The adiabatic strictly-correlated-electrons functional: kernel and exact properties
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We investigate a number of formal properties of the adiabatic strictly-correlated electrons (SCE) functional,
relevant for time-dependent potentials and for kernels in linear response time-dependent density functional the-
ory. Among the former, we focus on the compliance to constraints of exact many-body theories, such as the
generalized translational invariance and the zero-force theorem. Within the latter, we derive an analytical expres-
sion for the adiabatic SCE Hartree exchange-correlation kernel in one dimensional systems, and we compute it
numerically for a variety of model densities. We analyse the non-local features of this kernel, particularly the
ones that are relevant in tackling problems where kernels derived from local or semi-local functionals are known

to fail.

PACS numbers: 78.20.Ek,75.47.-m,71.18.+y

I. INTRODUCTION

While a considerable amount of work on the strictly-
correlated-electrons (SCE) formalism [[1H3]] within the frame-
work of ground state Kohn-Sham (KS) density functional the-
ory (DFT) has been carried out [448] [31]], the study of its per-
formances in the time domain is just starting [9) [10]. The
aim of this work is to begin a systematic investigation of the
SCE functional in the context of time dependent problems, in
order to understand its fundamental aspects and its potential
in tackling challenging problems for the standard approxima-
tions employed in time-dependent (TD) DFT.

We will hence focus on those physical situations described
by an explicitly time-dependent Hamiltonian, and whose
dynamic is described by the time-dependent Schrédinger
equation (TDSE). Due to the existence of a time-dependent
density-potential mapping [11-14] [REFS] for interacting and
non-interacting systems, a time-dependent Kohn-Sham ap-
proach can be rigorously set up and employed to study the
dynamics of quantum systems at a manageable computational
cost. Choosing the initial non-interacting wave function to be
a single Slater determinant of some spin orbitals ;(x,to),
one can reduce the TDSE to a set of single-orbital equa-
tions, the time-dependent Kohn-Sham (TDKS) equations, of
the form (in Hartree atomic units used throughout):
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from which the time-dependent density is computed in the

familiar way (for simplicity in this introduction we consider
closed-shell systems) as:

N
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In Eq. (I), wvu([n],r,t) is the usual Hartree potential
computed with the time-dependent density n(r,t), and
Vze([Po, Po,m];r,t) is the exchange-correlation (xc) po-
tential. Trading the many-body TDSE for the one-particle
TDKS equations has a price to pay, that is the time-dependent
exchange-correlation  potential ~ vg.([n, ¥o, Pol;r,t) of
TDDFT is an even more complex object than the v,. for
ground state DFT, as it is a functional of the density at all
times ¢’ < ¢ and, additionally, of the initial state of both the
interacting and non-interacting systems. However, whenever
the initial state for the evolution problem described by the
TDKS equations is chosen to be the ground state of the
system, then the functional dependence of the xc potential
is on the electronic density alone: since this scenario occurs
naturally in many problems of interest, it doesn’t pose
actual limitations and thus it is often adopted in practical
applications.

Similarly to ground state DFT, in order to make use of
Eq. (I) one needs approximations for the exchange correlation
potential v,.. A first drastic approximation, which is used in
the large majority of cases in TDDFT, is the so-called adia-
batic approximation, obtained by inserting in a ground-state
approximate v, ([n]; r,t) the instantaneous density, ignoring
dependence on the density at earlier times. This approxima-
tion has a very specific range of validity — infinitely slowly
varying perturbations, such that the system is always in its
ground state — but it is very often employed outside it, with
results that can vary from very satisfactory to poor, depending
on the nature of the problem addressed. In certain cases, it
is still difficult to disentangle the errors due to the adiabatic
approximation and the errors due to the approximation for
the ground-state exchange correlation potential, but consid-
erable progress has been made in recent years, by analysing,
when possible, the “adiabatically exact” potential [15] [REFS
- Neepa, Kummel, Rubio]. In other cases, it is instead well
established that neglecting all “memory effects” in v,. (or
equivalently frequency dependence in the so called xc ker-
nel, F,. of linear response TDDFT), does not allow TDDFT



