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The behaviour of sheared colloidal suspensions with full hydrodynamic interactions (HIs) is numer-
ically studied. To this end, we use the hybrid stochastic rotation dynamics-molecular dynamics
(SRD-MD) method. The shear viscosity of colloidal suspensions is computed for different volume
fractions, both for dilute and concentrated cases. We verify that HIs help in the collisions and the
streaming of colloidal particles, thereby increasing the overall shear viscosity of the suspension. Our
results show a good agreement with known experimental, theoretical, and numerical studies. This
work demonstrates the ability of SRD-MD to successfully simulate transport coefficients that require
correct modelling of HIs. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917039]

I. INTRODUCTION

Colloidal suspensions have a wide range of applications,
ranging from commercial products and industrial processes
to biological systems. Of particular significance for many of
these systems is the ability to tune and optimize the transport
properties of the colloids to obtain the desired flow behaviour.
Colloidal suspensions are complex fluids and their rheological
response is highly sensitive to thermodynamic parameters,
flow geometry, and the underlying microscopic interactions.
Resolving the interplay between all of these variables is there-
fore of great importance for many technological applications.

A characteristic feature of colloidal suspensions is the
huge separation of time scales (of the order of ~10%) and
length scales (of the order of ~10% between mesoscopic
colloids and microscopic fluid. Typical quantities of interest
are macroscopic transport coefficients that are defined through
the relevant fluctuating microscopic variables such as the local
density and velocity.? Thus, the challenge in understanding
the dynamics of colloidal suspensions lies in resolving the
huge gap of time and length scales. While experimental studies
have revealed several important characteristics of colloidal
suspensions, such as shear thinning, shear thickening,3’4 and
yield stress,> probing the underlying molecular-level details is
either experimentally impossible or expensive. In addition to
this, theoretical models are also limited to suspensions with a
simplified definition of the fluid. For instance, the results of
Einstein®’ and Batchelor and Green® for transport coefficients
are already established for dilute and semi-dilute hard-sphere
suspensions but there are no unifying empirical equivalents
for concentrated suspensions.”!!

Because of the limitations of experimental and analytical
approaches, especially for sheared and dense cases, simu-
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lations play an increasingly important role in the study of
complex fluids. Numerical methods can be used to isolate and
analyze the effects of microstructure, composition, geometry,
and external perturbation that otherwise cannot be accessed by
standard experiments.'? Over the past years, numerical studies
have brought significant contributions to our understanding
of flow behaviour and dynamics of colloidal suspensions.
However, owing to the disparate nature of the length and time
scales of mesoscopic systems, the prediction of rheological
coeflicients from a microscopic standpoint remains an arduous
task. Even with the increasing computer power, a full
molecular dynamics (MD) treatment of all the interactions
present in the system is still computationally unsustainable.
Due to the high complexity of these problems, developing an
advanced mesoscopic simulation technique that can address
the aforementioned challenges is still a subject of ongoing
research.

Most methods available to model suspensions either have
an idealized description of the fluid or ignore one of the two
important aspects of suspension rheology: thermal fluctuations
and hydrodynamic interactions (HIs). A traditional numerical
tool for colloidal suspensions is Brownian dynamics (BD),
where the fluid is treated as a continuum medium and is rep-
resented by frictional and random forces. Despite its success
in modelling complex systems, the basic formulation of BD
does not include hydrodynamic modes.'*!'# Incorporating HIs
in BD in a simplified way requires the use of hydrodynamic
tensors such as the BD-Yamakawa-Rotne-Prager (BD-YRP)
tensors.'>!1® However, the validity of BD-YRP is constrained
to relatively dilute suspensions. In addition, the computational
cost increases drastically with increasing number of Brownian
particles N since BD-YRP requires tensor evaluation that
scales as O(N?) and diagonalization that scales as O(N?).

