
J
H
E
P
0
2
(
2
0
1
5
)
1
0
6

Published for SISSA by Springer

Received: December 3, 2014

Accepted: January 28, 2015

Published: February 16, 2015

Soft evolution of multi-jet final states

Erik Gerwick,a Steffen Schumann,a Stefan Höcheb and Simone Marzanic
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1 Introduction

Jets play a central role in the physics program of the CERN Large Hadron Collider (LHC).

The typical minimum value for jet transverse momenta considered in LHC analyses is of

the order of 20 GeV, which is more than two orders of magnitude smaller than the center-

of-mass energy, resulting in a huge phase space for jet production. Events with a high jet

multiplicity are therefore copiously produced at the LHC [1–3].

Moreover, typical signatures of new-physics models include cascade decays of new

heavy states producing relatively hard quarks and gluons, which seed hard jets. Accurate

theoretical estimates of the related QCD multi-jet backgrounds are therefore essential. This

has triggered intense activity in the QCD community, resulting in more and more accurate

calculations of cross sections and differential distributions for multi-jet final states.

Leading order (LO) perturbative QCD calculations for multi-jet processes can automat-

ically be performed for large multiplicities [4–6]. Next-to-leading order (NLO) corrections

have also reached a high level of automation [7–17], and fully differential multi-jet cross
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sections are now available for pure QCD processes and electroweak (W±, Z and Higgs)

boson production in association with up to five jets [18–21].

Monte Carlo parton showers [22–24], which describe the all-order evolution of QCD

partons fully exclusively, have been extended beyond the strict collinear limit [25–28] and

even beyond the 1/NC approximation [29, 30]. They can be merged with LO predictions

for multi-jet events [31–34] and matched to NLO calculations [35–37] for over a decade.

More recently, methods for combining next-to-leading order matched predictions of varying

jet multiplicity have been devised [38–40], as well as matching methods at next-to-next-to

leading order (NNLO) accuracy [41–43]. Dedicated Monte Carlo programs aimed at better

describing jet production in the high-energy limit have also been developed [44].

Thus, the past years have brought substantial theoretical progress in multi-jet physics,

both from the viewpoint of fixed-order calculations and parton showers, as well as the

matching and merging of the two approaches. Another important aspect of QCD phe-

nomenology is the all-order resummation of particular classes of observables or processes,

beyond the leading-logarithmic (LL) accuracy, which is typical for parton showers. Event

shapes in electron-positron, electron-proton and hadron-hadron collisions have been stud-

ied for a long time (see for instance [45, 46] and references therein) and a general framework

for resumming event shapes at next-to-leading logarithmic (NLL) accuracy was developed

in refs. [47–50]. Very high logarithmic accuracy (N3LL) was achieved using Soft Collinear

Effective Theory (SCET) for particular event shapes in e+e− collisions [51, 52]. Inter-jet

radiation and in particular its response to the presence of a jet veto has also received a

lot of attention both from the theoretical [53–59] and experimental [60–63] communities,

primarily in the context of Higgs-boson studies [64–70]. All-order analytical calculations

have been performed recently for an increasing number of jet-substructure observables, in-

cluding jet masses [71–74], other jet shapes [75–79], sub-jet multiplicity [80] and grooming

algorithms [81–83]. Recently, there has also been substantial progress towards achieving

NNLL accuracy in threshold resummation for dijet production [84, 85].

However, to our knowledge, all phenomenological studies that used all-order resummed

results have been restricted to cases with four or less hard colored partons, i.e. 2 → 2

QCD scattering in hadron-hadron collisions [86–89].1 The reason for this deficiency in

comparison to the enormous progress in fixed-order calculations is purely technical. While

logarithmic terms associated to collinear emissions have a simple color structure, i.e. the

Casimir operator of the jet under consideration, the color structure of soft-gluon emissions

at large angles is more complex and, in particular, has a non-trivial matrix structure

for n ≥ 4 partons. Nevertheless, resummed calculations can in principle be written for an

arbitrary number of hard colored legs, using, for instance, the formalism of refs. [86, 87, 90–

93]. In order to perform an actual calculation, one then needs to define a suitable color

basis for each partonic subprocess, and consequently find the matrix representation of

all color insertions. The dimensionality of color bases rapidly increases with the number

of legs. Algorithms to define them have been discussed in the literature, e.g. [94–97].

1Refs. [55–58] considered the resummation of 2 → 3 scattering processes, in the limit where one of the

final-state partons was a soft gluon.
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However, when making use of a non-orthogonal basis, the efficient inversion of the matrix

representing the color metric can pose a severe problem. In addition, the underlying Born

matrix elements for the hard process must be decomposed in the chosen basis. One would

clearly like to automate all these steps.

The main purpose of this study is to overcome these technical difficulties and provide

a tool to perform soft-gluon resummation at NLL accuracy for processes with, in principle,

arbitrarily many hard legs. In practice we have considered all contributions for up to 2→ 5

processes. As detailed in section 2, we achieve this by writing the resummed exponent in a

suitable color basis and by decomposing the Born amplitudes using modified color-dressed

recursive relations [98], as implemented in the Comix matrix-element generator [6], that

is part of the Sherpa framework [99, 100].

In this paper, we also address the issue of matching the resummation to fixed-order

calculations. In section 3 we develop an automated LO matching scheme which makes

use of modified dipole subtraction [91, 92]. It circumvents the explicit expansion of the

resummation formulae to a large extent and provides a quasi-local cancellation of the

logarithmic contributions. We use the resummation of the transverse thrust in hadronic

collisions as a first example to study the performance of our method. We finally summarize

our work and indicate future directions in section 4.

2 The soft function and its anomalous dimension

The main aim of this work is to define and implement NLL resummation for processes

with an arbitrary number of hard partons. Despite the computational difficulties arising

from the non-trivial color structure in soft-gluon radiation, one can formally write all-order

resummed expressions in terms of abstract color operators [86, 87, 90–93], which are then

valid for an arbitrary number of hard legs.

The quantity we are interested in is the NLL “soft function” [86–88]

S(ξ) =
〈m0|e−

ξ
2
Γ†e−

ξ
2
Γ|m0〉

〈m0|m0〉
. (2.1)

In the above equation, |m0〉 denotes a vector in color space representing the Born amplitude,

such that the color-summed squared matrix element is |M0|2 = 〈m0|m0〉. Therefore,

eq. (2.1) describes the soft gluon evolution of the Born amplitude from the hard scale

of the process down to the low scale, set by the observable under consideration, thus

resumming to all orders the logarithmic contributions encoded in the evolution variable

ξ. Note that the soft function defined here and used throughout this paper does not

contain any collinear logarithms and the evolution variable ξ, the precise functional form

of which may depend on the observable at hand, is single-logarithmic. This is in contrast

to alternative definitions also common in the literature. Moreover, to NLL considered here,

the soft function depends on the strong coupling only through the variable ξ.

The soft function in eq. (2.1) is defined in terms of the central object in our study: the

soft anomalous dimension Γ. Although much of the computational technology developed

here can be applied to a variety of observables, in order to keep the presentation simple, we
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focus our discussion on global event shapes.2 For this class of observable, Γ can be written

as

Γ = −2
∑
i<j

Ti ·Tj ln
Qij
Q12

+ iπ
∑

i,j=II,FF

Ti ·Tj . (2.2)

The first sum runs over all possible colored dipoles, with Qij the respective invariant mass,

i.e.

Q2
ij = 2 pi · pj . (2.3)

The second sum in eq. (2.2) is over the Coulomb (or Glauber) contributions between final-

final (FF) and initial-initial (II) parton pairs. Note that the non-commutativity of Γ and

Γ† prevents us from recombining the exponentials in eq. (2.1) and leads to a physical effects

from the Coulomb phase.

In order to make contact with the existing literature, we can evaluate eq. (2.2) for

the special case of 2 → 2 scattering of massless partons. In this case, Q12 = Q34 =
√
s,

Q13 = Q24 =
√−t and Q14 = Q23 =

√−u, and the soft anomalous dimension becomes

(see e.g. [47–50])

Γ = − (T1 ·T3 + T2 ·T4)T − (T1 ·T4 + T2 ·T3)U, (2.4)

where we have employed color conservation, i.e.(
4∑
i=1

Ti

)
|m0〉 = 0 , (2.5)

introduced the compact notation

T = ln
−t
s

+ iπ and U = ln
−u
s

+ iπ, (2.6)

and dropped all contributions from abelian phases because they do not contribute to any

cross sections.

