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Abstract. A conjecture of Hirose, Watanabe, and Yoshida offers a characterization of when
a standard graded strongly F -regular ring is Gorenstein, in terms of an F -pure threshold.
We prove this conjecture under the additional hypothesis that the anti-canonical cover of
the ring is Noetherian. Moreover, under this hypothesis on the anti-canonical cover, we
give a similar criterion for when a normal F -pure (resp. log canonical) singularity is quasi-
Gorenstein, in terms of an F -pure (resp. log canonical) threshold.

1. Introduction

Let R be an F -pure domain of positive characteristic, and a a nonzero proper ideal. The
F -pure threshold fpt(a) was defined by Watanabe and the second author of this paper [37];
it may be viewed as a positive characteristic analogue of the log canonical threshold, and is
an important measure of the singularities of the pair (SpecR, V (a)). For example, a local
ring (R,m) is regular if and only if fpt(m) > dimR− 1.

We say that R is strongly F -regular if fpt(a) > 0 for each nonzero proper ideal a of R.
It is well-known that each strongly F -regular ring is Cohen-Macaulay and normal; it is then
natural to ask: when is a strongly F -regular ring Gorenstein? Toward answering this in the
graded context, Hirose, Watanabe, and Yoshida proposed the following:

Conjecture 1.1. [20, Conjecture 1.1 (2)] Let R be a standard graded strongly F -regular ring,
with R0 an F -finite field of characteristic p > 0. Let m be the unique homogeneous maximal
ideal of R. Then fpt(m) = −a(R) if and only if R is Gorenstein.

We prove that the conjecture holds for many classes of (not necessarily strongly F -regular)
F -pure normal standard graded rings:

Theorem A (Corollaries 3.17, 4.12). Let R be an F -pure, normal, standard graded ring,
with R0 an F -finite field of characteristic p > 0. Let m denote the homogeneous maximal
ideal of R. Set X = SpecR, and suppose that the anti-canonical cover

⊕
n>0OX(−nKX)

of X is a Noetherian ring. Then fpt(m) = −a(R) if and only if R is quasi-Gorenstein.

Note that a ring is Gorenstein if and only if it is Cohen-Macaulay and quasi-Gorenstein.
Under the hypotheses of Theorem A, the anti-canonical cover

⊕
n>0OX(−nKX) is known to

be Noetherian in each of the following cases:

(1) R is Q-Gorenstein,
(2) R is a semigroup ring,
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(3) R is a determinantal ring,
(4) R is a strongly F -regular ring of dimension at most three,
(5) R is a four-dimensional strongly F -regular ring, of characteristic p > 5.

We give two proofs of Theorem A: the first has the advantage that it can be adapted to
obtain results in the local setting, e.g., Theorem 3.14. The second proof, while limited to
the graded context, provides a technique for computing the numerical invariants at hand; see
Proposition 4.3 for the case of determinantal rings. We describe the two techniques, after
recalling some definitions:

Recall that a ring R of prime characteristic p is called F -finite if the Frobenius map
F : R −→ F∗R is a finite map. Let R be a local or standard graded F -finite domain of
characteristic p > 0, and suppose that R is F -pure, i.e., the e-th iterated Frobenius map
F e : R −→ F e∗R with x 7−→ F e∗x

pe splits as an R-linear map for each e > 1. Given a nonzero
ideal a ( R, and integer e > 1, set νe(a) to be the largest integer r > 0 such that there exists
a nonzero element c in ar for which the composite map

R
F e

−−→ F e∗R
×F e
∗ c−−−→ F e∗R, where x 7−→ F e∗x

pe 7−→ F e∗ (cxp
e
),

splits as an R-module homomorphism. Then, fpt(a) is defined to be lime−→∞ νe(a)/pe.
The first proof of Theorem A uses an invariant c(a) that was originally introduced in [32]:

Given a nonzero ideal a ( R, this invariant is defined in terms of the Grothendieck trace of
the iterated Frobenius map Tre : F e∗ωR −→ ωR, where ωR is the canonical module of R. For
an F -pure normal graded ring (R,m), one has

fpt(m) 6 c(m) 6 −a(R),

with equality holding when R is a quasi-Gorenstein standard graded ring; see Propositions 3.5
and 3.6. Thus, it suffices to show that if fpt(m) = c(m), then R is quasi-Gorenstein. Gen-
eralizing the argument of [37, Theorem 2.7], we are indeed able to prove this when the
anti-canonical cover of R is Noetherian. We also use the invariant c(m) in answering another
question of Hirose, Watanabe, and Yoshida, [20, Question 6.7]; see Corollary 3.18.

Our second proof uses the so-called Fedder-type criterion: Writing the standard graded
ring R as S/I, for S a polynomial ring and I a homogeneous ideal, we characterize νe(m)

in terms of the ideal I [pe] :S I, and use this to show that −νe(m) equals the degree of a
minimal generator of the (1 − pe)-th symbolic power of ωR, see Theorem 4.1. Using this,
we give explicit computations of fpt(m) in many situations, e.g., for determinant rings and
for Q-Gorenstein rings, see Propositions 4.3 and 4.5. We also prove that if (R,m) is a Q-

Gorenstein normal domain, with index coprime to p, then the pair (R,mfpt(m)) is sharply
F -pure, Proposition 4.13.

Thus far we have discussed singularities in positive characteristic; we also prove analogous
result in characteristic zero. de Fernex-Hacon [10] extended the definition of log terminal
and log canonical singularities to the non-Q-Gorenstein setting, which can be regarded as
the characteristic zero counterparts of strongly F -regular and F -pure rings. Using their
definition, we formulate a characteristic zero analogue of Theorem A as follows:

Theorem B (Corollary 5.13). Let R be a standard graded normal ring, with R0 an alge-
braically closed field of characteristic zero. Set m to be the homogeneous maximal ideal of R.
Assume that X := SpecR has log canonical singularities in the sense of de Fernex-Hacon; set

lct(m) = sup{t > 0 | (X,mt) is log canonical in the sense of de Fernex-Hacon}.

(1) Then lct(m) 6 −a(R).
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(2) Suppose, in addition, that the anti-canonical cover
⊕

n>0OX(−nKX) is Noetherian.
Then lct(m) = −a(R) if and only if R is quasi-Gorenstein.

We remark that in the situation of Theorem B, the anti-canonical cover is Noetherian
whenever X has log terminal singularities in the sense of de Fernex-Hacon, or if R is Q-
Gorenstein. Thus, Theorem B gives an affirmative answer to a conjecture of De Stefani-
Núñez-Betancourt [11, Conjecture 6.9].

In order to prove Theorem B, we introduce a new invariant d(a) for an ideal a of a normal
variety X with Du Bois singularities, in terms of a variant of multiplier modules, see Defini-
tion 5.4. We are then able to employ the same strategy as in the first proof of Theorem A,
using d(a) in place of c(a).

Throughout this paper, all rings are assumed to be Noetherian (except possibly for anti-
canonical covers), commutative, with unity. By a standard graded ring, we mean an N-graded
ring R =

⊕
n>0Rn, with R0 a field, such that R is generated as an R0-algebra by finitely

many elements of R1.

2. Preliminaries on F -singularities

In this section, we briefly review the theory of F -singularities. In order to state the
definitions, we first introduce the following notation:

Let R be a ring of prime characteristic p > 0. We denote by R◦ the set of elements of R
that are not in any minimal prime ideal. Given an R-module M and e ∈ N, the R-module
F e∗M is defined by the following two conditions: (i) F e∗M = M as an abelian group, and
(ii) the R-module structure of F e∗M is given by r · x := rp

e
x for r ∈ R and x ∈ F e∗M . We

write elements of F e∗M in the form F e∗x with x ∈M . The e-th iterated Frobenius map is the
R-linear map F e : R −→ F e∗R sending x to F e∗x

pe . We say that R is F -finite if the Frobenius
map is finite, that is, F 1

∗R is a finitely generated R-module. When (R,m) is local, the e-th
iterated Frobenius map F e : R −→ F e∗R induces a map F e

Hi
m(R)

: H i
m(R) −→ H i

m(R) for each i.

We recall the definition of classical F -singularities:

Definition 2.1. Let R be an F -finite reduced ring of prime characteristic p > 0.

(1) We say that R is F -pure if the Frobenius map R −→ F∗R splits as an R-linear map.
(2) We say that R is strongly F -regular if for every c ∈ R◦, there exists a power q = pe of

p such that the R-linear map R −→ F e∗R sending 1 to F e∗ c splits.
(3) When (R,m) is local, we say that R is F -injective if FHi

m(R) : H i
m(R) −→ H i

m(R) is
injective for each i. In general, we say that R is F -injective if the localization Rm is
F -injective for each maximal ideal m of R.

(4) When (R,m) is local, we say that R is F -rational if R is Cohen-Macaulay and if for
every c ∈ R◦, there exists e ∈ N such that cF e

Hd
m(R)

: Hd
m(R) −→ Hd

m(R) sending z to

cF e
Hd

m(R)
(z) is injective. In general, we say that R is F -rational if the localization Rm

is F -rational for each maximal ideal m of R.

Next we generalize these to the pair setting, see [17, 30, 37]:

Definition 2.2. Let a be an ideal of an F -finite reduced ring R of prime characteristic p
such that a ∩R◦ 6= ∅.

(1) Suppose that R is local. For a real number t > 0, the pair (R, at) is sharply F -pure if

there exist q = pe and c ∈ adt(q−1)e such that the R-linear map R −→ F e∗R sending 1
to F e∗ c splits. The pair (R, at) is weakly F -pure if there exist infinitely many e ∈ N and
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associated elements ce ∈ abt(p
e−1)c such that each R-linear map R −→ F e∗R sending 1

to F e∗ ce splits.
When R is not local, (R, at) is said to be sharply F -pure (resp. weakly F -pure) if the

localization (Rm, a
t
m) at m is sharply F -pure (resp. weakly F -pure) for every maximal

ideal m of R.
(2) Suppose that R is F -pure. Then the F -pure threshold fpt(a) of a is defined as

fpt(a) = sup{t ∈ R>0 | (R, at) is weakly F -pure}.