Alternative tools are being developed to address the gap of
modelling HIs in mesoscopic simulations. Examples of these

©2015 AIP Publishing LLC
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techniques are Lattice-Boltzmann (LB),'”'® Dissipative Par-
ticle Dynamics (DPD)," and Stochastic Rotation Dynamics
(SRD),?*22 which is otherwise known as Multi-Particle Colli-
sion (MPC) dynamics. All of these models employ a similar
approach, i.e., to coarse-grain the fluid so that the temporal and
spatial scales of the fluid are smaller than those of colloids but
larger than its own natural scales. In the LB treatment of the
fluid, the Boltzmann equation is fully discretized and solved
on a lattice. In its original formulation by Ladd,'”'® thermal
fluctuations are notincluded and artificial Langevin noise terms
have to be added to the colloids to restore thermal fluctuations.
An improved Fluctuating Lattice-Boltzmann (FLB) model for
extended particles with well-defined hydrodynamic radii and
without the external Langevin noise has been successfully
implemented by Ollila et al.>* This improved method has been
introduced and benchmarked for dense and spatially confined
systems.

DPD is another popular simulation tool for complex fluid
applications because it serves as an augmented version of
MD." 1t is a particle-based approach so that the thermal
fluctuations are inherently described. However, describing the
fluid using DPD can be computationally demanding when
dealing with larger systems since the solvent particles interact
through pair-wise potentials.

Stochastic rotation dynamics-molecular dynamics (SRD-
MD) is a particle-based approach first introduced by Male-
vanets and Kapral in 1999.2° The simplicity of its algorithm
has allowed the derivation of analytic expressions for transport
coefficients of pure fluids.?*? It can successfully reproduce
thermal fluctuations and HIs.?® Of equal importance is that
SRD-MD is fast and computationally efficient even for cases
that require dealing with external shear and high densities.?’
Recent studies have also shown that it can successfully predict
transport coefficients of colloidal suspensions like diffusion
coefficient’® " and conductivity®' However, the significance
of HIs on diffusion coefficient and conductivity is limited if
compared with its relevance on viscosity.

Calculating the shear viscosity of a suspension is a
model problem for studying the rheological behaviour of
mesoscopic systems.'*? Specifically, there have been plenty
of studies of suspension viscosity as a function of the
particle concentration. It is a key parameter for investigating
experimental phenomena such as phase transitions and yield
stress. Moreover, theoretical models with concentration as its
parameter are well-known®®10 so that it can be used as a
benchmark to validate an evolving numerical model. Once
validated, one can easily shift to analyze the dependence of
shear viscosity on other relevant variables such as shear rate,
particle structure, Peclet number (Pe), and Reynolds number
(Re).

We limit our study to hard-sphere interactions mainly
because their properties are theoretically and numerically well-
known as compared to systems with more complex interac-
tions. While it has been shown in Ref. 33 that SRD-MD can
be used to calculate viscosity using a Derjaguin, Landau, Ver-
wey and Overbeek (DLVO) potential description for colloid-
colloid interaction, we need to justify that the computation of
shear viscosity using SRD-MD agrees with existing theoretical
predictions and can reproduce results that are comparable with
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other simulation techniques. The shear viscosity versus volume
fraction is a relation that any good numerical method should
satisfy. To do this, employing a hard-sphere description of the
colloids is sufficient and more practical.

The objective of this paper is to provide a quantitative
test on the ability of SRD-MD to model HIs on colloidal
suspensions by calculating its shear viscosity. We show that
SRD-MD can be used for dilute and concentrated cases. We
then compare the results with known theoretical predictions
and experimental data. We also propose a method that is
different from Refs. 33-35 for calculating shear viscosity.
We use a modified version of the SRD-MD stress tensor
presented in Ref. 36, a formulation that resembles the virial
equation of molecular systems. For this reason, our method
of calculation allows for a better characterization of the
suspension properties. Moreover, in contrast to Ref. 33 where
colloids are treated as point-like particles, we employ a central-
force coupling scheme to have a more realistic description of
the colloid-fluid dynamics.

The paper is organized as follows. In Sec. Il A, we present
the system and the simulation procedure. In particular, we
describe the MD-treatment of the colloids employed, SRD-
treatment of the fluid, and the coupling of the two methods. In
Sec. I B, we show how the parameters are chosen to achieve
a proper coarse-grained approach. In Sec. II C, we explain
how a planar Couette flow is modeled. We also present how
the thermostat is implemented, an important point if we want
to maintain the correct fluid dynamics while pumping shear.
We then proceed to the calculation of relevant quantities.
Section III A provides the details of formulating the stress
tensors, the main ingredient for obtaining shear viscosity. In
Sec. III B, we examine our results for the shear viscosity of
the colloidal suspensions and compare them with theoretical
equations, numerical models, and experimental data.

