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In recent years, the development of neutral helium microscopes has gained increasing interest.
The low energy, charge neutrality and inertness of the helium atoms makes helium microscopy an
attractive candidate for the imaging of a range of samples. The simplest neutral helium microscope
is the so called pinhole microscope. It consists of a supersonic expansion helium beam collimated by
two consecutive apertures (skimmer and pinhole), which together determine the beam spot size and
hence the resolution at a given working distance to the sample. Due to the high ionization potential
of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial
to optimize the microscope design to maximize the intensity for a given resolution and working
distance. So far this has not been addressed in the literature. Here we present an optimisation
model for the helium pinhole microscope system. We show that for a given resolution and working
distance there is a single intensity maximum. Further we show that with present day state of the art
detector technology (ionisation efficiency 1 · 10−3), a resolution of the order of 600 nm at a working
distance of 3 mm is possible. In order to make this quantification we have assumed a Lambertian
reflecting surface and calculated the beam spot size that gives a signal 100 cts/s within a solid angle
of 0.02π sr, following an existing design. Reducing the working distance to the micron range leads
to an improved resolution of around 40 nm.

I. INTRODUCTION

Neutral helium microscopy, short Nemi or SHem (scan-
ning helium microscopy), refers to the use of a beam of
neutral helium atoms as an imaging probe. The neu-
tral helium beam is created by a supersonic expansion
and has a very low energy (typically less than 0.1 eV),
which means that the atoms map the outermost electron
density distribution of the sample and do not penetrate
into solid material [1, 2]. This makes neutral helium mi-
croscopy particularly suited for the investigation of frag-
ile and/or insulating materials, nano-coatings and sur-
faces with high aspect ratios. By using two detectors it
should even be possible to create a stereo microscope on
the nano scale. Alternatively a small working distance
helium microscope can be used to investigate all samples
presently examined with scanning probe techniques.

The first neutral helium microscope images were pub-
lished in 2008 [3]. They were transmission, shadow im-
ages of a porous structure. The images were obtained by
using a Fresnel zone plate to focus a beam down to 3 µm
and later to less than 1 µm, scan the beam across the
sample and record the transmitted intensity [4]. Early
focussing experiments using neutral helium atoms were
carried out by O.Carnal et al, Holst and Allison and Doak
et al. in the 1990’s [5–7]. Since then two other research
groups have managed to obtain helium microscope im-
ages in reflection with micron range resolution using pin-
hole microscopes [8–11]. The first reflection images were
published in 2011 by Withman and Sanchez using a setup
with just a pinhole and no skimmer [8]. This setup still
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claims the best resolution achieved so far with a helium
microscope: 350 nm [12]. Mathematically the Witham-
Sanchez setup can be seen as a special case of the two
aperture microscope model we present in this paper, with
the skimmer being very big. We therefore do not discuss
it further.

A diagram of a helium pinhole microscope can be found
in Fig. 1. The basic idea is simple: the supersonic ex-
pansion beam is collimated by two consecutive apertures,
which we refer to as skimmer and pinhole. The pinhole is
placed after the skimmer and is kept at a certain work-
ing distance from the sample plane. The resolution of
the microscope is then determined by the spot size of the
beam on the sample plane. In this work we define the
resolution as the full width at half maximum intensity
of the beam spot. The beam scattered off the sample is
then collected at a given solid angle using a detector, and
the variation in this signal, while the sample is scanned,
is used to create an image.

The aim of this paper is to determine the geometry
of the pinhole system which gives the maximum signal
intensity in the beam spot on the sample for a given
resolution. Our basic assumption is that the beam is
created in a supersonic expansion. In such an expansion,
the helium gas expands into vacuum through a nozzle
that must have a diameter much bigger than the mean
free path of the gas particles. The atoms then collide with
each other until eventually collisions cease and the atoms
are travelling in free molecular flow without interacting.
The central part of the beam is selected by a collimating
aperture (skimmer), which is conically-shaped to reduce
backscattering of atoms into the beam. The supersonic
expansion is chosen over for example an effusive source
because it gives the highest centre line intensity [13].