to describe excitations with a predominantly double charac-
ter [REFERENCES]. In the TDDFT framework, adiabaticity
is thus equivalent to locality in time. The most common ap-
proximations used to build the adiabatic v, (and F,. in the
linear response case) in TDDFT, are local and semilocal func-
tionals, which thus add to locality in time locality in space as
well. In these cases, the time-dependent kernel F..(r, v/, ¢, ')
is approximated as
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where E2PP'[n] is a given local or semilocal approximate
functional, which makes the kernel different from zero only on
(or very close to) the diagonal r = r’. We have already hinted
at the shortcomings of the locality in time in this introduction,
but also the locality in space has serious limitations, a notori-
ous example being the description of excitations with a long-
range charge transfer (CT) character [[16] [REFERENCES]. In
the case of closed-shell fragments, the introduction of a con-
siderble portion of Hartree-Fock exchange (often introduced
at long-range only through range-separation) is able to fix
the CT problem in linear response TDDFT [REFERENCES].
However, this solution does not work for the very challenging
case of homolytic bond breaking excitations, the prototypical
example being the lowest excited singlet state 13 of the Hy
molecule [? ? ]. In this case, the kernel should diverge in or-
der to compensate the fact that this excitation in the KS system
goes to zero as the bond is broken [? ? ]. In this context, we
will show that, at least in a model one-dimensional case, the
adiabatic SCE (ASCE) kernel shows a very promising non-
local diverging behavior.

In order to construct approximations both for potentials and
kernels in TDDFT, one can be guided by trying to satisfy ex-
act properties and constraints of many-body theories. In a se-
ries of works [17H19] Dobson and Vignale devised a num-
ber of constraints (named theorems afterwards) that the time-
dependent v, should comply to, in order to avoid unphysical
results or contradictions in the theory. From their analysis, it
appeared for the first time that the interplay between non lo-
cality in space and non locality in time is a delicate issue in
TDDFT and this fact needs to be kept in mind when looking
for approximations, making this task much more challenging
than in ground state DFT. It is thus natural to ask whether a
highly non-local functional such as SCE can satisfy these ex-
act conditions when employed in the adiabatic approximation.

After briefly reviewing in Sec. [l the basics ideas of the
SCE formalism, we will show in Sec. how the SCE po-
tential satisfies exact properties of many-body theories, such
as the zero-force theorem and the generalized translational in-
variance. Our analysis will also show how, while non-locality
in time and non-locality in space have to go hand in hand,
non-locality in space and locality in time can coexist without
violating the above mentioned properties. In Sec. [[V|we will
derive an analytical expression for the SCE kernel for one-
dimensional systems, and then compute it numerically for var-
ious density profiles. We will complete the section with a dis-
cussion on some general features of the kernel, pinpointing at

those which arise from its highly non-local nature. Finally we
will give our conclusions and perspectives for future work.

II. REVIEW OF THE SCE FORMALISM

The SCE formalism can be put in the DFT context start-
ing with the generalization of the Hohenberg-Kohn functional
F[n] to scaled interactions:

F[n] = min (U|T + \V,.|¥) 4

U—n

where 7' and Vee are the familiar kinetic and two-body in-
teraction operators, while A is a parameter varying continu-
ously from 0 to oo, yielding different scenarios: F—q[n] =
Ts[n] corresponds to the non interacting or Kohn-Sham sys-
tem, F—1[n] corresponds to the real physical system, while
F—[n] defines the strong-coupling limit [1} 2], captured by
the strictly-correlated-electron functional

