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Neutral helium microscopy is a new technique currently under development. Its advantages are
the low energy, charge neutrality and inertness of the helium atoms, a potential large depth of field
and the fact that at thermal energies the helium atoms do not penetrate into any solid material.
This opens, among others, for the creation of an instrument that can measure surface topology on
the nano scale even on surfaces with high aspect ratios. One of the most promising designs for
helium microscopy is the zone plate microscope. It consists of a supersonic expansion helium beam
collimated by an aperture (skimmer) focused by a Fresnel zone plate onto a sample. The resolution is
determined by the focal spot size, which depends on the size of the skimmer, the optics of the system
and on the velocity spread of the beam through the chromatic aberrations of the zone plate. An
important factor for the optics of the zone plate is the width of the outermost zone, corresponding
to the smallest opening in the zone plate. The width of the outermost zone is fabrication limited
to around 10 nm with present day state of the art technology. Due to the high ionization potential
of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore it is crucial
to optimize the microscope design to maximize the intensity for a given resolution and width of
the outermost zone. So far this has not been addressed in the literature. Here we present an
optimization model for the helium zone plate microscope. Assuming constant resolution and width
of the outermost zone, we are able to reduce the problem to a two variable problem (zone plate
radius and object distance) and we show that for a given beam temperature and pressure there is
always a single intensity maximum. We compare our model with the highest resolution zone plate
focussing images published and show that the intensity can be increased 7 times. Reducing the
width of the outermost zone to 10 nm leads to an increase in intensity of more than 8000 times.
Finally we show that with present day state of the art detector technology (ionisation efficiency
1 × 10−3), a resolution of the order of 10 nm is possible. In order to make this quantification we
have assumed a Lambertian reflecting surface and calculated the beam spot size that gives a signal
100 cts/s within a solid angle of 0.02 sr, following an existing helium microscope design.

I. INTRODUCTION

In a neutral helium microscope, short Nemi or SHeM
(scanning helium microscope) a beam of neutral helium
atoms is created by a supersonic expansion. An image is
obtained by measuring either a reflected or transmitted
signal as the helium beam is scanned across the sample.
The energy of the beam is very low (less than 0.1 eV for a
wavelength of 0.1 nm), which means that the atoms map
the outermost electron density distribution of the sam-
ple and do not penetrate into solid material [1]. These
properties make neutral helium microscopy suited for the
investigation of nano-coatings, fragile and/or insulating
surfaces and surface structures with high aspect ratios.
By using for example a two detector setup it should even
be possible to create a nano stereo microscope which
can measure surface topography on the nano scale. If a
small working distance is applied, the helium microscope
can be used to investigate samples presently examined
with scanning probe techniques, with the advantage that
the helium beam offers completely standardised imaging
properties.

The first neutral helium microscope images were pub-
lished in 2008 [2]. They were transmission, shadow im-
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ages of porous structures, obtained by scanning a beam
focussed down to 2 µm using a Fresnel zone plate. Since
then, two other research groups have managed to obtain
helium microscope images in reflection with micron range
resolution using pinhole microscopes [3–6]. The first re-
flection images were published in 2011 by Withman and
Sanchez using a setup with just a pinhole and no skimmer
[3]. This setup still claims the best resolution achieved so
far with a helium microscope: 350 nm [7]. The theoret-
ical resolution limit of a pinhole microscope is discussed
in detail in [8].

The first helium atom focussing with a Fresnel zone
plate was carried out by Carnal et al. using a beam of
metastable helium [9]. Because the helium atoms do not
penetrate into any solids, any transmission optical ele-
ment used must be of the binary type with either com-
pletely transparent or completely opaque areas. The first
focussing of a neutral, ground state helium beam with a
zone plate was carried out by Doak et al. [10]. Both of
these experiments used the classical Fresnel-Soret zone
plate. The Beynon-Gabor zone plate, which is also bi-
nary, has been suggested as an alternative attractive can-
didate for focusing of helium atoms [11]. The main ad-
vantage of the Beynon-Gabor zone plate is that it has
no higher order foci. Unfortunately it is very challenging
to fabricate. In 2015 a new optical diffraction element
"the atom sieve" was introduced and focussing down to
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3.6 µm diameter was demonstrated. The atom sieve was
inspired by the photon sieve, which was invented in 2001
and originally intended for applications with soft X-rays
[12]. It is a structure consisting of pinholes of varying
size, arranged across the Fresnel zones in such a man-
ner that it is possible to focus to a spot with a diameter
smaller than the smallest pinhole. In addition, higher or-
der diffraction and secondary maxima can be suppressed
by several orders of magnitude. The original photon sieve
as well as the first atom sieve are based on Fresnel-Soret
zone plates. Other configurations have been suggested,
for example, a Beynon-Gabor zone plate based photon
sieve [13]. The great advantage of the atom sieve is that
it is much easier to fabricate free standing holes than free
standing rods, such as they are needed in a standard bi-
nary Fresnel zone plate. This is particularly important
because the width of the outermost zone is a critical fac-
tor for the achievable resolution as will be discussed in
the next section. It is reasonable to assume that fabrica-
tion of holes down to 10 nm should be possible [14].