A common way to describe a supersonic expansion the-
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oretically is the quitting surface model. Here, the spheri-
cal quitting surface represents the distance from the noz-
zle where the atoms have reached molecular flow and are
no longer interacting [14]. The velocity distribution of
the atoms along the surface can be described by the most
probable velocity v̄ along the parallel direction (mean-
ing the radial direction from the centre of propagation).
This velocity is given together with either a single par-
allel temperature or, in a more detailed description, by
a pair of temperatures T||, T⊥ associated to the orthogo-
nal components of the velocity in spherical coordinates.
At the quitting surface, the perpendicular temperature,
T⊥ must be much smaller than the parallel temperature
T||. In this paper, the conditions at the quitting sur-
face are calculated solving Boltzmann equation [15–17].
Negligible collisional coupling is assumed at a distance
where the temperatures of the beam fulfil T⊥/T|| ≤ 0.01.
Stopping the integration at T⊥/T|| = 0.005 was shown to
affect the flow parameters by less than 0.1% with respect
to the proposed setting T⊥/T|| ≤ 0.01 [18].

For a single temperature and constant density along
the quitting surface, an analytical approximation for the
intensity exists, obtained by Sikora in 1973 [14]. For a
pair of temperatures, a numerical integral must be imple-
mented [19]. From now on, we will name the single tem-
perature solution Sikora’s approximation and, following
the convention in literature, the dual temperature model
ellipsoidal quitting surface model. Both models are ex-
plained in detail in Section II.

In practise, one will often measure a reduction in the
signal intensity compared to the theoretical model due to
backscattering of atoms into the beam. For the most ef-
ficient microscope, an optimization of the expansion pa-
rameters (distance between nozzle and skimmer, beam
pressure and temperature etc.) is therefore important.
This has been studied for example in [20–22], and is not
a topic of this paper. Hence, in this work all the param-
eters relative to the expansion enter as constants in the
equations: most probable velocity and perpendicular and
parallel temperatures of the beam, distance between the
skimmer and the nozzle and the position of the quitting
surface relative to the skimmer.

To simplify the calculations we consider not only the
resolution but also the working distance as a constant
of the optimization; The behaviour of the system with
respect to the working distance is monotone and easy
to calculate if need be. From an experimental point of
view the working distance is an important parameter.
The larger the working distance the more flexible the
microscope will be with respect to what kind of samples
can be investigated.

This leaves us with three variable parameters as can
be seen from Fig. 1: The aperture openings, rS and
rph, and the distance between them, a. Once the desired
resolution and working distance have been chosen, the
system is reduced to a two variable optimization prob-
lem using the optical equations of the system, which we
describe in the next section. The intensity can then be

calculated over a wide span of combinations and plot-
ted in a single graph. A single clear maximum is found
that gives the best theoretical design of a pinhole helium
microscope. In praxis it may be necessary to configure
the microscope away from the maximum due to techni-
cal constraints. The calculations clearly show how much
signal is lost compared to the maximum and provide the
best choice from the subset of realisable microscopes.
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FIG. 1. Simplified illustration of a pinhole microscope setup.
The constants of the problem are marked in grey boxes. WD

is the working distance, δ is the geometrical spread of the
beam, Φ is the focal spot size. Due to diffraction effects 2δ
is not always equal to Φ. rS and rph are the radius of the
skimmer and the radius of the pinhole respectively and a is
the distance between the skimmer and the pinhole. Note that
the system is cylindrically symmetric about the main axis.

II. THEORETICAL FOUNDATION

A. The optical system

The expression for the spread of the beam depends
on the optical regime of the system, determined by the
Fresnel number, F [23]:

F =
r2
ph

WDλ
. (1)

Where rph is the radius of the pinhole and WD is the
working distance (see Fig. 1). λ is the average de Broglie
wavelength of the beam, given by λ = h/mv̄. m is the
mass of a helium atom and v̄ is the most probable velocity
of helium atoms along the radial direction.

An analytical expression can be easily found that in-
corporates the two extreme optical cases: Geometrical
optics (F»1) and Fraunhofer diffraction (F«1). We will
see that for most real designs this expression suffices to
determine the dynamics of the system. Using simple ray-
optics, the geometrical image of the aperture projected
onto the sample plane can be found to be:

δ = rph

(
1 +

WD

a

)
+
WDrS

a
, (2)

where a is the distance between the skimmer and the
pinhole and rS is the radius of the skimmer. To obtain
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the standard deviation, σ, of the beam intensity profile
we must convolute the geometrical image of the aper-
ture with the Point Spread Function (PSF) of the diffrac-
tion trough the aperture. We know that the PSF of the
Fraunhofer diffraction across a circular aperture can be
approximated by a Gaussian with the following standard
deviation [24]:

σA =
0.42λWD

2rph
. (3)

This convolution has a well-known result (from any
treaty on Gaussian error propagation combining Gaus-
sians with top-hat uncertainty distributions):

σ2 =
1

3

(
δ2 + 3σ2

A(1− θ(F))
)
. (4)

θ(F) is the Heaviside step function, which ensures that
the diffraction effect only appears for F < 1.