VECE[n] = min (U|V,|P). (5)
U—n
The working hypothesis to build the minimizer of Eq. (§) for a
given density is that the many-body wavefunction in this limit
collapses into a 3-dimensional subspace of the full configura-
tion space,

|Uscr(ri,...,rn)|

_sz/d ") £, 1))

x (r2 —f,2)(r)) - 8(rn — £ (r)) , (6)

where p denotes a permutation of 1, ..., N, such that n(r) =
N [|¥scr(r,ra,...,ry)[*dry---dry. The functional is
then specified in terms of the so-called co-motion functions
f;([n];r) that determine the set in which [Ugcg|? # 0,
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The functional derivative of V,3°®[n] defines the SCE poten-
tial:
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which can be computed via a rigorous and physically trans-
parent shortcut [2]] as the repulsion felt by an electron in r due
to the other N — 1 electrons at positions r; = f;([n]; r),
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All the f;[n](r), whose physical meaning is to give the posi-
tions of all the others NV — 1 electrons once the position of
a reference electron has been fixed in r, satisfy the following
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non-linear differential equation:
n(f;([n];r))df; ([n];
(10)

which shows their non-local dependence on n(r). Further-
more the co-motion function obey (cyclic) group proper-
ties [2]] which ensure that the electrons are indistinguishable.

In the recent years, it has been realized that the problem
defined by the minimization (3)) is equivalent to an optimal
transport problem with Coulomb cost [? ? ]. Since then,
the optimal transport community has been able to prove sev-
eral rigorous results. In particular, the SCE state (6)) has been
proven to be the true minimizer for any number of particles N
in one dimensional (1D) systems [? ] and in any dimension
for N = 2 [? ]. For more general cases, it has been shown
that the minimizer might not be always of the SCE form [? ].
Even in those cases, however, SCE-like solutions seem to be
able to go very close to the true minimum [? ], and in several
cases it is still possible to prove Eq. ) [? ].

In the low-density limit (or strong-coupling limit) the exact
Hartree and exchange-correlation (Hxc) potential of KS DFT
tends asymptotically to V.SCE[n] [? ? ]. Thus, in the following
we denote v5°E([n];r) of Eq. @) as v§<E([n]; ), to stress
that this potential is the strong-coupling approximation to the
standard Hxc potential of KS DFT [? ? ].

Now that the basics of the SCE formalism at the ground
state level have been reviewed, we can move to the time-
dependent domain.

r) = n(r)dr 1=2,..,N -1,

III. EXACT PROPERTIES FROM MANY-BODY
THEORIES

Since the success of TDDFT relies heavily on the avail-
ability and the quality of the approximations for v,.([n];r, t)
and for the linear response exchange-correlation kernel
Fre([n],xr,x’,t,t"), there have been intense research efforts
towards better approximations. As already mentioned in the
introduction, a way to guide such approximations is to resort
to the compliance to exact constraints from many-body the-
ories, similarly to what has been done extensively already in
ground state DFT. A first exact condition is given by scal-
ing relations [21]], a second one by a sum rule for the time-
dependent exchange-correlation energy [22]] and just like in
the static case, the time-dependent xc potential should be self-
interaction free.

In addition to the constraints enumerated above, a very im-
portant condition on approximate xc potentials is that they
should be Galilean invariant, as a consequence of the fact
that the TDSE itself exhibits this symmetry. This condition
was first investigated by Vignale [18]], as a generalization of
an earlier work by Dobson [[17] on the so called harmonic po-
tential theorem (HPT), which states that upon the application
of a time-dependent field to a many-body system confined by
an harmonic potential, its time-dependent density is rigidly
shifted. In [18] it was demonstrated that the HPT is auto-
matically satisfied whenever the time-dependent xc potential
obeys a precise constraint, that is upon a rigid shift of the sys-

tem’s time-dependent density, the time-dependent xc potential
is rigidly translated by the same quantity. We will refer to this
property as generalized translational invariance (GTI), since it
holds also for coordinates frames which are accelerated with
respect to the original one. [23]]