Il. SIMULATION METHOD
A. The hybrid SRD-MD model

Our system consists of silica spheres (p. = 2200 kg m~3)
of radius a. = 300 nm embedded in water (o = 1000 kg m73).
The SRD parameters and particle interactions implemented in
this work are the same as in Ref. 29. The colloids are described
by an inverse-power potential that is commonly used for hard-
sphere colloids,?®%’

o2
SCC( rcc) (r < rCC)

0 (r > rcc)’

ey

where r is the distance between particles, .. = 2a. = 600 nm
is the interaction parameter between colloids, &, = 2.5kgT
and r.. = 2.50. is the cutoff distance. The mass of the colloid
is obtained from p. and has a value of M, = 2.49 x 10~ !¢ kg.
For the MD part, the positions and velocities of the
colloids are updated at each time step Afyp using Newton’s
equation of motion,
_ dl'i dV,‘

;= — =F;. 2
V; 7 and m; 7 i 2)
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The positions and velocities are evaluated using the velocity
Verlet algorithm.

The fluid dynamics is described using SRD. The fluid
is represented by Ny point particles placed in a simulation
box of side length L. The SRD process consists of repeatedly
streaming and colliding the fluid particles at Azsgp intervals.
During the streaming step, the positions are updated using

r;(t + Atsrp) = (1) + vi(t)Atsgp, 3)

where r; and v; are the ith particle’s position and velocity,
respectively. In the collision step, the simulation box is divided
into smaller cells (L = 32ag) so that each cell has a volume
of ag and contains an average of y fluid particles. Particle
exchanges between cells are allowed but the number of fluid
particles in the simulation box is conserved. The collision per
cell is performed by rotating the velocities of the particles
relative to the center of mass velocity v, according to

Vi(t + Al‘SRD) = Vem t+ R(a') [Vi(t) - ch] P 4

where R is the rotation matrix. The coarse grained SRD
parameters include the cell size ag = a./2 = 150 nm, the
rotation angle @ = 90°, the average number density y =5, and
dimensionless mean-free path A = 0.1. All of these parameters
are chosen to provide a compromise between resolution and
computational cost. The mass of the individual particles is
obtained from p; and has a value of my; = 6.75 x 107! kg.
The unit of time 7y, which dictates the values of Arsgp and
Atyp, requires a more thorough discussion and is the subject
of Sec. II B.

In the paper by IThle and Kroll,”> the authors showed
that sorting the fluids fails to satisfy the molecular chaos
and Galilean invariance assumptions. This happens when the
dimensionless mean-free path, i.e., the average fraction of a
cell travelled by a fluid particle during a streaming step is small
(A < 1). This can be solved by using a grid-shift procedure.
This is done by constructing a new cell-grid that is randomly
translated at a certain distance before each collision step.
Collisions are performed in the shifted cells, thus, allowing
the exchange of particles. Particles are then reverted back to
the original cells and the SRD process is continued.

The colloid-fluid dynamics can be described either by
SRD as in Refs. 33, 38, and 39, where the colloids are
treated as point particles from the point of view of the fluid
particles or by MD, where the colloids have a non-vanishing
size. Reference 31 explored the differences between the two
coupling schemes and found that the effects of HIs on diffusion
coefficient and conductivity are more pronounced when MD
is used. Therefore, a MD coupling scheme is more suitable for
the calculation of shear viscosity. The coupling proceeds by
summing the three different types of interactions present in the
colloidal suspension: interactions between colloids that occur
at MD time scale (Afyp), interactions between fluid particles
that occur at SRD time scale (Afsgp), and interactions between
colloids and fluid particles that occur at MD time scale. The
fluid-fluid interaction potential Vs, is set to zero. Hence, the
interactions among fluid particles are solely described by SRD.
For the dynamics between colloids and fluids, we use an
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inverse-power potential,

o 12
agf( :f) (r <rep)

0 (r > ref)

Ver = (&)

where g.r = 2.5kgT and rep = 2.50 5.