Aiming for an automated evaluation of eq. (2.1) for arbitrary processes, there are

essentially three problems which need to be addressed:

• the color-basis definition and computation of the metric,

• the computation of the color operators Ti ·Tj , in the considered basis,

• the decomposition of the amplitude |m0〉 in the considered basis.

The construction and implementation of an algorithm addressing all three items rep-

resents the core of this paper. This problem is closely related to the color decomposition

of QCD amplitudes [101], which is typically written in the form

M0(1, α1; . . . ;n, αn) =
∑
i

C(i)(α1, . . . , αn)m
(i)
0 (1, . . . , n) . (2.7)

2A general framework for resumming such observables has been developed in the context of the program

Caesar [47–50]. Within this method, observables defined on Born configurations with an arbitrary number

of hard partons can in principle be considered. More details will be given in section 3.1 and appendix B.
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Here,M0 is the full amplitude for a set of external particles 1 . . . n with color assignments

α1 . . . αn. The C(i) are color coefficients, and the m
(i)
0 are color-ordered partial amplitudes.

The index i labels the color orderings contributing to the color assignment. While the

number of orderings and the related color coefficients change with the color basis [102–104],

the partial amplitudes are unique, gauge-invariant objects depending only on the particle

momenta. They are given by sums of planar diagrams computed in the large-NC limit [105].

One may consider eq. (2.7) the projection of the Born amplitude onto a given color-basis

element, M0(α) = 〈cα|m0〉. This will be discussed in more detail in the following.

2.1 Non-orthogonal color bases

We first define our notation for color bases. As we are going to work with bases which are

not necessarily orthogonal (for a discussion about this topic see also refs. [106–108]), we

start by defining basis vectors |cα〉 and introduce the (non-diagonal) color metric, and its

inverse

〈cα|cβ〉 = cαβ 6= δαβ cαβ = (cαβ)−1 . (2.8)

Note that cαγc
γβ = δ β

α by construction. The basis vectors |cα〉 span a complete (possibly

over-complete) set of elements which we leave undetermined for the moment. We will adopt

the convention of referring to cαβ as the inverse metric.

Let us consider a general tensor Hβγ expressed in the non-orthogonal c-basis. Color in-

variants are computed by contracting with the metric, and we define in particular the color

trace as Tr(cH) = cαβH
αβ. Indices between the c-basis and its dual are raised and lowered

with the metric. Tensors transforming with mixed indices are interpreted asH β
α ≡ Hαγc

γβ.

The soft function from eq. (2.1) written in matrix notation reads

S(ξ) =
Tr
(
He−

ξ
2

Γ†c e−
ξ
2

Γ
)

Tr (cH)
=

cαβH
γσG†γρcρβcαδGδσ
cαβHαβ

, (2.9)

where cαβH
αβ = 〈m0|m0〉 now represents the color-summed Born matrix element squared.

The matrix G is the exponential of the soft anomalous dimension matrix, which due to the

non-orthogonal nature of the c-basis, takes the form

Gαβ(ξ) = cαγ exp

(
−ξ

2
Γγβ

)
= cαγ exp

(
−ξ

2
cγδ Γδβ

)
. (2.10)

A significant amount of recent work has focused on improving the basis construction, with

certain advantages and disadvantages for each approach. In [95], a complete trace basis

was discussed which followed from combining the connected fundamental representation

color tensors appearing in the tree-level hard matrix element with the disconnected color

structure required by soft-gluon exchange. The construction of this basis for an arbitrary

process was automated in [96]. In [97] a general orthonormal basis was constructed, which

was shown to be minimal in elements for a given process.

In this work we follow a different approach. Instead of constructing new optimized

color bases, we rely on existing ones and circumvent the problem of over-completeness in an
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automated fashion by extending the dimensionality of color space. This method, and the al-

ternative approach of dimensional reduction, will be discussed in more detail in section 2.2.

In order to select the color bases to start with, we use the following guiding principles:

1. Minimal partial-amplitude count: the components M(α) = 〈cα|m0〉 should de-

pend on as few partial amplitudes as possible.

2. Physical color states: the basis vectors should represent physical color states. This

disqualifies bases containing singlet gluons, for example.

3. Minimality of the basis: although we will also use over-complete bases, we require

the dimension of the basis to be as low as possible.

The trace basis [101] for processes with quarks and the adjoint basis [102, 103] for processes

with only gluons satisfy our guiding principles, and we choose to implement them. However,

subtleties arise because these bases can be over-complete. In this respect, we note that

exponentiation via eq. (2.10) requires the computation of the inverse color metric cαβ. Thus,

cαβ must be non-singular for general NC . At NC = 3 it may be singular if the corresponding

metric cαβ contains representations with weight proportional to NC − 3. In this case the

inversion may be computed withNC = 3+ε colors. More on this issue appears in section 2.2.

Processes including quarks. The complete basis for processes including quarks follows

from color connecting all same flavor quark lines while attaching gluons in the form of

fundamental-representation matrices. For example, in the case of a single quark pair the

decomposition at tree-level is [101]

M0(1, i1; 2, a2; . . . ;n, jn) =
∑

σ∈P (n−2)

(T aσ2 . . . T aσn−1 )jni1 m0(1, σ2, . . . , σn−1, n) . (2.11)

The sum runs over all (n− 2)! permutations of the particle labels 2 . . . n− 1, which repre-

sent the gluons. Decompositions for processes with multiple quark lines are qualitatively

similar and can be found in the literature. In the general case, the decomposition includes

disconnected quark lines, arising from soft gluon exchange, and disconnected gluon lines,

which appear for processes with 2 or more gluons. Similar terms appear at higher loops in

fixed-order calculations.

An important simplification is that any basis with the same number of qq̄ pairs (taking

flavor labels as all incoming) and gluons is the same, modulo crossings. This suggests

that for a given set of particle flavors, the resummation may be carried out for a fixed

flavor ordering. In practice we implement this by always computing Γ in the same flavor

arrangement {q, q̄, g} so that the first sum in eq. (2.2) is always in order.

We keep track of the map to the physical process by labeling incoming and outgoing

for the purpose of assigning the Coulomb phase. This means that the matrices Ti · Tj only

need to be computed once for all processes involving the same number of quarks and gluons.
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Purely gluonic processes. There are multiple options of dealing with purely gluonic

processes. The first and oldest of them is the trace basis, described in ref. [101]. The color

decomposition of tree-level amplitudes reads

M0(1, a1; . . . ;n, an) =
∑

σ∈P (n−1)

Tr(T a1T aσ2 . . . T aσn )m0(1, σ2, . . . , σn) . (2.12)

The sum runs over all (n− 1)! permutations of the particle labels 2 . . . n. In the context of

resummation, we must add the non-vanishing color disconnected components containing

multiple gluon traces, which also appear at higher loops in fixed-order calculations.

A subtlety arises due to the reflection symmetry of the partial amplitudes,

m0(1, 2, 3, . . . , n) = m0(1, n, . . . , 3, 2), which holds for the corresponding soft gluon evolved

amplitudes as well. The basis elements corresponding to permutation 123 . . . n and n . . . 321

can be combined due to this symmetry, so that the number of connected basis elements for

general NC is reduced by a factor two.

The adjoint (f -) basis [102, 103] corresponds to the remaining basis vectors after

applying the Kleiss-Kuijf relations [109]. Equation (2.12) reduces to

M0(1, a1; . . . ;n, an) =
∑

σ∈P (n−2)

(F aσ2 . . . F aσn−1 )a1anm0(1, σ2, . . . , σn−1, n) , (2.13)

where the sum runs over only (n − 2)! permutations, corresponding to the new basis ele-

ments. As with the trace basis, we add the disconnected components, which starting at 6

gluons may also feature 4 gluons connected via adjoint tensors.

2.2 Elimination of NC = 3 pathologies

Although advantageous from many points of view, both the trace and adjoint bases for high-

multiplicity processes turn out to be over-complete. As a consequence, the matrices repre-

senting the corresponding color metric, defined as in eq. (2.8), have null eigenvalues atNC =

3. However, the fact that the inverse metric at NC = 3 is often singular is an artefact of

calculating cαβ and Γ separately, since maintaining the full NC dependence the resulting S-

function is always finite. Keeping the NC dependence explicit becomes computationally im-

practical for large multiplicity. Here we outline two strategies to overcome these limitations.

Dimensional reduction. The simplest solution is to reduce the size of the color basis,

in particular, if we bear in mind the freedom to reparameterize the basis elements with no

tree-level Born contribution. These components only enter S through contractions with

the inverse metric and can therefore be reshuffled for convenience.