A drawback of all zone plates is that only a fraction of
the incident beam intensity goes into the first order focus.
For the Fresnel-Soret zone plate as well as for the Beynon-
Gabor zone plate the fraction is around 10% (zone plate
efficiency). This is discussed in detail in [11]. The trans-
mission window for the atom sieve can be adjusted to
yield an intensity which is at least half the intensity of a
standard Fresnel-Soret zone plate [12]. Alternative zone
plate designs, where the first zones are blocked to facil-
itate zone plate stability and filtering of the zero order
diffraction term, typically have a transmitted intensity
higher than the atom sieve but lower than the Fresnel-
Soret zone plate [15]. A further drawback is chromatic
aberration. This is particularly an issue for helium mi-
croscopy because the beam has a pressure dependent ve-
locity spread. This is discussed in detail in this paper.

It should be mentioned that there is an alternative
class of focussing element for neutral helium optics,
namely mirrors [16–18]. The advantage of mirrors is that
they have no chromatic aberrations so that the velocity
spread of the beam does not play a role, though there
will be a certain signal loss through diffraction and scat-
tering from steps and point defects as well as inelastic
scattering. The fabrication limit induced by the width of
the outermost zone is also not an issue, so that the mir-
rors can in principle be made much larger. The use of
graphene as a mirror coating gives an inert and very sta-
ble surface [19]. Quantum reflection for focusing has also
been demonstrated [20]. Unfortunately, until now, it has
not been possible to control the curvature of mirrors with
high enough precision, so that Fresnel zone plate based
optical elements remain the most promising approach for
the focusing of neutral atom and molecular beams.

A diagram of a helium zone plate microscope can be
found in Fig. 1. The basic idea is simple: the super-
sonic expansion helium beam is collimated by a conically
shaped aperture, which we refer to as skimmer. An im-
age of the skimmer opening is focussed onto a sample

plane by a Fresnel zone plate. The resolution of the mi-
croscope is then determined by the focal spot size of the
beam on the sample plane. In this work we define the
resolution as the full width at half maximum intensity
of the beam spot. The beam scattered off the sample is
then collected at a given solid angle using a detector, and
the variation in this signal, while the sample is scanned,
is used to create an image. Alternatively the transmitted
beam is detected by a detector placed behind a porous
sample.

The aim of this paper is to determine the geometry of
the zone plate system which gives the maximum signal
intensity in the beam spot on the sample for a given reso-
lution and given width of the outermost zone of the zone
plate. Our basic assumption is that the beam is created
in a supersonic expansion. For completeness we cite here
the detailed description of how we model the source. The
description is taken from [8]. In a supersonic expansion,
the helium gas expands into vacuum through a nozzle
that must have a diameter much bigger than the mean
free path of the gas particles. The atoms then collide
with each other until eventually collisions cease and the
atoms are travelling in free molecular flow without in-
teracting. The supersonic expansion is chosen over for
example an effusive source because it gives the highest
centre line intensity [21].

A common way to describe a supersonic expansion the-
oretically is the quitting surface model. Here, the spheri-
cal quitting surface represents the distance from the noz-
zle where the atoms have reached molecular flow and are
no longer interacting [22]. The velocity distribution of
the atoms along the surface can be described by the most
probable velocity v̄ along the parallel direction (the radial
direction from the centre of propagation). This velocity
is given together with either a single parallel temperature
or, in a more detailed description, by a pair of tempera-
tures T||, T⊥ associated to the orthogonal components of
the velocity in spherical coordinates. At the quitting sur-
face, the perpendicular temperature, T⊥ must be much
smaller than the parallel temperature T||. In this paper,
the conditions at the quitting surface are calculated solv-
ing Boltzmann equation [23–25]. Negligible collisional
coupling is assumed at a distance where the temperatures
of the beam fulfill T⊥/T|| ≤ 0.01. Stopping the integra-
tion at T⊥/T|| = 0.005 has shown to affect the flow pa-
rameters by less than 0.1% [26]. For a single temperature
and constant density along the quitting surface, an an-
alytical approximation for the intensity exists, obtained
by Sikora in 1973 [22]. For a pair of temperatures, a
numerical integral must be implemented [27]. From now
on, we will name the single temperature solution Sikora’s

approximation and, following the convention in the lit-
erature, the dual temperature model ellipsoidal quitting

surface model. Both models are explained in detail in
Section II.

In praxis, one often measures an intensity reduction
due to backscattering of atoms into the beam line. For a
complete analysis, an optimization of the expansion pa-
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rameters (nozzle-skimmer distance, beam pressure and
temperature etc.) is therefore important. This has been
studied for example in [28–30] and is not a topic of this
paper. We take all expansion parameters: the most prob-
able velocity, the perpendicular and parallel tempera-
tures of the beam, the skimmer-nozzle distance and the
position of the quitting surface relative to the skimmer
to be constant.

We set two further parameters to be constant: the
resolution and the width of the outermost zone. The
behaviour of the system with respect to the width of the
outermost zone is monotone and easy to calculate if need
be. This leaves us with four variables as can be seen from
Fig. 1: The skimmer opening, rS, the zone plate radius
rzp the object distance, a, and the image distance, b.
We show that this reduces to a two variable optimization
problem using the optical equations of the system, which
we describe in the next section. The intensity can then be
calculated over a wide span of combinations and plotted
in a single graph.
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FIG. 1. Diagram of a zone plate microscope setup. The pa-
rameters kept constant are in grey boxes. xS is the distance
between the nozzle and the skimmer aperture, and RF is the
radius of the quitting surface. b is the working distance, Φ is
the focal spot size. rS and rzp are the radius of the skimmer
and the radius of the zone plate respectively and a is the dis-
tance between the skimmer and the zone plate. Note that the
system is rotationally symmetrical about the main axis.