The consequences of this choice of coupling are as
follows. First, it is important to choose o to be slightly less
than the colloid radius a. to avoid unphysical depletion attrac-
tion between colloids. Depletion forces are due to spurious
interactions that arise from the coarse-grained nature of the
fluid when colloids approach each other at short distances.***!
In this work, oy = 0.8a, is implemented. Subsequently, the
fluid particles can slightly penetrate the surface of the colloids.
Even when the colloids are in contact, the fluid particles can
slide between the colloids, thus, adding lubrication to colloid-
colloid interactions. While the MD coupling scheme is more
complete in describing colloid-fluid interaction in comparison
to the SRD coupling scheme, it does not model angular
momentum transfer between colloids and fluid particles
leading to an effective slip-boundary condition. The friction
coefficient is ¢ = 4nna, for slip-boundary conditions and
{ = 6rna, for stick-boundary conditions. A stick boundary
condition can also be implemented but with an increase of
computational cost.*** Second, the free volume accessible
to the fluid particles is now dictated by o s rather than a..
This is defined by Vy = (32a0)* ~ No3707) ,, where N, is the
number of embedded colloids. In addition, we know from
Ref. 29 that the Schmidt number (Sc) of the fluid increases
with increasing number of colloids. To keep Sc constant with
increasing volume fraction, the number of fluid particles is
decreased according to V, i.e.,

3
Ny = 323y - Ncin(o-cf) y. (6)
3 ap

We are now in the position to define the volume fraction
occupied by the colloids,
o= Tenri, ™
where rp is the hydrodynamic radius. This is equal to the hard-
sphere radius ay, s only in the ideal case when there is no explicit
fluid present. Analytical approaches to calculate viscosity
often deal with an ideal system, where a; is well defined.
However, defining rg is difficult in simulations and exper-
iments. A hard-sphere approximation requires an inverse-
power potential with n — oo in Egs. (1) and (5) instead of n
= 12, which will require a more expensive calculation. More-
over, the effective ry for SRD-MD is dependent on several
factors including length scale and shear. This is discussed in
Refs. 40 and 45 for slip boundary conditions at the colloid-
fluid interface. Experimental measurements of ¢ are not simple
either. Reference 46 provides an extensive review on the
difficulties encountered when measuring ¢ in hard-sphere
colloids and the unavoidable uncertainties associated with its
reported value. To this point, we have defined two radii for
the implementation of SRD-MD: o ./2 = a, for the colloid-
colloid interaction and oy = 0.8a, for the colloid-fluid inter-
action. In this study, Eq. (7) is evaluated using o .y because
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TABLE I. Number of colloids and fluid particles corresponding to each
volume fractions used in the simulation. These are obtained with L =32ag
and aps =0 =0.8ac in Eq. (7).

¢ Ne¢ Ny
0.0513 98 155433
0.1026 196 147026
0.1534 293 138705
0.1791 342 134501
0.2053 392 130212
0.2356 450 125236
0.2618 500 120947
0.2880 550 116657
0.3142 600 112368
0.3388 647 108336

it is the best ry approximation for our simulations.*” Our
treatment of volume fraction is similar to the definition used
in Ref. 45 for colloid sedimentation velocity, where the volume
fraction is defined using ry instead of o .. This is equivalent
to viewing the volume fraction from the fluid particle’s point
of view instead of the colloid’s point of view. This will be
discussed further in Sec. III B. Table I summarizes the number
of colloids and fluid particles used for each volume fraction.