Additionally, there will be an effect on the standard
deviation stemming from the inhomogeneity of the in-
tensity profile along the perpendicular direction. The
intensity value, at big enough distances from the axis of
symmetry, decreases significantly. However, if the nozzle-
pinhole distance is much bigger than the pinhole radius,
the intensity profile at the pinhole is approximately con-
stant. This is often used in literature, where a center line
intensity is calculated and then multiplied by the surface
of the detector [14]. For the case of helium microscopes,
where the nozzle-pinhole distance is typically of the order
of several centimetres and the pinhole radius is of the or-
der of a few micrometres, this approximation can always
be used and eq. (4) suffices.

We define the focal spot size of the beam as the full
width at half maximum associated to the standard devi-
ation of the beam’s intensity profile:

Φ = 2
√

2 ln 2/3
√
δ2 + 3σ2

A(1− θ(F))

≡ K
√
δ2 + 3σ2

A(1− θ(F)). (5)

For micrometer resolutions, we will see that due to the
small wavelength of a helium beam, the Fresnel number is
typically bigger than one (see Appendix A for a detailed
description of the focal spot formula choice). This allows
a purely geometrical optics treatment of the focal spot
size. However, we choose to develop a formula that covers
both extreme cases because sometimes the optimization
procedure involves a wide span of Fresnel numbers.

From eq. (5) one can find three relations between
rS, a and rph (see Appendix B for the derivation). We
consider two of these expressions, rph → rph(a, rS) and
a→ a(rph, rS):

K2(1+γ)2r4
ph +2K2rSγ(1+γ)r3

ph +(K2γ2r2
S−Φ2)r2

ph

+K2(1− θ(F))ε = 0. (6)

Where γ = WD

a and ε = 3W 2
D(0.42λ/2)2. And:

a2

(
Φ2

K2
− r2

ph − 3σ2
A(1− θ(F))

)
−a·2rphWD(rph+rS)

−W 2
D(rph + rS)2 = 0. (7)

The equation (6) for the pinhole radius is a quartic
equation in the Fraunhofer regime because the same focal
spot size can be obtained when the diffraction term dom-
inates over the geometrical term and vice-versa. In prac-
tice, the equation gives two real, positive solutions for
which the one with maximum pinhole radius and there-
fore maximum intensity is chosen.

For the case of a (eq. (7)), the solution is uni-evaluated
because there exist only one positive root:

a =

rphWD

A

(
rph + rS ±

√
(rph + rS)2 +A(1 + 2

rS

rph
+

r2
S

r2
ph

)

)
.

(8)

Where A = Φ2

K2 − r2
ph − 3σ2

A(1 − θ(F)), if A is negative,
a is also negative or non-real (except the case when the
square root is 0) and if A is positive, we must take the
positive root to ensure a positive value of a.

Using eq. (6) or (7), the system can be reduced to a
two-variable optimization system.

B. The intensity models

As discussed in the introduction, the most general
model of the intensity field of a supersonic helium beam
is the ellipsoidal quitting surface model, with an elliptical
velocity distribution:

fell (~v) = n

(
m

2πkBT||

) 1
2
(

m

2πkBT⊥

)
·

exp

(
− m

2kBT||
(v|| − v̄)2 − m

2kBT⊥
v2
⊥

)
. (9)

Wherem is the mass of a helium atom, kB is Boltzmann’s
constant and T|| and T⊥ are the parallel and perpendic-
ular temperatures. v̄ is the most probable velocity of the
beam along the radial direction and v|| and v⊥ are the
parallel and perpendicular components of the velocity,
corresponding to the radial and angular components in
spherical coordinates.

Integrating eq. (9) over the quitting surface, across
the skimmer and over the pinhole surface, one obtains
the following intensity equation:

ID =
τI0

2πa2R2
FL

∫ rph

0

∫ rS

0

∫ π

0

g(δ)r · ρ cos3 β · ε3

e−S
2(1−ε2 cos2 θ)D(b)dρdrdα. (10)
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Where RF is the radius of the quitting surface and S =
v̄/
√

2kBT||/m is the parallel speed ratio. I0 is the total
intensity stemming from a nozzle of diameter dn [13]:

I0 = κ
P0

kBT0

√
2kBT0

m

(π
4
d2

n

)√ γ

γ + 1

(
2

γ + 1

)1/(γ−1)

.