II. THEORETICAL FOUNDATION

A. The optical system

The size of the focal spot generated by a Fresnel zone
plate by imaging an aperture of radius rS is given by
a convolution of the chromatic aberration term of the
zone plate, σcm, the aperture (here, the skimmer), and
the Airy diffraction term σA [15]. Both σcm and σA can
be assumed to be Gaussian contributions, because the
velocity spread is essentially Gaussian (eq. (14)) and
the first ring of the Airy term approximates well to a
Gaussian [31]. The skimmer is assumed to approximate

to a step function and thus carries a 1/
√
3 term in the

convolution [8, 15].
The assumption that the skimmer approximates to a

step function gives a maximum bound to the focal spot
size. In reality, the intensity distribution decreases sig-
nificantly along the skimmer radius for large skimmers
placed close to the quitting surface. This has been ex-
perimentally investigated in [24, 26]. In this paper, we
assume that the quitting surface is close enough to the
skimmer so that the skimmer directly determines the ob-
ject of the optical system. In general, for resolutions on
the order of less than 1 µm, the skimmers needed for
optimal design are sufficiently small compared to the ra-
dius of the quitting surface to justify such an assumption,
regardless of how close the quitting surface is to the skim-
mer. It must be noted that the step function assumption
is only used when determining the optic equations of the
system. For the intensity model used in Sec. III to cal-
culate the intensity of the focal spot, the real intensity
profile and angular spread of the beam are considered
with no further assumptions.

The standard deviation resulting from the convolution
is multiplied by 2

√

2 ln(2) to obtain its Full Width at
Half Maximum (FWHM):

Φ = 2
√

2 ln(2)

√

σ2
cm + σ2

A +

(

MrS√
3

)2

≡ K

√

σ2
cm + σ2

A +

(

MrS√
3

)2

. (1)

Where σcm is the chromatic aberration, and σA is the
Airy diffraction term limiting the resolution of the mi-
croscope. The magnification factor, M , of the optical
system greatly influences the focal spot size. It is given
by the following equation [15]:

M =
b

a
=

f

a− f
. (2)

Where f is the focal length of the Fresnel zone plate
which depends on its radius and ∆r as follows [15]

f =
2rzp∆r

λ
. (3)

Where λ is the average de Broglie wavelength of the beam
given by λ = h/mv̄, m is the mass of a helium atom, h is
the Planck constant and v̄ is the most probable velocity of
helium atoms along the radial direction. b corresponds to
the distance of the focused image from the zone plate, and
is also the working distance of the microscope (Fig. 1).
From combining eq. (2) and (3) while assuming constant
∆r and λ, one obtains b → b(a, rzp), reducing the system
from four to three variables. The chromatic aberration
term stems from the dependence of the focal length on
the wavelength. It can be proven to be [15, 32]:

σcm =
rzp

S
√
2
. (4)

Where S = v̄/
√

2kBT||/m is the parallel speed ratio,
which is used as a measure of the velocity spread of the
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beam. The Airy term stems from the diffraction of he-
lium atoms with the Fresnel zone plate. It can be ex-
pressed in terms of the width of the smallest zone ∆r
[15]:

σA =
0.42a∆r

a− f
. (5)

Where a is the distance between the aperture and the
zone plate. If a ≫ f the equation reduces to:

σA = 0.42∆r. (6)

For the strong demagnification (M ≪ 1) desired in a
zone plate microscope, this is the case (see eq. 2), and
therefore eq. (6) will be used throughout the paper. This
diffraction term will have a constant influence on the fo-
cal spot size. Therefore, it is convenient to define a cor-
rected focal spot size Φ′, obtained by squaring eq. (1),
subtracting σ2

A and redefining the left hand side of the
equation:

Φ′ =

√

Φ2

K2
− σ2

A. (7)

Eq. (1) now simplifies to:

Φ′2 = σ2
cm +

(

MrS√
3

)2

. (8)

The optical system has three variables, the distance
between the skimmer and the zone plate a, the radius of
the skimmer rS and the radius of the zone plate, rzp. For
a given focal spot size Φ, the variables are interrelated
through eq. (1). In this paper we will mostly use the
expression rS → rS(a, rZP):

r2S =
3λ2

4∆r2

(

a− 2rzp∆r

λ

)2 [
Φ′2

r2zp
− 1

2S2

]

. (9)

It is also interesting to obtain a → a(rS, rzp).

a = f






rS

√

√

√

√

1

3
(

Φ′2 − (
rzp
S
√
2
)2
) + 1






. (10)

This equation sets the expected limitations for a zone
plate microscope. If the chromatic aberration and the
Airy diffraction term add up to more than the desired
focal spot, the solution is non-real and therefore the setup
is non physical. Therefore eq. (10) sets a limit to the
maximum physical zone plate radius for a given focal
spot size. By imposing a real square root one obtains:

rzp ≤
√
2SΦ′. (11)

A Fresnel zone plate consists of a finite series of alter-
nate zones. In the optimization presented in this paper,
the radius of the zone plate is varied continuously from

very small values. In practice, the finite value of the num-
ber of zones limits the zone plate radius step through the
following equation [15]:

N =
λf

4∆r2
=

rzp
2∆r

, rzp ≫ ∆r. (12)

It is therefore important to keep this limitation in mind
when designing a zone plate setup, we will see that for
most cases of interest the assumption rzp ≫ ∆r holds and
it suffices to round the zone plate radius to a multiple of
∆r. A detailed discussion regarding zone plates in the
low N limit can be found in [39].

Eq. (11) also gives the theoretical minimum resolution
of a zone plate microscope. By imposing that Φ′ is real
one obtains:

Φ2

K2
≥ σ2

A, Φ & KσA ≈ ∆r. (13)

Which means that the minimum resolution of a zone
plate microscope is given by the smallest achievable pat-
tern on a zone plate. This is a well known result previ-
ously derived for light optics [15].