B. SRD mapping

The mesoscopic nature of colloidal suspensions results
to a wide range of time scales. SRD-MD compresses this
hierarchy of time scales so that only one time scale can be accu-
rately reproduced. We choose from the two significant time
scales for this study: kinematic time scale for hydrodynamic
interactions and diffusion time scale for Brownian motion. The
kinematic time 7, = a?/vi,0 = a2pf/mMu,0 = 9.0 x 1078 s and
diffusion time 7p = a2/Dy = 0.12 s are 6 orders of magnitudes
apart. These are obtained using the viscosity of water 71,0
= 0.001 Pas and the diffusion coefficient of a colloid in water
Dy = kgT/(6mnm,0a.) = 7.15 x 107> m* s™!. Mapping to one
of the time scales is necessary to efficiently simulate these
transport coefficients. SRD-MD gives the liberty of selecting
the fastest time scale to optimize the simulation. In this
system, mapping to diffusion time scale will bring the value
of 7, closer to Tp, i.e., 6.0 x 1073 s instead of 9.0 x 1078 s.
However, contracting the time scale results to quantities that
are far from laboratory values. For example, the value of
shear viscosity will now be 1.52x 107® Pas for the pure
fluid case. When mapped back to kinematic time, the physical
value of viscosity is recovered. As mentioned in Ref. 40, the
quantitative value is not important as long as the correct regime
of the hydrodynamic numbers is obtained and the different
time scales are well separated. The diffusion time scale is used
in this study because it significantly reduces the computation
time by allowing the use of bigger time steps. Hence, longer
time scales can be reached at faster rates. Moreover, while the
simulated value of shear viscosity is different from its physical
value, expressing it in terms of its relative value still preserves
all its qualitative features: 7, = 175/no. This means that we get
the same ratio between the suspension viscosity 7 and pure
fluid viscosity no regardless of the time scale used.

J. Chem. Phys. 142, 144101 (2015)

By adopting the diffusion time scale, the diffusion time
can be expressed as a function of the SRD time unit #y. A
detailed derivation can be found in Ref. 29. Equating the
diffusion time in the simulation to the physical value of
diffusion time, we get to = 7.37 X 10~* s. Thus, the SRD time
step is Atsrp = Mo = 7.37 X 107> s. If instead the kinetic time
scale is used, the resulting unit of time is #op = 1.12 X 1078 s.
This option significantly reduces the computation time by up to
10*. The value of Atyp is smaller and generally depends on the
steepness of the potential. It was found that Atyp = Afsgp/8
is sufficient to resolve the correct Newtonian dynamics for the
inverse-power potential used in this paper.

Consequently, the value of temperature is also modified.
Similar to the transport coefficients, the actual temperature
is mapped from experimental scale to SRD scale and vice
versa. A system temperature of 293 K is equivalent to a SRD
temperature of

a2m~
T = 0_;‘ =2.02x 107 K. (8)
kBt()

A detailed mapping procedure for slip-boundary condition can
be found in Refs. 29 and 40.

C. Introducing shear and thermostat

The initial velocities of the particles obey a Maxwell-
Boltzmann distribution. The infinite periodic system is then
subjected to a uniform shear in the xy plane. Shear is applied
in the y direction and the gradient is along the x direction.
The shear rate is defined as

. Ay,
YT A

©)

where Av,, is the shear velocity. Shear is imposed by using
Lees-Edwards boundary conditions (LEBCs),*’ which allows
the simulation of a planar Couette flow without actual
boundaries. The benefit of using this algorithm is that it does
not have the numerical instabilities associated with introducing
actual walls. The process works by updating the positions and
velocities of the particles with the usual periodic boundary
conditions for y and z directions. However, when a particle
crosses the upper or lower boundaries of the simulation box,
ie.,atr, = Oandr, = L,, its position and velocity are updated
with a different rule to sustain the shear. Particles crossing the
upper boundary will have an additional velocity of +yL, and
a position shift of +yL,t, where ¢ is the total elapsed time.
In contrast, particles crossing the lower boundary will have
an additional velocity of —y L, and a position shift of —yL,z.
LEBC:s are applied for both the colloids and fluid particles.

A shear rate of ¥ = 100 s™! is used and gives the system
Pe = 12.6. Viscosity is measured when the velocity profile
is already linear. Fig. 1 shows the velocity profile inside
a simulation box for a suspension with y = 100 s~! and
¢ = 0.1534.