(11)
Where P0 and T0 are the thermodynamic pressure and
temperature of the helium gas before it undergoes the
expansion. γ = CP/CV = 5/3 for helium. κ = 2 is
a peak factor as defined in [13]. All other parameters
are defined in detail in Appendix C. Unfortunately, the
ellipsoidal quitting surface model has no simple analytical
solutions and is often slow to compute over a wide space
of solutions.

Using the quitting surface model with a single ra-
dial velocity distribution it can be shown that for S ≥
5, rS � RF−xS, the intensity arriving at a small pinhole
reads [14]:

IS =
I0πr

2
ph

(RF + a)2

(
1− exp

[
−S2

(
rS(RF + a)

RF(RF − xS + a)

)2
])

.

(12)
Where RF−xS is the axial distance between the quitting
surface and the tip of the skimmer. This equation was
obtained independently by Sikora and Andersen [14] and
thus we refer to it as Sikora’s approximation as mentioned
in the introduction.

We can use this equation together with eq. (6) for F»1
to obtain a simple analytical equation for the position of
the intensity maximum, given either a or rS is taken to
be constant.

∇IS(rS, a) = (0, 0), ∂2
aI < 0, ∂2

rSI < 0. (13)

Which corresponds to a subset of the solutions of the
following equation:

∇
r2
ph

(RF + a)2

(
1− exp

[
−S2

(
rS(RF + a)

RF(RF − xS + a)

)2
])

= 0. (14)

Where the radius of the pinhole, for F � 1 can be ob-
tained from eq. (6), which reduces to a quadratic equa-
tion with a single physical solution:

rph =
Φa
K −WDrS

a+WD
. (15)

From eq. (14), it can be shown that the maximum of
intensity is at (see Appendix D):

rmax
S =

Φa

2WDK
, (16)

as long as the following condition holds:(
S

RF + a

RF(RF − xS + a)

)2

(
Φa

WDK
rS − r2

S)� 1. (17)

The radius of the pinhole at the intensity maximum is
then:

rmax
ph =

Φa

2K(a+WD)
≈ Φ

2K
, a�WD. (18)

Comparing with eq. (15) one sees the importance of con-
dition (17), because if WDrS � Φa

K and a � WD is im-
posed, from eq. (15) one obtains:

rph ≈
Φ

K
. (19)

Which corresponds to the case where the beam does not
widen after the pinhole.

Unfortunately, no analytical solution has been found
for amax, neither in this limit nor in the general case.
However, the value can be easily obtained numerically
(see Section III). The triplet (amax, rmax

ph , rmax
S ) is the

optimal solution for the design of a helium microscope of
a given resolution Φ, given working distance, WD, and
given conditions at the supersonic expansion P0, T0.

III. RESULTS AND DISCUSSION

A. An example: Φ = 5µm, WD = 3 mm.

To illustrate the optimization method we consider the
pinhole helium microscope presented by Barr et al [22].
This microscope has been successfully built and has pro-
duced some of the best helium microscopy images at a
resolution of 5µm. We evaluate how the microscope could
be optimized using the same resolution and working dis-
tance as in the original setup.

By means of eq. (6), the problem is restricted to two
variables: the skimmer-pinhole distance a and the skim-
mer aperture rS. The intensity is then calculated by
means of the ellipsoidal quitting surface model, eq. (10).
A clear maximum of intensity can be observed which
smoothly decreases along the line described by eq. (16)
(see Fig. 2), giving the subset of maximums of intensity
for each fixed a value. The Fresnel number is plotted
at Fig. 3 . We see that in this case, the maximum is
situated at F=19.42 , reasonably within the geometrical
approximation.

It is also interesting to compare the intensity given
by the ellipsoidal quitting surface model to the intensity
given by Sikora’s approximation. Both models peak at
slightly different intensities, therefore it is useful to plot
the fraction of the normalized intensities.

