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Abstract: Extracellular vesicles (EVs) are particles naturally released from cells, delimited by a lipid
bilayer, carrying functionally active biological molecules. In addition to their physiological role in
cellular communication, the interest of the scientific community has recently turned to the use of
EVs as vehicles for delivering therapeutic molecules. Several attempts are being made to ameliorate
drug encapsulation and targeting, but these efforts are thwarted if the starting material does not
meet stringent quality criteria. Here, we take a step back to the sources and isolation procedures
that could guarantee significant improvements in the purification of EVs to be used as drug carriers,
highlighting the advantages and shortcomings of each approach.
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1. Introduction

Extracellular vesicles (EVs) are cell-derived membrane vesicles that represent an endogenous
mechanism for intercellular communication [1]. EVs can be classified in exosomes, nano-sized vesicles
(with a diameter in the range of 30 to 120 nm), that originate from the cell endocytic compartment
through the formation of multivesicular bodies (MVB) [2], microvesicles, with a diameter up to 1 µm
released by cell membrane budding, and apoptotic bodies, with a dimension similar to platelets,
derived from blebbing of dying cells. Despite the distinct sizes and biogenesis, the absence of
standardized isolation methods and the numerous similarities existing between these two subclasses
make it particularly challenging to distinguish among them. In this review, we will use the generic
term EVs to indicate both exosomes and microvesicles.

EVs have been shown to carry functionally active biological materials including proteins, mRNAs
and miRNAs, which makes them capable of transmitting signals to target cells in the surrounding
environment as well as to distant organs, via blood and lymphatic vessels [3].

The scientific community has recently turned its interest toward the evaluation of EVs as drug
delivery vehicles [4]. In this context, EVs offer significant advantages over current drug delivery
systems, such as liposomes and polymeric nanoparticles [5]. Since EVs can be obtained with an
autologous procedure from the patient’s cells or blood, they do not solicit the immune system as
usual synthetic formulations do. In addition, given their phospholipid bilayer, EVs can directly
fuse with the targeted plasma membrane, thus allowing a more efficient internalization of the
encapsulated drug [6,7]. Their hydrophilic shell, together with the presence of anti-phagocytosis
surface markers (i.e., CD47), enables them to evade phagocytosis by monocytes and macrophages
of the reticulo-endothelial system, hence weakening their clearance [8,9]. Moreover, the limited size
allows them to efficiently extravasate through the inter-endothelial junctions and fenestrations of both
existing and neo-synthesized vessels [10]. Thanks to these peculiar characteristics, they can spread
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and accumulate in the parenchyma of solid tumors [11]. EV biological properties derive from their
sophisticated membrane structure, characterized by the presence of several proteins for active targeting,
adhesion, cell fusion, and intracellular release of their content [12]; this functional complexity is not
easily reproduced by de novo synthesized nanoparticles. Among the several types of nano-based drug
delivery systems, liposomes are probably the most used, due to their non-toxicity and capacity to
accommodate high amounts of compounds. However, a still inadequate in vivo targeting efficiency
together with a potential immunogenicity associated to liposomal formulations has limited their broad
applicability in therapeutics [13].

Therefore, the greater specificity combined with the consequent limited induction of systemic
side effects make EVs ideal vehicles for drug delivery [13]. Although this research field is in its
infancy, in the last decade, the use of bio-engineered EVs for the delivery of cytotoxic molecules
in preclinical models has produced encouraging results [14–18]. These experimental evidences, in
addition to preliminary clinical data, indicate that EV formulations may not only enhance the safety
and biodistribution of commonly used drugs, but also increase their efficacy. For example, it has been
demonstrated that the administration of EV-encapsulating chemotherapy drugs leads to a significant
reduction of drug accumulation in off-target organs, thus preventing important side effects during
standard clinical protocols [14]. An astonishing number of newly published papers perfectly depict
the scientific community’s authentic interest in this flourishing research field.

Nevertheless, the first aim of this review is to disclose an overview of the latest applications of
EVs as drug delivery vehicles, focusing on the sources employed, the molecules selected, and the final
intended targets. In the second part of the review, we will take a step back and bring attention to the
basics of one of the main pitfalls concerning EVs: the urgent need for highly pure vesicle preparation.

