937 trial with pembrolizumab
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is also undergoing in the neoadjuvant setting (NCT03867084). Phase II trials are also evaluating
tremelimumab in a similar setting.

Similar to ablation, chemoembolisation has been shown to be associated with enhanced
tumour-associated antigens spread together with an increase of vascular endothelial growth factor.
In this regard, at least one study on transarterial chemoembolisation plus nivolumab is undergoing
(NCT03143270). In this setting, a more complex approach has recently been proposed by the combination
of chemoembolisation with both an immune checkpoint inhibitor and a molecular-target agent with
an anti-VEGF effect: the LEAP-01 study (combination of chemoembolisation with pembrolizumab
and lenvatinib, NCT03713593) and the EMERALD-1 study (combination of chemoembolisation with
durvalumab and bevacizumab, NCT03778957). Lastly, transarterial radioembolisation promotes
radiation-induced tumour damage similar to that induced by stereotactic radiation therapy: several
early studies (Phase I and II) by combining this emergent locoregional approaches to immune
checkpoint inhibitors are going to start recruitment (NCT02837029, NCT03033446, NCT03099564, and
NCT03380130).

6. Liver Involvement in Immune-Related-Adverse Events

Compared to tyrosine-kinase inhibitors as sorafenib and lenvatinib, immunotherapy has significant
differences in terms of both toxicity and response. Checkpoint inhibitors are generally better tolerated
than tyrosine-kinase inhibitors, although some patients may rarely experience serious, immune-related
adverse events involving different organs and systems, such as endocrine glands, the skin, the
gastrointestinal tract, the brain and the liver itself [80]. Acute hepatitis is rare, occurring in 4–9%
of patients considering all grades of liver injury, and in 3.5% for grade 3 or 4 hepatitis [81,82].
No predictors of checkpoint inhibitors toxicity and immune-related adverse events have been clearly
demonstrated. However, the presence of baseline sarcopenia, a family history of autoimmune
diseases, tumour infiltration and liver metastases, previous viral infections (such as HIV or hepatitis)
and the concomitant use of drugs with autoimmune mechanism of toxicity (anti-arrhythmics,
antibiotics, anticonvulsants or antipsychotics) have been suggested to be potential predictors of
severe treatment-related toxicity [83,84]. Histological features of the immune-related hepatitis are still
little known, due to its rarity and the uncommon utilisation of liver biopsy. A recent French study
showed a different histological pattern between patients receiving anti PD-1/PD-L1 and anti-CTLA-4
agents. Anti-CTLA-4-associated injury is typically a granulomatous hepatitis with severe globular
necrotic and inflammatory activity and lymphocyte T CD8 cells activation, while the histological
pattern of liver damage associated with use of anti-PD-1/PD-L1 agents is more heterogeneous, showing
a spotty and confluent necrosis and mild-to-moderate lobular and periportal inflammatory activity,
involving both CD4 and CD8 lymphocytes in equal proportions [85]. Finally, three cases of checkpoint
inhibitors-induced hepatotoxicity were characterised by biliary injury, and in one patient receiving
pembrolizumab for metastatic melanoma a vanishing bile ducts syndrome has been described [86].
According to guidelines, a grade 2 transaminase or bilirubin elevation should prompt the interruption of
checkpoint inhibitors therapy and transaminase/bilirubin should be checked twice weekly [80]. A grade
2 elevation lasting for more than two weeks, in the absence of any other cause of liver damage, should
be approached with steroids [1 mg/kg/day (methyl)prednisolone or equivalent]. Upon improvement,
immunotherapy can be resumed after steroids tapering. Conversely, in the case of worsening, steroids
should be increased to 2 mg/kg/day, with permanent discontinuation of checkpoint inhibitors. In the
case of grade 3 or 4 transaminase/bilirubin increase, checkpoint inhibitors should be permanently
discontinued, steroids must be started (1–2 mg/kg/day) and, if needed, mycophenolate mofetil should
be added. In steroid and mycophenolate refractory cases consultation with the hepatologist and liver
biopsy are recommended [80].
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7. Assessment of Treatment Response: The iRECIST Criteria

The response of HCC to immunotherapy appears as low as with tyrosine kinase inhibitors in
terms of objective response rates but with longer durability, a finding that appears completely new for
this tumour. In particular, the concept of radiological response likely needs a different approach from
the one we have used to define treatment response with tyrosine kinase inhibitors: the RECIST and
mRECIST criteria will have to be paralleled by a new system specifically designed for these drugs (i.e.,
the immune-related response criteria, iRECIST) [87].