Thus in general the GTI can be formalized as follows: given
an arbitrary (be or not time-dependent) shift of the density
R(t):

n'(r,t)

the xc potential associated with this density has to transform
accordingly to:

=n(r— R(t),1) (11)

vee([n']; 1, ) = vae([n];r — R(2), 1) (12)

A. Properties of the adiabatic SCE potential

We will now show explicitly show that the ASCE complies
to this requirement.
We begin by observing that in the SCE limit, upon the shift
of the density, all the relative distances between the electrons
have still to be the same, thus the co-motion functions trans-
form as:

fi([n'lir) = fi([n];r — R(t)) + R(?). (13)

In the one dimensional case, where the co-motion functions
can be expressed in terms of a simple one-dimensional inte-
gral, one can show explicitly that the above relation holds, see
App. [A] for details. Substituting the transformed co-motion
functions into the expression for the SCE potential gives:

Voie ([0

r — fi([n];r — R(t)) — R(¢)
z:|1”—f (In};r = R(1)) — R(1)[?

= Voild([n];r — R(t),1). (14)

Integration and subtraction of the Hartree potential (which sat-
isfy the GTI straightforwardly) yields:

VB (' ) = GCF (e = R(1),1) (15)
which is the relation we wanted to prove.
A second important constraint is that the xc potential can-
not exert a net external force on the system, which is noth-
ing else than the compliance to Newton’s third law of mo-
tion. In DFT this property goes under the name of zero force
theorem (ZFT) and in [18] it was shown how it is automati-
cally satisfied for translationally invariant xc potentials. One
may think that this is a trivial requirement to be satisfied, but
in practice it isn’t. For example in [24]] it was demonstrated
numerically that computing the dipole moment of small Nag
and Nag clusters, via the exact exchange Krieger-Li-Iafrate
approximation to v,., yielded an increased amplitude in the
dipole oscillations, most likely due to spurious internal forces
appearing as a consequence of the violation of the ZFT. The
ZFT, not only has implications for the approximations to the



time-dependent xc potential, but also on another key quantity
of TDDFT, namely the exchange correlation kernel. In [19]
Vignale showed how a frequency dependent (thus non local
in time) F,. cannot be local in space, in order to satisfy the
ZFT. A notable example of a kernel which violates the ZFT
and the HPT too, is the Gross-Kohn F,.. which indeed is fre-
quency dependent, but local in space, as it is based on the
homogeneous electron gas. This peculiar issue in TDDFT is
commonly known as ultra non-locality problem and makes
particularly challenging the construction of approximate fre-
quency dependent kernels. Adiabatic ., derived from fully
local functionals, do not violate the ZFT. It is legitimate to ask
if an adiabatic but highly non local functional like the ASCE,
does violate the ZFT. Strictly speaking we already know that
it doesn’t, since it respects the GTI, but in the following we
will explicitly show that while non locality in time requires
non locality in space, the converse is not true.

Let’s consider once again a shift in the density: n'(r) =
n(r — R). Observing that the generalized HK energy func-
tional F)[n] is translationally invariant (since both T and V.,
are) one has:

F,\[TL} :F)\[n/]. (16)

Expansion of the density in powers of R gives:
n(x)
and expanding both sides of Eq. yields:

=n(r—R)=n(r) - R-Vn(r) + O(R?), (17)

= réF)‘ —R - Vn(r
o-/dm)( R Vi(r)) (18)

which is valid for any arbitrary shift R.
The case F—o, = VSCF corresponds to the SCE functional,

hence:
0= /drvSCE

= /derSCE([ J;r), n(r) (19)

r)Vn(r)

which shows that the SCE potential does indeed satisfy the
ZFT for static densities. Additionally, since the differentiation
above is completely general and holds for any density, even
time-dependent ones, one has:

0= /derSCE([n];r,t)n(rvt)» (20)

which shows that the ASCE xc potential satisfies the ZFT for
time-dependent densities as well.