2. EVs as Drug Delivery Vehicles: State of the Art

2.1. Sources of EVs

Most literature data dealing with EVs as drug carriers have been published employing vesicles
released by in vitro cultured cells. Since the expression of specific cell surface markers, that has been
shown to influence the EV biological activity and the subsequent therapeutic effect is strictly related to
the parental cell, different cell sources have been investigated. These include model cell lines, such as
HeLa and HEK 293, various tumor cell lines, primary cultures of dendritic cells, and mesenchymal
stromal cells.

The model cell lines have been selected as an EV source in those cases in which specific EV targeting
was obtained through the transfection of the donor cells or a huge amount of EV was requested.
This approach has been adopted, for example, to deliver HEK 293-derived EVs loaded with either
miRNAs [19] or chemotherapeutic drugs [20], demonstrating, in these cases, a more efficient cellular
uptake and biodistribution in comparison to both free or liposomal formulations of the same drugs.

The rationale underlying the use of tumor-derived EVs as advanced drug delivery systems
is to exploit their tumor-specific integrin expression pattern that could guarantee an efficient
organotropism [21]. It has been recently demonstrated by Garofalo and colleagues that EVs derived
from the A549 cancer cell line can deliver an encapsulated oncolytic virus with a specific tropism to
tumors induced in mice by the injection of the same EV donor cell line [22]. An interesting paper
published in 2016 reports that EVs derived from the EL-4 mouse lymphoma cell line were mixed
with a potent anti-inflammatory compound to enhance its efficacy. The authors demonstrated, both
in vitro and in vivo, that the incorporated molecule possessed increased solubility, stability, and
bioavailability [23]. Despite these encouraging results, it is important to underline that all co-purifying
components in enriched vesicle fractions from tumor sources could be potentially transferred to target
cells. For this reason, alternative and safer sources should be taken into consideration. In particular, the
selected cell should guarantee an efficient production of non-immunogenic EVs to prevent potential
adverse effects after administration. Immature dendritic cells (DCs) could represent an ideal source,
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as they have been reported to be immunologically inert [24]. It has been reported that DC-derived
EVs loaded with siRNA were targeted to the mouse brain, specifically delivering their content to
neurons [25]. The same cell source was used to produce EVs incapsulated with chemotherapeutics to
be delivered to tumor tissues in vivo [16].

Another explored source of EVs is represented by mesenchymal stromal cells (MSCs). MSCs
are a heterogeneous cell population present in many tissues able to differentiate into mesodermal
lineages and endowed with an immunomodulatory potential. Recent studies have demonstrated that
MSCs exert their immunosuppressive function, secreting EVs that can deliver their cargo to target cells
without inducing oncogenic or immunogenic effects [26]. EVs isolated from MSCs have been loaded
with anti-neoplastic drugs, demonstrating an increased cytotoxic effect and target specificity [27–29].
Many efforts have been made to load miRNAs into MSC-derived EVs that could represent effective
strategies for the treatment of different tumor types [30–33].

More recently, a paper by Sancho-Albero and colleagues reported the intriguing possibility of
loading hollow gold nanoparticles in EVs secreted by human placental MSCs to be selectively targeted
to specific cell types by light-induced hyperthermia [34].

2.2. EV Loading Methods

EV physiological properties together with their immune “stealth” characteristics have been
extensively exploited to safely deliver molecules to specific target cells bypassing complex biological
barriers and even enhancing their therapeutic effects. The EV loading process of specific cargos can
be achieved by manipulating already isolated EVs (exogenous loading) or acting on parental cells
(endogenous loading).

2.2.1. Exogenous Loading

The exogenous EV loading methods are recommended when a biological modification of the
parental cells is not feasible. Indeed, such methods are more customizable and may broaden the
horizons of EV applications to a wider variety of EV sources.

Various approaches have been described to exogenously incorporate therapeutic agents into
isolated EVs, ranging from the simple vesicle incubation with both lipophilic molecules and
hydrophobically modified compounds, to the application of active loading techniques, such as
repeated freezing-thawing procedures and permeabilization with saponin, extrusion, sonication, and
electroporation [35].