Indeed, the peculiar tumour response observed with immunotherapy raised questions about the
appropriateness of the conventional classification of tumour response, i.e., objective response and
disease progression. The RECIST working group has recently developed consensus guidelines for
the use of a common language in cancer immunotherapy trials, to ensure consistent design and data
collection [87]. The need of a different modality to consider radiological response with checkpoint
inhibitors has been raised in early trials in melanoma, when investigators described for the first
time a unique response pattern, termed pseudoprogression: the disease behaviour met the criteria for
disease progression based on RECIST criteria but later patients had marked and durable responses.
Thereafter, following a long process of revision of different trials, the major innovation of iRECIST
is the concept of resetting the bar if RECIST progression is followed by tumour shrinkage at the
subsequent assessment [87]. This evolutive pattern has been defined “unconfirmed progression”
(iUPD): if progression is not confirmed, but the tumour shrinks (compared with baseline), which meets
the criteria of complete response, partial response or stable disease, then the bar is reset so that iUPD
needs to occur again (compared with nadir values) and then be confirmed (by further growth) at the
next assessment for confirmed progression (iCPD) to be assigned. Other aspects of lesion assessment
are unique to iRECIST. If a new lesion is identified (thus meeting the criteria for iUPD) and the patient
is clinically stable, treatment should be continued. Progressive disease is confirmed (iCPD) in the new
lesion category if the next imaging assessment, done at 4–8 weeks after iUPD, confirms additional new
lesions or a further increase in new lesion size from iUPD (sum of measures increase in new lesion
target ≥5 mm, any increase for new lesion non-target).

8. Rationale Underlying the Use of the ITA.LI.CA Database to Assess Real-Life Applicability of
Checkpoint Inhibitors

With the intent to explore the potential use in clinical practice of two checkpoint inhibitors,
nivolumab and pembrolizumab, in HCC patients, we developed some scenarios applying to the
Italian Liver Cancer (ITA.LI.CA) database the inclusion criteria adopted by the checkpoint inhibitors
studies [48,68]. The ITA.LI.CA database is a large, multi-centre database including patients with newly
diagnosed or recurrent HCC approaches managed in a large number of Italian centres with different
levels of expertise (secondary and tertiary referral centres) [88]. This database, due to its heterogeneity
in terms of tumour stage, underlying liver disease severity, and therapeutic approach, provides a
reliable insight into the characteristics of HCC in a Western population, and allows predicting figures
of the potential utilisation of these drugs in real-life clinical practice [88,89].

To define the “real world” scenario where these drugs could be used either as up-front or in
second-line treatment, we used the selection criteria reported by El-Khoueiry et al. for nivolumab and
those proposed by Zhu et al. for pembrolizumab [48,68]. This analysis was mainly aimed at providing
the clinicians with a tentative foresight of the proportion of eligible patients and field of applicability
of the checkpoint inhibitors in the real-life clinical practice.

8.1. First-Line Scenario

To construct the first-line scenarios, we adopted three patient-removal steps: (i) firstly, removal
based on the period and type (naive vs. recurrent) of HCC diagnosis; (ii) secondly, removal based
on missing data for at least one of the parameters used to identify potential candidates to checkpoint
inhibitors; and (iii) lastly, removal based on the selection criteria used for the investigated drug.
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As far as nivolumab is concerned, we identified 27 different selection parameters to build the
first-line scenario and specifically we considered not amenable to nivolumab patients with one or
more of the 27 conditions reported in Table 2, which also reports the number of patients excluded by
each step. Thus, we firstly removed patients with recurrent HCC (n = 4453) and those with a tumour
diagnosis before 2008 (n = 3144), and then those in whom data regarding one or more of the 27 selected
criteria were missing (n = 1403). The remaining 2483 patients with a first diagnosis of HCC over the
period 2008–2016 formed the cohort where we tested the amenability to immunotherapy. Among them,
525 patients (21.1%) met the criteria for nivolumab treatment. According to the year of HCC diagnosis,
the proportion of potentially treatable cases ranged from 18.3% to 30.3% (Figure 2A), with a median
eligibility rate of 20.1% (19.9–20.3% interquartile range).