More precisely, for a basis with m Born proportional and n −m non-Born elements

{c0, · · · , cm−1, cm, cm+1, · · · , cn−1, cn}, we examine the situation where there is a single

zero eigenvalue at NC = 3 in the color metric. In other words, the basis decomposes into

n− 1 non-vanishing irreducible representations. A simple procedure for reducing the color

space then corresponds to the new basis {c0, · · · , cm−1, cm+cn, cm+1 +cn, · · · , cn−1 +cn},
where we normalise new elements accordingly.

While for simpler processes this procedure is straight-forward (see section A.2), for the

general case it is hard to automate, and therefore we choose a different approach.
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c 1 = δ
jq̄′
iq δ

jq̄
iq′

c 2 = δ
jq̄
iq δ

jq̄′
iq′

↔

↔ m0(q, q̄
′, q′, q̄) ↔

− 1
NC

m0(q, q̄
′, q′, q̄) ↔ − 1

NC

iq′jq̄

iq jq̄′

jq̄

iq

iq′

jq̄′

q̄

q q̄′

q′

q′

q̄′q

q̄

Figure 1. Sketch of color basis vectors and their corresponding projections of Born matrix elements

for qq̄ → q′q̄′ scattering. All flavors in the figure are taken as outgoing.

Numerical inversion withNC = 3+ε. We adopt a solution which avoids adjusting the

dimensionality of the basis, and therefore requires no a priori group theory knowledge on

the color decomposition of a given process. This is the simplest solution practically, though

there is clearly an efficiency loss due to carrying through non-contributing color directions.

We state the necessary claims here while proofs may be found in appendix A.1. First,

we note that the metric is always invertible for NC = 3 + ε with ε > 0. We can separate

the singular from the regular part of the inverse color metric as

cαβ3+ε = cαβR +
1

ε
c̃αβ . (2.14)

The singular part of the inverse metric is in the null-space of all color products evaluated

at NC = 3

c̃αβ(Ti ·Tj)βγ = 0αγ , (2.15)

which guarantees that

S(ξ)NC=3+ε = S(ξ)NC=3 +O(ε). (2.16)

We find that the error introduced in the resummation is O(ε) which may be taken suffi-

ciently (arbitrarily) small in practice (theory).

2.3 Computation of the hard matrix

A key ingredient for the computation of the soft function eq. (2.9) is the hard matrix,

which is formed by projections of the Born amplitudes onto color basis vectors, Hαβ =

〈m0|cα〉〈cβ|m0〉. Consider, for instance, the trivial case of qq̄ → q′q̄′ scattering, where q and

q′ represent two different quark flavors. The Born matrix element factorizes into a purely

kinematical part, which stems from the s-channel diagram squared, and color coefficients

defining the actual matrix structure. This is shown in figure 1. However, in any non-

trivial case, multiple diagrams appear, which contribute differently to the different matrix

– 8 –



J
H
E
P
0
2
(
2
0
1
5
)
1
0
6

− 1
NC

− 1
NC

Figure 2. Sketch of color basis vectors and their corresponding projections of Born matrix elements

for qq̄ → qq̄ scattering. In comparison to figure 1, there is both an s- and a t-channel diagram, both

of which contribute to each projection with different weight.

elements, such that the hard matrix has a non-trivial dependence on the Born kinematics.

In particular, same-flavor quark processes like qq̄ → qq̄ scattering have partial amplitudes

where both s- and the t-channel diagrams contribute because of the 1/NC suppressed term

in the Fierz identity. This is sketched in figure 2. Automating the computation of Hαβ

requires an algorithm that allows us to easily access these partial amplitudes.

We solve this problem with the help of Comix [6], a matrix-element generator that

computes multi-parton amplitudes using color-dressed recursive relations [98]. Comix is

part of the Sherpa framework [99, 100]. As Comix allows us to define a color configuration

in the large-NC limit, it is trivial to obtain color-ordered partial amplitudes. However, these

are not necessarily sufficient to compute the entries of the hard matrix directly.

Take for example qq̄ → qq̄ scattering, as depicted in figure 2. The two amplitudes

needed for the hard matrix are shown schematically on the first and the second line. To

compute them individually, we can use a colorful matrix element that is projected onto the

correct set of diagrams by selecting external colors appropriately. Using the color-dressed

Feynman rules from [98], the amplitudes on the right-hand side, including their prefactors,

are generated by choosing the colors on the left-hand side. If the number of colors is

fixed to three, this leads to problems for amplitudes with more than three fundamental

color indices, as non-planar diagrams start to appear. These are removed by working

at NC → ∞. Taking this limit, however, would eliminate the second diagram on the

first line and the first diagram on the second line, because the gluon propagator does not

have a 1/NC contribution. The problem is solved by keeping this term when taking the

limit. This modification is implemented at the vertex level by changing the color-dressed

Feynman rules such that U(1) gluons couple to quark lines also in the large-NC limit, while

evaluating the corresponding 1/NC term in the Fierz identity with NC = 3.

We note that it is possible to add the relevant one-loop partial amplitudes and extend

this algorithm beyond the tree level. This will provide the hard matrix one order higher,

which is needed in order to achieve higher logarithmic accuracy in the resummation.

– 9 –
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2.4 Validation against multi-parton matrix elements

In order to check the construction of the color metric for the employed bases and the

correctness of the corresponding decomposition of the hard matrix for multi-parton ampli-

tudes, we compare our results against exact real-emission matrix elements considering soft

but non-collinear kinematics for the emitted gluon. Starting from an n-parton state with

momenta p1, . . . , pn we assume the emitted gluon to carry additional momentum ps, with

|ps| = ks. We choose a particular kinematic configuration, where the final-state momenta

resemble a circle in the transverse plane, i.e.,

p1 = E(1, 0, 0, 1) ,

p2 = E(1, 0, 0,−1) ,

p3 = En(1, cos(φn3 + φH), sin(φn3 + φH), 0) ,

p4 = En(1, cos(φn4 + φH), sin(φn4 + φH), 0) ,

...

pn = En(1, cos(φnn + φH), sin(φnn + φH), 0) ,

ps = ks(1, cosφs, sinφs, 0) , (2.17)

with En = 2E/(n − 2) and φnm = π(2m − 3)/(n − 2). The momenta p1 to pn can then

be used directly to evaluate the n-parton amplitude. For the computation of the (n+ 1)-

parton process we assume the recoil of the emitted soft-gluon to be absorbed by the dipole

spanned by partons 3 and 4. The momenta of partons 3 and 4 that enter the (n+1)-parton

amplitude are then given by

p′3 = p3 − ps +
p3 · ps

p4 · (p3 − ps)
p4 ,

p′4 =

(
1− p3 · ps

p4 · (p3 − ps)

)
p4 . (2.18)

We define with Rs the inverse ratio between an n+ 1-parton matrix element squared

and its “sum-over-dipoles” approximation

Rs =
αS

π
Tr

Hn

∑
i<j

Ti ·Tj
pi · pj

pi · ps pj · ps

 1

Tr (cHn+1)
. (2.19)

The QCD coupling αS is assumed fixed here. Factorization of QCD matrix elements implies

that in the limit of soft-gluon kinematics, i.e., λs = ks/(2E)→ 0, we have

lim
λs→0

Rs = 1. (2.20)

This result is in fact independent of the underlying Born kinematics, and in particular inde-

pendent of the angle φH through which we rotate our hard-parton configuration, eq. (2.17).

Depending on φH , the value of Rs for finite λs may be larger or smaller than one. Taking

the limit in (2.20), we provide a strong consistency check on the elements of Γ and Hn for
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Figure 3. (Left) Ratio of the sum-over-dipole dressed 4-parton approximation to the exact

5-parton matrix elements for different partonic subprocesses, cf. eq. (2.20). (Middle) Rs ratio

for sum-over-dipole dressed 5-parton over full 6-parton configurations. (Right) Same but for

6/7-parton matrix elements.

the n-parton process as well as c and Hn+1 for the n+1 parton configuration. This applies

to elements which have a non-vanishing hard contribution.

In order to expose this property of the full matrix element, we sample over φH in

discrete steps assuring that the momentum ps does not get collinear to any other parton.

This is sufficiently satisfied by requiring that φH is not an integer multiple of φs. In practice

we take φs = π/7, and sample φH = Nπ/10 over N = 0, . . . , 9.