In the last years, by implementing and refining the aforementioned methods, it has been possible
to test the therapeutic effect of a wide palette of vesicle-internalized components, encompassing small
molecules, chemotherapeutic drugs, siRNAs, miRNAs, DNA, and proteins.

Pre-clinical studies have demonstrated that the chemotherapeutic drugs doxorubicin [16,20] and
paclitaxel [36,37] encapsulated in EVs presented an improved biodistribution and efficacy in both
in vitro and in vivo assays. These enhanced effects are due to a more specific and direct accumulation
of the cytotoxic molecules in tumor cells together with a reduction of side effects in off-target organs.
Based on these promising results, it could be envisaged that a number of molecules with a potential
great therapeutic effect, but characterized by limited bioavailability, poor absorption, quick metabolism,
and rapid systemic elimination, could benefit from being encapsulated in EVs [23].

Moreover, it has been reported that the delivery of anti-inflammatory agents could represent a
promising non-invasive approach for the treatment of brain inflammatory-related diseases such as
glioblastoma and experimental autoimmune encephalomyelitis. This assumption is based on recent
data indicating how intranasally administered EVs can effectively deliver curcumin to the brain without
observable side effects, thus being able to penetrate the blood–brain barrier [38].

EVs can be loaded with miRNAs or siRNAs and are able to effectively deliver the genetic
material to cancer cells. Mendt and colleagues generated clinical-grade EVs employing good
manufacturing practice (GMP) standards. EVs have been derived from bone marrow-MSCs and
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loaded by electroporation with a siRNA-targeting oncogenic Kras (iExosomes). This EV preparation
is able to suppress cancer growth and increase the survival of mice bearing pancreatic ductal
adenocarcinomas [39]. Recently, the application of iExosomes resulted in a new clinical trial for the
treatment of metastatic pancreatic cancer (NCT03608631). This promising result, together with the
work of other laboratories, provide evidence for the concept of using EVs as natural, safe and efficient
drug delivery vehicles for RNA-based therapeutics in anti-cancer applications [40].

EVs have proven to be extremely efficient in delivering their cargo inside aggressive cancer cells
that rely on the process of macropinocytosis to sustain their fast growth rate, getting a proper influx
of nutrients. Nakase and colleagues tried to exploit this non-selective cellular getaway to deliver
EV-encapsulated proteins directly in the cytoplasm of cancer cells. Indeed, they have shown how the
EV encapsulation of the ribosome-inactivating protein saporin together with epidermal growth factor
(EGF) can induce a specific and increased cytotoxicity, resulting in the growth inhibition of cancer
cells [41].

A recently developed approach explored the feasibility of suppressing protein expression in
cancer cells via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated
endonuclease (Cas)9-mediated gene editing. Till now, the most used systems to introduce the plasmid
for the expression of Cas9 and the chimeric single guide RNA (sgRNA) in cancer cells were represented
by viral vectors [42]. Despite their high loading capacity, this type of virus could trigger immunogenic
reactions and display toxicity. Kim and colleagues tested a new in-vivo delivery vehicle for the
disruption of Poly (ADP-ribose) polymerase-1 (PARP-1) expression by using tumor-derived EVs loaded
with Cas9 and PARP-1 sgRNA-encoding plasmids. This innovative EV-based approach has proved to
be effective, being able to inhibit ovarian cancer proliferation by activating an apoptotic pathway in
SKOV3-derived tumors in mice [43].

However, it is important to underline that the definition of a gold standard technique for the EV
cargo incorporation has not been reached yet. The above-mentioned examples of exogenous loading
methods, being strictly dependent on the characteristics of both cargo and EV source, have led to
contrasting results and variable loading efficiencies [44].

2.2.2. Endogenous Loading

The endogenous loading techniques exploit the natural cellular machinery to sort and load the
desired molecules or genetic material into EVs during their biogenesis.