ζ =
IS ·max(ID)

ID ·max(IS)
. (20)

From Fig. 4 we see that Sikora’s approximation fits
well the behaviour of the quitting surface model near
the intensity peak. Sikora’s approximation diverges from
the ellipsoidal quitting surface model at larger skimmers
as expected theoretically, as it is in this regime that the
component of the perpendicular temperature starts being
important.
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FIG. 2. Intensity (part/s) crossing a focal spot (Φ = 5µm) of a pinhole helium microscope for a span of values of rS and a. The
dashed line shows the subset of maximal solutions given by eq. (16). The intensity was calculated using the ellipsoidal quitting
surface model with the following parameters: T|| = 0.00802 K, T⊥ = 0.00209 K, RF = 0.0112 m, xS = 0.0113 m, T0 = 309 K,
P0 = 161 Bar. The working distance of the microscope is set at 0.003 m, and the nozzle diameter dn at 10µm. The maximum
lies at (amax, rmax

ph , rmax
S ) = (0.035m, 1.7886 ·10−6 m, 2.0250 ·10−5 m) . The black cross indicates the configuration corresponding

to the microscope designed by Barr et al [22]. The optimized design would increase the intensity by 75%. However, a distance
of only 35 mm between the two pinholes would not be so easy to realize experimentally with a good pumping speed.

B. Parametric dependences

The optimisation presented in Fig. 2 was performed
for a room temperature supersonic expansion beam, as
in the original experiment. We compare now with a cold
beam, which can be obtained by cooling the nozzle. Cool-
ing the beam increases the flow and changes the velocity
distribution. For the cold beam calculation we choose
the temperature 150 K because this is a temperature
which can easily be kept stable using for example liquid
nitrogen cooling. The position of the maximum changes
significantly. The optimized amax value decreases from
0.035 m to 0.026 m, and the optimized skimmer radius
decreases from 20.2 µm to 14.7 µm. The pinhole radius
at the maximum remains nearly constant (see Fig. 5).

The pinhole microscope system shows a clear max-
imum for a particularly defined supersonic expansion.
However, the position of the intensity maximum varies
with the expansion parameters. Such dependences can
be easily evaluated using Sikora’s approximation.

The dependence of the intensity maxima with the
speed ratio follows the expected trend. Higher speed ra-
tios favour smaller microscopes and skimmer openings

(see Fig. 6) due to the weaker divergence of the beam.
This also yields higher maximum intensity values. One
sees that the pinhole size depends very weakly of the
speed ratio as predicted by eq. (18). The radius of the
skimmer depends on the speed ratio through the value of
a (see eq. (16)).

The intensity decreases and the skimmer-pinhole dis-
tance increases strongly with the working distance, WD.
In other words, the working distance should always be
chosen as small as possible (see Fig. 7). The optimum
pinhole radius decreases with the working distance, be-
cause it is the main contributor to the widening of the
beam. The skimmer radius shows a more complicated
dependence, reaching a minimum at low working dis-
tances and then increasing smoothly. This must be un-
derstood in combination with the skimmer-pinhole dis-
tance a, which at small working distances is very small
and favours a small skimmer radius to lower the diver-
gence of the beam (see Fig. 7).

Regarding the dependences with the focal spot size Φ,
the intensity shows the expected quadratic dependence,
similar to the area of a disk. This quadratic relation
makes it hard to design high resolution microscopes with
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FIG. 3. Fresnel number for a span of values of rS and a. The
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length of λ̄ = 8.2535 ·10−11 m. Note that the line of maximal
intensity given by eq. (16) spans a region where F & 10. The
working distance of the microscope is set to 3 mm, and the
resolution to 5 µm.
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Note how both models diverge at high apertures due to the
omission of the perpendicular temperature effect in Sikora’s
approximation. At the intensity maximum both models be-
have similarly with ζ = 0.9722.

enough intensity (see Fig. 8). Both aperture radii in-
crease with the focal spot, the pinhole does it quasi lin-
early following eq. (16) while the skimmer shows a more
complicated dependence. The skimmer-pinhole distance
a peaks at small focal spot sizes and then decreases mono-
tonically as the influence of the airy diffraction disap-
pears (see Fig. 8).
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FIG. 5. Intensity (part/s) crossing the focal spot of a pin-
hole helium microscope for a span of values of rS and a.
The dashed line shows the subset of maximal solutions given
by eq. (16). The intensity was calculated using the el-
lipsoidal quitting surface model with the following param-
eters: T|| = 0.0054 K, T⊥ = 0.0039 K, RF = 0.0112 m,
xs = 0.0113 m, T0 = 131.3 K, P0 = 161 Bar. The work-
ing distance of the microscope is set to 3 mm, and the res-
olution to 5 µm. The maximum lies at (amax, rmax

ph , rmax
S ) =

(0.0260, 1.7714 · 10−6, 1.4750 · 10−5) m. The black cross indi-
cates the configuration corresponding to the microscope de-
signed by Barr et al [22].