B. Properties of the adiabatic SCE kernel

Let’s now turn to the ASCE kernel,

52VSCE[7L]
n(r,t)n(r’,t')

Once again we resort to an expansion for the density in R(t),
thatis n(r — R(t),t) =~ n(r,t) — R(t) - Vn(r,t), combining
this with Eq. (T3) and invoking the arbitrariness of R(¢) and
the definition of ASCE xc kernel, we obtain:

Fie B ([n);rt, v't') = s(t—t), @D
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which shows that the ASCE kernel indeed satisfies the ZFT in
the linear response regime.

C. Properties of the co-motion functions

At this point it seems natural to also investigate some prop-
erties of the co-motion functions. Combining again the ex-
pansion for the density of Eq. (T7) with Eq. (I3) one obtains:

/drliéfi’a([n];r) in(r’) = %fi,a([n};r) —

on(r') oy Sag (22)

where a, 8 run over cartesian indices z, y, z. Eq. 22) is a sum
rule that can be written also for adiabatic time-dependent co-
motion functions and the static density and may be employed
as constraint to devise approximate co-motion functions.

IV. SCE HARTREE-EXCHANGE CORRELATION
KERNEL FOR ONE-DIMENSIONAL SYSTEMS

In the one-dimensional case with convex repulsive inter-
particle interaction w(|z|), the SCE solution [? ] is known
to be exact for any number of electrons N [? ], and can be
expressed in a rather simple form in terms of the function
Ne([n]; ),

N(ia) = [ " n()dy, @3)

and of its inverse N !([n]; z):

filln)s ) = £ ([n); @) O(z —ax[n]) + fi7 ([n)s @) O(ax[n] - )
where 6(z) is the usual Heaviside step function, and

£ (Inly2) = N (In]s Ne([n]; ) + i = 1) 24)
f7(Inlyz) = N ([n; Ne([n]; 2) +i = 1 = N),

N Y([n);k),and k = N +1 — .

with ai[n] = N



In this case the SCE potential is simply given by

v ([n]; Z/ "y = Fullnls 9)]) x
sgn(y — fi([n];y))dy. (25)

The SCE kernel is then equal to the variation of the SCE po-
tential with respect to the electron density,

scE 1y = Svite (I7]: 2)
‘/T-ch ([ ],I,.’II ) - 5TL(£C/) ; (26)
which yields
dfi )
FCE (s, ) Z/ (= flle o)) L,
27

The key ingredient for the evaluation of F5CT is thus the
functional variation of the co-motion functions with respect
to the density, which, in this simple one-dimensional case,
can be carried out (the details of the derivation are given in
Appendix [B), yielding (for densities supported on the whole
real line)

fi(lnix) _
on(x’)

O(x — ') —

0(fi([n]; ) — ')
n(fi([n]; z))
Interestingly, the variation of the i-th co-motion function is

independent from all the others: this allows for a particularly
compact expression for the SCE kernel, which can be obtained

inserting Eq. into Eq. 27):

FiSE () z/
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(28)
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A. Analytical Example

We begin by considering N = 2 electrons in the Lorentzian
density profile,

2 1
=z 30
na) = = (30)
for which the co-motion function is simply f(z) = —2. From

the general expression of Eq. (29), we obtain in the first quad-
rant

Fiiwe (In];2,2") = G(— max{z,2'})

(€29)
where we have defined the function G(x)
“ w’(ly = filln];m)))]
G(z) = dy,
R e o

for x>0, 2’ >0,

which in this case, and with e-e interaction w(|z|) = ﬁ

(since in the SCE wavefunction the particles never get on top
of each other, the 1/x divergence at x = 0 in 1D does not
pose any problem), is equal to

m_1
G(z) = { ;ﬁgxz N (33)
5 .