(3) Suppose that R is a normal local domain and ∆ is an effective Q-divisor on X :=
SpecR. For a real number t > 0, the pair ((R,∆); at) is sharply F -pure if there exists

q = pe and c ∈ adt(q−1)e such that the R-linear map

R −→ F e∗OX(d(q − 1)∆e) with 1 7−→ F e∗ c

splits. The pair ((R,∆); at) is weakly F -pure if there exist infinitely many e ∈ N and

associated elements ce ∈ abt(p
e−1)c such that each R-linear map

R −→ F e∗OX(b(pe − 1)∆c) with 1 7−→ F e∗ ce.

splits. If, in addition, a = OX , then we simply say that (X,∆) is F -pure.
If (R,∆) is F -pure, then the F -pure threshold fpt(∆; a) of a with respect to the pair

(R,∆) is defined by

fpt(∆; a) = sup{t ∈ R>0 | ((R,∆); at) is weakly F -pure}.

Remark 2.3. (1) Sharp F -purity implies weak F -purity. When a = R, the sharp F -purity
and the weak F -purity of (R, at) are equivalent to the F -purity of R. Suppose that R is
F -pure. It is easy to check that if (R, at) is weakly F -pure with t > 0, then (R, at−ε) is
sharply F -pure for every t > ε > 0 (cf. [30, Lemma 5.2]). Thus,

fpt(a) = sup{t ∈ R>0 | (R, at) is sharply F -pure}.

(2) Our definition of the F -purity of (R,∆) coincides with the one in [17, Definition 2.1].

The following is a standard application of Matlis duality, which we will use in Section 3.

Lemma 2.4 (cf. [17, Proposition 2.4]). Let (R,m) be a d-dimensional F -finite normal local
ring of characteristic p > 0, ∆ be an effective Q-divisor on X = SpecR and a be a nonzero
ideal of R. For any real number t > 0, the pair ((R,∆); at) is weakly F -pure if and only if

there exist infinitely many e ∈ N and associated elements ce ∈ abt(p
e−1)c such that

ceF
e
X,∆ : Hd

m(ωX)
F e
X,∆−−−→ Hd

m(OX(bpeKX + (pe − 1)∆c)) ×ce−−→ Hd
m(OX(bpeKX + (pe − 1)∆c))

is injective, where F eX,∆ is the map induced by the R-linear map R −→ F e∗OX(b(pe − 1)∆c)
sending 1 to F e∗ 1.

The following is a reformulation of the so-called “Fedder-type criterion,” that we will use
in Section 4.

Proposition 2.5. Let S = k[x1, . . . , xn] be a polynomial ring over an F -finite field k of
characteristic p > 0 and I be a homogeneous ideal of S. Suppose that R := S/I is F -pure.
Given an e ∈ N and a homogeneous ideal a ⊂ S containing I such that aR ∩ R◦ 6= ∅, we
define the integer νe(a) by

νe(a) := max{r > 0 | ar(I [pe] : I) 6⊂ (xp
e

1 , . . . , x
pe

n )}.
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(1) For a real number t > 0, the pair (R, (aR)t) is sharply (resp. weakly) F -pure if and
only if νe(a) > d(pe − 1)te for some e (resp. νe(a) > b(pe− 1)tc for infinitely many e).

(2) fpt(aR) = lime−→∞ νe(a)/pe.

Proof. It follows from [36, Lemma 3.9] (where the criterion for F -purity is stated in the local
setting, but the same argument works in the graded setting). �

In order to generalize the definition of F -rational and F -injective rings to the pair setting,
we use the notion of at-tight closure and at-sharp Frobenius closure.

Definition 2.6. Let a be an ideal of a reduced ring R of prime characteristic p > 0 such
that a ∩R◦ 6= ∅, and t > 0 be a real number.

(1) ([18, Definition 6.1]) For an ideal I ⊆ R, the at-tight closure I∗a
t

of I is defined to be
the ideal of R consisting of all elements x ∈ R for which there exists c ∈ R◦ such that
cadt(q−1)exq ⊆ I [q] for all large q = pe.

(2) ([30, Definition 3.10]) For an ideal I ⊂ R, the at-sharp Frobenius closure IF]a
t

of I is

defined to be the ideal of R consisting of all elements x ∈ R such that adt(q−1)exq ⊆ I [q]

for all large q = pe.

(3) Suppose that (R,m) is local. The at-sharp Frobenius closure 0F]a
t

Hi
m(R)

of the zero sub-

module in H i
m(R) is defined to be the submodule of H i

m(R) consisting of all elements

z ∈ H i
m(R) such that adt(q−1)eF e

Hi
m(R)

(z) = 0 in H i
m(R) for all large q = pe.

The following technical remark is useful for the study of the invariant c(a), which will be
introduced in Section 3.

Remark 2.7. Let (R,m) be an F -finite reduced local ring of characteristic p > 0. Let
Tre : F e∗ωR −→ ωR be the e-th iteration of the trace map on R, that is, the ωR-dual of
the e-th iterated Frobenius map F e : R −→ F e∗R. It then follows from an argument similar

to the proof of [16, Lemma 2.1] that 0F]a
t

Hd
m(R)

= 0 if and only if∑
e>e0

Tre(F e∗ (adt(p
e−1)eωR)) = ωR

for every integer e0 > 0.

Definition 2.8. Let R be an F -finite Cohen-Macaulay reduced ring of prime characteristic
p > 0, a be an ideal of R such that a ∩R◦ 6= ∅, and t > 0 be a real number.

(1) ([32, Definition 6.1]) When R is local, (R, at) is said to be F -rational if J∗a
t

= J for
every ideal J generated by a full system of parameters for R.

(2) When R is local, (R, at) is said to be sharply F -injective if JF]a
t

= J for every ideal J
generated by a full system of parameters for R.

When R is not local, the pair (R, at) is said to be F -rational (resp. sharply F -injective)
if the localization (Rm, a

t
m) at m is F -rational (resp. sharply F -injective) for every maximal

ideal m of R. When a = R, this definition coincides with the one in Definition 2.1.

We review basic properties of sharply F -injective pairs and F -rational pairs.

Lemma 2.9. Let R be an F -finite reduced ring of prime characteristic p > 0, a be an ideal
of R such that a ∩R◦ 6= ∅, and t > 0 be a real number. Set d := dimR.

(1) Suppose that (R,m) is Cohen-Macaulay. Then the following are equivalent:
(a) (R, at) is sharply F -injective (resp. F -rational).
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(b) JF]a
t

= J (resp. J∗a
t

= J) for an ideal J generated by a full system of parameters.

(c) 0F]a
t

Hd
m(R)

= 0 (resp. 0∗a
t

Hd
m(R)

= 0).

(2) Suppose that R is F -rational.
(a) There exists a rational number t0 > 0 such that (R, at0) is sharply F -injective.
(b) If (R, at) is sharply F -injective with t > 0, then (R, at−ε) is F -rational for every

t > ε > 0.

(3) Suppose that (R,m) is local. If (R, at) is sharply F -pure, then 0F]a
t

Hi
m(R)

= 0 for every i.

When R is quasi-Gorenstein, (R, at) is sharply F -pure if and only if 0F]a
t

Hd
m(R)

= 0.

(4) Let (R,m) ↪−→ (S, n) be a flat local homomorphism of F -finite reduced local rings of
characteristic p > 0. Suppose that S/mS is a field which is a separable algebraic extension

of R/m. Then 0F]a
t

Hd
m(R)

= 0 if and only if 0
F](aS)t

Hd
n (S)

= 0.

Proof. We may assume throughout that (R,m) is local. Let J be an ideal generated by a full
system of parameters for R.

(1) The F -rational case follows from [32, Lemma 6.3] and the sharp F -injective case follows
from an analogous argument.

(2) First we will show (a). Fix a nonzero element f ∈ a. Since R is F -rational, there exists
e0 ∈ N such that fF e0

Hd
m(R)

: Hd
m(R) −→ Hd

m(R) is injective. Then for each n ∈ N, the map

f1+pe0+···+p(n−1)e0
Fne0
Hd

m(R)
: Hd

m(R) −→ Hd
m(R)

is also injective. Set t0 = 1/(pe0 − 1) and let z ∈ 0F]a
t0

Hd
m(R)

. Since

f1+pe0+···+p(n−1)e0
Fne0
Hd

m(R)
(z) ∈ at0(pne0−1)Fne0

Hd
m(R)

(z) = 0

for sufficiently large n, one has z = 0 by the injectivity of f1+pe0+···+p(n−1)e0Fne0
Hd

m(R)
. It follows

that 0F]a
t0

Hd
m(R)

= 0.

Next we will show (b). Let x ∈ J∗a
t−ε

. Since 1 is a parameter at−ε-test element by
[32, Lemma 6.8] (see [32, Definition 6.6] for the definition of parameter at−ε-test elements),

adt(q−1)exq ⊆ ad(t−ε)qexq ⊆ J [q] for all sufficiently large q = pe. Then the sharp F -injectivity

of (R, at) implies that x ∈ J , that is, J∗a
t−ε

= J .

(3) Let z ∈ 0F]a
t

Hi
m(R)

. Since (R, at) is sharply F -pure, there exist a sufficiently large q = pe

and c ∈ adt(p
e−1)e such that the R-linear map R −→ F e∗R sending 1 to F e∗ c splits, and

in particular, cF e
Hi

m(R)
: H i

m(R) −→ H i
m(R) is injective. Then z has to be zero, because

cF e
Hi

m(R)
(z) ∈ adt(p

e−1)eF e
Hi

m(R)
(z) = 0. That is, 0F]a

t

Hi
m(R)

= 0.

For the latter assertion, suppose that R is quasi-Gorenstein. Then by [30, Theorem 4.1],

(R, at) is sharply F -pure if and only if for infinitely many q = pe, there exists c ∈ adt(q−1)e

such that cF e
Hd

m(R)
: Hd

m(R) −→ Hd
m(R) is injective. Looking at the socle of Hd

m(R), we see

that this condition is equivalent to saying that 0F]a
t

Hd
m(R)

= 0.

(4) Since Hd
n (S) does not change by passing to the completion of S, we may assume that

S is complete. Let TreR : F e∗ωR −→ ωR (resp. TreS : F e∗ωS −→ ωS) denote the e-th iteration
of the trace map on R (resp. S). It then follows from the proof of [35, Lemma 1.5 (2)] that
TreR ⊗R S : F e∗ωR ⊗R S −→ ωR ⊗R S is isomorphic to TreS for each e ∈ N. By Remark 2.7,
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0F]a
t

Hd
m(R)

= 0 if and only if ⊕
e>e0

TreR :
⊕
e>e0

F e∗ (adt(p
e−1)eωR) −→ ωR

is surjective for every integer e0 > 0. Tensoring with S, we see that this condition is equivalent
to the surjectivity of ⊕

e>0

TreS :
⊕
e>e0

F e∗ (adt(p
e−1)eωS) −→ ωS

for every e0 > 0, which holds by Remark 2.7 again if and only if 0
F](aS)t

Hd
n (S)

= 0. �

3. Positive characteristic case I

We introduce a new invariant of singularities in positive characteristic, and study its basic
properties. Using this, we give a partial answer to Conjecture 1.1.