In figure 3 we display the results of our checks for soft-gluon emission off 4- (left),

5-parton (middle) and 6-parton (right) amplitudes. The last case provides a non-trivial

check also on the 7-parton color metric and hard matrix, entering through the denominator

of eq. (2.20). For completeness we collect in appendix A.3 the properties of the color bases

used for the various processes. By rotating the respective Born kinematics on the circle

in the transverse plane, we can verify that the individual coefficients of each dipole are

exactly matched in the full matrix element as λs → 0. For a specific phase-space point

these coefficients could be individually very small thus not providing a sufficient test. The

results show a strong dependence on the underlying kinematic configuration in addition to

the considered parton flavors. However, for sufficiently small λs in all cases Rs approaches

unity, proving correctness of the ingredients for the soft function S.

2.5 Soft evolution of multi-parton squared amplitudes

Having proven correctness of our color-metric evaluation and the corresponding hard-

matrix decomposition, we shall now study the full soft function S(ξ) given in eq. (2.9) for

multi-parton processes. In particular we probe the dependence on the evolution variable

ξ and compare to the limiting case of NC →∞, that closely resembles the approximation

used in parton-shower simulations. While the NC =∞ anomalous dimension is computed

– 11 –
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Figure 4. Dependence of the soft function S on the evolution variable ξ for 2→ 2 (left) and 2→ 3

(right) parton configurations. For all processes parton momenta on a circle in the transverse plane

at z = 0 are considered.

explicitly in the trace basis, it amounts to only a non-vanishing contribution to Ti ·Tj for

basis elements which have partons i and j color adjacent.

We begin by computing S(ξ) for several multiplicities at benchmark kinematics, that

lie on a circle in the transverse plane at z = 0. For the 2 → n processes we parameterize

the momenta as

p1 = E(1, 0, 0, 1) ,

p2 = E(1, 0, 0,−1) ,

p3 = En(1, cosφn3, sinφn3, 0) ,

p4 = En(1, cosφn4, sinφn4, 0) ,

...

pn = En(1, cosφnn, sinφnn, 0) , (2.21)

where again En = 2E/(n− 2) and φnm = π(2m− 3)/(n− 2). The soft function S depends

on the kinematics merely through ratios of momentum invariants (cusp angles), such that

when considering fixed αS the direct dependence on En vanishes.

In figure 4 and figure 5 we present results for the ξ-dependence of the soft function for

various parton channels, both for NC = 3 (solid curves) and for the limit NC →∞ (dashed

curves). Depicted is the variation of lnS(ξ) with ξ, where we scaled each curve such that it

intersects with the ordinate at one. We observe a non-trivial ξ dependence for all processes

when considering the full-color treatment. For the given phase-space configurations the full

result shows a stronger variation with ξ than the large-NC estimate. This originates from

taking into account all off-diagonal elements in the soft anomalous dimension. In particular

for processes involving gluons the limit NC →∞ approximates the full result poorly.

– 12 –



J
H
E
P
0
2
(
2
0
1
5
)
1
0
6

Figure 5. Dependence of the soft function S on the evolution variable ξ for 2→ 4 (left) and 2→ 5

(right) parton configurations. For all processes parton momenta on a circle in the transverse plane

at z = 0 are considered.

Let us discuss the general behaviour of our results in the large-NC case. In this case,

all non-diagonal entries of the soft anomalous dimension vanish and we can simply write

1

S ′(0)

d logS(ξ)

dξ
=

( ∑n
i=1 hii∑n

i=1 λi hii

) ∑n
i=1 hiiλi exp(λiξ)∑n
i=1 hii exp(λiξ)

(at large -NC) (2.22)

for an n-dimensional color space where λi and hii are the diagonal entries of Γαβ and

Hαβ respectively. Both λi and hii are positive because they correspond to non-interfering

squared amplitudes. Consequently, eq. (2.22) is a monotonically increasing function ξ, for

all underlying Born configurations. However, at finite NC , the full matrix structure persists

and the behaviour is not neccesarily monotonic due to off-diagonal interfering contributions.

To also check kinematic configurations with particles at non-zero rapidity, we consid-

ered the above kinematics but rotated by an angle π/2 about the y-axis. This results in

momenta that span a circle in the y − z plane at x = 0. The corresponding results can be

found in figure 6. Again, while the behaviour for NC → ∞ are necessarily monotonically

increasing functions of ξ this is not true for finite NC , due to non-vanishing interference

effects of different color flows. Accordingly, the large-NC approximation can in general also

result in an overestimate of the soft function. To properly account for the highly non-trivial

dependence on the parton kinematics and the evolution variable the soft function needs to

be evaluated with its full color dependence, i.e. NC = 3. However, to fully quantify the

importance of finite-NC effects not just the soft-function contribution but the full physical

observable needs to be considered.
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Figure 6. Soft function for 2→ 3 (left), 2→ 4 (middle) and 2→ 5 (right) parton configurations,

for kinematics with all final-state momenta in the plane of the beam.

3 Towards phenomenology

In the first part of this paper, we have presented a new method to deal with the soft

evolution of processes with many colored legs that provides a high degree of automation.

Moreover, we have realized an implementation of this method that uses color-partial am-

plitudes extracted from the matrix-element generator Comix and evolves them according

to the soft anomalous dimension eq. (2.2), thus obtaining an efficient way of evaluating the

soft function given in eq. (2.1).

The aim of this second part is to create a framework in which the soft function S in

eq. (2.1) can be used for phenomenological studies. Let us generically call v an observable

that measures the “distance” from the lowest-order kinematics. In the context of jet studies,

v can be thought of as an observable describing internal jet properties, e.g. masses, angular-

ities, energy correlation functions) or as an observable measuring the radiation outside the

leading jets, e.g. event shapes or inter-jet radiation. When v is small, logarithms L = ln 1
v

are large and resummation becomes a more efficient organization of the perturbative ex-

pansion than fixed-order perturbation theory. Furthermore, we have to consistently match

the two approaches to obtain reliable predictions for the entire range of the observable v:

dσmatched

dv
=
dσresummed

dv
+

(
dσfixed-order

dv
− dσexpanded

dv

)
. (3.1)

The first term in the expression above is computed to some logarithmic accuracy, typically

next-to-leading log (NLL) but not infrequently to NNLL, while the second one is computed

at a given order in the strong coupling (state of the art is typically NLO). The last term

represents the expansion of the resummed distribution to NLO and avoids double counting.

The last two terms are affected by large logarithms and are in fact separately divergent in

the limit v → 0. However, their combination yields a finite remainder, called the matching
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term. Although conceptually trivial, computing the matching term is often numerically

inefficient because it involves the separate evaluation of fixed-order contribution and

expanded resummation in regions of phase space corresponding to soft and/or collinear

emissions. It would be preferable to generate the finite remainder directly.

3.1 Resummed distributions

Resummed calculations are usually performed for the so-called cumulative distribution, i.e.

the integral of the differential distribution up to a certain value v of the observable under

consideration:

dΣ(v)

dB =
1

σ

∫ v

0

d2σ

dBdv′dv
′

=
∑

partonic
configurations

δ

dσ
(δ)
0

dB eLg
(δ)
1 (αsL)+g

(δ,B)
2 (αsL)+... [1 +O(αS)] , (3.2)

where dB indicates that the expression above is fully differential in the Born kinematics.

Here we focus our attention on the NLL approximation of ln Σ, i.e. we consider the functions

g
(δ)
1 and g

(δ,B)
2 in eq. (3.2), while dropping the non-logarithmic term in square brackets. The

inclusion of this constant contribution is necessary in order to achieve what often is referred

to as NLL′ accuracy. We note that to this logarithmic accuracy such contribution, although

flavor-sensitive, can be averaged over the different color flows. Furthermore, we note that

this constant term can be extracted from NLO calculations as implemented, for instance,

with the Powheg method [36, 37], which has been automated in the Sherpa framework in

ref. [110].3 For our discussion, we follow the formalism developed in the context of the pro-

gram Caesar [47–50], which allows one to resum global event shapes in a semi-automated

way. With a couple of generalizations, the Caesar framework is sufficient for our purposes.

Furthermore, we will also briefly discuss some differences in the structure of the resumma-

tion that arise when dealing with non-global observables [111, 112] at the end of this section.

We consider processes which at Born level feature n hard massless partons (legs) and

m color singlets (e.g. photons, Higgs or electroweak bosons) and we denote the set of Born

momenta with {p}. Following refs. [47–50] we consider positive-definite observables V that

measure the difference in the energy-momentum flow of an event with respect to the Born

configuration, where V ({p}) = 0. For a single emission with momentum k, which is soft

and collinear to leg l, the observable V is parametrized as follows4

V ({p̃}; k) = dl

(
k

(l)
t

Q

)a
e−blη

(l)
gl

(
φ(l)
)
, (3.3)

where k
(l)
t , η(l) and φ(l) denote transverse momentum, rapidity and azimuth of the emission,

all measured with respect to parton l. Q is the hard scale of the process which we set equal

3We acknowledge discussions with Gavin Salam, Mrinal Dasgupta and Emanuele Re over this point.
4In principle we should consider the set of momenta {p̃} after recoil, but this effect is beyond the NLL

accuracy aimed for here [47–50].
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to the partonic centre of mass energy, i.e. Q2 = s. It is then possible to write the resummed

exponent in eq. (3.2) in terms of the coefficients a, bl, dl and gl(φ) that specify the behavior

of the observable in the presence of a soft and collinear emission.