B. The intensity models

As discussed in the introduction, the most general
model of the intensity field of a supersonic helium beam
is the ellipsoidal quitting surface model. The velocity
distribution over the quitting surface is assumed to be
elliptical Maxwell-Boltzmann [22]:

fell (~v) = n

(

m

2πkBT||

)
1
2
(

m

2πkBT⊥

)

·

exp

(

− m

2kBT||
(v|| − v̄)2 − m

2kBT⊥
v2⊥

)

. (14)

Where m is the mass of a helium atom, kB is Boltzmann’s
constant and T|| and T⊥ are the parallel and perpendic-
ular temperatures. v̄ is the most probable velocity of the
beam along the radial direction and v|| and v⊥ are the
parallel and perpendicular components of the velocity,
corresponding to the radial and angular components in
spherical coordinates.

Integrating eq. (14) over the quitting surface, across
the skimmer and over the zone plate surface, one obtains
the following intensity equation:

IE =
τηI0

2πa2R2
FL

∫ rzp

0

∫ rS

0

∫ π

0

g(δ)r · ρ cos3 β · ǫ3

e−S2(1−ǫ2 cos2 θ)D(b)dρdrdα. (15)

Where RF is the radius of the quitting surface. η =
1/π2 is the geometrical efficiency of the zone plate for
the first diffraction order, corresponding to about 10% of
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the incoming signal [15]. I0 is the total intensity from a
nozzle of diameter dN [21]:

I0 = κ
P0

kBT0

√

2kBT0

m

(π

4
d2N

)

√

γ

γ + 1

(

2

γ + 1

)1/(γ−1)

.

(16)
Where P0 and T0 are the thermodynamic pressure and
temperature of the helium gas before it undergoes the
expansion. γ = CP/CV = 5/3 for helium. κ = 2 is a
peak factor as defined in [21]. All other parameters are
defined in detail in Appendix B.

Unfortunately, the ellipsoidal quitting surface model
has no simple analytical solutions and is often slow to
compute over a wide space of solutions. Using the quit-
ting surface model with a single radial velocity distribu-
tion it can be shown that for S ≥ 5, rS ≪ RF − xS, the
intensity arriving at a zone plate small enough to justify
a constant radial intensity distribution reads [22]:

IS =

I0ηπr
2
zp

(RF + a)2

{

1− exp

[

−S2

(

rS(RF + a)

RF(RF − xS + a)

)2
]}

.

(17)

Where RF−xS is the axial distance between the quitting
surface and the tip of the skimmer. This equation was
obtained independently by Sikora and Andersen [22] and
thus we refer to it as Sikora’s approximation as mentioned
in the introduction. The radius of the skimmer, can be
obtained from eq. (9), reducing the intensity equation to
two independent variables:

IS (rzp, a) =
I0ηπr

2
zp

(RF + a)2
−

I0ηπr
2
zp

(RF + a)2
exp

{

− 3λ2

4∆r2

(

a− 2rzp∆r

λ

)2 [
Φ′2S2

r2zp
− 1

2

]

(

(RF + a)

RF(RF − xS + a)

)2
}

. (18)

Assuming that a is much bigger than the focal length,

f =
2rzp∆r

λ , it follows that the maximum intensity of a
helium beam monotonically increases with 1/∆r. There-
fore, to obtain the maximum intensity, ∆r is chosen to
be constant and equal to the smallest realisable value.

We can use this equation together with eq. (9) to ob-
tain an analytical equation for the position of the inten-
sity maxima given that either a or rzp is taken to be
constant.

∇IS(rzp, a) = (0, 0), ∂2
aI < 0, ∂2

rzpI < 0. (19)

Which corresponds to a subset of the solutions of the
following equation:

∇
r2zp

(RF + a)2

{

1− exp

[

−S2

(

rS(RF + a)

RF(RF − xS + a)

)2
]}

= 0. (20)

The derivatives with respect to the zone plate radius and
the skimmer-zone plate distance a can both be solved an-
alytically. The derivative of eq. (18) with respect to the
skimmer-zone plate distance, a, is a simple cubic equa-
tion giving the a corresponding to the maximum intensity
at a given zone plate radius.

a3 + 2a2
(

RF −
√
3Γrzp

)

+ aRF(RF − 4rzp
√
3Γ)

= rzp
√
3ΓR2

F

[

2S2Φ′2 + r2zp(Γ− 1)

S2Φ′2 − 0.5r2zp

]

. (21)

Where Γ ≡ 1
3

(

2∆r
λ

)2
is a constant of the problem

which gives the relative size of the smallest aperture of
the zone plate compared with the average wavelength of
the beam, usually Γ ≫ 1.

This approximation has been obtained under the fol-
lowing assumptions, all of them justified in Appendix A.

(RF + a)2(a−
√
3Γrzp)

[

S2Φ′2

r2zp
− 1

2

] (

a+ RF

a

√
3Γrzp

)

ΓR2
Fa

2

≪ 1, (22)

a2 +RFrzp
√
3Γ ≈ a2, (23)

(a−
√
3Γrzp)

2 ≈ a(a− 2
√
3Γrzp), (24)

RF − xS ≪ a. (25)

amax is therefore obtained by solving the cubic equality
eq. (21) for a, which gives a single real positive solution.
The explicit analytical expression for amax has been in-
cluded in appendix A. In this work, the cubic equation
was solved numerically using MATLAB.