Definition 3.1. Let (R,m) be a d-dimensional F -finite F -injective local ring of characteristic
p > 0, a be an ideal of R such that a ∩ R◦ 6= ∅. For each integer i, the threshold ci(a) is
defined by

ci(a) = sup{t ∈ R>0

∣∣ 0F]a
t

Hi
m(R)

= 0}.

Note that ci(a) =∞ when H i
m(R) = 0. Also, we simply denote cd(a) by c(a).

Remark 3.2. Let R be an N-graded ring with R0 an F -finite field of characteristic p > 0,
and m the homogeneous maximal ideal of R. Then we can define ci(m) similarly, that is,

ci(m) = sup{t ∈ R>0

∣∣ 0F]m
t

Hi
m(R)

= 0}.

Since H i
m(R) ∼= H i

mRm
(Rm), we have the equality ci(m) = ci(mRm).

Lemma 3.3. Let the notation be the same as in Definition 3.1.

(1) If R is Cohen-Macaulay, then

c(a) = sup{t ∈ R>0 | (R, at) is sharply F -injective}.

(2) If R is F -rational, then

c(a) = sup{t ∈ R>0 | (R, at) is F -rational}.

(3) Suppose that R is F -pure. Then ci(a) > fpt(a) for each i. In addition, if R is quasi-
Gorenstein, then c(a) = fpt(a).

(4) c(a) is less than or equal to the height ht a of a.
(5) Suppose that R is Cohen-Macaulay and the residue field R/m is infinite. If J ⊂ R is

a minimal reduction of m, then md+1−dc(m)e ⊆ J .
(6) Suppose that R is Cohen-Macaulay. If c(m) > d−1, then R is regular and in particular

c(m) = d.

Proof. (1) (resp. (2), (3)) follows from Lemma 2.9 (1) (resp. (2), (3)).
(4) Since the trace map commutes with localization, by Remark 2.7, c(a) 6 c(aRp) for

every prime ideal p containing a. Localizing at a minimal prime of a, we may assume that
ht a = d. We can also assume by Lemma 2.9 (4) that the residue field R/m is infinite. Let

J be a minimal reduction of a, and we will show that 0F]a
t

Hd
m(R)

⊇ (0 : J)Hd
m(R) 6= 0 for every
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t > d. Let z ∈ (0 : J)Hd
m(R). Note that if t > d, then J [q] ⊇ adt(q−1)e for all large q = pe

(because adt(q−1)e = Jdt
′
q(q−1)ean for some fixed n ∈ N, where t′q = t− n/(q − 1)). Then

adt(q−1)eF e
Hd

m(R)
(z) ⊆ J [q]F e

Hd
m(R)

(z) = F e
Hd

m(R)
(Jz) = 0

for such q = pe, which implies that z ∈ 0F]a
t

Hd
m(R)

.

(5) It follows from Remark 2.7 that
∑

e>e0 Tre(F e∗ (md(c(m)−ε)(pe−1)eωR)) = ωR for all e0 ∈
Z>0 and for all c(m) > ε > 0 (when c(m) = 0, we put ε = 0). Multiplying by md+1−dc(m)e on
both sides, one has

md+1−dc(m)eωR = md+1−dc(m)e
∑
e>e0

Tre
(
F e∗ (md(c(m)−ε)(pe−1)eωR)

)
⊆
∑
e>e0

Tre
(
F e∗ (md(c(m)−ε)(pe−1)e+(d+1−dc(m)e)peωR)

)
⊆
∑
e>e0

Tre
(
F e∗ (mdpeωR)

)
⊆
∑
e>e0

Tre
(
F e∗ (J [pe]ωR)

)
⊆ JωR

for sufficiently large e0 and for sufficiently small ε > 0. Since R/J is the Matlis dual of

ωR/JωR, this means that md+1−dc(m)e ⊆ J .
(6) Let J be a minimal reduction of m; we may assume by Lemma 2.9 (4) that the residue

field R/m is infinite. It then follows from (5) that m = J , which means that m is generated
by at most d elements, that is, R is regular. If R is regular, then c(m) = fpt(m) = d by (3)
and [37, Theorem 2.7 (1)]. �

Example 3.4. Let S be the n-dimensional polynomial ring k[x1, . . . , xn] over an F -finite

field k. Let R = S(r) be the r-th Veronese subring of S and mR be the homogeneous maximal
ideal of R. Then fpt(mR) = n/r and c(mR) = dn/re.

When R is an N-graded ring, the i-th a-invariant ai(R) is defined by

ai(R) = max{n ∈ Z | [H i
m(R)]n 6= 0}

for each i. The following proposition can be viewed as an extension of [11, Theorem 4.3].

Proposition 3.5. Let R be an F -injective N-graded ring, with R0 an F -finite field of char-
acteristic p > 0. Let m be the homogeneous maximal ideal of R. Then ci(m) 6 −ai(R)
for each i. In particular, if R is F -pure, then by Lemma 3.3 (3), one has the inequality
fpt(m) 6 −ai(R) for every integer i.

Proof. We may assume that H i
m(R) 6= 0. We will then show that ci(m) 6 −ai(R) + ε, that

is, 0F]m
−ai(R)+ε

Hi
m(R)

6= 0, for every ε > 0. Note that ai(R) 6 0, because R is F -injective. Let

z ∈ [H i
m(R)]ai(R) be a nonzero element. Since d(−ai(R) + ε)(q − 1)e + ai(R)q > 0 for all

sufficiently large q = pe, one has

md(−ai(R)+ε)(q−1)eF eHi
m(R)(z) ⊆ [H i

m(R)]>0 = 0

for such q, which means that z ∈ 0F]m
−ai(R)+ε

Hi
m(R)

. �
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We record two cases in which the above result can be strengthened to an equality:

Proposition 3.6. Let R be an F -injective standard graded ring with R0 an F -finite field of
characteristic p > 0. Let m denote the homogeneous maximal ideal of R. Suppose that one
of the following conditions is satisfied:

(1) R is Cohen-Macaulay,
(2) R is normal and quasi-Gorenstein.

Then c(m) = −a(R).

Proof. Let d be the dimension of R. First, we assume that the condition (1) holds and we will
prove that c(m) > −a(R)−ε for every ε > 0. We may assume by Lemma 2.9 (4) that R0 is an
infinite field. Let J be a minimal reduction of m. As R is a Cohen-Macaulay standard graded
ring, J is generated by a homogeneous regular sequence of degree one. Then md+a(R)+1 is
contained in J but md+a(R) is not.

It is enough to show that JF]m
−a(R)−ε

= J by Lemma 2.9 (1) and Lemma 3.3 (1). Let

x ∈ JF]m−a(R)−ε
, and we may assume that the degree of x is less than or equal to d + a(R).

By definition, md(−a(R)−ε)(q−1)exq ⊆ J [q] for all sufficiently large q = pe. Thus,

xq ∈ (J [q] : Jd(−a(R)−ε)(q−1)e) ⊆ J [q] + Jdq−d(−a(R)−ε)(q−1)e−d+1.

The degree of xq is less than or equal to (d+ a(R))q, but dq − d(−a(R)− ε)(q − 1)e − d+ 1

is greater than (d+ a(R))q for sufficiently large q, so xq has to lie in J [q] for such q. It then

follows from the F -injectivity of R that x ∈ J , that is, JF]m
−a(R)−ε

= J .
Next, we assume that the condition (2) holds and we will show that c(m) > −a(R). It

is enough to show by Lemma 3.3 (3) that fpt(m) > −a(R). Let X = ProjR. Since R is a
quasi-Gorenstein normal standard graded ring, there exists a very ample divisor H on X such
that R =

⊕
n>0H

0(X,OX(nH)) and KX ∼ a(R)H. Note that X is globally F -split and
a(R) 6 0, because R is F -pure. It then follows from an argument similar to the proof of [31,
Theorem 4.3] that there exists an effective Cartier divisor D on X such that D ∼ (1−p)a(R)H
and that the composite map

OX −→ F∗OX −→ F∗OX(D) x 7−→ F∗x
p 7−→ F∗(sx

p)

splits as an OX -module homomorphism, where s is a defining section for D. This map induces
the R-linear map R −→ F∗R with 1 7−→ F∗s, which also splits. Since s belongs to m(1−p)a(R)

by the definition of D, the pair (R,m−a(R)) is sharply F -pure. Thus, fpt(m) > −a(R). �

Motivated by Conjecture 1.1, we propose the following conjecture.

Conjecture 3.7. Let (R,m) be an F -finite F -pure normal local ring of characteristic p > 0.
Then R is quasi-Gorenstein if and only if fpt(m) = c(m).

Remark 3.8. Conjecture 3.7 can fail if R is not normal. Indeed, [11, Example 5.3] and
Proposition 3.6 give a counterexample.

Conjecture 3.7 implies an extension of Conjecture 1.1.

Proposition 3.9. Let R be an F -pure normal standard graded ring, with R0 an F -finite field
of characteristic p > 0. Let m denote the homogeneous maximal ideal of R. Suppose that
Conjecture 3.7 holds for the localization Rm of R at m. Then R is quasi-Gorenstein if and
only if fpt(m) = −a(R).
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Proof. The “only if” part immediately follows from Lemma 3.3 (3) and Proposition 3.6. We
will show the “if” part. Suppose that fpt(m) = −a(R). Then by Remark 3.2, Lemma 3.3 (3)
and Proposition 3.6,

−a(R) = fpt(m) 6 fpt(mRm) 6 c(mRm) = c(m) = −a(R),

which implies that fpt(mRm) = c(mRm). It then follows from Conjecture 3.7 that Rm is
quasi-Gorenstein, which is equivalent to saying that R is quasi-Gorenstein. �

Theorem 3.10. Let (R,m) be an F -finite normal local ring of characteristic p > 0 and ∆ be
an effective Q-divisor on X := SpecR such that (X,∆) is F -pure and KX + ∆ is Q-Cartier
of index r. If R is not quasi-Gorenstein, then

fpt(∆;m) +
1

r
6 c(m).