The introduction of shear results to continuous pumping
of external energy into the system. The kinetic energy of
the system is kept constant by applying a thermostat. The
instantaneous kinetic temperature of the system is defined as
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FIG. 1. Velocity profile for ¢ =0.1534 and a shear rate of 7 =100 s~. A
linear profile is observed at 0.2 s.

|
=7 m;(v; — My')z,
kpd Z:;

where d =3 is the dimensionality and u; is the simulated
shear velocity. A constant temperature is maintained by using
a Monte Carlo scaling thermostat.?®*® Several types of ther-
mostats have been employed and Monte Carlo scaling proves
to be the most efficient. This method also conserves linear
momentum and energy without smearing the velocity profile
or changing the viscosity of the fluid. The SRD coupling in
Refs. 26 and 33 also changes the temperature of the colloids
because they participate to the SRD collision steps. In our case,
the thermostat is only applied to the fluid particles. Hence, the
interaction of the colloid with the thermal bath happens only
during colloid-fluid interactions. The thermostat described has
been tested for shear rates between 10 s™! and 500 s~

An equilibration part consisting of 2000 — 6000 SRD
steps is first carried out. This is the part where 7~ is slowly
driven to the desired 7. This approach is needed to ensure that
the viscosities are measured with the correct linear velocity
profile and at the correct system temperature.

(10)

lll. CALCULATIONS
A. Stress tensors

The viscosity is obtained from 1 = (o) /7, where (.. .)
denotes a time average. We use the instantaneous stress tensors
from Ref. 36 and adapt it for our system. For the pure fluid
case (¢ = 0), these are given by

_my Z B

Ny
mey At
fV SRD Z Uizx (an

i=1

Okin,yx =

and
Ny

1
TV A iy , )
V Atsgp ; PisTix

12)

Ocol,yx =
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where V = L3 for the pure fluid case and the shorthand
notations 0, = Uo(t — At) and Ap;, = ms(vjy, — D) are used.
The apostrophe symbol () is for quantities measured after
LEBCs are imposed. Equations (11) and (12) correspond to
the kinetic and collisional contributions, respectively, so that
the total stress tensor of the fluid is 0'“‘“d = Okin,yx + Tcolyx-
Viscosity is calculated for r/ before and after imposing
the grid-shift procedure. We found that an agreement with
the known analytical fluid viscosity is obtained when r/ is
measured after the grid-shifting algorithm. We compared them
with the analytical predictions for the shear viscosity of pure
fluids as a function of SRD parameters,?*?>

5y*ki 1
in = - —vky, 13
in (y=1+e?)(4—-2cosa—2cos2a) P (13)
Neol = kao(1 —cosa)(y = 1 +e7), (14)
where k; = kBTAISRD/aO, ky = m/(12aAtsgp), and Ry = Nkin

+ 1col- Since we used a small value for A = 0.1, the viscosity is
dominated by the momentum transfer from particle collisions
and not by the streaming of the fluid. At a =90°, the
calculated viscosity is 1.5 x 1078 Pas. The same value of
shear viscosity is obtained using other approaches.?!>* The
viscosity remains constant between 50 s~ and 100 s~!. This is
expected since experimental results show that shear thickening
and shear thinning occur at shear rates beyond these values (see
Ref. 49).

A small deviation from the theoretical values is seen at
higher angles (120°-150°). A similar observation is also found
when the method proposed in Ref. 24 is used. This small
deviation may be due to (1) the increase in the number of
degrees of freedom and (2) the small effect of the coarse-
grained temperature (2.02 x 1073 K). This may lead to a small
loss of molecular chaos at low temperatures (see Ref. 24).

Because the simulations of the pure fluid case are in good
agreement with analytical equations, we have generalized
the above approach to obtain the shear viscosity of colloidal
suspensions. We use the stress tensor

N¢ . N¢
colloid _ Me O 1/ 4 M.yAtsrp 5
Ty =7y 2 0bix T Ty 2 Vix
i =1

15)

Since the coupling method used in this paper is MD, the
colloid forces are explicitly defined. Using Egs. (1) and (5), F;,
is obtained directly from 0 (V.. ; + V.r.;) /Or, instead of the
pseudo force Ap;, used in Eq. (12). The total stress tensor of
the suspension is calculated from the sum of the contributions
from the embedded colloids and suspending fluid,

s fluid

_ colloid
O'yx—a'yx +O—yx .