The chemotherapeutic drugs paclitaxel and doxorubicin were easily incorporated, incubating
the parental cells with moderate doses of exogenous molecules [27,45]. The EV-encapsulated drugs
were then isolated from the cell conditioned media after appropriate exposure and washing steps. The
feasibility of this procedure has been successfully demonstrated by different research groups testing the
incorporation of various molecules. However, the simple and linear rationale behind this idea could
be spoiled by a low drug loading efficiency together with further complications due to drug-induced
cytotoxicity on donor cells.

An alternative method to endogenously load therapeutic miRNAs into EVs has been described.
The EV-producing cells can be transfected with a plasmid encoding the desired miRNA precursor in
order to induce its overexpression and subsequent encapsulation in EVs. The miRNA-enriched EVs
have been successfully used by several laboratories to transfer their genetic cargo to target cells both
in vitro and in vivo [19,30,33]. Furthermore, Yuan and colleagues have tried to combine the remarkable
and selective anticancer properties of the tumour necrosis factor-related apoptosis inducing ligand
(TRAIL) to the therapeutic potential of EVs. The soluble recombinant form of TRAIL (rTRAIL) has
been already extensively tested as a cancer therapeutic agent but its therapeutic benefit has been
spoiled by a poor pharmacokinetic. In order to overcome this hurdle, the authors have established
TRAIL-transduced MSCs (MSCTRAIL cells) with lentiviruses expressing human TRAIL. EVs secreted
by MSCTRAIL cells express on their membrane TRAIL molecules and have been demonstrated to
induce apoptosis in cancer cells with high efficiency and selectivity [46].
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Another field that could greatly benefit from the use of EV-mediated delivery is the oncolytic
virotherapy against cancer. Although these viruses are engineered to efficiently infect and kill cancer
cells, it has been reported that viral particles can be detected by host immune system and inactivated
by neutralizing antibodies, hampering viral replication and decreasing the treatment efficacy. Garofalo
and colleagues, in the wake of the Trojan exosome hypothesis [47], have recently investigated the
possibility of encapsulating oncolytic adenoviruses into EVs in order to utilize them as immuno-stealth
carriers for targeted viral delivery to cancer cells [22]. After in vitro infection of A549 cells with
the oncolytic adenovirus Ad5D24CpG, they isolated the EV-encapsulated virus (EV-Virus) naturally
secreted in the conditioned media, inactivating any free, not EV-encapsulated, virus present in the
preparation by an NaOH treatment. They have further shown how the systemic delivery of oncolytic
virus with paclitaxel, both encapsulated in EVs, resulted in improved drug efficacy and reduced
off-target toxicity in nude mice bearing A549-derived subcutaneous tumors [48].

2.3. EV Targeting

In order to significantly improve both the delivery and the biodistribution of their content, EVs
can be engineered by anchoring peptides on their membrane that recognize specific cell surface
receptors [19,25,49].

The “surface display” has been one of the first technologies to generate targeted EVs and requires
genetic modification of the secreting cells [50]. Cells can be engineered by transfection/transduction
with a vector encoding for a targeting peptide to be displayed on the surface of the vesicular membrane
as a chimeric protein with an EV-sorting domain represented by the transmembrane and intravesicular
domain of an ubiquitous EV membrane protein (i.e., Lamp2B, lactadherin). Such engineered construct
will allow vesicle-specific targeting [51–53].

The functionalization of EV surface can be further performed after their isolation. Smyth and
colleagues successfully used the click chemistry to conjugate Azide-fluor 545 to EVs chemically
modified with alkyne groups. Thanks to its high efficiency and the mild reaction conditions requested,
the authors proposed this methodology as a simple tool to label EVs with fluorescent, radioactive, and
MRI agents for their in vivo tracking [54].

In another study, Antes and colleagues described an EV membrane engineering methodology,
termed “cloaking”, to directly embed EV surfaces ex vivo with a modified glycerol-phospholipid-PEG
(DMPE-PEG) anchor conjugated to streptavidin. DMPE-PEG can be used as coupling point for
biotinylated molecules, such as fluorescent molecules, targeted antibodies and tissue-homing peptides,
enhancing EV-specific uptake and biodistribution [55].