Proof. Let d be the dimension of R. For every fpt(∆;m) > ε > 0 (when fpt(∆;m) = 0,
put ε = 0), by the definition of fpt(∆;m) and Lemma 2.4, there exist q0 = pe0 and c

in mb(fpt(∆;m)−ε)(q0−1)c such that

cF e0X,∆ : Hd
m(ωX) −→ Hd

m(OX(bq0KX + (q0 − 1)∆c))
is injective. We consider the following commutative diagram:

ωX ×Hd
m(R) //

��

Hd
m(ωX)

cF
e0
X,∆

��
OX(bq0KX + (q0 − 1)∆c)×Hd

m(R) // Hd
m(OX(bq0KX + (q0 − 1)∆c)),

where the left vertical map sends (x, z) to (cxq0 , F e0
Hd

m(R)
(z)).

For each 1/r > ε′ > 0, we will show that 0F]m
fpt(∆;m)+1/r−ε−ε′

Hd
m(R)

= 0, which implies the

assertion. Let ξ ∈ 0F]m
fpt(∆;m)+1/r−ε−ε′

Hd
m(R)

, that is, there exists q1 ∈ N such that

md(fpt(∆;m)+1/r−ε−ε′)(q−1)eF e
Hd

m(R)
(ξ) = 0

for all q = pe > q1. By the definition of weak F -purity, we may assume that q0 is sufficiently
large so that q0 > q1 and ε′(q0−1) > 2. Since R is not quasi-Gorenstein, r > 2 or ∆ is strictly
effective. In either case, the fractional ideal ωrX = OX(KX)r is contained in the fractional
ideal mOX(r(KX + ∆)). Therefore, for all x ∈ ωX , one has

cxq0 ∈ mb(fpt(∆;m)−ε)(q0−1)cωq0X

⊆ mb(fpt(∆;m)−ε)(q0−1)c+b(q0−1)/rcOX(bq0KX + (q0 − 1)∆c)

⊆ md(fpt(∆;m)+1/r−ε−ε′)(q0−1)eOX(bq0KX + (q0 − 1)∆c)
by the choice of q0. Since q0 > q1,

cxq0F e0
Hd

m(R)
(ξ) ∈ md(fpt(∆;m)+1/r−ε−ε′)(q0−1)eOX(bq0KX + (q0 − 1)∆c)F e0

Hd
m(R)

(ξ)

= 0 in Hd
m(OX(bq0KX + (q0 − 1)∆c)),

and it then follows from the commutativity of the above diagram that cF e0X,∆(xξ) = 0. The

injectivity of the map cF e0X,∆ implies that xξ = 0 for all x ∈ ωX . This forces ξ to be zero,

because ωX ×Hd
m(R) −→ Hd

m(ωX) is the duality pairing. Thus, 0F]m
fpt(∆;m)+1/r−ε−ε′

Hd
m(R)

= 0. �
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We give an example of a standard graded Cohen-Macaulay ring R that is F -pure, with
a(R) = −1 and fpt(m) = 0; this is based on [34]. The ring R is Q-Gorenstein, with index 2.

Example 3.11. Let k be a field of characteristic p ≡ 1 mod 4, and set

S = k[w, x, y, z]/(w4 + x4 + y4 + z4) .

By the characteristic assumption, the ring S is F -pure. SetR to be the k-subalgebra generated
by the monomials

w4, w3x, w2x2, wx3, x4, y4, y3z, y2z2, yz3, z4.

Then R is a direct summand of S as an R-module: one way to see this is to use the Z/4×Z/4-
grading on S under which degw = (1, 0) = deg x, and deg y = (0, 1) = deg z, in which case R
is the subring of S generated by elements of degree (0, 0). It follows that R is F -pure, normal,
as well as Cohen-Macaulay.

The ring R has a standard grading under which each of the monomials displayed is assigned
degree one. Computing the socle modulo the system of parameters x4, y4, z4, it follows that
a(R) = −1. By Proposition 3.6, we have c(m) = 1.

The fractional ideal

ωR =
1

w2x2
(w3x,w2x2, wx3)(y3z, y2z2, yz3)

is, up to isomorphism, the graded canonical module of R; its second symbolic power is

ω
(2)
R =

y2z2

w2x2
R,

so the ring R is Q-Gorenstein. Using Theorem 4.1, one checks that that νe(m) = 0 for each
e > 1. It follows that fpt(m) = 0.

Corollary 3.12. Let (R,m) be an F -finite F -pure normal local ring of characteristic p > 0.

(1) Suppose that there exists an effective Q-divisor ∆ on X = SpecR such that KX + ∆
is Q-Cartier, (X,∆) is F -pure and fpt(∆;m) = fpt(m). Then Conjecture 3.7 holds for
this R.

(2) If c(m) = 0, then R is quasi-Gorenstein.

Proof. (1) immediately follows from Theorem 3.10. We will show (2). Since R is F -pure,
then by [31, Theorem 4.3 (ii)], there exists an effective Q-divisor ∆ on X such that (R,∆) is
sharply F -pure with KX + ∆ Q-Cartier. Then

0 6 fpt(∆;m) 6 fpt(m) 6 c(m) = 0,

and the assertion follows from (1). �

When is the assumption of Corollary 3.12 (1) satisfied? If the pair (R,mfpt(m)) is sharply
F -pure, then by a similar argument to the proof of [31, Theorem 4.3 (ii)], there exists an

effective Q-divisor ∆ on X such that ((R,∆);mfpt(m)) is sharply F -pure with KX + ∆ Q-
Cartier. Then fpt(∆;m) = fpt(m), that is, the assumption of Corollary 3.12 (1) is satisfied.

Question 3.13 (cf. [20, Question 3.6]). Let (R,m) be an F -finite F -pure normal local ring of

characteristic p > 0. When is the pair (R,mfpt(m)) sharply or weakly F -pure?

We will show in Proposition 4.13 that if (R,m) is an F -pure Q-Gorenstein normal standard
graded ring over an F -finite field of characteristic p > 0 with Gorenstein index not divisible
by p, then (R,mfpt(m)) is sharply F -pure.

We now prove the main result of this section:
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Theorem 3.14. Let (R,m) be an F -finite F -pure normal local ring of characteristic p > 0.
Suppose that the anti-canonical cover

⊕
n>0OX(−nKX) of X := SpecR is Noetherian. Then

fpt(m) = c(m) if and only if R is quasi-Gorenstein.

Proof. Since
⊕

n>0OX(−nKX) is Noetherian, one can find an integer r > 1 satisfying the
following: for every q = pe, if we write q− 1 = rne + je with ne > 0 and r− 1 > je > 0, then

OX((1− q)KX) = OX(−rKX)neOX(−jeKX).

Suppose that R is not quasi-Gorenstein, and we will show that fpt(m) + 1
r 6 c(m). Let

ϕ1, . . . , ϕl be a system of generators for OX(−rKX).

For every fpt(m) > ε > 0, there exist a sufficiently large q = pe and c ∈ mb(fpt(m)−ε)(q−1)c

such that the R-linear map R −→ F e∗R sending 1 to F e∗ c splits (when fpt(m) = 0, put ε = 0
and c = 1). That is, there exists an R-linear map ϕ : F e∗R −→ R sending F e∗ c to 1. It follows
from Grothendieck duality that there exists an isomorphism

Φ: HomR(F e∗R,R) ∼= F e∗OX((1− q)KX) = F e∗ (OX(−rKX)neOX(−jeKX)) .

We write Φ(ϕ) =
∑

m F
e
∗ (ϕm1

1 · · ·ϕ
ml
l ψm) with ψm ∈ OX(−jeKX), where m runs through all

elements of {(m1, . . . ,ml) ∈ Zl>0 | m1 + · · ·+ml = ne}. Then

1 = ϕ(F e∗ c) = Φ−1

(∑
m

F e∗ (ϕm1
1 · · ·ϕ

ml
l ψm)

)
(F e∗ c)

=
∑
m

Φ−1
(
F e∗ (ϕm1

1 · · ·ϕ
ml
l ψm)

)
(F e∗ c).

Therefore, there exists m = (m1, . . . ,ml) ∈ Zl>0 with
∑l

i=1mi = ne such that

Φ−1(F e∗ (ϕm1
1 · · ·ϕ

ml
l ψm))(F e∗ c) is a unit. Replacing c by a unit multiple, we may assume

that Φ(ϕ) = F e∗ (ϕm1
1 · · ·ϕ

ml
l ψm).

Since each ϕi determines an effective divisor Di which is linearly equivalent to −rKX , the
section F e∗ (ϕm1

1 · · ·ϕ
ml
l ψm) lies in F e∗OX((1− q)KX −m1D1 − · · · −mlDl) and we have the

following commutative diagram:

F e∗OX((1− q)KX −m1D1 − · · · −mlDl) // F e∗OX((1− q)KX)

HomR(F e∗OX(m1D1 + · · ·+mlDl), R) //

OO

HomR(F e∗R,R),

Φ

OO

where the vertical maps are isomorphisms. Therefore, ϕ induces an R-linear map

F e∗OX(m1D1 + · · ·+mlDl) −→ R

sending F e∗ c to 1. Then its Matlis dual

cF e : Hd
m(ωR) −→ Hd

m(OX(qKX +m1D1 + · · ·+mlDl))

is injective. On the other hand, since R is not quasi-Gorenstein and rKX + Di ∼ 0, the
fractional ideal ωrX = OX(KX)r is contained in mOX(rKX +Di) for each i = 1, . . . , l. Hence,

ωqX is contained in mb(q−1)/rcOX(qKX+m1D1+· · ·+mlDl). It then follows from an analogous

argument to the proof of Theorem 3.10 that fpt(m) + 1
r 6 c(m). �

Remark 3.15. In the setting of Theorem 3.14, it is well-known that
⊕

n>0OX(−nKX) is
Noetherian if R is Q-Gorenstein, R is a normal semigroup ring or R is a determinantal ring.
We briefly explain the reason why

⊕
n>0OX(−nKX) is Noetherian in the latter case.
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Let R be the determinantal ring k[T ]/I, where T is an m × n matrix of indeterminates
with m 6 n, and I is the ideal generated by the size t minors of T where 1 6 t 6 m. Then
the anti-canonical class of R is the class of the (n−m)-th symbolic power of the prime ideal p
generated by the size t− 1 minors of the first t− 1 rows of T by [7, Theorem 8.8]. Moreover,
the symbolic powers of p coincide with its ordinary powers by [7, Corollary 7.10], so the
anti-canonical cover is the Rees algebra of pn−m. In particular, it is Noetherian.