Since our density satisfies n(—x) = n(z), in this case the ker-
nel in the third quadrant (z < 0 and 2’ < 0) is equal to the
one in the first quadrant. In the second quadrant — and by sym-
metry the fourth, since F5<E ([n]; z,2') = Fol([n); 2/, ) —
the kernel is given by

fﬁch([ ] xvx/) =

(G(') = G(z) + G(0) (2" — f(x))

for x>0, 2’ <0. (34)

The resulting SCE F5$E ([n]; 2, 2”) for this case is plotted in
the first panel of Fig[l} as it is evident from Eq. (31), the
kernel has in the first and third quadrants (z,z’ > 0 and
x,x’ < 0) the same value as along the diagonal (z = z’),
while in the second and fourth quadrants (Eq. (34)) the ker-
nel is different from zero only in the region delimited by the
x, 2’ axes and the co-motion function z’ = f(z). The behav-
ior of an adiabatic kernel local in space, such as the ALDA,
is instead radically different: the FAYPA (n]; 2, 2') has a non-
zero component only along the diagonal, §(x — '), and the
Hartree component, equal to w(|z — «’|), has a maximum on
the diagonal, decaying as 1/|z — 2’| outside it.

B. Model Homonuclear molecule

The second type of density considered is a model 2-electron
density which resembles the one of a homonuclear molecule,

n(z) = % (e*a‘w*?‘ + e*a‘”%') , (35)
where ¢ = 1 and where R, the distance between the two

nuclei, can be increased arbitrarily to simulate the molecular
bond stretching. For this case we numerically computed the
SCE kernel for different values of R, to obtain insights on how
a highly non-local kernel behaves for a problem which bears
a resemblance to the Hy dissociation. The results for R = 3,
R = 8 and R = 12 are presented respectively in panels (b),
(c¢) and (d) of Figl[]

Aside from the peak in the origin, a very interesting fea-
ture displayed by the SCE kernel is the appearance, as R is
increased, of two plateaux, each occupying a large square re-
gion (of size =~ R x R) of the first and the third quadrants.
As in the case of the lorentzian density, the SCE kernel has
also non-zero components in the second and fourth quadrants,
but they are now much smaller than the ones in the I and III
quadrants.

The height of the plateaux increases as I increases. A
closer analysis of the function G(z) defined by Eq. (32) for
the case of the density (33) (see Appendix [C) shows that the



(a) SCE kernel for a Lorentzian density.

(b) SCE kernel for a “homonuclear dimer”
density with R = 3
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(c) SCE kernel for a “homonuclear dimer”
density with R = 8

>

(d) SCE kernel for a “homonuclear dimer’
density with R = 12

Figure 1. The SCE Hartree-exchange-correlation kernel for
N = 2 electrons for the Lorentzian density profile of
Eq. (a) and for “homonuclear dimer” densities n(z) =

3 (enl Ry el R it R = 3 (b), R = 8 (c) and

R = 12 (d). The F5S¥([n); z,z") displays, in all the four cases,
a peak structure in correspondence of the vertical asymptotes of the
co-motion functions. Two symmetric quasi-plateaux, in the first and
third quadrants, appear for the stretched “homonuclear dimer” den-
sities: they become greater in height and flatter as the value of R is
increased.

height and size of the plateaux are approximately given by

]:}SISE([N]WJ/) ~ m
1

for 1 SlelSR- 1, and 1 Sl SR- -,

a a a a

with z,2" >0 or z,2' <0 (36)

As an example, we show in Fig. 2] the SCE kernel along the
diagonal for R = 8, 12 and 20, multiplied by n(0)(R—1/a)?,
where 1(0) = e~%%/2. The value of the SCE kernel on the

diagonal also defines the value of the kernel in the whole first
and third quadrants, see Eq. (3I). Thus, we see that the SCE

e R (R-1)? FSSE(x, X)