MATLAB was used to perform the numerical calcu-
lations in this work. Particularly the function roots was
used to solve eq. (21) and integral3 was used to calculate
the integral in eq. (15). In section III B, the max func-
tion was used to obtain several global maxima of Sikora’s
approximation, embedded within a "for loop".

III. RESULTS AND DISCUSSION

A. An example: Φ = 0.9 µm, ∆r = 323 nm

To illustrate the power of our model we consider some
of the best results published so far of focussing helium
with a zone plate [33]. Here a 0.9 µm focus was achieved
with, a set to 1.528 m and ∆r to approximately 323 nm
(from the two zone plates that were used, we choose to
study the one referred as "the MIT zone plate"). In
Fig. 2 we compare this setup to the best configuration
achievable according to our model keeping the same focal



6

spot size and ∆r. The original setup is marked by a
yellow cross, which an be seen to be placed far away
from the intensity maximum (black cross). In Fig. 3 we
show the best setup and best achievable intensity with
the smallest realistic value of ∆r (10 nm). In this case,
the old setup cannot be compared in the same plot as ∆r
has changed.

The intensity for the model calculations is computed
using the ellipsoidal quitting surface model (eq. (15))
and plotted with respect to two variables: rzp and a.
The skimmer radius rS is a hidden variable related to
rzp and a by eq. (9). A clear intensity peak can be
observed which for small zone plate radii follows well.
The approximation given by eq. (21) (see Fig. 2 and
3), the approximation (solid line) is shown together with
the real line of zero gradient of the ellipsoidal quitting
surface model (dashed line).

If ∆r is set at a minimal construction limit of 10 nm,
the intensity increases significantly: 8000 times with re-
spect to the original setup (see Fig. 3). In this case,
eq. (21) gives a value very close to the position of the
intensity peak calculated numerically.

The literature has so far featured relatively large zone
plates (rzp > 90 µm), a regime where Sikora’s approxi-
mation can perform badly [8]. Therefore it is important
to compare Sikora’s approximation with the ellipsoidal
quitting surface model. To do so, it is useful to plot the
fraction of the normalised intensities:

ζ =
IS ·max(IE)

IE ·max(IS)
. (26)

It can be seen that for zone plate microscopes, Sikora’s
approximation can be implemented across a broad zone
plate range (Fig. 4). Interestingly, ζ is significantly big-
ger than 1 only for very small zone plates. This is the
opposite behaviour than one would expect, but it can be
understood when the skimmer radius is plotted. From
the values of the skimmer radius one sees that the Sikora
approximation fails for large radii, showing that the size
of the aperture closer to the quitting surface (skimmer)
is more important than the aperture further away (zone
plate) (Fig. 5). This is due to the off-axis intensity de-
creasing faster the closer the quitting surface is to the
plane of interest.

B. Parametric dependences

In this paper, we reduce a multi-variable multi-
parametric system to a two variable equation, giving a
single optimal configuration for a zone plate microscope.
In this section, we discuss the dependence of the system
on some of the parameters considered constant. Partic-
ularly, we plot the dependence of the optimized system
geometry ((amax, rmax

zp , rmax
S )) and intensity I, as function

of the focal spot size Φ, the speed ratio S and the width
of the outermost zone ∆r.

To do so, we use Sikora’s approximation (eq. (18)),
which approximates well the intensity maxima and re-
quires much lower computation times than the ellipsoidal
quitting surface model. The quitting surface properties
such as the speed ratio (when constant) and the radius
of the quitting surface are set at a fix value of S = 241.68
and RF = 0.01129 m, calculated solving the Boltzmann
equation for T0 = 115 K, P0 = 101 Bar as described in
the introduction.

From Fig. 6 we see that, as expected, a higher speed
ratio yields a smaller optimal skimmer radius. This is
because with higher speed ratios the beam is more colli-
mated and thus increasing the skimmer radius affects the
intensity less. We also see an increase of the intensity of
the beam and an increase of both the zone plate radius
and the distance a (also a result of a more collimated
beam). The increase of the optimal zone plate radius
is correlated with the decrease in chromatic aberrations:
bigger zone plates capture more particles but also have
larger aberrations. Here, the increase in the speed ratio
compensates the larger aberration term (see eq. (4)).

The dependence on the focal spot size, Φ, is
monotonous and increasing in all cases. As expected,
when the focal spot increases, the maximum intensity
increases as well (see Fig. 7).

As explained in Sec. III A, the maximum intensity
increases dramatically with smaller ∆r. This is due to a
combination of a smaller microscope length with a larger
zone plate radius.

To summarize: the theoretical best helium microscope
design is a compact microscope with a relatively large
zone plate, combining the closeness to the atom source
with a large angle of collection (see Fig. 8).

C. Realistic resolution limits

In this section we estimate realistic resolution limits.
The calculations are done by setting constraints to all
variables, as discussed below. In a real microscope the
angular distribution of the reflected intensity will depend
on the sample topography. As a suitable reference we
here assume Lambertian reflection. Further, we assume
that the detector is placed at an angle of π/4 radians
relative to the sample normal with the detector opening
area perpendicular to the detector angle. This is sim-
ilar to what has been done in [8] where we model the
resolution limits for a pinhole microscope.

The constraints we choose are a minimal working dis-
tance b of 10 µm (a value that has been claimed in lit-
erature [7]), and a minimal skimmer radius of 100 nm,
which is commercially available [34]. ∆r is set at 10 nm
and the radius of the zone plate is limited to a minimum
of 10∆r. a is set to a minimum of 1 mm.