Another case where
⊕

n>0OX(−nKX) is Noetherian is the following:

Corollary 3.16. Let X be a three-dimensional strongly F -regular variety over an alge-
braically closed field of characteristic p > 5 and x be a closed point of X. Then fpt(mx) =
c(mx) if and only if X is Gorenstein at x.

Proof. We may assume that X is affine. By [31, Theorem 4.3] and [17, Theorem 3.3], there
exists an effective Q-divisor ∆ on X such that KX +∆ is Q-Cartier and (X,∆) is strongly F -
regular and in particular is klt. Since the minimal model program holds for three-dimensional
klt pairs in characteristic p > 5, the anti-canonical cover

⊕
n>0OX(−nKX) is Noetherian

(see for example [9, Theorem 2.28]). Thus, the assertion follows from Theorem 3.14. �

A combination of Proposition 3.9, Theorem 3.14, Remark 3.15 and Corollary 3.16 gives an
extension of [20, Theorem 1.2 (2)]:

Corollary 3.17. Let R be an F -pure normal standard graded ring, with R0 an F -finite field
of characteristic p > 0. Let m be the homogeneous maximal ideal of R. Suppose that the
anti-canonical cover

⊕
n>0OX(−nKX) of X := SpecR is Noetherian. This assumption is

satisfied, for example, in each of the following cases:

(1) R is Q-Gorenstein,
(2) R is a semigroup ring,
(3) R is a determinantal ring,
(4) R is a strongly F -regular ring of dimension at most three,
(5) R is a four-dimensional strongly F -regular ring and p > 5.

Then fpt(m) = −a(R) if and only if R is quasi-Gorenstein.

Proof. If
⊕

n>0OX(−nKX) is Noetherian, then the assertion follows from Proposition 3.9
and Theorem 3.14. By Remark 3.15,

⊕
n>0OX(−nKX) is Noetherian in the case of (1), (2)

and (3). We will explain why
⊕

n>0OX(−nKX) is Noetherian in the case of (4) and (5).
Since two-dimensional strongly F -regular rings are Q-Gorenstein, we may assume that

dimX > 3. Also, since strong F -regularity is preserved under flat base change by [1, Theo-
rem 3.6], we may assume that R0 is algebraically closed field. Let D be a very ample divisor
on Y := ProjR so that R =

⊕
m>0H

0(Y,OY (mD)). It follows from [31, Theorem 1.1] that
Y is a normal projective variety of Fano type of dimension at most three. It is known that
the minimal model program holds for klt surfaces and also for three-dimensional klt pairs
in characteristic p > 5 (see [15, 2, 4]). Thus, applying essentially the same argument as the
proof of [3, Corollary 1.1.9], we can see that⊕

n>0

OX(−nKX) ∼=
⊕
m∈Z

⊕
n>0

H0(Y,OY (mD − nKY ))

is Noetherian. �

We also give an answer to [20, Question 6.7]. Before stating the result, we fix some notation.
Let M = Zd, N = HomZ(M,Z), and denote the duality pairing between MR := M ⊗Z R
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and NR := N ⊗Z R by 〈−,−〉 : MR × NR −→ R. Let σ ⊂ NR be a strongly convex rational
polyhedral cone and denote its dual cone by σ∨. Let R = k[σ∨ ∩M ] be the affine semigroup
ring over a field k defined by σ and m be the unique monomial maximal ideal of R. The
Newton Polyhedron P (m) ⊆ MR of m is defined as the convex hull of the set of exponents
m ∈M of monomials xm ∈ m. We define the function λm by

λm : σ∨ −→ R u 7−→ sup{λ ∈ R>0 | u ∈ λP (m)},

where we set λP (m) = σ∨ if λ = 0, and denote

aσ(R) := −min{λm(u) | u ∈ Int(σ∨) ∩M}.

Note that aσ(R) coincides with the a-invariant a(R) if R is standard graded.

Corollary 3.18. We use the above notation. Let R = k[σ∨ ∩ M ] be a (not necessarily
standard graded) affine semigroup ring over an F -finite field k of characteristic p > 0 defined
by σ.

(1) Then c(m) = −aσ(R).
(2) fpt(m) = −aσ(R) if and only if R is Gorenstein.

Proof. Since (2) follows from (1) and Theorem 3.14, we will show only (1). Let v1, . . . , vs be
the primitive generators for σ, that is, the first lattice points on the edges of σ. Note that
the graded canonical module ωR consists of the monomials xm such that 〈m, vi〉 > 1 for all
i = 1, . . . , s. Hence, its k-dual Hd

m(R) is written as

Hd
m(R) =

⊕
m∈S

kxm,

where S = {m ∈ M | 〈m, vi〉 6 −1 for all i = 1, . . . , s}. It follows from the fact that 1 is
an mt-test element by [18, Theorem 6.4] (see [18, Definition 6.3] for the definition of mt-
test elements) that the pair (R,mt) is F -rational if and only if for each m ∈ S, one has

mdtp
eexp

em 6= 0 in Hd
m(R), or equivalently,

(pem+ dtpeeP (m)) ∩ S 6= ∅,

for infinitely many e. We can rephrase this condition as saying that −m ∈ Int(tP (m)), using
an argument similar to the proof of [5, Theorem 3]. By Lemma 3.3 (2),

c(m) = sup{t ∈ R>0 | (R,mt) is F -rational}
= sup{t ∈ R>0 | −m ∈ Int(tP (m)) for all m ∈ S}
= min

u∈−S
λm(u).

Since −S = Int(σ∨) ∩M , one has the equality c(m) = −aσ(R). �

4. Positive characteristic case II

In this section we give a different interpretation of the function νe(m), where m is the
homogeneous maximal ideal of an F -pure normal standard graded domain R over an F -finite
field (Theorem 4.1). Combining it with the Fedder-type criteria (Proposition 2.5), we give
explicit computations of fpt(m) in many situations (e.g. Propositions 4.3 and 4.5), eventually
yielding Corollary 3.17 as a consequence (see Corollary 4.12).
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Theorem 4.1. Let S be an n-dimensional standard graded polynomial ring over an F -finite
field of characteristic p > 0. Let I be a homogeneous ideal such that R := S/I is an F -pure
normal domain. Let ωR denote the graded canonical module of R. Then, for each q = pe,
one has a graded isomorphism

I [q] :S I

I [q]
∼= (ωR(n))(1−q) .

In particular, if m is the homogeneous maximal ideal of R, then −νe(m) equals the degree of

a minimal generator of ω
(1−q)
R (See Proposition 2.5 for the definition of νe(m)).

Proof. After taking a flat base change, we may assume that S = k[x1, . . . , xn], where k

is a perfect field. It then follows that S is a free Sq-module with basis xi11 · · ·xinn where
0 6 ij 6 q − 1 for each j. Consider the homomorphism ϕ ∈ HomSq(S, Sq) that maps the
basis element (x1 · · ·xn)q−1 to 1, and every other basis element to 0. It is readily seen that ϕ
generates HomSq(S, Sq) as an S-module.

Let J be the ideal of Sq consisting of q-th powers of elements of I; note that JS = I [q].
Then

HomSq(S/I, Sq/J) ∼=
I [q] :S I

I [q]
ϕ,

see [12, page 465]. Next, note that one has graded isomorphisms

HomSq(S/I, Sq/J) ∼= HomRq(R,Rq)

∼= HomRq(R,HomRq(ωRq , ωRq))

∼= HomRq(R⊗Rq ωRq , ωRq)

∼= HomRq(ω
(q)
R , ωRq)

∼= HomRq(ω
(q)
R ⊗R R,ωRq)

∼= HomR(ω
(q)
R ,HomRq(R,ωRq))

∼= HomR(ω
(q)
R , ωR)

∼= ω
(1−q)
R .

Since the homomorphism ϕ has degree n− nq, the desired isomorphism follows.

Suppose ω
(1−q)
R is generated in degrees −d1 < · · · < −dr, then (I [q] :S I)/I [q] is generated

in degrees n(q − 1) − d1 < · · · < n(q − 1) − dr. Hence the least degree of a homogeneous

element of I [q] :S I that is not in m[q] belongs to the set

{n(q − 1)− d1, . . . , n(q − 1)− dr},
and I [q] :S I ⊆ mn(q−1)−d1 . Since the definition of νe(m) translates as

νe(m) = max{r ∈ N | (I [q] :S I) 6⊆ m[q] + mn(q−1)+1−r},
it follows that νe(m) ∈ {d1, . . . , dr}. �

As immediate consequence we get:

Corollary 4.2. If R is an F -pure quasi-Gorenstein standard graded normal domain, over
an F -finite field, with homogeneous maximal ideal m, then

fpt(m) = −a(R).

In particular, by Proposition 3.5, in this case a(R) > ai(R) for all i = 0, . . . ,dimR.
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Proposition 4.3. Let R be the determinantal ring k[T ]/I, where k is an F -finite field, the
matrix of indeterminates T has size m × n with m 6 n, and I is the ideal generated by the
size t minors of T where 1 6 t 6 m. Let m be the homogeneous maximal ideal of R. Then

fpt(m) = m(t− 1).

Remark 4.4. In the notation of the proposition, the ring R has a-invariant −n(t−1). It follows
that fpt(m) = −a(R) precisely when m = n or t = 1, i.e., if and only if R is Gorenstein.

In the case t = 2, the F -pure threshold has been calculated previously, see [8, Corollary 1]
or [20, Example 6.2]. Since I is a homogeneous ideal of k[T ], which is F -pure, one can also
ask for fpt(I). This threshold has been computed in [28] (see [19] for various generalizations):

fpt(I) = min

{
(m− l)(n− l)

t− l
∣∣ l = 0, . . . , t− 1

}
.