3. Plasma-Derived EVs

The efforts made to load bioactive molecules into EVs and engineer their membrane could be in
vain or lead to unsatisfactory outcomes if the starting EV population does not fulfill some fundamental
characteristics of quality and purity [56]. This aspect is strictly related to the source selected for EV
isolation. Many studies dealing with the use of EVs as drug carriers have been published employing
vesicles released by in vitro cultured cells [5,13]. The known chemical composition of the culture
media and the possibility of using serum-free conditions might result in an easier isolation of EV
populations [57]. However, the difficult logistics and the costs for the ex vivo cell expansion in highly
qualified structures is not affordable by both public and insurance-driven health systems. Moreover,
the translation of a research-grade cell culturing process into a scalable, clinical-grade protocol is
expensive, time-consuming, and vulnerable to contamination [58]. Therefore, the use of biological
fluids, such as plasma or serum, as alternative sources, offers undeniable advantages [56]: (i) they
are particularly enriched with EVs, reaching 1–5 × 108 vesicles/mL, even if the yield depends on the
isolation protocol adopted [59]; (ii) plasma and serum are “ready to use” and “cheap” sources, allowing
to obtain a huge amount of vesicles without the need of setting up in vitro cell cultures; (iii) EV isolation
can be realized with an autologous procedure (the patient’s own blood can be used), a more advisable
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choice to prevent immune-mediated adverse reactions. In the case of patients debilitated by severe
diseases or under chemotherapy regimens, fresh frozen plasma (FFP) from compatible healthy donors
could be used as a clinical translational source for vesicle isolation.

However, even these sources present some drawbacks that make EV isolation trickier and
technically challenging. This is mainly due to the presence of abundant protein mixtures with a wide
range of concentration, protein-nucleic acid aggregates, and subcellular fragments, that, all together,
could literally coat the EV membranes causing their aggregation during the isolation process, thus
influencing not only the recovered yield, but, more importantly, altering their biological activity [60,61].
Further complicating this scenario are blood lipoproteins that possess similar size and densities to small
vesicles and are so abundant in both plasma and serum (~1016/mL) [62,63]; they could contaminate
the preparation of EVs in a way that may even invalidate the reliability of downstream functional
experiments dealing with EV tracking analysis [64]. Indeed, the most used approaches to evaluate
vesicle uptake/internalization by target cells involves the labeling of vesicles with fluorescent lipophilic
dyes (PKH26 or PKH67 [65,66], DiD and DiR [39,67], CellMask [68], etc.); these molecules can be
incorporated into any lipid structure, and none of them is specific for the vesicular membrane [69].
Both protein and lipoprotein contaminants can significantly contribute to lipophilic dye retention and
transfer to acceptor cells [64], potentially generating undesired experimental artifacts.

It is becoming increasingly clear that the procedure employed to isolate plasma/serum-EVs is really
challenging and the desired quality and purity of the vesicle preparation is unlikely to be achieved if
the standard procedures developed to retrieve vesicles from conditioned media are adopted [70].

In any case, regardless of the selected isolation method, the pre-processing steps are crucial
when considering serum or plasma samples. It is in fact recommended to use fresh plasma whenever
possible [71]. If fresh frozen plasma is the only possible option, an essential expedient is to perform
extra-centrifugations at low-speed followed by ultrafiltration (0.22 µm) before freezing and after
thawing the sample. Indeed, if plasma is frozen immediately after low-speed centrifugation, larger
floating vesicles will be damaged by the freezing process, releasing their content of nucleic acids and
proteins that combine in string-like aggregates, potentially spoiling the yield and quality of the whole
process [56].

In the last years, many research groups have attempted to define a proper gold standard for the
purification of plasma/serum-EVs to be used as drug carriers and, consequently, a flourishing number
of protocols and techniques have been recorded in the scientific literature. Herein, we will focus on the
latest and most promising results attesting to this scientific effort.

4. EV Isolation Techniques

A consensus agreement regarding the gold-standard method for the isolation and purification of
biofluid-derived EVs still lacks and is strictly dependent on the downstream applications. A multitude
of commercially-available methods exist [72–74]. These kits guarantee a simple and fast EV isolation
procedure, but most of them are only applicable to high-throughput biomarker-type studies (especially
miRNA signature). Indeed, if plasma/serum-derived EVs are intended to be modified for therapeutic
purposes, they have to fulfill some essential biological characteristics: the vesicle preparation has to be
pure; morphologically intact; functionally active; and free of plasma proteins, lipoproteins and nucleic
acids [56].