A minimal count rate of 100 counts per second is cho-
sen. This is to a certain extend an arbitrary choice, but
100 cts/s for a Lambertian surface, ensures a reasonably
large range of measurable intensity variations from differ-
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FIG. 2. Intensity (part/s) in a 0.9 µm focal spot of a zone plate helium microscope for a span of values of rzp and a and
for a constant ∆r=323 nm. The solid line shows the subset of maximum solutions given by eq. (21), and the dashed line
shows the numerical solution using the ellipsoidal quitting surface model. The intensity was calculated using the ellipsoidal
quitting surface model with the following parameters: T|| = 0.0052 K, T⊥ = 0.0035 K, RF = 0.01129 m, xS = 0.0113 m,
T0 = 115 K, P0 = 101 Bar, λ = 0.089 nm. The nozzle diameter dn is set at 10 µm. The maximum (black cross) lies at
(amax, rmax

zp , rmax
S ) = (0.555 m, 3.763 × 10−6 m, 1.195 × 10−5 m). The yellow cross indicates the configuration corresponding to

the original setup used in [33]. The optimized design would increase the intensity by 7 times. An intensity increase of as much
as 8000 times can be achieved by reducing ∆r to 10 nm (see Fig. 3).

ent surface topographies provided the background signal
can be kept low. The count rate is determined by calcu-
lating the beam intensity using Sikora’s approximation
followed by deflection by a Lambertian surface, as fol-
lows:

N =
Ioptims R2

d2
ηD cos(

π

4
)2 ≈ 1.4× 10−7Ioptims . (27)

Where d = 3 mm is the distance between the sample sur-
face and the detector, R = 0.5 mm is the radius of the
opening area in the detector. This corresponds to the
solid angle of 0.02 π sr mentioned in the abstract, which
was chosen because it corresponds to the solid angle used
in the most recently published pinhole microscope ex-
periment by Barr et al. [30]. We have also used similar
beam parameters. Ioptims is the optimized intensity using
Sikora’s approximation. ηD is the efficiency of the detec-
tor, chosen to be between 10−3 and 10−5 (an upper limit
estimate for a commercial mass spectrometer) [35–38].

As we can see by comparing Fig. 7 and Fig. 9, reso-
lutions close to the diffraction limit (10 nm) are possible
for a very small working distance and the most efficient
detector. Such a configuration usually requires a small

number of zones. Even for a small number of zones (more
than five) the resolution has been shown to approximate
well to the optic lens limit and thus the result should
be correct to within few nanometers [39]. For a detector
of ηD = 10−5, a microscope with a resolution of 30 nm
is possible. In this case, the number of zones used in
practical setups is already large enough to be in the lens
approximation regime.

1. A realistic "best resolution" configuration

The construction limits considered in the previous sec-
tion are arguably not stringent enough. Although a sep-
aration of 1 mm between the skimmer and the zone plate
is possible, placing a vacuum pump within that distance
is difficult. Similarly, a working distance of only 10 µm,
although demonstrated, is technically challenging to im-
plement in the reflection mode, and limits the samples
that can be imaged. Therefore, we have also calculated
the resolution limit with a minimum a = 5 cm and a min-
imum working distance, b, of 3 mm to set a realistic limit.
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FIG. 3. Intensity (part/s) in a 0.9 µm focal spot of a zone
plate helium microscope for a span of values of rzp and a and
for a constant ∆r=10 nm. The red line shows the subset
of maximum solutions given by eq. (21) and the dashed line
shows the real line of zero derivative in the ellipsoidal quitting
surface model. The intensity was calculated using the ellip-
soidal quitting surface model with the following parameters:
T|| = 0.0052 K, T⊥ = 0.0035 K, RF = 0.01129 m, xS = 0.0113
m, T0 = 115 K, P0 = 101 Bar, λ = 0.089 nm. The nozzle di-
ameter dn is set at 10 µm. The maximum (black cross) lies at
(amax, rmax

zp , rmax
S ) = (0.06m, 12.22× 10−6 m, 1.173× 10−5 m).

Note how the intensity peak is at 3.5 × 1011 (part/s), corre-
sponding to an intensity of about 8000 times the configuration
used in [33]
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rzp and a. The solution was calculated for a zone plate helium
microscope with a resolution of 0.9 µm and a ∆r of 323 nm.
The red line shows the subset of maximum solutions given
by eq. (21). Both models were computed using the following
parameters: T|| = 0.0052 K, T⊥ = 0.0035 K, RF = 0.01129
m, xS = 0.0113 m, T0 = 115 K, P0 = 101 Bar, λ = 0.089 nm.
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FIG. 5. Skimmer radius rS [m], for a zone plate helium micro-
scope with a resolution of 0.9 µm and a ∆r of 323 nm. The
radius is plotted with a logarithm scale due to the high varia-
tions in its magnitude. Note how in the areas where Sikora’s
approximation fails (see Fig. 4), the skimmer radius is largest.
The red line indicates the subset of maximum solutions given
by eq. (21). The radius was calculated using the following
parameters: S = 241.68, λ = 8.9× 10−11 m.
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FIG. 6. Normalised optimized parameters of a zone plate he-
lium microscope for a span of values of the speed ratio S. The
intensity was calculated using Sikora’s approximation with
the following parameters: T0 = 115 K, P0 = 101 Bar at a
fix resolution, Φ = 0.9 µm and ∆r = 10 nm. The maxi-
mum values of the parameters, used for normalization are:
rzp = 10.2 µm, rS = 458.6 µm, a = 0.05 m, I = 2.65 × 1011

part/s. The small fluctuation of the data are due to numerical
effects.