Proof of Proposition 4.3. The graded canonical module of R is computed in [6, Corollary 1.6],
namely, it equals qn−m(m−mt), where q is the prime ideal generated by the size t−1 minors
of the first t − 1 columns of the matrix T . The divisor class group of R is described by

[7, Corollary 7.10], from which it follows that ω
(1−q)
R is generated by elements of degree

−m(q − 1)(t− 1). Theorem 4.1 now gives

νe(m) = m(q − 1)(t− 1),

from which the result follows. �

Proposition 4.5. Let R be an F -pure Q-Gorenstein standard graded normal domain, over
an F -finite field, with homogeneous maximal ideal m. If c is the order of ωR in the divisor
class group and ω(c) is generated in degree D, then:

fpt(m) = D/c.

In particular, fpt(m) = −a(R) if and only if R is quasi-Gorenstein.

Proof. For q = pe let us write 1 − q = a(q)c + b(q), with 0 6 b(q) < c. By the assumptions
we have:

ω
(1−q)
R =

(
ω(c)

)a(q)
ω

(b(q))
R .

In particular, ω
(1−q)
R is generated in degrees d satisfying:

a(q)D +A 6 d 6 a(q)D +B,

where the minimal generators of ω
(b(q))
R have degrees between A and B. Therefore

−a(q)D −B 6 νe(m) 6 −a(q)D −A,
and fpt(m) = limq−→∞ νe(m)/q = D/c.

For the last part of the statement, simply notice that, if ω
(c)
R is principal but ωR is not,

then the generator of ω
(c)
R must have degree less than −a(R)c, since ω

(c)
R ⊆ ωcR. �

Remark 4.6. In the above notation, if c = p notice that a(q) = −q/p and b(q) = 1. Further-
more A can be chosen to be minus the a-invariant of R, so:

νe(m) 6 (q/p)D + a(R) = (q − 1)D/p+D/p+ a(R) = (q − 1)fpt(m) + fpt(m) + a(R).

Given a finitely generated graded R-module M , we denote by δ(M) the least integer d
such that Md 6= 0. In the case in which R is a normal domain, the canonical module ωR is
isomorphic (as a graded module) to a divisorial ideal of R.
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Lemma 4.7. If R is a normal standard graded domain, and a a graded divisorial ideal, then:

(1) δ(a(−1)) > −δ(a).

(2) δ(a(−1)) = −δ(a) if and only if a is principal.

Proof. Let a = (a1, . . . , ar), where the ai are homogeneous elements of the quotient field of

R of degree di ∈ Z, where δ(a) = d1 6 d2 6 . . . 6 dr. If b ∈ a(−1) is a homogeneous nonzero
element of degree l, then l + d1 > 0 since a1b is a homogeneous nonzero element of R. This
shows (1).

Concerning point (2), if b is a homogeneous nonzero element of a(−1) of degree −d1, then
ba1 = u is a unit of R. Because bai = fi ∈ R for all i = 1, . . . , r, we have ai = u−1fia1 for all
i = 1, . . . , r, so that a1 generates a as an R-module. �

Proposition 4.8. Let R be an F -pure standard graded normal domain, over an F -finite
field, with homogeneous maximal ideal m. Then:

νe(m) 6 a(R)(1− q) ∀ q = pe.

In particular fpt(m) 6 −a(R). Further, if R is not quasi-Gorenstein, then:

νe(m) < a(R)(1− q) ∀ q = pe.

Proof. For the first part of the statement, notice that δ
(
ω

(q−1)
R

)
6 δ

(
ωq−1
R

)
= δ(ωR)(q−1) =

−a(R)(q − 1), so δ
(
ω

(1−q)
R

)
> a(R)(q − 1) by Lemma 4.7, and νe(m) 6 a(R)(1 − q) by

Theorem 4.1.
For the second part, assume that νe(m) = a(R)(1− q) for some q = pe. Since δ

(
ω

(q−1)
R

)
6

a(R)(1− q), by putting together Theorem 4.1 and Lemma 4.7, ω
(q−1)
R must be principal and

generated in degree −a(R)(q − 1). Notice that ω
(q−1)
R ⊇ ωq−1

R and δ
(
ωq−1
R

)
= a(R)(1 − q).

Therefore the only possibility is that ω
(q−1)
R = ωq−1

R , so that ωR must be principal itself. �

Proposition 4.9. Let R be an F -pure standard graded normal domain, over an F -finite

field, with homogeneous maximal ideal m. If the anti-canonical cover
⊕

k>0 ω
(−k)
R of R is

Noetherian, then fpt(m) = −a(R) if and only if R is quasi-Gorenstein.

Proof. If the anti-canonical cover of R is Noetherian, then there exists a positive integer c
such that, if we write 1− q = −a(q)c− b(q) with a(q) positive and 0 6 b(q) < c:

ω
(1−q)
R =

(
ω(−c)

)a(q)
ω

(−b(q))
R .

Let us say that ω(−c) is generated in degrees −d1 < . . . < −dr. Furthermore, let −e1 < · · · <
−es be the degrees of the minimal generators of R,ω(−1), . . . , ω(−c+1). We have that

νe(m) ∈ {a(q)di + ej | i = 1, . . . , r and j = 1, . . . , s} ∀ q = pe.

By choosing i ∈ {1, . . . , r} such that νe(m) = a(q)di + ej (for some j) for infinitely many q,
then

fpt(m) = lim
q−→∞

νe(m)/q = di/c.

For the second part of the statement, simply note that if R is not quasi-Gorenstein, with the
above notation we have −di > −d1 > a(R)c by (the same argument of) Proposition 4.8. �

Remark 4.10. The above argument shows also that fpt(m) is a rational number whenever the
assumptions of the corollary are satisfied; this was already known by [9].
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Proposition 4.11. Let R be an F -pure standard graded normal domain, over an F -finite
field, with homogeneous maximal ideal m. If there exists a positive integer c such that
δ
(
ω(c)

)
< −a(R)c, then fpt(m) < −a(R).

Proof. Let δ
(
ω(c)

)
= D. With the same notation of the proof above q− 1 = a(q)c+ b(q), so:

δ(ω
(q−1)
R ) 6 a(q)D + δ

(
ω

(b(q))
R

)
.

Then, using Theorem 4.1 together with Lemma 4.7, for such q:

νe(m) 6 a(q)D.

Thus, fpt(m) = limq−→∞ νe(m)/q 6 D/c < −a(R). �

The following provides strong evidence for the conjecture of Hirose-Watanabe-Yoshida 1.1
and, more generally, for the standard graded case of Conjecture 3.7.

Corollary 4.12. Let R be an F -pure standard graded normal domain, over an F -finite field,
with homogeneous maximal ideal m. Suppose that one of the following is satisfied:

(1) The anti-canonical cover
⊕

k>0 ω
(−k)
R of R is noetherian.

(2) For some positive integer c, there is a nonzero element of ω
(c)
R of degree < −a(R)c.

Then fpt(m) = −a(R) if and only if R is quasi-Gorenstein.

The following gives an extension of [20, Proposition 3.4].

Proposition 4.13. Let R be an F -pure standard graded normal domain, over an F -finite
field, with homogeneous maximal ideal m. Suppose that the c-th Veronese of the anti-canonical
cover of R is standard graded and c is not a multiple of p. Then νe(m) = (pe − 1)fpt(m) for

infinitely many positive integers e. In particular, (R,mfpt(m)) is sharply F -pure.

Proof. Since p does not divide c, there is an infinite subset A ⊆ {pe | e ∈ N} such that
q − 1 = a(q)c for all q ∈ A, with a(q) ∈ N. For such q

ω
(1−q)
R =

(
ω(−c)

)a(q)
.

So if ω(−c) is generated in degrees −d1 < . . . < −dr, then

νe(m) ∈ {a(q)di | i = 1, . . . , r} ∀ q ∈ A.

So there exists i such that fpt(m) = di/c, and for all but finitely many q ∈ A

νe(m) = (q − 1)fpt(m).

�

5. Characteristic zero case

Throughout this section, let X be a normal variety over an algebraically closed field of
characteristic zero and a be a nonzero coherent ideal sheaf on X.

We prove a characteristic zero analogue of Conjecture 1.1. First, we define a variant of
multiplier submodules:
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Definition 5.1. Let π : Y −→ X be a log resolution of (X, a), that is, π is a proper birational
morphism from a smooth variety Y such that aOY = OY (−F ) is invertible and Exc(π) ∪
Supp(F ) is a simple normal crossing divisor. Let E be the reduced divisor supported on
Exc(π). For a real number t > 0, the multiplier submodule J (ωX , a

t) is defined by

J (ωX , a
t) := π∗ωY (d−tF e) ⊆ ωX .

This submodule of ωX is independent of the choice of π, see, for example, the proof of [32,
Proposition 3.4]. When a = OX or t = 0, we simply denote J (ωX , a

t) by J (ωX).
As a variant of J (ωX , a

t), we define the submodule I(ωX , a
t) of ωX by

I(ωX , a
t) :=

{
π∗ωY (dεE − (t− ε)F e) if t > 0
π∗ωY (E) if t = 0

for sufficiently small ε > 0. It is easy to see that I(ωX , a
t) is independent of the choice of ε

if ε > 0 is sufficiently small. When a = OX or t = 0, we simply denote I(ωX , a
t) by I(ωX).

Lemma 5.2. I(ωX , a
t) is independent of the choice of the resolution.

Proof. Although it immediately follows from [14, Lemma 13.3 and Corollary 13.7], we give a
more direct proof here.

We consider the case where t > 0; the case t = 0 follows from a similar argument. Let
f : Y −→ X be a log resolution of (X, a) such that aOX = OX(−F ) is invertible, and
let EY be the reduced divisor supported on Exc(f). Let g : Z −→ Y be a log resolution
of (Y,EY + F ), and let EZ be the reduced divisor supported on Exc(g). Then it is enough
to show that

ωY (dεEY − (t− ε)F e) = g∗ωZ(dε′(g−1
∗ EY + EZ)− (t− ε′)g∗F e)

for sufficiently small real numbers ε, ε′ > 0, since two log resolutions of (X, a) can be domi-
nated by a third log resolution. Let

⋃
iEi be the irreducible decomposition of Supp(EY +F ).

For sufficiently small ε > 0, we can write

dKY + εEY − (t− ε)F e = KY − tF +
∑
i

aiEi,

where 1 > ai > 0 for all i. Since
∑

iEi is a simple normal crossing divisor on Y , the pair
(Y,
∑

i aiEi) is log canonical. By the definition of log canonical pairs, we have

G :=dKZ + ε′(g−1
∗ EY + EZ)− (t− ε′)g∗F e − g∗dKY + εEY − (t− ε)F e

=

⌈
KZ/Y + ε′

(
g−1
∗ EY + EZ + g∗F

)
− g∗

∑
i

aiEi

⌉
> 0.