0.5

L L L L
-20 -10 10 20

Figure 2. The SCE kernel for the “homonuclear dimer” density of
Eq. (33) with a = 1 and different internuclear separations R along
the diagonal z = x’. The kernel has been multiplied by n(0)(R —
1/a)?, to show its scaling with R. The value along the diagonal is
exactly the same as the value of the kernel in the whole first and third
quadrant, see Eq. (31) and Fig.[T}

kernel develops plateaux regions whose height diverges expo-
nentially as R is increased. This divergence is very promis-
ing to capture bond-breaking excitations, because it makes di-
verge matrix elements of the kernel between atomic orbitals
centered on the same site. Consider the basic example of the
lowest excited singlet state 123 of the Hy molecule [? ? ],
where we have a matrix element of the kind

[ e [ o, @oa )7 ki )y o) ),

(37)
where 04, = ¢y(¢a + ¢p), with ¢4 p the atomic orbitals
centered in the two atoms, and ¢, 4 a normalization constant.
In the TDDFT linear response equations this matrix element is
multiplied by the corresponding KS orbital energy difference
€u — €g, Which goes to zero as R — oo, so that the kernel
matrix element must diverge in order to keep the excitation
finite (as it is in the exact system) [? ? ]. We see that for the
terms centered on the same atom A appearing in (37) we have,



for large R,

/ da / Ao’ |64 (2) PFSCE (In); 2, 2/) [ a ()2
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Equation holds because the product of the atomic orbitals
with the same center, |¢ 4 (x)|?|¢.4(z")|?, is significantly dif-
ferent from zero only in the plateau region of Eq. (36), where
we can approximate the SCE kernel with the constant value
W, which diverges exponentially as R — oco. Al-
though a more careful analysis is needed to investigate if this
divergence is really able to compensate the vanishing of the
KS excitation €,, — €, coming from a self-consistent KS SCE
calculation, we see that the F5<=([n];z,2) embodies the
right physics: its very non-local dependence on the density
makes it diverge in the atomic region, only when another dis-
tant atom is present.

Finally, the height of the peak in the origin can be easily
obtained from the properties of the function G(x) (see Ap-
pendix [C), and it can be shown to be always equal to

R R 2
FECE((n]:0,0) = 2FSCE ([n]- )

22 ) T )R- 1ja)
(39)

V.  CONCLUSIONS AND PERSPECTIVES

In this work we have explored the SCE limit in the context
of time-dependent problems, focusing on the formal proper-
ties of the adiabatic SCE (ASCE) functional. We first exam-
ined some properties of the ASCE time-dependent potential,
in particular the compliance to constraints of exact many-body
theories, such as the generalized translational invariance and
the zero-force theorem, and showed that the ASCE satisfies
both. While it is well known that non-locality in time requires
non locality in space, we have shown that the converse is not
true using the example of the ASCE.

In the second half of the paper we derived an analytical ex-
pression for the SCE Hartree exchange-correlation kernel for
one-dimensional problems, and we have computed it numer-
ically for various density profiles. In particular, we have an-
alyzed the case of a model homonuclear 2-electron molecule
as the bond is stretched, finding that the SCE kernel displays a
very promising diverging behavior that could tackle the prob-
lem of homolytic bond-breaking excitations.

In future works we will implement the whole linear re-
sponse TDDFT equations for one-dimensional problems us-
ing the SCE kernel, analysing if its diverging behavior is able
to open the gap in a model Mott insulator, made of a chain of H
atoms. Work on bond-breaking excitations in real time prop-
agation with the ASCE kernel has also shown very promising
results in this sense, and is currently in preparation [[10]. Last
but not least, we will use our insight to design approximate
kernels based on the SCE formalism.
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Appendix A: Explicit calculation of the shifted co-motion
functions in 1D

Let us consider the negative semi-axis (the positive one
gives an analogous result). The function N,([n];z) for a
shifted density n’ reads:

z z—R(t)
N.(iwlie) = [ wdy= [ oty - R©)dy
= Ne([n];z — R(t)), (AD
and taking its inverse,
N IN([n'];2)] = @
N [Ne([n]; x = R(1))] + R(t) = . (A2)
Combining the above relations we have:
fi[') = NS [Ne([n']; ) + i — 1] (A3)

— N, [Ne([nl:x — R(D) +i — 1] + R()
— i) — R(1) + R(t)

which is the 1D version of Eq. (I3).