(16)
Therefore, i, = p™id 4+ peolloid The results of five independent
simulations are reported and the error bars corresponding to
the standard deviations are smaller than the symbols used.
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B. Shear viscosity

For the theoretical framework of shear viscosity, we use
Einstein’s equation®’ for the dilute case and Krieger’s semi-
empirical equation for the concentrated case.!" The hard-
sphere equations are given by

nr=1+25¢ for¢ -0 (17
and
6\
ny = (1—¢—) for ¢ — ¢um, (18)

where ¢, is the maximum packing fraction and p is a param-
eter that depends on ¢,, and the shear. The deviation from the
linear approximation is due to the increase of the probability
of collisions and because hydrodynamic interactions become
more significant at higher volume fractions.??

Fig. 2 shows how shear viscosity increases with increasing
value of o ¢. The predicted value using Eq. (17) is also shown
for comparison. As o .y approaches a., the calculated shear
viscosity moves closer to the analytical result. However, in
the limit oy — a., depletion attraction starts to occur and
the calculated viscosity in this region (~0.95a.) is no longer
valid. Cluster formations caused by the depletion attraction are
observed when oy = a. but are eliminated when oy = 0.8aq.
The result of Fig. 2 justifies the choice of using s as the
hydrodynamic radius in Eq. (7).

The shear viscosity of the colloids (7°°°%) can also be
divided into components owing to the different contributions
to the stress tensor. The virial part, described by the last term
in Eq. (15) and represented by blue diamonds in Fig. 3, in-
creases because of the increase in the probability of collisions
among other colloids when the volume fraction increases. It
is also the most dominant contribution to the overall viscosity.
The kinetic contribution, described by the first two terms in

14 T T T T T T T
[}

1851 SRD-MD @ ]

Einstein A
13 B
=
1.25 A -
.- ./..
12 F e .
o0
o ! ! ! I 1 1
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
Ucf[ao]

FIG. 2. Dependence of shear viscosity 77,- on the interaction parameter o ¢ ¢
for ¢ =0.0513. As oy approaches a., the viscosity approaches the theoret-
ical value predicted by the Einstein equation, except very close to a., where
depletion attraction causes an increasing deviation. The line is a guide to the
eyes.
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FIG. 3. The shear viscosity contribution from the colloids 7794 (black
circles) is comprised of the kinetic part (red squares) and the collisional part
(blue diamonds).

Eq. (15), is represented by red squares in Fig. 3. It represents
the pressure exerted by the colloids on a surface. As expected,
it increases with increasing volume fraction. However, it is
smaller in comparison to the contribution from the colloid-
colloid interactions. The shear viscosity from the colloids is
therefore dominated by the momentum exchanges from inter-
particle interactions rather than from streaming.

We use the same treatment to analyze what is happening
to the shear viscosity of the SRD fluid (n™i9) as the volume
fraction increases (see Fig. 4). The total shear viscosity
(black circles) is comprised of the kinetic part (red squares)

T T T T T
reeoe ¢ — 9o ¢ o ¢ ¢ o
1.6e-08 & B
[ )
1.4e-08 - B
12008 1 M
0
(-“ 1e-08 - —@— Mo, sim T
a —m— "kin, sim
= 86-09 L —4— 'col,sim 7
6e-09 B
= m m = 88—
46-09 | i
A
2¢-09 -
0 Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3

o

FIG. 4. The shear viscosity contribution of the SRD fluid 7™ is com-
prised of the kinetic viscosity (red squares) and collisional viscosity (blue
diamonds). We also compare the viscosity of the SRD fluid (71(¢)) with
the predicted shear viscosity for the pure fluid case (™% =0)) given
by Egs. (13) and (14) from Refs. 24 and 25. An average difference of
A=2.7x107% Pas is measured.
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and collisional part (blue diamonds). For the collisional
contribution, which describes the collisions among fluid
particles, no significant change can be observed. In contrast,
the kinetic contribution, which describes the streaming of the
fluid particles, increases by A = 2.7 x 10~° Pas when colloids
are present. This is due to the additional momentum imparted
by the fluid-colloid interactions when streaming.

Finally, we compare the suspension viscosity with other
known results in Fig. 5. For the experimental part, we
compared with the data by Segré>® and van der Werff,* where
they used undeformable, sterically stabilized spheres. The
volume fraction is approximated using the maximum packing
fraction of the system, ¢,,, = 0.494 for Segré> and ¢,, = 0.63
for van der Werff.>* It can be observed that our numerical
results lie a little below the experimental data of Refs. 53 and
54. This can be due to finite size effects that make the shear
rate higher than the expected value.