Since the dawn of their discovery, EV isolation has mainly ruled out adopting protocols inherited
from other scientific disciplines, such as virology and biochemistry. These include ultracentrifugation
(UC), density gradient centrifugation, size exclusion chromatography (SEC), and ultrafiltration
(although the latter is not fully disclosed to the general scientific community due to deformation and
breaking up of vesicles which may potentially skew the results of downstream analysis) [70].

Such techniques are still widely used by most laboratories worldwide. However, without the
appropriate refinements, they can be suitable methods only for isolating EVs to be employed as they
are, without any further handling. If vesicles have to be used as drug carriers, after isolation they
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are extensively manipulated to encapsulate the drug/bioactive molecule, and, in this case, particular
attention has to be paid to the quality of the starting isolated material.

Newer techniques have been developed, such as acoustic sorting and nanowired-on-microcapillary
trapping [75,76]; however, their robustness, reliability, and compatibility with EV purification are not
yet fully embraced by the scientific community. Moreover, the required devices and expertise may be
unaffordable for many research groups.

Below, we will report a summary of the progresses made for the isolation of biofluid-derived EVs
to be used as drug vehicles, focusing on the pros and cons of each technique (Table 1).

Table 1. Advantages and shortcomings associated with the most-commonly used isolation methods of
biofluid-derived EVs.

ISOLATION METHOD PROS CONS EV YIELD

Ultracentrifugation (UC)

• versatile
• cost-effective
• vesicle enrichment

as pellet

• time-consuming
• low purity
• aggregation with

“contaminating” proteins

Medium (prolonged
ultracentrigugations

needed, with consequent
aggregate formation)

Density gradient UC

• vesicle
subtypes isolation

• vesicle enrichment
as pellet

• time-consuming
• laborious
• small sample volumes
• low purity

Low (the amount of
starting material is

limited; possible EV loss
during fractionation)

Size exclusion
chromatography (SEC)

• reproducible
• preservation of

integrity
and activity

• specific equipments
• long run times
• low sample volume

Medium (part of EVs can
elute with contaminating

proteins)

Ultrafiltration • cost-effective

• time-consuming
• low accuracy
• deformation and

breaking up of vesicles

Low (not applicable
directly to biofluids)

Commercial kits

• rapid
• easy to use
• do not require

special equipments

• high costs for large
sample volumes

• low accuracy

High (co-isolation of
contaminants)

4.1. Ultracentrifugation

Differential ultracentrifugation (UC) is undoubtedly the most applied method for isolating EVs
and has been considered for a long time as the gold standard [77,78]. This technique involves a variable
number of centrifugations at increasingly higher speeds and longer times in order to pellet sequentially
smaller particles, till reaching EVs in the last steps at 100.000/120.000× g. UC is a versatile tool that
allows the modification of some parameters, such as speed, temperature or rotor type in order to meet
the requirements associated with the different downstream applications [79].

However, it is of capital importance to be aware of the main pitfalls that are hidden even in an
apparently simple procedure like UC, especially when we consider vesicles derived from biofluids.
As stated above, plasma or serum have a different chemical and molecular composition compared
to culture media, and the high protein concentration could significantly affect the sedimentation
efficacy [80].

Indeed, if a standard UC protocol is applied to a highly viscous biofluid such as plasma, the
efficiency of EV isolation is less than 5% [81]. It is possible to overcome this unsatisfactory yield by
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applying some expedients, i.e., diluting the plasma to reduce the viscosity of the solution, or increasing
the speed and duration of UC (3–14 h) [82]. Nevertheless, it has been reported by several studies that
repeated ultracentrifugation steps at higher speed may not only damage the vesicles, changing their
morphology and reducing their biological activity, but even cause a massive vesicle aggregation in
clusters that are highly heterogeneous in size and number [83]. Albeit present, these aggregates could
not be detected by the standard methods used for characterizing the purified EVs [84,85], such as
nanoparticle tracking analysis (NTA) [86,87] or tunable resistive pulse sensing (tRPS) [88]: in fact, the
micrometer-large aggregates of vesicles could be out of the instrument range for an optimal tracking
or their strong scattering intensity could be considered as noise and, therefore, not included in the
analysis. However, it has been recently reported that the addition of the non-reducing disaccharide
sugar trehalose into both isolation and storage buffers, helps to maintain the dispersal of EVs during
the UC process, reducing the formation of aggregates and preserving their integrity and stability
during the storage and the following freezing-thawing cycles [89]. In any case, all the innovative EV
preservation strategies have been recently reviewed by Kusuma and colleagues [90].