Note that G is a g-exceptional divisor for sufficiently small ε′ > 0. Therefore,

g∗ωZ(dε′(g−1
∗ EY + EZ)− (t− ε′)g∗F e) =g∗ (g∗ (ωY (dεEY − (t− ε)F e))⊗OZ(G))

=ωY (dεEY − (t− ε)F e)⊗ g∗OZ(G)

=ωY (dεEY − (t− ε)F e). �

Remark 5.3. (1) X has only rational singularities if and only if X is Cohen-Macaulay and
J (ωX) = ωX , see [25, Theorem 5.10].

(2) If X has only Du Bois singularities, then I(ωX) = ωX , see [26]. In case X is Cohen-
Macaulay, the converse holds as well. The reader is referred to [29] for the definition
and a simple characterization of Du Bois singularities.
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Using I(ωX , a
t), we define a new invariant of singularities in characteristic zero:

Definition 5.4. Suppose that X has only Du Bois singularities. Then the threshold d(a) is
defined by

d(a) := sup{t > 0 | I(ωX , a
t) = ωX}.

If x is a closed point of X, then the threshold dx(a) is defined by

dx(a) := sup{t > 0 | I(ωX , a
t)x = ωX,x}.

Remark 5.5. Let R be an N-graded ring with R0 an algebraically closed field k of characteristic
zero, and let m be the homogeneous maximal ideal of R. Let X = SpecR and x ∈ X be the
closed point corresponding to m. By considering a k∗-equivariant log resolution of (X,m), we
see that I(ωX ,m

t) is a graded submodule of the graded canonical module ωR. This implies
that d(m) = dx(m).

In [10] de Fernex-Hacon extended the notion of log canonical thresholds to the non-Q-
Gorenstein setting; we recall their definition:

Definition 5.6 ([10, Proposition 7.2]). Suppose that t > 0 is a real number.

(1) The pair (X, at) is said to be klt (resp. log canonical) in the sense of de Fernex-Hacon
if there exists an effective Q-divisor ∆ on X such that KX + ∆ is Q-Cartier and
((X,∆); at) is klt (resp. log canonical) in the classical sense. That is, if π : Y −→ X is
a log resolution of (X,∆, a) such that aOY = OY (−F ) is invertible and if we write

KY − π∗(KX + ∆)− tF =
∑
i

aiEi,

where the Ei are prime divisors on Y and the ai are real numbers, then ai > −1 (resp.
ai > −1) for all i. The log canonical threshold lct(a) of a is defined by

lct(a) := sup{t > 0 | (X, at) is log canonical in the sense of de Fernex-Hacon}.
(2) Let x be a closed point of X. Then (X, at) is klt (resp. log canonical) at x in the sense

of de Fernex-Hacon if there exists a open neighborhood U of x such that (U, (a|U )t)
is klt (resp. log canonical) in the sense of de Fernex-Hacon. If, in addition, a = OX ,
then we say that (X,x) is a log terminal (resp. log canonical) singularity in the sense
of de Fernex-Hacon. The log canonical threshold lctx(a) of a at x is defined by

lctx(a) := sup{t > 0 | (X, at) is log canonical at x in the sense of de Fernex-Hacon}.
If ∆ is an effective Q-divisor on X such that KX + ∆ is Q-Cartier and (X,∆) is log
canonical at x (in the classical sense), then the log canonical threshold lctx(∆; a) is
defined by

lctx(∆; a) := sup{t > 0 | ((X,∆); at) is log canonical at x (in the classical sense)}.

We prove some basic properties of dx(a).

Lemma 5.7. Let (X,x) be a d-dimensional normal singularity.

(1) If (X,x) is a rational singularity, then

dx(a) = sup{t > 0 | J (ωX , a
t)x = ωX,x}.

(2) Suppose that (X,x) is a log canonical singularity in the sense of de Fernex-Hacon.
Then lctx(a) 6 dx(a). In addition, if X is quasi-Gorenstein at x, then lctx(a) = dx(a).

(3) Suppose that (X,x) is a Cohen-Macaulay Du Bois singularity. Then dx(mx) 6 d. If

J ⊆ OX,x is a minimal reduction of the maximal ideal mx, then m
d+1−ddx(mx)e
x ⊆ J .
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(4) Suppose that X is Cohen-Macaulay at x. If dx(mx) > d− 1, then X is nonsingular at
x and in particular dx(mx) = d.

Proof. (1) Shrinking X if necessary, we may assume that X has only rational singularities.
First we will check that dx(a) > 0. Let π : Y −→ X be a log resolution of (X, a) such that
aOY = OY (−F ) is invertible and let E be the reduced divisor supported on Exc(π). For
sufficiently small t > ε > 0,

KY + E > dKY + εE − (t− ε)F e > KY .

Taking the pushforward π∗, we obtain inclusions ωX ⊃ I(ωX , a
t) ⊃ J (ωX) = ωX by Re-

mark 5.3 (1). That is, dx(a) > t > 0.
Now we will show the assertion. Since J (ωX , a

t) ⊆ I(ωX , a
t), the inequality

dx(a) > sup{t > 0 | J (ωX , a
t)x = ωX,x}

is obvious. We will prove the reverse inequality. It is enough to show that if I(ωX , a
t)x = ωX,x

with t > 0, then J (ωX , a
t−ε)x = ωX,x for all t > ε > 0. Fix a real number t > ε > 0.

Shrinking X again if necessary, we may assume that X is affine and that I(ωX , a
t) = ωX .

This means that for sufficiently small (1/2)ε > ε′ > 0,

ordEi(KY + divY (f) + ε′E − (t− ε′)F ) > −1

for every prime divisor Ei on Y and for every f ∈ ωX . If Ei is an irreducible component of
SuppF , then

ordEi(KY + divY (f)− (t− ε)F ) > ordEi(KY + divY (f) + ε′E − (t− ε′)F ) > −1.

On the other hand, since X has only rational singularities, KY + divY (f) > 0 by Re-
mark 5.3 (1). Therefore, if Ei is not a component of SuppF , then

ordEi(KY + divY (f)− (t− ε)F ) = ordEi(KY + divY (f)) > 0.

Summing up above, we conclude that dKY + divY (f)− (t− ε)F e > 0 for every f ∈ ωX , that
is, J (ωX , a

t−ε) = ωX .
(2) For the former assertion, it is enough to show that if (X, at) is log canonical at x in

the sense of de Fernex-Hacon, then I(ωX , a
t)x = ωX,x. Shrinking X if necessary, we may

assume that X is affine and there exists an effective Q-divisor ∆ on X such that ((X,∆); at)
is log canonical with KX + ∆ Q-Cartier of index r. Let π : Y −→ X be a log resolution of
(X,∆, a) such that aOY = OY (−F ) is invertible and let E be the reduced divisor supported
on Exc(π). By the definition of log canonical pairs,

dKY − π∗(KX + ∆) + ε1E − (t− ε2)F e > 0

for every ε1 > 0 and t > ε2 > 0 (when t = 0, put ε2 = 0). Let f ∈ ωX . Since the fractional
ideal ωrX is contained in OX(r(KX +∆)), one has divY (f)+π∗(KX +∆) > 0. It follows from
these two inequalities that

dKY + ε1E − (t− ε2)F e+ divY (f) > 0,

which implies that f ∈ I(ωX , a
t).

Now we will show the latter assertion. Shrinking X again if necessary, we may assume that
ωX ∼= OX . Then I(ωX , a

t) can be identified with the maximal non-lc ideal J ′(X, at) under
this isomorphism (see [14, Definition 7.4] for the definition of J ′(X, at)). Since J ′(X, at) =
OX if and only if (X, at) is log canonical by the definition of J ′(X, at), one has the equality
that lctx(a) = dx(a).
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(3) The proof is essentially the same as that of [33, Theorem 5.2.5]. Let f : Y −→ SpecOX,x
be the blow-up at mx with exceptional divisor Fx. Take a log resolution π : X̃ −→ SpecOX,x
of mx. Then there exists a morphism g : X̃ −→ Y such that π = f ◦ g. Let E =

∑s
i=1Ei

be the reduced divisor supported on Exc(π). We may assume that E1, . . . , Er are all the
components of E dominating an irreducible component of Fx, and put E′ :=

∑s
i=r+1Ei. If

t > d, then

I(ωX ,m
t
x)x = π∗OX̃(dK

X̃
+ εE − (t− ε)g∗Fxe)

⊆ π∗OX̃(K
X̃

+ E′ − dg∗Fx)

= f∗
(
g∗OX̃(K

X̃
+ E′)⊗OY (−dFx)

)
⊆ f∗ωY (−dFx)

= f∗m
d
xωY

for sufficiently small ε > 0. It follows from [21, Theorem 3.7] and [22, Lemma 5.1.6] that

I(ωX ,m
t
x)x :OX,x

ωX,x ⊆ f∗md
xωY :OX,x

ωX,x = core(m),

where core(m) is the intersection of all reductions of m. In particular, I(ωX ,m
t
x)x ( ωX,x,

that is, dx(mx) < t. Thus, dx(mx) 6 d.

Since I(ωX ,m
dx(mx)−ε
x )x = ωX,x for every ε > 0 (we put ε = 0 when dx(mx) = 0), by the

same argument as above,

md+1−ddx(mx)e
x ωX,x = md+1−ddx(mx)e

x I(ωX ,m
dx(mx)−ε
x )x ⊆ f∗md

xωY

for sufficiently small ε > 0. It then follows from [21, Theorem 3.7] and [22, Lemma 5.1.6]
again that

md+1−ddx(mx)e
x ⊆ f∗md

xωY :OX,x
ωX,x = core(m) ⊆ J.

(4) Let J be a minimal reduction of mx. It then follows from (3) that mx = J , which
means that mx is generated by at most d elements, that is, X is nonsingular at x. If X is
nonsingular at x, then by (2), we see that dx(mx) = lctx(mx) = d. �

We can compute the log canonical threshold of the maximal ideal of an affine determinantal
variety using F -pure thresholds:

Proposition 5.8. Let D := Spec k[T ]/I be the affine determinantal variety over an alge-
braically closed field k of characteristic zero, where T is an m× n matrix of indeterminates
with m 6 n, and I is the ideal generated by the size t minors of T where 1 6 t 6 m. Let m
be the homogeneous maximal ideal of k[T ]/I, corresponding to the origin 0 in D. Then

lct(m) = m(t− 1).