Our results are comparable with those of Koelman and
Hoogerbrugge,’'>> where they simulate hard-sphere suspen-
sions under shear flow using DPD. The hard-sphere case is
imposed by using the moment of inertia and Euler’s equation
of motion for rigid bodies.”?

The behaviour of hard-sphere suspensions in the absence
of HIs was analyzed using BD in Ref. 50. In order to remove
Pe and volume fraction dependencies of the shear viscosity,
Ref. 50 employed an algorithm, in which after the Brownian
position updates, the overlaps are checked and successively
removed.” By comparing the behaviour of the two systems,
HIs increase the viscosity of the suspension. In contrast to
the BD where the effect of fluid particles is represented by
the frictional and stochastic terms, the fluid description in
SRD-MD is more explicit. It is observed that the overall
contribution of the fluid decreases with increasing volume
fraction since the number of fluid particles decreases with
increasing concentration to maintain a constant Sc for the

4.5 T T T T T T T 7
4 ) ’," ]
SRD-MD (numerical) —@— v/
BD (numerical) # 7
DPD (numerical) v v °
3.5 | . i B
Segre (experimental) v /
van der Werff (experimental) /
3 Krieger (analytical) ------- [ 4
Einstein (analytical) . !
v l,,'V .
s 25 E
g

05 ! ! ! ! ! ! !

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

FIG. 5. Relative shear viscosity of the colloidal suspension as a function of
volume fraction compared with other numerical,**->? experimental,>>* and
analytical studies.®”>!!
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fluid. Even so, the treatment of the fluid by SRD-MD provides
lubrication between colloid particles because the fluid can
slide between them. This increases the chances of collisions
among colloids and the overall friction of the system.

From the theoretical standpoint, the results follow Eq. (17)
for low volume fractions and start to diverge near ¢ = 0.15. For
Eq. (18), we used a fitting parameter of ¢,, ~ 0.74 because the
highest packing achievable in our simulation box is hexagonal
closed packing. Previous theoretical works have shown that
p = 2 for a variety of situations'*® so that Eq. (18) reduces to
ny = (1= /0.74)7.

IV. CONCLUSIONS

We have demonstrated that SRD-MD can be used to
simulate the shear viscosity of colloids. The mapping between
physical and simulated values can be done by SRD-MD
without losing relevant information. The use of diffusion time
scale for computation significantly decreases the simulation
time. Shear can also be applied to systems that uses MD
as a coupling scheme. A Monte Carlo scaling thermostat is
necessary to maintain the correct thermodynamic properties
of the fluid.

The choice of oy in defining the volume fraction also
gives the correct viscosity values. A small o7 allows more
fluid particles to perturb the flow field surrounding the colloid.

The use of stress tensors for viscosity evaluation provides
a better characterization tool than what is previously available
as in Ref. 33. We observed that the main contribution to
the shear viscosity of the suspension comes from the inter-
particle collisions rather than streaming. The contribution of
the fluid particles to the stress tensor decreases with increasing
concentration. This is a consequence of the coupling scheme
used and is necessary in order to preserve the Sc of the fluid.
However, their role in facilitating lubrication between colloidal
particles aids in the increase of kinetic and collisional viscos-
ities of the colloids, which is not seen in simulations neglecting
hydrodynamic effects. Our results are also comparable with
other experimental and theoretical studies. While results for
hard-sphere suspensions employing other methods, like DPD,
have been compared to Eqgs. (17) and (18), this is the first time
that the relation between shear viscosity and volume fraction is
reproduced by SRD-MD. Hence, our study serves as a final test
on the ability of SRD-MD to predict transport coefficients and
rheological parameters where HIs are significant. Moreover,
in comparison to DPD, the SRD treatment of the system is
computationally faster especially at intermediate and high-
volume fractions. SRD-MD is also a practical tool for studying
the rheology of dense suspensions, an important aspect for
studying yield-stress and other phenomena that are occurring
in the non-Newtonian regime.
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