For ηD = 10−5, such a microscope has a resolution limit
of about 100 nm. For λ=0.088 nm, the associated skim-
mer radius is 0.8 µm. The zone plate radius is 12.4 µm,
∆r is 10 nm. For ηD = 10−3, the resolution is limited to
80 nm by eq. (10) and not by the 100 counts/s limita-
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FIG. 7. Normalised optimized parameters of a zone plate
helium microscope for a span of values of the focal spot size
Φ for a fix ∆r = 10 nm. The intensity was calculated using
Sikora’s approximation with the following parameters: T0 =
115 K, P0 = 101 Bar, which corresponds to S = 241.7. The
maximum values of the parameters, used for normalization
are: rzp = 29.7 µm, rS = 17.4 µm, a = 0.09 m, I = 1.68×1012

part/s, b = 0.007 m. The small fluctuation of the data are
due to numerical effects.
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FIG. 8. Normalised optimized parameters of a zone plate he-
lium microscope for a span of values of the width of the out-
ermost zone ∆r. The intensity was calculated using Sikora’s
approximation with the following parameters: T0 = 115 K,
P0 = 101 Bar at a fix resolution Φ = 0.9 µm. This corre-
sponds to a speed ratio of S = 241.7. In this case, b has
also been included to emphasize the reduction of the micro-
scope length at high intensity setups. The maximum values
of the parameters, used for normalization are: rzp = 12.5 µm,
rS = 13.9 µm, a = 0.7515 m, I = 3.81 × 1011 part/s,
b = 0.0316 m. The small fluctuation of the data are due
to numerical effects.

tion. This later case corresponds to a 0.2 µm skimmer
radius and the same values for the rest of variables.
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FIG. 9. Optimized count rate for different focal spot sizes.
The intensity was calculated using Sikora’s approximation
with the following parameters: T0 = 115 K, P0 = 161 Bar,
which corresponds to S = 241.7. The efficiency of the de-
tector, placed at π/4 radians is η = 1 × 10−5 (lower line) or
η = 1 × 10−3 (upper line). The red line indicates the 100
part/s intensity limit. The constraints on the calculation are
a minimum working distance of 10 µm, a minimum skimmer
radius of 100 nm and a minimum a of 1 mm. ∆r is set at 10
nm.

IV. CONCLUSION

In this paper, we present a theoretical model of the
neutral helium zone plate microscope. Using the opti-
cal equations of the system and the quitting surface ap-
proach, we are able to obtain a two variable intensity
function for a given microscope resolution and width of
the outermost zone of the zone plate. This function shows
a clear intensity peak from which the best zone plate mi-
croscope design can be determined. By imposing realistic
design constraints, we find that zone plate microscopes
with a resolution as low as 10 nm are possible. We show
how our model can be used to increase the intensity of a
published setup by as much as 8000 times. The approach
followed in this paper can easily be implemented for dif-
ferent intensity models, such as models describing other
types of molecular beams and/or considering backscat-
tering from the skimmer, by simply adapting the inten-
sity equation.
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APPENDIX A: DERIVATION OF EQ. (21)

To obtain eq. (21), one must derive eq. (18) with
respect to the skimmer-zone plate distance a and set it
equal to 0. One then obtains (assuming RF − xS ≪ a):

1 = exp(−F ) ·

(

1+

(S
2Φ′2

r2zp
− 1

2 )(RF + a)2(a−
√
3Γrz)

[

a2 +RFrzp
√
3Γ

]

ΓR2
Fa

3

)

(A1)

With

F ≡
(S

2Φ′2

r2zp
− 1

2 )(RF + a)2(a−
√
3Γrzp)

2

ΓR2
Fa

2
. (A2)

Eq. (A1) can be written as follows:

exp(−F ) =
1

1 +A
= 1 +̟, ̟ ≡ −A

1 +A
. (A3)

with

A =

(S
2Φ′2

r2zp
− 1

2 )(RF + a)2(a−
√
3Γrzp)

[

a2 +RFrzp
√
3Γ

]

ΓR2
Fa

3
.

(A4)

By plotting A along a wide range of parameters one can
see that for the conditions of interest along the intensity
maxima A ≪ 1. By taking the logarithm in eq. (A3)
and expanding using Taylor series log(1−A) ≈ −A, one
obtains:

F ≈ A

1 +A
. (A5)

Which reduces to:

(a−
√
3Γrzp)(1 +A) =

a2 +RFrzp
√
3Γ

a
. (A6)

In general, the radius of the quitting surface, RF, is of
the order of millimetres (for the example shown in Sec.
III C it corresponds to around 10 mm). For microscopes
with low resolution and realistic speed ratios of the order
of 100, the radius of the zone plate is as much hundreds
of times the focal spot size (see eq. (11)). Conservatively,
this means O(rzp) ≈ 1 × 10−4. The product of the zone
plate radius and the radius of the quitting surface is then
of the order of RFrzp < 1 × 10−6.