In particular, while the LL function g
(δ)
1 is diagonal in color, one of the contributions

that enter the NLL function g
(δ,B)
2 is precisely the soft function, which, as discussed in

section 2, has a matrix structure in color space, with complexity that increases with the

number of hard partons. Explicit formulae are collected in appendix B. The results of

section 2 provide an automated way of computing these contributions, thus extending the

applicability of the Caesar framework to processes with an (in principle) arbitrary large

number of hard partonic legs.

We conclude this discussion with a few remarks on non-global observables [111, 112].

Non-global logarithms arise for those observables that have sharp geometrical boundaries

in phase space. They originate in wide-angle soft gluons that lie outside the region where

the observable is measured, re-emitting softer radiation back into that region. The Caesar

framework presented above is not sufficient to deal with this case and new ingredients need

to be introduced. Most noticeably, the NLL function g
(δ,B)
2 receives a new contribution

coming from correlated gluon emission.5 Because of their soft and large-angle nature,

non-global logarithms have a complicated color structure. However, for phenomenological

purposes, their resummation can be performed in the large-NC limit [111, 112, 114, 115],

thus trivializing the color structure again. Recent studies suggest a way of performing this

resummation at finite NC [116]. We believe that the methodology for performing all-order

calculations with many hard legs can also prove useful in the application of those methods

to LHC phenomenology. However, we leave this investigation for future work. Finally,

we point out that while the color structure of the soft anomalous dimension Γ for non-

global observables is formally the same as in eq. (2.2), the coefficients of the Ti · Tj are

observable-dependent, because of non-trivial limits for the azimuth and rapidity integrals.

3.2 Automated matching

In order to avoid double counting when matching a resummed calculation to a fixed-order

one, we need to consider the expansion of the resummation. In this paper, we are concerned

with matching to tree-level matrix elements, thus we have to consider the expansion of the

NLL resummed distribution to O (αS)

d

dL

dΣ(δ)

dB =
2αS

π

d

dL

[
G12

2
L2 +G11L

]
+O

(
α2

S

)
, (3.4)

with αS = αS(µ2
R) and L = ln (1/v).

If the resummation is performed within the Caesar formalism, which is summarized

for convenience in appendix B, one is able to expressed the coefficients G12 and G11

in terms of the coefficients that parametrize the observable in eq. (3.3). An explicit

5We should mention that the particular choice of the algorithm used to define jets can influence the

resummation structure at the level of g
(δ,B)
2 . This discussion refers to a jet algorithm, like for instance

anti-kt [113], which in the soft limit behaves as a rigid cone.
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calculation leads to

G12 = −
n∑
l=1

Cl
a(a+ bl)

G11 = −
[

n∑
l=1

Cl

(
Bl

a+ bl
+

1

a(a+ bl)

(
ln d̄l − bl ln

2El
Q

)
+

1

a
ln
Q12

Q

)

+
1

a

Re[Γαβ]Hαβ

cαβHαβ
+

ninitial∑
l=1

∫ 1
xl

dz
z P

(0)
lk

(
xl
z

)
q(k)(z, µ2

F )

2(a+ bl)q(l)(xl, µ
2
F )

 . (3.5)

Our aim is to compute G12 and the first term in G11 by integrating collinear splitting

functions in a Monte-Carlo approach over suitably defined regions of phase space. This

procedure is similar to next-to-leading order subtraction techniques. It allows to combine

the matching terms with real-emission matrix elements point-by-point in the real-emission

phase space, and provides therefore a quasi-local cancellation of large logarithms in the

matching.6 We use an existing implementation of the Catani-Seymour dipole-subtraction

method in Sherpa [117] as the basis for our implementation. The remaining terms

proportional to Cl in G11 are generated by using the color-correlated Born amplitudes

only and multiplying with the analytic expression for log d̄l− bl ln(2El/Q) (or log(Q12/Q))

and the relevant prefactors. The generation of the second line in eq. (3.5) is described in

detail below.

The dipole-subtraction method of refs. [91, 92] is based on the soft and collinear fac-

torization properties of tree-level matrix elements. In the collinear limit we can write

|M0(1, . . . , i, . . . , j, . . . , n)|2 i,j→collinear−→
8πµ2εαs

2pipj
〈m0(1, . . . , ij, . . . , n)| P̂ij,i(z, kT , ε) |m0(1, . . . , ij, . . . , n)〉 .

(3.6)

The splitting operators P̂ij,i describe the branching ij → i, j as a function of the light-

cone momentum fraction z = npi/n(pi+pj), with n an auxiliary vector, and the transverse

momentum k2
T = 2pipj z(1−z). The splitting operators depend non-trivially on the helicity

of the combined parton, ij, but they have a trivial color structure. In the soft limit, the

matrix element factorizes as

|M0(1, . . . , j, . . . , n)|2 j→soft−→ −
∑
i,k 6=i

8πµ2εαs
pipj

× 〈m0(1, . . . , i, . . . , k, . . . , n)|Ti ·Tk Qik
Qij +Qkj

|m0(1, . . . , i, . . . , k, . . . , n)〉 .
(3.7)

The color insertion operators Ti ·Tk are the same as in eq. (2.2). The full insertion operator

has a trivial helicity dependence. Refs. [91, 92] combines the two above equations into a

6The cancellation is not necessarily local because the parametrization of the observable in terms of

kinematical variables may differ from the actual real-emission kinematics.
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single factorization formula, which holds both in the soft and in the collinear region. The

full matrix element is then approximated by a sum of dipole terms, which are defined as

Dij,k(1, . . . , n) = − 1

2pipj
(3.8)

× 〈m0(1, . . . , ij, . . . , k, . . . , n)|Ti ·Tk

T2
ij

V̂ij,k(z, kT , ε) |m0(1, . . . , ij, . . . , k, . . . , n)〉 .

The insertion operators V̂ij,k(z, kT , ε) are based on the collinear splitting operators

P̂ij,i(z, kT , ε), and modified such that Qik/(Qij +Qkj) is recovered in the soft limit.

This formula is exploited for matching in the following way:

1. The color insertion operators are identical to the ones in the anomalous dimension Γ.

Upon replacing V̂ij,k(z, kT , ε) by 2 logQ(ij)k/Q12, and rescaling by 1/a, we obtain the

term proportional to Re[Γαβ]Hαβ/cαβH
αβ in eq. (3.5). This is the only term with a

non-trivial color structure.

2. The dipole splitting operators V̂ij,k(z, kT , ε) cancel the singularities in the real-

emission matrix element that we match to, in particular in the collinear limit, where

eq. (3.8) reduces to eq. (3.6). Upon replacing V̂ij,k by P̂ij,i, restricting doubly loga-

rithmic terms to the appropriate region of phase space, and rescaling by 1/(a + bl),

we obtain G12 and the term proportional to Bl in G11.7

The factorization of the one-emission phase space is derived in refs. [91, 92] in terms of

variables that represent scaled invariant masses and light-cone momentum fractions. Based

on these quantities we define two new variables, v and z, as

v =



yij,k FF dipoles

1− xij,a
1− xB

FI dipoles

ui IF dipoles

vi
1− xB

II dipoles

, z =



z̃j or z̃i FF dipoles

z̃j or z̃i FI dipoles

1− xik,a
1− xB

IF dipoles

1− xi,ab
1− xB

II dipoles

. (3.9)

In this context, xB is the Bjørken-x of the Born process, pertaining to the initial-state

leg for which the dipole is computed. The terms involving xB are included to obtain the

correct integration range as compared to the resummation, which is performed on Born

kinematics, while eq. (3.8) is computed for real-emission kinematics.

We restrict the phase space for the double-logarithmic term in soft-enhanced splitting

operators to the region za > v (for terms singular as z → 0). This corresponds to

the requirement that the gluon rapidity in the rest frame of the radiating dipole be

predominantly positive, and it generates the correct logarithmic dependence of G11 in

eq. (3.5) [47–50]. More importantly it ensures that the soft-collinear singularity structure

7For details on the definition of the integration region leading to G11, see refs. [47–50].
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of the real-emission matrix element is mapped out by the matching terms locally in the

real-emission phase space.