Another important aspect that has to be considered to preserve physical characteristics of EVs is the
correct choice of rotor type and its proper usage [79]. The most commonly used rotors are the swinging
bucket (SW) and the fixed angle (FA) rotors; they profoundly differ in terms of performance, k-factor
(clearance factor) and pelleting efficiency. For example, SW rotors possess longer sedimentation path
length than FA ones. Although this characteristic is responsible for the decreased pelleting efficiency,
SW rotors are considered the best choice by the scientific community, being the most suitable support
for the separation of particles with similar sedimentation coefficients [79,91].

4.2. Density Gradient UC

A strong improvement in terms of EV quality and purity has been observed by applying a
iodixanol/sucrose density gradient or a sucrose density cushion centrifugation protocol [92,93]. EV,
and in particular, exosome density (1.15 to 1.19 g/mL) is similar to sucrose or iodixanol, whose density
produces a cushioning effect, maintaining the integrity of EVs and separating protein contaminants of
high density (1.22 g/mL) [94].

The density gradient is generated, overlaying increasing concentrations of sucrose or iodixanol in
a centrifuge tube. Plasma or serum samples are then placed on top of the gradient and centrifuged
at higher forces (greater than 150,000× g) compared to standard UC. Vesicles sneak through the
gradient until reaching the point at which their density matches with the one of the surrounding
sucrose/iodixanol, outrunning the contaminating protein along their run [95].

The sucrose cushion centrifugation is a similar technique where vesicles are pelleted on a more
dense sucrose solution; in this way, it is possible to gently concentrate the sample, since the mechanical
stress is reduced and the resulting particles remain morphologically intact [94].

However, these techniques are laborious, time-consuming, conceal some technical difficulties and,
more importantly, only small volumes of biofluids can be processed. Moreover, it has recently been
argued that density gradient centrifugation is not able to completely separate vesicles from APOB+

material (i.e., APOB+ lipoproteins and blood HDLs, that own similar densities) [62,96].

4.3. Size Exclusion Chromatography (SEC)

Recently, size exclusion chromatography (SEC) has become an increasingly popular technique to
purify EVs from biofluids, and in particular, plasma [70,97,98].

SEC is a simple and fast procedure characterized by a low infrastructural demand, it is customizable
since different types of matrices/resins can be used (e.g., Sepharose 2B, CL-4B, Sephacryl S-400), good
quality columns are commercially available, and it is possible to scale the process up to more than
100 mL of plasma processed in one step [97,99,100].

A small inherent disadvantage of SEC is that it does not concentrate samples (the fractions
obtained are of the order of magnitude of the milliliter) and therefore, if the downstream procedures
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require EVs in small volumes, a second step is necessary [101,102]. Moreover, the co-purification
of aggregates of the same size could hamper the real efficiency of the SEC-based method and could
be the cause of contrasting results obtained by different laboratories (in terms of yield and protein
contamination grades). As described by Hong and colleagues, a proper optimization of SEC-based
protocols is therefore needed, paying particular attention to crucial steps (column setup, loaded sample
volume, fraction collection) that could be the cause of the variability associated with the method [103].

5. Combined Protocols: Are they the Best Solution?

As mentioned above, an exhaustive purification of plasma/serum-derived EVs from contaminating
proteins and lipoprotein particles is an arduous exercise. UC, density gradient UC and SEC are certainly
good isolation techniques, but, as discussed above, present serious shortcomings, which, in some cases,
are not compatible with the levels of yield, purity and quality required when EVs are intended to be
used as drug carriers for therapeutic purposes.