√
Γ scales as ∆r/λ,

which for high ∆r is on the order of a few thousand.
When compared with the order of a2, O(a2) ≈ 1× 10−2,

the product RFrzp
√
3Γ is at least one order of magnitude

smaller (in practise in the studied cases, it was at least

two orders of magnitude smaller). Therefore we can make
the following approximation:

a2 +RFrzp
√
3Γ ≈ a2. (A7)

When developing eq. (A5), we will encounter (a −√
3Γrzp) at first and second exponent. It will be help-

ful to find some approximation to it.
√
3Γrzp is smaller

than a such that the following approximation holds:

(a−
√
3Γrzp)

2 = a2 − 2
√
3Γrzpa+ 3Γr2zp ≈

a2 − 2
√
3Γrzpa = a(a− 2

√
3Γrzp). (A8)

Implementing these approximations in eq. (A5) one ob-
tains:

(S
2Φ′2

r2zp
− 1

2 )(RF + a)2(a− 2
√
3Γrzp)

ΓR2
F

=
√
3Γrzp. (A9)

By multiplying by r3zp and grouping for powers of a, one
recovers eq. (21):

a3 + 2a2
(

RF −
√
3Γrzp

)

+ aRF(RF − 4rzp
√
3Γ)

= rzp
√
3ΓR2

F

[

2S2Φ′2 + r2zp(Γ− 1)

S2Φ′2 − 0.5r2zp

]

. (A10)

The second derivative of eq. (18) with respect to a is
too lengthy to justify an analytical proof of the negative
value of the second derivative at the intensity maximum.
Instead, we follow a more practical numerical approach,
which confirmed that the only real positive solution of
eq. (A10) evaluates to a negative second derivative of eq.
(18).

The analytical solution of eq. (A10) follows:

a =
(

√

27I2 + (18GH − 4G3) I + 4H3 −G2 H2

23
3
2

−

−27I − 9GH + 2G3

54

)
1
3

+
G2 − 3H

9

(√
27I2+(18GH−4G3)I+4H3−G2 H2

23
3
2

− −27I−9GH+2G3

54

)
1
3

−G

3
.

(28)

Where G ≡ 2
(

RF −
√
3Γrzp

)

, H ≡ RF(RF −

4rzp
√
3Γ) and I ≡ rzp

√
3ΓR2

F

[

2S2Φ′2+r2zp(Γ−1)

S2Φ′2−0.5r2zp

]

.

APPENDIX B: THE ELLIPSOIDAL QUITTING
SURFACE MODEL

The ellipsoidal quitting surface model used in this pa-
per is an extension of Sikora’s ellipsoidal quitting surface
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model except that the skimmer is allowed to be in a dif-
ferent position than the quitting surface. Such a model
was published by U. Bossel in 1974 [27]. Unfortunately
the original paper has a couple of typos so we describe
here the corrected equations in detail. The main intensity
equation arriving at the zone plate is eq. (15):

IE =
τI0

2πa2R2
FL

∫ rzp

0

∫ rS

0

∫ π

0

g(δ)r · ρ cos3 β · ǫ3

e−S2(1−ǫ2 cos2 θ)D(b)dρdrdα. (B1)

Where RF is the radius of the quitting surface and
S = v̄/

√

2kBT||/m is the parallel speed ratio. ǫ ≡
(

(τ sin2 θ + cos2 θ
)−1/2

, τ ≡ T‖

T⊥
are auxiliary functions.

The function D(b) is defined as follows:

D(b) ≡ 2√
π
be−b2 +

(

2b2 + 1
)

[1 + erf(b)] , b ≡ Sǫ cos θ.

(B2)
Where I0 is defined in eq. (16). g(δ) is obtained from the
angular term in eq. (12) of Beijerinck and Verster paper
[21] (in Bossel’s work a cos2 function is chosen instead
[27]):

g(δ) = cos3
(

πθ

2θ0

)

, θ0 =
π

2

√

γ + 1

γ − 1
− 1 =

π

2
. (B3)

Where γ = CP/CV = 5/3 for helium has been used.
L corresponds to the integration of g(δ) along the half
sphere (all the intensity emitted by the source is set to
be contained in g(δ)).

L ≡
∫ π

2

0

g(δ) sin δdδ =
1

4
. (B4)

ρ is the radial coordinate at the zone plate plane and
r is the radial coordinate at the skimmer plane. The
angles β, α and θ are shown in Fig. 10. The analytical
expressions that relate them to the radial coordinates of
the system follow:

cosβ =
a

√

a2 + (r sinα)2 + (ρ− r cosα)2
, a = xD−xS.

(B5)

cos θ =
xR(xD − xR)− y2R + zR(ρ− zR)

RF

√

(xD − xR)2 + y2R + (ρ− zR)2
. (B6)

Where:

xR = xD − ξ(xD − xS), yR = r sinα

(

xD − xR

xD − xS

)

,

zR = r cosα

(

xD − xR

xD − xS

)

− ρ

(

xD − xR

xD − xS

)

+ ρ, (B7)

are the Cartesian coordinates of a point P on the quitting
surface (see Fig. 10).

ξ =
B −

√
B2 −AC

A
. (B8)

A ≡ (xD − xS)
2 + (r sinα)2 + (ρ− r cosα)2, (B9)

B = xD(xD − xS) + ρ(ρ− r cosα), (B10)

C = x2
D + ρ2 −R2

F. (B11)

y
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(x  , y  , z  )R RR

ρ

(x   ,0, z  )
D D

xS

xD

R F

δ

P’

P

r S
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θP

P’

ZONE PLATESKIMMER

α r

a

FIG. 10. Illustration of all variables used in the ellipsoidal
quitting surface model. P is a point on the quitting surface
from which a particle leaves in a straight trajectory until P’,
a point placed on the zone plate plane. The point on the
quitting surface is given by the set of Cartesian coordinates
(xR, yR, zR), which can be related to the polar coordinates
r, α, ρ for further integration. xS is the distance from the
nozzle to the skimmer and xD is the distance from the nozzle
to the zone plate. Therefore a = xD − xS. The angles β and
θ can also be expressed in terms of r, α and ρ.
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