C. Realistic resolution limits

Using Sikora’s approximation, one can easily obtain
the resolution limit of a realisable pinhole helium micro-
scope. A minimal count rate of 100 counts per second
is chosen and compared with the expected signal for the
optimal microscope at each resolution. Lambertian re-
flection [25] at π/4 radians relative to the sample normal
is assumed with the detector opening area perpendicular
to the reflected direction. The intensity seen at a given
solid angle is given by Lambert cosine law:

IΩ = Iinc cos(π/4)ΩD = Iinc cos2(π/4)
πR2

d2
. (21)

Where Iinc is the incident intensity per solid angle, which
corresponds to Is/π. ΩD is the solid angle seen by a de-
tector with a circular opening of radius R at a distance
d, oriented as described above. By considering the effi-
ciency of the detector, the formula giving the expected
count-rate reads:

N =
Ioptims R2

d2
η cos(

π

4
)2 ≈ 1.4 · 10−7Ioptims . (22)

Where R is the detector radius, chosen to be 0.5 mm. d is
the distance between the sample surface and the detector,
set at 3 mm. This corresponds to the solid angle of 0.02
π sr mentioned in the abstract. Ioptims is the optimized
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FIG. 7. Normalised optimized parameters of a pinhole he-
lium microscope for a span of values of the working distance
WD. The intensity was calculated using Sikora’s approxima-
tion with the following parameters: T0 = 131.3 K, P0 = 161
Bar. The working distance of the microscope is set at 0.003
m.

intensity using Sikora’s approximation. η is the efficiency
of the detector, chosen to be between 10−3 [26–29] and
10−5 (an upper limit estimate for a typical, commercial
mass spectrometer). Note that all parameters are set
as in the paper by Barr et al. [22]. As we can see in
Fig. 9, sub-micrometer resolutions are achievable with a
reasonable count rate.
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FIG. 8. Normalised optimized parameters of a pinhole helium
microscope for a span of values of the focal spot Φ. The
intensity was calculated using Sikora’s approximation with
the following parameters: T0 = 131.3 K, P0 = 161 Bar. The
working distance of the microscope is set at 0.003 m.
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FIG. 9. Optimized count rate for different focal spot sizes.
The intensity was calculated using Sikora’s approximation
with the following parameters: T0 = 131.3 K, P0 = 161 Bar.
The working distance of the microscope is set at 0.003 m. The
efficiency of the detector, placed at π/4 radians is η = 1 ·10−5

(lower line) or η = 1 · 10−3 (upper line).

D. The small working distance limit

A small WD helium microscope would be suitable for
the investigation of all samples currently investigated
with scanning probe techniques as discussed in the intro-
duction. In the limit WDrS/a � rph, for η = 0.001, the
maximum of intensity is always higher than 100 counts
per second for a collection solid angle of 0.02π sr. There-
fore, the minimal achievable resolution is determined by
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the theoretical trade-off between Airy diffraction and
beam widening in eq. (5). The smallest achievable Φ is
given by the point where decreasing further the pinhole
radius does not improve the resolution any more, because
the diffraction term dominates. For a working distance
of 10 µm, this point corresponds to (see Appendix E):

Φ = K

√
0.42λWD

√
3 ≈ 33 nm. (23)

With λ = 8.25 · 10−11 m, corresponding to T0 =
131.3 K. This equation is derived under the assumption
WDrS/a � rph, which for the case of WD = 10 µm only
holds weakly, the real resolution is a bit higher, 40 nm.
This has been calculated setting a lower bound for a of 5
cm, chosen as a technical constraint for the placement of
a pump in the skimmer-pinhole chamber. A helium pin-
hole microscope with a working distance of 10 µm has
already been demonstrated by Witham and Sanchez in
their 350 nm resolution configuration [12].

IV. CONCLUSION

We present a theoretical model of a neutral helium pin-
hole microscope using the quitting surface approach to
model the source intensity. We show that for a given
microscope resolution, working distance, and constant
source characteristics, there is a unique optimized solu-
tion. This optimized solution gives the sizes of the two
apertures of the system and their separation. Our pinhole
microscope model can easily be adapted to other source
models considering attenuation of the beam or describing
the flow of other atoms or molecules. The adaptation is
done simply by changing the intensity equation whilst us-
ing the same optical expressions. We show that with the
quitting surface intensity source model, high intensity,
helium pinhole microscopes with a resolution down to
around 40 nm are realisable. Further we suggest that an
intensity improvement of up to 75% for existing helium
pinhole microscopes is theoretically possible (although a
practical realisation can be challenging).