Considering the eligibility to first-line pembrolizumab, we adopted 30 selection parameters to
build the first-line scenario (Table 2). The first two steps were identical to the nivolumab scenario: of
the 2483 patients selected by these steps only 268 (10.8%) patients were considered eligible to receive
pembrolizumab. Over time, the proportion of patients eligible to pembrolizumab ranged from 9.4% to
21.2% (Figure 2B), with a median eligibility rate of 10.6% (10.2–11.1% interquartile range).

Table 2. Potential use of nivolumab and pembrolizumab as first-line therapy in HCC patients according
tothe ITA.LI.CA database.

ITA.LI.CA Database Number of HCCs = 11,483 (including recurrences)

(A) First-step removal
1. HCC diagnosis before 01/01/2008 = 3144

2. HCC recurrence = 4453

Number of patients = 3886 (01/01/2008-31/12/2016)

(B) Second step removal Missing data = 1403

Examined population = 2483 (100.0%)

(C) Third step removal

Nivolumab Pembrolizumab

1. Child-Pugh > B7 = 601
2. ECOG PST > 1 = 343
3. ECOG PST = 1, BCLC C, resected or RFA/PEI,

MC-IN = 86
4. BCLC 0-A resected = 99
5. BCLC 0-A RFA/PEI = 238
6. BCLC B resected = 55
7. Transplantation = 55
8. TACE with CR/PR/SD = 577
9. PBC = 18
10. Autoimmune hepatitis = 5
11. Active HBV + HCV = 12
12. Active HBV + HDV = 12
13. Autoimmune diseases = 34
14. Active alcohol abuse = 323
15. Brain metastases = 2
16. Story of encephalopathy = 155
17. Severe ascites = 380
18. Malignancies previous 3 years = 27
19. HIV = 22
20. Leucocytes < 2000/mcL = 63
21. PLT < 60,000/mcL = 299
22. Hb < 9 g/dL = 107
23. GFR < 40 mL/min = 147
24. Total bilirubin > 3.0 mg/dL = 214
25. AST/ALT > 5× = 123
26. Albumin < 2.8 g/dL = 226
27. INR > 2.3 = 34

1. Child-Pugh > B7 = 601
2. ECOG PST > 1 = 343
3. ECOG PST = 1, BCLC C, resected or RFA/PEI,

MC-IN = 86
4. BCLC 0-A resected = 99
5. BCLC 0-A RFA/PEI = 238
6. BCLC B resected = 55
7. Transplantation = 55
8. TACE with CR/PR/SD = 577
9. PBC = 18
10. Autoimmune hepatitis = 5
11. Active HBV = 95
12. Double infection HBV/HCV = 36
13. Autoimmune diseases = 34
14. Active alcohol abuse = 323
15. Brain metastases = 2
16. Story of encephalopathy = 155
17. Clinically apparent ascites = 1009
18. Malignancies previous 5 years = 43
19. HIV = 22
20. Leucocytes < 1200/mcL = 23
21. PLT < 60,000/mcL = 299
22. Hb < 8 g/dL = 33
23. sCr > 1.5 mg/dL = 121
24. GFR < 60 mL/min if sCr < 1.5 mg/dL = 502
25. Total bilirubin > 2.0 mg/dL = 440
26. AST/ALT > 5× = 123
27. Albumin < 3.0 mg/dL = 414
28. INR > 1.5× = 60
29. Variceal bleeding < 6 months = 103
30. Main branch PVT/IVC thrombosis = 187

Final population = 525/2483 (21.1%) Final population = 268/2483 (10.8%)