Matching terms originating in dipoles with initial-state emitter or spectator are scaled

by a ratio of parton densities, which accounts for the fact that the resummation starts

from Born kinematics, while the dipole terms in eq. (3.8) have real-emission kinematics.

This modification induces a single-logarithmic dependence on the observable, which is

compensated by the explicit collinear counterterms in the expansion, i.e. the last term in

eq. (3.5). This term is computed independently.

Figures 7 and 8 show in red the O(αs) expansion of the resummation, eq. (3.5). We

plot the result as a function of ln v, using two observable types of different behavior with

respect to the Caesar coefficients a and bl (a = bl = 1 for thrust variables, on the left,

while a = 2, bl = 0 for jet rates, on the right. In both cases dl = gl(φ) = 1). The leading

double logarithm appears as a straight line, while the sub-leading single logarithms appear

as a constant offset. The collinear mass-factorization counterterms (the last term in the

square bracket of eq. (3.5)) are shown in magenta, and the leading-order matching terms

are displayed in blue. The sum of all the above is given in black. This sum is to be

compared to a direct leading-order calculation, which is shown in black dashed. The

difference between the two predictions should be of purely statistical nature, which is

verified in the bottom panel of each plot by testing the relative size of the deviation,

normalized to the Monte-Carlo uncertainty.

3.3 A proof of concept: transverse thrust

In order to demonstrate the completeness of our framework, we compute the resummed

and matched distribution for a specific observable. We concentrate on the hadron-collider

variant of the thrust observable, i.e. transverse thrust T⊥. This global event-shape

observable is defined as

T⊥ = max
~n⊥

∑
i |~p⊥i · ~n⊥|∑

i p⊥i
, (3.10)

where the sum runs over all final-state particles, with ~p⊥i the particle’s momentum trans-

verse to the beam direction, and p⊥i = |~p⊥i|. The maximimal T⊥ is found by variation of

the transverse unit vector ~n⊥. Transverse thrust has been studied by the Tevatron experi-

ments [118, 119] and, more recently, also by the ATLAS [120] and CMS [121] collaborations.

Perturbative calculations for this distribution exist at NLO [122] and also at the resummed

level in the Caesar framework [47–50]. In particular, the event shape that vanishes at Born

level is τ⊥ = 1−T⊥. Details of the resummation for a generic global event shapes are given in

appendix B. The response of the observable in the presence of soft / collinear emissions (see

eq. (3.3)) is parametrized by the coefficients given in table 1. Because the underlying Born

processes is a 2→ 2 QCD scattering, the color structure is non-trivial, hence we are able to

put at work our construction of the soft function. In figures 9 and 10, we plot the transverse

thrust distribution for pp collisions at 8 TeV. We apply asymmetric cuts on the two leading

jets, i.e. p⊥1 > 100 GeV, p⊥2 > 80 GeV and we set µR = µF = HT /2, with HT =
∑

i p⊥i.

In particular, the plot in figure 9 is analogous to the ones already shown in section 3.2

and it provides yet another check of our matching procedure: the sum of the explicit
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Figure 7. Test of the quasi-local matching procedure for hard processes with external quarks.

Thrust (left panels) and leading jet rate (right panels) are compared between leading order and the

first-order expanded resummed and matched prediction for e+e− → qq̄ (top), e+q → e+q (middle)

and qq̄ → e+e− (bottom), all mediated by photon and Z-boson exchange.
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Figure 8. Test of the quasi-local matching procedure for hard processes with external gluons.

Thrust (left panels) and leading jet rate (right panels) are compared between leading order and the

first-order expanded resummed and matched prediction for τ+τ− → gg (top), τ+g → τ+g (middle)

and gg → τ+τ− (bottom), all mediated by Higgs-boson exchange.
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leg l al bl dl gl(φ)

1 1 0 1/ sin θ 1− | cosφ|
2 1 0 1/ sin θ 1− | cosφ|
3 1 1 1/ sin2 θ sin2 φ

4 1 1 1/ sin2 θ sin2 φ

Table 1. Coefficients of the Caesar formula that specify the NLL resummation of transverse

thrust [47–50]. They correspond to the choice for the hard scale Q =
√
s; θ being the scattering

angle in the partonic centre of mass frame, and φ denoting the azimuth.
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Figure 9. Test of the matching procedure for transverse thrust. The leading-order prediction is

compared to the first-order expanded resummed and the LO matching term.

expansion of the resummation (red), the collinear counterterm (magenta) and the LO

matching term (blue) is plotted in solid black and it has to be compared to the LO

calculation (dotted black). The bottom panel shows that the difference between the two

is zero, within the Monte Carlo uncertainty.

Finally, in figure 10 we plot the resummed and matched distribution for transverse

thrust (black curve). For comparison, we also show the resummation on its own (red curve).

We show two possible choices for the hard scale: Q =
√
s (on the left) and Q = HT /2 (on

the right). The latter, more natural in hadron-hadron collisions, corresponds to a rescaling

of the resummation coefficients in table 1, namely dl → dl (HT /2/
√
s)
a
.The key feature of

this plot is that the soft function and matching are computed in a fully automated way

at run-time, leading to NLL resummed and matched distributions with a similar level of

automation as Monte Carlo event generators.

– 22 –



J
H
E
P
0
2
(
2
0
1
5
)
1
0
6

 > 80 GeV
T,j2

p

 > 100 GeV
T,j1

p

 jj @ 8 TeVpp

sQ = 

Resummation

Matched

b
]

µ[
  

/d
ln

d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ln
-5 -4 -3 -2 -1

 > 80 GeV
T,j2

p

 > 100 GeV
T,j1

p

 jj @ 8 TeVpp

/2
T

Q = H

Resummation

Matched

b
]

µ[
  

/d
ln

d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ln
-5 -4 -3 -2 -1

Figure 10. The transverse-thrust distribution for pp collisions at 8 TeV, with asymmetric cuts

p⊥1 > 100 GeV, p⊥2 > 80 GeV.

4 Conclusions and outlook

Multi-jet physics is central in the physics program of the LHC. In this paper, we have

overcome the two main technical difficulties that prevented NLL resummed calculations to

be performed in processes with high jet multiplicity.

The first issue was related to the color structure of soft emissions at wide angle, i.e.

away from the jets, the complexity of which rapidly increases with the number of hard jets.

We have solved this problem by constructing and implementing a framework in which the

NLL soft function is computed in an highly automated way. The algorithm constructs an

appropriate color basis for the partonic process at hand, and evaluates color operators and

the decomposition of Born amplitudes in this basis. It makes use of the matrix-element

generator Comix to access the color-ordered partial amplitudes that are needed for the

evaluation of the soft function. Using this framework, we have obtained and validated

results for the soft function for all QCD processes with up to five hard jets in the final

state, i.e. 2→ 5 QCD amplitudes, and we have studied the validity of the widely used large

NC approximation. We have found that the impact of finite-NC corrections is significant,

especially for processes with many gluons.

We have tackled the second problem of matching resummed predictions to fixed-order

calculations. In the traditional way of addressing this problem, one matches the resummed

distribution of a given observable v to the one obtained at fixed-order (typically NLO). The

main drawback of this approach is that the fixed-order result and the expanded resummed

result have to be computed independently in extreme regions of phase space, i.e. at very

small v, where numerical cancellation is hard to achieve. We improve upon this situation

by introducing a quasi-local matching scheme at leading order, which generates the finite

remainder directly. As a proof of concept, we computed within our framework the NLL

transverse-thrust distribution matched to LO. Although in this study we have mainly
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concentrated on global event shapes, our framework can be easily extended to the case of

non-global observables.

We see this rather technical paper as the first necessary step in a rich program aimed at

the phenomenological applications of resummed perturbation theory in multi-jet physics.

Moreover, because we implement resummed calculations in the Sherpa framework, we have

the possibility of making precise comparisons between analytic resummation and Monte-

Carlo parton showers. This will provide insights on the benefits and limitations of both

approaches and perhaps even indicate ways to improve the formal accuracy of the parton

shower.
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A Over-complete color bases

Color bases constructed from irreducible QCD representations do not meet our require-

ment 1 of the list in section 2.1. Although we do not automate the construction of or-

thonormal bases this for work, we do employ their generic properties in several arguments

throughout this section. For a complete approach to their construction see [97].