APPENDIX A: THE FOCAL SPOT SIZE AT
HIGH FRESNEL NUMBERS

If the Fresnel number is sufficiently high, a ray-optics
treatment is sufficient to describe the focal spot size. In
such a treatment, no convolution with a diffraction func-
tion is needed and the beam has the form of a top-hat
function. Therefore, in such cases the resolution of the
microscope is best understood by redefining the constant
K in a way that the FWHM of the beam is simply the
width of the top-hat function. This corresponds toK ≡ 2
so that eq. (5) reduces to:

Φ = 2δ. (A1)

APPENDIX B: DERIVATION OF EQ. (6) AND (7)

Deriving eq. (6) and (7) is a simple algebra prob-
lem consisting of extracting a → a(rph, rS) and rph →
rph(a, rS) from eq. (5). We shall begin by obtaining
rph → rph(a, rS). Squaring eq. (5) one obtains:

Φ2

K2
= δ2 + 3σ2

A(1− θ(F ))

= r2
ph

(
1 +

WD

a

)2

+ 2rph

(
1 +

WD

a

)
WDrS

a

+

(
WDrS

a

)2

+ 3

(
0.42λ

2

)2
W 2

D

r2
ph

(1− θ(F )). (B1)

Defining γ = WD

a and ε = 3W 2
D(0.42λ/2)2, multiplying

by r2
ph and grouping by powers of rph, one obtains eq.

(6). To obtain eq. (7) we can use eq. (B1), and multiply
by a2:

Φ2

K2
a2

= a2r2
ph

(
1 +

WD

a

)2

+ 2a2rph

(
1 +

WD

a

)
WDrS

a

+ a2

(
WDrS

a

)2

+ 3a2

(
0.42λ

2

)2
W 2

D

r2
ph

(1− θ(F )). (B2)

Expanding the quadratic sums and grouping by powers
of a, eq. (7) is recovered.

APPENDIX C: THE ELLIPSOIDAL QUITTING
SURFACE MODEL

The ellipsoidal quitting surface model used in this pa-
per is an extension of Sikora’s ellipsoidal quitting surface
model with the difference that the skimmer is allowed to
be in a different position than the quitting surface. Such
a model was published by U. Bossel in 1974 [19]. Unfor-
tunately the original paper has a couple of typos so we
describe here the corrected equations in detail. The main
intensity equation arriving at the pinhole is eq. (10):

ID =
τI0

2πa2R2
FL

∫ rph

0

∫ rS

0

∫ π

0

g(δ)r · ρ cos3 β · ε3

e−S
2(1−ε2 cos2 θ)D(b)dρdrdα. (C1)

Where RF is the radius of the quitting surface and
S = v̄/

√
2kBT||/m is the parallel speed ratio. ε ≡(

(τ sin2 θ + cos2 θ
)−1/2, τ ≡ T‖

T⊥
are auxiliary functions.

The function D(b) is defined as follows:

D(b) ≡ 2√
π
be−b

2

+
(
2b2 + 1

)
[1 + erf(b)] , b ≡ Sε cos θ.

(C2)
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Where I0 is defined in eq. (11). g(δ) is obtained from the
angular term in eq. (12) of Beijerinck and Verster paper
[13] (in Bossel’s work a cos2 function is chosen instead
[19]):

g(δ) = cos3

(
πθ

2θ0

)
, θ0 =

π

2

√
γ + 1

γ − 1
− 1 =

π

2
.

(C3)
Where γ = CP/CV = 5/3 for helium has been used.
L corresponds to the integration of g(δ) along the half
sphere (all the intensity emitted by the source is set to
be contained in g(δ)).

L ≡
∫ π

2

0

g(δ) sin δdδ =
1

4
. (C4)

ρ is the radial coordinate at the pinhole plane and r is the
radial coordinate at the skimmer plane. The angles β, α
and θ are shown in Fig. 10. The analytical expressions
that relate them to the radial coordinates of the system
follow:

cosβ =
a√

a2 + (r sinα)2 + (ρ− r cosα)2
, a = xD−xS.