Abbreviations: ITA.LI.CA, Italian Liver Cancer; HCC, hepatocellular cancer; ECOG, Eastern Cooperative Oncology
Group; PST, performance status; BCLC, Barcelona Clinic Liver Cancer; RFA, radio-frequency ablation; PEI,
percutaneous ethanol injection; MC, Milan Criteria; TACE, trans-arterial chemoembolisation; CR, complete response;
PR, partial response; SD, stable disease; PBC, primitive biliary cholangitis; HBV, hepatitis B virus; HCV, hepatitis C
virus; HDV, hepatitis D virus; HIV, human immunodeficiency virus; PLT, platelets; Hb, hemoglobin; GFR, glomerular
filtration rate; sCr, serum creatinine; AST, aspartate transaminases; ALT, alanine transaminases; INR, international
normalised ratio; PVT, portal vein thrombosis; IVC, inferior vena cava.
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8.2. Second-Line Scenario

To build second-line scenarios, we followed the removal steps reported in Table 2. First, we removed
the cases diagnoses before 2008 (n = 3144) and those with a naive HCC as well as those with ≥2
two recurrences (n = 6485). The removal of the 1413 cases with missing data selected 441 patients
for nivolumab and 266 patients for pembrolizumab with a first recurrence of HCC after any type of
first-line treatment during the period 2008–2016. According to the 27 criteria for nivolumab, only
24 patients (5.4%) resulted eligible for second-line treatment. The proportion of potentially treatable
patients ranged from 0% to 10% across the years, with a median of 4.8% (2.9–6.4 interquartile range)
(Figure 3A). Likewise, after removing patients with missing data for the 30 variables (n = 1588) used
for pembrolizumab, only 266 patients with HCC recurrence after any first-line treatment in the period
2008–2016 were selected. Of them, 26 (9.8%) were considered eligible for pembrolizumab treatment,
and their proportion ranged over time from 0% to 12.9%, with a median eligibility rate of 8.0%
(6.5–10.3 interquartile range) (Figure 3B).
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associated with inhibitory checkpoint blockage as a backbone of therapy, might be the most 
promising strategies. Moreover, in this context, it is necessary to identify easily accessible biomarkers 
to predict tumour response and help us in selecting optimal candidates to immunotherapy. How we 
will select and monitor these therapies, and use them safely in different groups of patients is not yet 
clear, as the field is limited by the lack of either tissue or circulating biomarkers to guide clinical 
decision-making. Additional studies are warranted to identify how many patients (among the whole 
HCC population, and also among those who undergo this therapy) will actually benefit from immune 
checkpoint inhibitors treatment, and to assess its cost-effectiveness in this complex disease. 
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Figure 3. Proportion of patients within the Italian Liver Cancer cohort meeting the criteria for: first-line
pembrolizumab treatment (A); or second-line pembrolizumab treatment (B).

9. Conclusions

All the described encouraging results are enriching the scenario of HCC treatment, with a trend to
expand the use of immune checkpoint inhibitors, alone or in combination with other molecules, for
advanced stage HCCs, as adjuvant therapy after curative approaches in patients with a high risk of
disease recurrence, or in combination with transcatheter arterial chemoembolisation in those carrying
an intermediate stage HCC.

Nevertheless, despite the expectancy related to ongoing studies, the application of immune
checkpoint inhibitors in patients with HCC may still not fulfil the unmet needs of these patients, since
as many as 30–40% of them do not respond to these agents, and we have shown by analysing the large
ITA.LI.CA database—despite the limitations related to the retrospective nature of the analysis—that
in the real-life clinical practice the eligibility rate to immune checkpoint inhibitors is approximately
10–20% in the first-line, and less than 10% in the second-line treatment. The mechanisms of primary
resistance to immunotherapy are largely unknown, but combination strategies may overcome this limit,
considering that HCC-induced immune tolerance in the setting of a tolerogenic liver environment
and chronic inflammation is associated with multiple immunosuppressive mechanisms. Thus, dual
or triple combinations of immune targeting agents, associated with inhibitory checkpoint blockage
as a backbone of therapy, might be the most promising strategies. Moreover, in this context, it is
necessary to identify easily accessible biomarkers to predict tumour response and help us in selecting
optimal candidates to immunotherapy. How we will select and monitor these therapies, and use
them safely in different groups of patients is not yet clear, as the field is limited by the lack of either
tissue or circulating biomarkers to guide clinical decision-making. Additional studies are warranted to
identify how many patients (among the whole HCC population, and also among those who undergo
this therapy) will actually benefit from immune checkpoint inhibitors treatment, and to assess its
cost-effectiveness in this complex disease.
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