Proof. For each prime integer p, let Rp := Fp[T ]/Ip be the modulo p reduction of k[T ]/I,
and mp the homogeneous maximal ideal of Rp. It then follows from [9, Theorem 6.4] and
Proposition 4.3 that

lct(m) = lim
p−→∞

fpt(mp) = m(t− 1). �

Proposition 5.9. Let x be a closed point of X and ∆ be an effective Q-divisor on X such
that (X,∆) is log canonical at x with KX + ∆ being Q-Cartier of index r. If X is not
quasi-Gorenstein at x, then

lctx(∆;mx) +
1

r
6 dx(mx).

In particular, if dx(mx) = 0, then X is quasi-Gorenstein at x.
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Proof. Shrinking X if necessary, we may assume that X is affine, OX(r(KX + ∆)) ∼= OX and

((X,∆);m
lctx(∆;mx)
x ) is log canonical. Let π : Y −→ X be a log resolution of (X,∆,mx) such

that mxOX = OX(−Fx) is invertible, and let E be the reduced divisor supported on Exc(π).
Putting t = lctx(∆;mx), one has the inequality

dKY − π∗(KX + ∆)− (t− ε)Fx + εEe > 0

for every ε > 0. On the other hand, since X is not quasi-Gorenstein at x, the fractional ideal
ωrX is contained in mxOX(r(KX + ∆)). Hence, for each f ∈ ωX , one has the inequality

rdivY (f) + rπ∗(KX + ∆)− Fx > 0.

It follows from these two inequalities that

0 6dKY − π∗(KX + ∆)− (t− ε)Fx + εEe

=

⌈
KY + εE −

(
t+

1

r
− ε
)
Fx − π∗(KX + ∆) +

1

r
Fx

⌉
6KY +

⌈
εE −

(
t+

1

r
− ε
)
Fx

⌉
+ divY (f)

for all ε > 0 and all f ∈ ωX . This means that I(ωX ,m
lctx(∆;mx)+1/r
x ) = ωX , that is, dx(mx) >

lctx(∆;mx) + 1/r. �

The following theorem is the main result of this section; this is a characteristic zero analogue
of Theorem 3.14.

Theorem 5.10. Suppose that (X,x) is a log canonical singularity in the sense of de Fernex-
Hacon. Assume in addition that the anti-canonical cover

⊕
n>0OX(−nKX)x is Noetherian.

Then lctx(mx) = dx(mx) if and only if (X,x) is quasi-Gorenstein.

Proof. Since the “if” part immediately follows from Lemma 5.7 (2), we will show the “only
if” part. Shrinking X if necessary, we may assume that X is log canonical in the sense of
de Fernex-Hacon and that

⊕
n>0OX(−nKX) is Noetherian. Then one can find an integer

r > 1 such that OX(−rmKX) = OX(−rKX)m for every integer m > 1. Fix a real number

ε with min{lct(mx), 1/r} > ε > 0; when lct(mx) = 0, put ε = 0. Since (X,m
lct(mx)−ε
x ) is log

canonical in the sense of de Fernex-Hacon, there exists an integer m0 > 1 such that the m-th

limiting log discrepancy am,F (X,m
lct(mx)−ε
x ) is nonnegative for every prime divisor F over X

and for every positive multiple m of m0 by [10, Definition 7.1] (see loc. cit. for the definition
of the m-th limiting log discrepancy of a pair). By the choice of r, one has

ar,F (X,mlct(mx)−ε
x ) = arm0,F (X,mlct(mx)−ε

x ) > 0.

It follows from an argument similar to the proof of [10, Proposition 7.2] that there exists an

effective Q-divisor ∆ on X such that KX + ∆ is Q-Cartier of index r and ((X,∆);m
lct(mx)−ε
x )

is log canonical. If X is not quasi-Gorenstein at x, then by Proposition 5.9,

lctx(mx) < lctx(mx)− ε+
1

r
6 lctx(∆;mx) +

1

r
6 dx(mx).

This contradicts the assumption that lctx(mx) = dx(mx). �

Corollary 5.11. Suppose that (X,x) is a log terminal singularity in the sense of de Fernex-
Hacon. Then lctx(mx) = dx(mx) if and only if (X,x) is Gorenstein.
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Proof. Since (X,x) is log terminal, using the minimal model program for klt pairs, one can
show that the anti-canonical cover

⊕
n>0OX(−nKX)x is Noetherian (see [24, Theorem 92]).

Thus, the assertion follows from Theorem 5.10. �

Proposition 5.12. Let R be a normal standard graded ring, with R0 an algebraically closed
field of characteristic zero, and let m denote the homogeneous maximal ideal of R. Suppose
that SpecR has only Du Bois singularities. Then d(m) 6 −a(R).

Proof. Put X = SpecR. Since X has only Du Bois singularities, a(R) 6 0 by [27, Theo-
rem 4.4]. Suppose that I(ωX ,m

t) = ωX with t > 0. Let ϕ : Y −→ X be the blow-up of X

at m and E = ProjR be its exceptional divisor. Take a log resolution ψ : X̃ −→ Y of (Y,E)

and let Ẽ be the strict transform of E on X̃. We fix a canonical divisor K
X̃

on X̃ such that

ψ∗KX̃
= KY . Since I(ωX ,m

t) = ωX ,

ord
Ẽ

(dK
X̃

+ div
X̃

(f) + εẼ − (t− ε)ψ∗Ee) > 0

for all f ∈ ωX and all sufficiently small ε > 0. Taking the direct image by ψ, we see that
ordE(dKY + divY (f) + εE − (t − ε)Ee) > 0, that is, ϕ∗ωY (dε − teE) = ωX for sufficiently
small ε > 0. On the other hand, it is easy to see by the definition of ϕ (see, for example, [22,
Proposition 6.2.1]) that

ϕ∗ωY (dε− teE) = [ωX ]>bt−εc+1.

Thus, t 6 −a(R), that is, d(m) 6 −a(R). �

As a consequence, we can prove a characteristic zero analogue of Conjecture 1.1, which
gives an affirmative answer to [11, Conjecture 6.9].

Corollary 5.13. Let R be a normal standard graded ring, with R0 an algebraically closed
field of characteristic zero. Let m denote the homogeneous maximal ideal of R. Assume that
X := SpecR has log canonical singularities in the sense of de Fernex-Hacon.

(1) Then lct(m) 6 −a(R).
(2) Suppose in addition that the anti-canonical cover

⊕
n>0OX(−nKX) is Noetherian (this

assumption is satisfied, for example, if X has log terminal singularities in the sense of
de Fernex-Hacon or if R is Q-Gorenstein). Then lct(m) = −a(R) if and only if R is
quasi-Gorenstein.

Proof. Since (1) follows from Remark 5.5, Lemma 5.7 (2) and Proposition 5.12, we will show
(2). Let x ∈ X be the closed point corresponding to m. If lct(m) = −a(R), then lctx(m) has
to be equal to dx(m) by Remark 5.5, Lemma 5.7 (2) and Proposition 5.12 again. It follows
from Theorem 5.10 that X is quasi-Gorenstein at x, which is equivalent to saying that R is
quasi-Gorenstein.

Next we will show the “if” part of (2). Suppose that R is quasi-Gorenstein. Let ϕ : Y −→ X
be the blow-up of X = SpecR at m and E = ProjR be its exceptional divisor. Note that
Y is normal and quasi-Gorenstein. It is easy to see that KY/X = −(1 + a(R))E, see, for

example, the proof of [31, Proposition 5.4]. Take a log resolution ψ : X̃ −→ Y of (Y,E), and
then

K
X̃/X

+ a(R)ψ∗E = K
X̃/Y

+ ψ∗(KY/X + a(R)E) = K
X̃/Y

− ψ∗E.
Since X has only log canonical singularities, E has also only log canonical singularities. It
follows from inversion of adjunction for log canonical pairs [23] that (Y,E) is log canonical,
which implies that all the coefficients of the divisor K

X̃/Y
− ψ∗E are greater than or equal

to −1. Thus, (X,m−a(R)) is log canonical, that is, lct(m) > −a(R). �
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Remark 5.14. Let (R,m) be the same as in Corollary 5.13. If X = SpecR is Q-Gorenstein,
then we can show that lct(m) 6 −ai(R) for all i (see the paragraph preceding Proposition 3.5
for the definition of ai(R)). The proof is as follows.

We may assume that i > 2. Let ϕ : Y −→ X be the blow-up of X at m and Z = ProjR
be its exceptional divisor. Since R is a normal standard graded ring, there exists a very
ample divisor H on Z such that R =

⊕
n>0H

0(Z,OZ(nH)) and rKZ ∼ aH for some a ∈ Z,
where r is the Gorenstein index of R. We see by the same argument as the proof of [31,
Proposition 5.4] that KY/X = −(1 + a/r)Z, which implies that lct(m) has to be less than
or equal to −a/r. Therefore, in order to prove the inequality lct(m) 6 −ai(R), it suffices
to show that −a/r 6 −ai(R). This condition is equivalent to saying that if ` is an integer
greater than a/r, then H i−1(Z,OZ(`H)) = 0, because

ai(R) = max{` ∈ Z | H i−1(Z,OZ(`H)) 6= 0}.
However, since `H −KZ ∼Q (`− a/r)H is ample, this is immediate from [13, Theorem 1.7].

When the ring is toric, we have a similar characterization in the non-standard graded case:

Corollary 5.15. Let the notation be the same as in Corollary 3.18. Let R = k[σ∨ ∩M ] be
an affine semigroup ring over a field k of characteristic zero, defined by a strongly convex
rational polyhedral cone σ. Let m be the unique monomial maximal ideal of R.

(1) Then d(m) = −aσ(R).
(2) lct(m) = −aσ(R) if and only if R is Gorenstein.

Proof. It follows from the existence of a toric log resolution of m that J ′(mt) and I(ωX ,m
t)

are torus-invariant, and so lct(m) and d(m) are preserved under base field extension. Thus,
we may assume that k is algebraically closed.

Since (2) follows from (1), Remark 5.5, and Corollary 5.11, it remains to justify (1). For
this, use the same strategy as the proof of Corollary 3.18, in which case the assertion follows
from [5, Theorem 2] and Lemma 5.7 (1). �
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