(C5)

cos θ =
xR(xD − xR)− y2

R + zR(ρ− zR)

RF

√
(xD − xR)2 + y2

R + (ρ− zR)2
. (C6)

Where:

xR = xD − ξ(xD − xS), yR = r sinα

(
xD − xR

xD − xS

)
,

zR = r cosα

(
xD − xR

xD − xS

)
− ρ

(
xD − xR

xD − xS

)
+ ρ, (C7)

are the Cartesian coordinates of a point P on the quitting
surface (see Fig. 10).

ξ =
B −

√
B2 −AC
A

. (C8)

A ≡ (xD − xS)2 + (r sinα)2 + (ρ− r cosα)2, (C9)

B = xD(xD − xS) + ρ(ρ− r cosα), (C10)

C = x2
D + ρ2 −R2

F. (C11)

y

x

z

(x  , y  , z  )R RR

ρ

(x   ,0, z  )
D D

xS

xD

R F

δ

P’

P

r S
β

θP

P’

PINHOLESKIMMER

α r

a

FIG. 10. Illustration of all variables used in the ellipsoidal
quitting surface model. P is a point on the quitting sur-
face from which a particle leaves in a straight trajectory until
P’, a point placed on the pinhole plane. The point on the
quitting surface is given by the set of Cartesian coordinates
(xR, yR, zR), which can be related to the polar coordinates
r, α, ρ for further integration. xS is the distance from the noz-
zle to the skimmer and xD is the distance from the nozzle to
the pinhole. Therefore a = xD − xS. The angles β and θ can
also be expressed in terms of r, α and ρ.

APPENDIX D: DERIVATION OF EQ. (16)

To obtain eq. (16) we must differentiate IS with re-
spect to the skimmer radius and set it equal to 0 (eq.
(12)). To do so we will first need to introduce eq. (15)
in eq. (12) in order to obtain IS → IS(a, rS). Once this

is done, defining D2 ≡
(

S(RF+a)
RF(RF−xS+a)

)2

and taking the
derivative, we obtain:

2D2rSe
−D2r2S(

Φa

K
−WDrS)2−

2WD(1− e−D
2r2S)(

Φa

K
−WDrS) = 0, (D1)

which reduces to:

e−D
2r2S

(
2D2rS(

Φa

K
−WDrS) + 2WD

)
= 2WD. (D2)

Taking the natural logarithm we get:

D2r2
S = ln

(
1 +D2

[
Φa

WDK
rS − r2

S

])
. (D3)

Now, if D2
[

Φa
WDK

rS − r2
S

]
� 1, we can expand the log-

arithm at first order using Taylor series. Thanks to eq.
(15) we know that this condition corresponds to the case
of small pinholes (or of small D2).

r2
S ≈

Φa

WDK
rS − r2

S → rS ≈
Φa

2WDK
. (D4)

To proof that this corresponds to a maximum of the in-
tensity function, we must show that the second derivative
of eq. (12) respect the skimmer radius is negative. The
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second derivative evaluated at eq. (D4) reads (out of a
positive constant C2):

C2 d
2

dr2
S

IS =

−
(

ΦaD

2K

)2

e−D
2r2S

[
D2Φ2a2

W 2
DK

2
+ 6

]
+2W 2

D

(
1− e−D

2r2S

)
(D5)

Where we have not evaluated rS in the exponentials in
purpose, because we want to use D2

[
Φa
WDK

rS − r2
S

]
≈

D2r2
s � 1. By combining this condition with eq. (D5),

one obtains:

C2 d
2

dr2
S

IS ≈ −
(

ΦaD

2K

)2 [
D2Φ2a2

W 2
DK

2
+ 6

]
< 0. (D6)

V. APPENDIX E: DERIVATION OF EQ. (23)

One can derive the low limit working distance resolu-
tion limit directly from eq. (5):

Φ = K
√
δ2 + 3σ2

A(1− θ(F)). (E1)

At the low resolution limit (very small pinholes), F is
smaller than 1 and diffraction terms are present. The
working distance is assumed to be very small, i.e.:

WDrS

a
� rph,

WD

a
� 1. (E2)

Eq. (E1) is then reduced to:

Φ = K
√
r2
ph + 3σ2

A =

√
r2
ph + 3

(
0.42λWD

2rph

)2

. (E3)

One can find that ∂
∂rph

Φ2 = 0, ∂2

∂2rph
Φ2 > 0 if:

rph =

√
√

3
0.42λWD

2
. (E4)

Which gives, the minimum resolution limit:

Φ = K

√
0.42λWD

√
3. (E5)
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