Appendix B: Functional variation of the 1D co-motion functions
with respect to the density

In one dimension, the co-motion functions (or the optimal
transport maps) are given explicitly by Eqgs. 24)-(23), and are
obtained from the condition of zero-charge fluctuation,

fit1([n];z)
/ n(y)dy = 1, (B1)
fi([n]sz)

stating that two adjacent electronic positions are always sep-
arated by a piece of density integrating to 1. It is enough to
consider the case x < f;([n];z), since the other one can be
obtained by symmetry, for which Eq. (BT)) becomes

fi([n]sz)
/ n(y)dy =i — 1. (B2)

We consider now a variation of the density n(z) + € £(x), in
which £(z) is a variation that keeps the perturbed density pos-



itive. Then the co-motion function f;([n+€&]; z) correspond-
ing to the varied density must satisfy

fi([n+eg&l;z)
/ (n(y) + @) dy—i—1.  (B3)

To first order in € the left-hand-side of Eq. (B3) gives

fi(Inlie) fi([nte &)
/ n(y)dy + / n(y)dy+
. fi(Inliz)

fi([n];z)
+e/ §y)dy =i—1+4{fi(ln+e&l;2)—

fi([nl;z)

fillnl ) n(fi(nl; 2)) + € / E(y)dy. (BY)

T

Equating (B4) to the right-hand side of Eq. we obtain

—€ fi([n];z)
= D) / Sy,
BS)

which shows the intuitive result that a variation of the density
produces a variation in f;([n]; ) only if it has a contribution
between x and f;([n]; z). Equation can be rewritten as

filln+eglsz) = fi([n];©)

i il +e&ls2) = finf;2) _
e—0 €

_ _/°° 0(fi(ln);z) —y) —0(z —y)
—o0 n(fi([n]; ))

yielding Eq. (28). Simone and Augusto is the above deriva-
tion correct? It seems to me the simplest possible one.
What about the variation of the radii? Say something
here!!

£(y)dy, (B6)

Appendix C: Properties of the function G(x) for the
homonuclear 1D density

For the 2-electron density of Eq. (33) with a = 1 it is easy
to show that the co-motion function satisfies

f([n];z = 0%) =In(z) — R+1n <1—|—2e—R) , (CD

yielding
n(f([n];a:—)OJr)):xe*R/? (C2)

The case + — 0~ can be obtained from f([n];—z) =
—f([n];x) and n(—z) = n(z). Inserting these expansions
in the definition of the function G(x) of Eq. (32) we obtain

oR/2

G(x —0") =

5, (C3)
R—1In (H%R) — ln(aﬁ))
showing that G(x) has an infinite slope in © = 0. Further-
more, we also have, from the properties of the co-motion func-

tion and from the symmetry of the density n(—z) = n(x) that

G(—z) =2G(0) — G(z) (C4)
G(f(z)) = G(z) — G(0) forx >0 (C5)
G(f(x)) = G(z) + G(0) for z < 0. (Co6)

Since f([n]; —R/2) = R/2, for x = —R/2 both properties

and must hold, implying that G(0) = 2G(—R/2),
which is Eq. (39).

When R is large, if = is well inside one of the atomic re-
gions then f¥([n]; ) ~ z £ R, yielding the constant distance
|z — fi([n];2)| = R, producing the plateaux regions in the
kernel. This behavior holds until the electron in f([n]; z) ap-
proaches the origin and starts to “see” the second density in
the overlap region present in the midbond. This happens when
x &~ £(R — 1/a). At this point, the large negative = behavior
of G(z) starts to appear,

Gz = —0) =

n(0)z?’ €N

yielding the plateau value of Eq. (36).
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