We define an orthogonal basis element eα so that

〈eβ|eα〉 = eβα = λαδβα , (no sum on α) (A.1)

where λα is the weight of the representation. For a given physical process, the dimension-

ality of the orthogonal e-basis may differ from the c-basis, in which case the indices in

eq. (2.8) versus eq. (A.1) also differ. Starting with the metric eαβ, we define the (possibly

non-square) transformation to the c-basis via

R :→ R α′
α eα′β′(R

T )β
′

β = cαβ Rαα′e
α′β′(RT ) β

β′ = cαβ. (A.2)

As both cαβ and cαβ are symmetric, their (independent) eigenvectors correspond to the

row elements of R providing a straight-forward construction.
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A.1 General proofs for the NC = 3 + ε expansion

Lemma 1. Assuming NC = 3 + ε, with ε > 0 and ε � 1, we can cleanly separate the

finite part of the inverse metric from the divergent one, i.e.

cαβ|NC=3+ε =
1

ε
c̃αβ + cαβR |NC=3 +O(ε), (A.3)

where cαβR and c̃αβ are regular at NC = 3.

Proof. For general NC , the metric can be brought to diagonal form where the λα are

polynomial in NC corresponding to the weights of irreducible representations, which in the

limit ε→ 0 are either O(1) or O(ε). In the latter case, let us parameterize such eigenvalues

as λ0 = κε where κ is a constant.8

The inverse of the orthogonal metric is a matrix with diagonal entries 1/λα. We

construct the tensor c̃αβ by rotating only the 1/λ0 components back to the c-basis. Defining

α′0 as the indices running over the vanishing weights we have

c̃αβ = κRαα′0
δα
′
0β
′ (
RT
) β

β′
. (A.4)

Lemma 2. All color products Ti · Tj belong to the null space of the singular part of the

inverse metric, i.e.

c̃αβ(Ti · Tj)βγ = 0αγ . (A.5)

Corollary. An interesting, and computationally advantageous, consequence of the above

Lemma is that in order to obtain

S(ξ)NC=3+ε = S(ξ)NC=3 +O(ε) . (A.6)

we only have to evaluate the color metric and its inverse with NC = 3+ ε, while computing

all color producs Ti · Tj at NC = 3. Therefore, the inversion of the metric at NC = 3 + ε

(with ε small) provides a valid alternative to dimensional reduction for computing the soft

function.9

Proof. Rotating c̃ αβ to the e-basis we define an element

〈eα| = 〈cα′ |Rα
′
α , (A.7)

so that for every 0 eigenvalue of cαβ there is a corresponding element 〈eα0 | in the orthogonal

basis which satisfies

〈eα0 |eβ〉 = 0 ∀β . (A.8)

8The case λα|NC=3 = O(ε2) is in principle possible and it would lead to an O( 1
ε2

) term in eq. (A.3).

However, this situation has not been encountered for any of the color-flow bases considered in this study.
9A difficulty arises in our method for the case of 6 gluon soft evolution in the trace basis. The problem

is linked to the fact that 9 of the vanishing NC = 3 eigenvalues are negative for 3 < NC . 3.32. Therefore,

an inversion algorithm for NC = 3 + ε dependent on positive definiteness of the (symmetric) metric is

incompatible. However, this problem is avoided by choosing the f -basis, which is positive definite for all

processes considered thus far, or inverting using a (much slower) more generic algorithm. A similar problem

arises in the standard basis for qq → qqggg.
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Since Ti · Tj |eβ〉 is a coefficient times an element of the orthogonal basis, we conclude that

(Ti ·Tj)α0β = 0. Repeating the argument and noting that cαβ is symmetric, we conclude

that the corresponding rows and columns of (Ti ·Tj) are zero. In the e-basis we clearly have

δαα0〈eα0 |Ti ·Tj |eγ〉 ⇒ c̃αβ(Ti ·Tj)βγ = 0αγ , (A.9)

which gives the desired result.

In order to demonstrate the corollary we evaluate all color products at NC = 3+ ε and

we then write the soft anomalous dimension eq. (2.2) at small ε as

Γαβ|NC=3+ε = Γαβ|NC=3 + ε Γ̃αβ|NC=3 . (A.10)

The first term contributing to the soft function S which involves the inverse metric comes

from expanding the exponential to second order

S(ξ) ∼ ξ2

2!

[
Γβα + ε Γ̃βα

] [
cαγR +

1

ε
c̃αγ
] [

Γγα′ + ε Γ̃γα′
]
. (A.11)

Using (A.5) on all the color products that enter the definition of Γ, one finds no finite

terms originating from the interference of the 1/ε pole of the inverse metric and the O(ε)

contribution to the anomalous dimensions. Furthermore, this holds for higher terms in the

expansion of the exponential. Therefore, all the color products necessary to construct the

soft anomalous dimension can be safely computed at NC = 3, while it is still necessary to

compute the metric and its inverse at NC = 3 + ε

Finally, we note that using NC = 3+ε to invert the metric involves a large cancellation

among the entries of cαβ. However, the convergence is better than expected since the coef-

ficients of 1/ε are roughly proportional to the number of corresponding 0-representations,

which is smaller than the total number of irreducible representations for a given process.

A.2 A concrete example: gg → gg

We list here several different manifestations of the 4-gluon basis as specific examples for

our more general discussion in the text.

Trace basis. Let us consider the trace basis for this process:

c1 = Kc(ta1ta2ta3ta4 + ta1ta4ta3ta2), c4= Kdδa1a2δa3a4 ,

c2 = Kc(ta1ta2ta4ta3 + ta1ta3ta4ta2), c5= Kdδa1a3δa2a4 ,

c3 = Kc(ta1ta3ta2ta4 + ta1ta4ta2ta3), c6= Kdδa1a4δa2a3 , (A.12)

where tai are the color generators in the fundamental representation and a trace over their

fundamental-representation indices is implicit. Note that Kc = NC(16N6
C−3N4

C +16N2
C−

6)−
1
2 and Kd = (N2

C−1)−1, so that the basis is normalized. The tree-level partial amplitude

coefficients corresponding to these color basis elements are

c1 → m0(1, 2, 3, 4), c2 → m0(1, 2, 4, 3), c3 → m0(1, 4, 2, 3), c4 = c5 = c6 = 0. (A.13)
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Dimensionally reduced trace basis. The basis in eq. (A.12) is over-complete and

consequently the color metric is not invertible for NC = 3. However, if we consider a

reduced basis, obtained by taking

c′1 = c1, c′2= c2, c′3 = c3, c′4=
K ′d
Kd

(c4 + c6), c′5 =
K ′d
Kd

(c5 + c6), (A.14)

where K ′d = 1/
√

2N2
C(N2

C − 1), the metric is then invertible for NC = 3, the connected

components remain synced with the hard matrix (A.13), and the resulting S(NC = 3) is

unchanged.

Adjoint basis. We can now write the 5-dimensional f -basis

c1 = Kaf
a1a4e1fe1a3a2 , c2 = Kaf

a1a3e1fe1a4a2 ,

c3 = Kdδa1a4δa2a3 , c4 = Kdδa1a2δa3a4 , c5 = Kdδa1a3δa2a4 , (A.15)

where Ka = (4N2
C(N2

C − 1))−
1
2 and Kd = (N2

C − 1)−1. We can make connection to the

trace basis by repeated application of the fundamental Lie algebra to see that

c1 = Ka [(ta1ta2ta4ta3 + ta1ta3ta4ta2)− (ta1ta2ta3ta4 + ta1ta4ta3ta2)] ,

c2 = Ka [(ta1ta2ta3ta4 + ta1ta4ta3ta2)− (ta1ta4ta2ta3 + ta1ta3ta2ta4)] . (A.16)

in terms of fundamental representation generators. The hard coefficients are the same

partial ordered amplitudes though we now have multi-peripheral labelling

c1 → m0(1, 3, 4, 2), c2 → m0(1, 4, 3, 2), c3 = c4 = c5 = 0. (A.17)

The evaluation of S(ξ) in the adjoint basis is equivalent to the trace basis at NC = 3.

Inversion with NC = 3 + ε. We consider here the trace basis for NC = 3 + ε. We note

that there are no additional null eigenvalues for NC 6= 3. We then take the ε → 0 limit

and expand the matrix representing the color metric in terms of its regular and singular

pieces, as in eq. (A.3). The residue of the 1/ε pole is

c̃αβ =

 K3×3(23
27) K3×3(

√
92
243)

K3×3(
√

92
243) K3×3(4

9)

 , (A.18)

where K3×3(a) is a 3 × 3 matrix with each element equal to a. The matrix in eq. (A.18)

is precisely the trace-basis form for the inverse eigenvalue λ0 ∼ 1/ε of the NC = 3 0-

representation in the orthogonal basis. One can verify that the matrix (Ti · Tj)αβ at

NC = 3 for all i and j is in the null space of c̃αβ. This a concrete manifestation of the

behavior expected from the discussion in appendix A.1.