The use of multiple and combined isolation techniques could represent a significant step
forward [104,105]. Assembling together the unique and valuable characteristics of each method
could be the key to obtain purer vesicle preparations. Although the requirement of long procedures
involving multiple steps is expected to adversely affect the vesicle yield [96], the potential loss of
material could be rewarded by a substantial benefit in terms of quality and purity.

Some laboratories are playing a pioneering role in this evolving field, and different combined
isolation approaches have been recently tested. Corso and colleagues tested a novel core bead
liquid chromatography technique for EV purification that combines size separation with bind-elute
chromatography (BE-SEC) [106]. Applying this approach, the purification of high-quality vesicles
from large volumes of conditioned media can be obtained. BE-SEC is fast, reliable and scalable, and,
more importantly, provides isolation of non-fused, intact vesicles.

The use of a two-step isolation procedure, combining density cushion separation followed by
SEC, has been proposed [105]. This approach was elegantly demonstrated to be useful for the isolation
of pure EVs from proteinaceous contaminants, as demonstrated by subsequent electron microscopy
and mass spectrometry analysis. Indeed, 1187 specific proteins were identified, without undesirable
contamination of plasma proteins and lipoprotein particles.

Moreover, with the common aim of processing large volumes of plasma/serum-EVs, free of
non-relevant proteins and without running the risk of losing precious material, it has been also proposed
to introduce some essential modifications to a conventional and dated purification method [107].
After cleaning the plasma with a low-speed centrifugation and filtration step (0.22 µm), the authors
isolated EVs on a Sepharose 2B size-exclusion chromatography column; the collected fractions were
subsequently pelleted by UC. After checking by Western blot EV profiles, the authors concluded that
this method leads to the recovery of morphologically intact vesicles, largely depleted of contaminating
immunoglobulins and still able to mediate intercellular communication [56]. Further modifications
associated with this combined method have been proposed. Instead of pelleting EVs by UC, Lobb
and colleagues recommended the use of specific protein concentration devices (centrifugal filters
with a regenerated cellulose membrane with a pore size of 10 kDa) to rapidly and gently concentrate
vesicle fractions derived from SEC in an efficient time frame [101]. Another further improvement in
EV purification has been tested combining UC and affinity chromatography on Sepharose-bearing
immobilized antibodies against vesicle surface proteins, such as CD9, CD63, and CD81 [108,109]. This
additional purification step leads to the obtaining of significantly purer preparations, as demonstrated
by the absence of appreciable impurities. Although these results were obtained using placenta as an
EV source, it could be envisaged to apply similar techniques starting from plasma/serum samples.

An alternative method for EV purification has been described, which utilizes ultrafiltration
followed by vesicle capture on heparin-affinity beads [110]. This, like others magnetic separation
strategies, provides satisfactory results mainly for RNA extraction. Some downstream applications
require a more precise purification of the starting material.
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The attempt to use polymer-based EV-precipitation kits (Exo-spin) before SEC separation should
also be mentioned [81]. However, the scientific community is somewhat skeptical about the usage of
precipitation techniques due to the very low purity achieved [96,111].

It is of capital importance to highlight that, regardless of the method or the combination of
techniques used to isolate EVs for therapeutic purposes, the purity grade of the final vesicle preparation
has to be carefully proved and quantified at both the molecular and colloidal length scales, by relying
on different approaches, ranging from classical bioanalytical methods (i.e., Bradford, Western Blot,
immunoassays for APOB+ lipoproteins) to more sophisticated biophysical techniques (NTA, tRPS,
scanning Helium Ion Microscopy, and flow cytometric analysis) [96,112,113].

Taken together, these new studies indicate how imperative the use of appropriate combined
approaches is, exploiting the advantageous characteristics of each procedure, when working with
plasma and other biological fluids. Indeed, the employment of these composite sources introduces a
new level of complexity to EV isolation, and this has to be particularly deemed when the end-point
application is the use of vesicles as drug carriers and delivery vehicles. Isolates produced with
these purposes should in fact undergo other tricky downstream manipulations (i.e., electroporation,
sonication, direct transfection) that could potentially interfere, by themselves, with the final outcome.
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