A.3 Bases properties for multi-parton processes

In tables 2 and 3 we summarize the main properties of the multi-parton processes considered

in section 2.
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Sub-process gggg qq̄gg qq̄qq̄ ggggg qq̄ggg qq̄qq̄g

Dim. basis 5 3 2 16 10 4

Dim. Born 2 2 2 6 6 4

zero eigenvalues 0 0 0 0 0 0

Table 2. Summary of basis properties for all 4- and 5-parton processes. Pure gluon processes are

listed in the adjoint f -basis.

Sub-process 6g qq̄4g qq̄qq̄gg qqqqq̄q 7g qq̄5g qq̄qq̄3g qq̄qq̄qq̄g

Dim. basis 79 46 14 6 421 252 62 18

Dim. Born 24 24 12 6 120 120 48 18

zero eigenvalues 5 6 1 0 70 75 12 1

Table 3. Summary of basis properties for all 6- and 7-parton processes. Pure gluon processes are

listed in the adjoint f -basis.

B The Caesar framework

Caesar [47–50] is a computer program that allows one to perform the resummation of a

large class of observables, namely global event shapes, to NLL accuracy. In this appendix we

recap, without re-deriving them, the expressions of the leading and next-to-leading function

g
(δ)
1 and g

(δ,B)
2 in eq. (3.2) as obtained in the Caesar framework. The LL function reads

g
(δ)
1 (αSL) =

−
n∑
l=1

Cl
2πβ0λbl

[
(a− 2λ) ln

(
1− 2λ

a

)
− (a+ bl − 2λ) ln

(
1− 2λ

a+ bl

)]
, (B.1)

where λ = αSβ0L, αS = αS(µ2
R) and β0 is the one-loop coefficient of the QCD β-function,

β(αS) = −αS

(
αSβ0 + α2

S β1 + . . .
)
, with

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CFnf

24π2
. (B.2)

The result in eq. (B.1) consists of a sum over all the hard partons and the dependence on

the color is trivial and only enters through the Casimir of each leg l, (CF for a quark leg,

CA for a gluon leg). Note also that a1 = a2 = · · · = an = a > 0.

The result for the NLL function g
(δ,B)
2 has a richer structure:

g
(δ,B)
2 (αSL) = −

n∑
l=1

Cl

[
r

(2)
l

bl
+Bl T

(
L

a+ bl

)]
+ ∂L

[
Lg

(δ)
1 (αSL)

](
ln d̄l − bl ln

2El
Q

)

+

ninitial∑
l=1

ln
q(l)(xl, µ

2
F e
− 2L
a+bl )

q(l)(xl, µ
2
F )

+ lnF
(
∂LLg

(δ)
1 (αSL)

)
− T (L/a)

n∑
l=1

Cl ln
Q12

Q
+ lnS (T (L/a)) . (B.3)
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The first term in the square brackets in eq. (B.3) contains the two-loop contributions to

the DGLAP splitting function in the soft limit and to the QCD β-function, as well as the

dependence on the renormalization scale µR:

r
(2)
l =

(
K

4π2β2
0

− 1

2πβ0
ln
µ2
R

Q2

)[
(a+ bl) ln

(
1− 2λ

a+ bl

)
− a ln

(
1− 2λ

a

)]
+

β1

2πβ3
0

[
a

2
ln2

(
1− 2λ

a

)
− a+ bl

2
ln2

(
1− 2λ

a+ bl

)
+ a ln

(
1− 2λ

a

)
−(a+ bl) ln

(
1− 2λ

a+ bl

)]
, with K = CA

(
67

18
− π2

6

)
− 5

9
nf . (B.4)

The second term in the square brackets instead captures hard collinear emissions to a quark

leg (Bq = −3
4) or to a gluon leg (Bg = −πβ0); we have introduced

T (L) =
1

πβ0
ln

1

1− 2αsβ0L
(B.5)

The last term of the first line of eq. (B.3) contains

ln d̄l = ln dl +

∫ 2π

0

dφ

2π
ln gl(φ), (B.6)

while El is the energy of leg l. We note that the contribution in this round brackets is

actually frame-independent. We move then to the second line of eq. (B.3) and the first

term we encounter is the one that depends on the PDFs (µF is the factorization scale).

This contribution comes about because we veto emissions collinear to the incoming legs

which would contribute to the event shape more than a quantity v. There is then a term

(F) describing the effect of multiple emissions. The calculation of this term is highly non-

trivial for generic observables and indeed this is one of the central aspects of the analysis

of refs. [47–50]. However, at NLL, multiple emissions have a color structure identical to

g
(δ)
1 , thus this term is trivial from the point of view of our current analysis. For additive

observables, like, for instance, transverse thrust considered in section 3.3, this multiple-

emission contribution has a rather simple form

F(L) =
e
γE∂L

(
Lg

(δ)
1 (αSL)

)
Γ
(

1− ∂L
(
Lg

(δ)
1 (αSL)

)) . (B.7)

Finally, in the last line we encounter the contributions due to soft radiation at large angle,

which we can, for convenience, divide into a diagonal contribution and one with a non-

trivial matrix structure.

Thus, all the terms but the last one in the Caesar master formula eq. (B.3) are

diagonal in color and therefore apply to processes with an arbitrary number of hard legs.

The results of section 2 provide an automated way of computing the only contribution at

NLL with a non-trivial color structure, namely the soft function S, which captures the

effect of soft gluon emitted at wide angles.
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[33] L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements,

JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].

[34] F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002)

015 [hep-ph/0205283] [INSPIRE].

– 31 –

http://dx.doi.org/10.1016/j.cpc.2013.03.018
http://dx.doi.org/10.1016/j.cpc.2013.03.018
http://arxiv.org/abs/1209.0100
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0100
http://dx.doi.org/10.1007/JHEP04(2013)037
http://arxiv.org/abs/1211.6316
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6316
http://dx.doi.org/10.1103/PhysRevD.85.031501
http://dx.doi.org/10.1103/PhysRevD.85.031501
http://arxiv.org/abs/1108.2229
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2229
http://dx.doi.org/10.1103/PhysRevD.88.014025
http://dx.doi.org/10.1103/PhysRevD.88.014025
http://arxiv.org/abs/1304.1253
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1253
http://dx.doi.org/10.1103/PhysRevD.89.034019
http://arxiv.org/abs/1309.6585
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6585
http://dx.doi.org/10.1103/PhysRevLett.111.131801
http://arxiv.org/abs/1307.4737
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4737
http://dx.doi.org/10.1016/0550-3213(84)90463-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B238,1
http://dx.doi.org/10.1016/0370-2693(85)90674-4
http://inspirehep.net/search?p=find+J+Phys.Lett.,B157,321
http://dx.doi.org/10.1016/0550-3213(88)90089-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B310,461
http://arxiv.org/abs/hep-ph/0601021
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601021
http://dx.doi.org/10.1103/PhysRevD.78.014026
http://arxiv.org/abs/0707.3652
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.3652
http://dx.doi.org/10.1088/1126-6708/2008/03/038
http://arxiv.org/abs/0709.1027
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1027
http://dx.doi.org/10.1007/JHEP01(2011)024
http://arxiv.org/abs/0909.5593
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.5593
http://dx.doi.org/10.1007/JHEP07(2012)042
http://arxiv.org/abs/1201.0260
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.0260
http://dx.doi.org/10.1007/JHEP06(2012)044
http://dx.doi.org/10.1007/JHEP06(2012)044
http://arxiv.org/abs/1202.4496
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4496
http://dx.doi.org/10.1088/1126-6708/2001/11/063
http://arxiv.org/abs/hep-ph/0109231
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0109231
http://dx.doi.org/10.1016/S0550-3213(02)00249-3
http://arxiv.org/abs/hep-ph/0108069
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0108069
http://dx.doi.org/10.1088/1126-6708/2002/05/046
http://arxiv.org/abs/hep-ph/0112284
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0112284
http://dx.doi.org/10.1088/1126-6708/2002/08/015
http://dx.doi.org/10.1088/1126-6708/2002/08/015
http://arxiv.org/abs/hep-ph/0205283
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0205283


J
H
E
P
0
2
(
2
0
1
5
)
1
0
6

[35] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower

simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

[36] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms,

JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

[37] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower

simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].
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[40] L. Lönnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers,

JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE].

[41] K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at

NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013)

082 [arXiv:1212.4504] [INSPIRE].

[42] K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson

production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE].
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