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Abstract: The Maxwell-BF theory with a single-sided planar boundary is considered in Euclidean
four-dimensional spacetime. The presence of a boundary breaks the Ward identities, which
describe the gauge symmetries of the theory, and, using standard methods of quantum field
theory, the most general boundary conditions and a nontrivial current algebra on the boundary
are derived. The electromagnetic structure, which characterizes the boundary, is used to identify the
three-dimensional degrees of freedom, which turn out to be formed by a scalar field and a vector field,
related by a duality relation. The induced three-dimensional theory shows a strong–weak coupling
duality, which separates different regimes described by different covariant actions. The role of the
Maxwell term in the bulk action is discussed, together with the relevance of the topological nature of
the bulk action for the boundary physics.

Keywords: quantum field theory; topological quantum field theory; duality in gauge field theories;
boundary quantum field theory
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1. Introduction

Topological field theories have been the subject of a thorough investigation in theoretical
physics [1–3]. The initial aim was to unveil to what extent they could give hints for better understanding
gravity without matter [4], but it was soon recognized that they also had and still have a different role
if one adds a boundary [5,6]. Indeed, it is the boundary which plays a physical role and it is on the
boundary that the local observables of a new and different physics live. The introduction of a boundary
in a field theory was first proposed by Symanzik who introduced a separability ansatz in order to
study the Casimir effect of two parallel plates [7]. The method proposed by Symanzik concerns a
space divided into a left and a right hand side, and it has been applied to topological field theories of
different types [8], obtaining results particularly relevant for the theory of the fractional quantum Hall
effect [9] and of the topological insulators in three and four spacetime dimensions [10]. Later on, field
theories with a single-sided boundary have also been considered, which also lead to interesting results.
The first and most studied model is the Chern–Simons theory in three dimensions [11,12]. Soon after
appeared the BF models [13], the generalizations of the Chern–Simons model which can only live in an
odd spacetime [14,15] . The topological nature of the Chern–Simons action is that it does not depend
on the metric tensor and hence the energy momentum tensor vanishes. Later on, Witten proposed
another kind of topological theory where the action is not in the cohomology of the BRS operator and
hence the theory has no physical observables [16]. The common denominator to all these models is
that they are gauge field theories with the gauge field Aµ as the main actor and where the Maxwell
term does not appear since it breaks the topological nature of the model, which seems to be at the
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basis of duality relations characterizing the boundary degrees of freedom of these models, whose
bulk theories are purely topological [17]. Duality relations of this type are known [18,19] to allow to
extract fermionic degrees of freedom out of bosonic ones, in a way compatible with the existence of
Hall or quantum spin states on the edge of higher-dimensional bulk theories. It is natural to ask the
question to what extent this is true, investigating whether fermionizing duality relations hold also
on the boundary of non-topological field theories, which would broaden the possible candidates for
the theories of fractional quantum Hall effect and of topological insulators. Moreover, the Maxwell
coupling is expected to be quite relevant in whatever physics may arise on the boundary and that is
why we are studying models where the Maxwell term is included in the bulk action. This has been done
for Chern–Simons theory with both double- [20] and single-sided [21] boundary, with significantly
different results. We note also that the introduction of a Maxwell term in the Chern–Simons action gives
rise to topologically massive theories [22,23] by means of a mechanism which cannot to be replicated
in spacetime dimensions other than three. The question also arises in what sense a topological theory
with a Maxwell coupling is still topological. We propose here the Maxwell-BF model as a new kind of
topological theory in four spacetime dimensions. The model does not fit into the known “topological”
classes of quantum field theories since it does depend explicitly on the metric and the Maxwell term
makes it cohomologically nontrivial. Nevertheless, the bulk theory has no local observables due to
the equations of motion, which enforce the field strength Fµν to vanish, and hence the gauge field
Aµ is pure gauge. This model has never been considered before with a boundary and the question
is not irrelevant. The fact that the physics of the model live on the boundary is neither intuitive nor
immediately deducible as a simple exercise.

The paper is organized as follows. In Section 2, the model with planar boundary is introduced.
The boundary conditions and the Ward identities, broken by the presence of the boundary, are derived.
A kind of electromagnetic structure is found on the boundary, with Maxwell equations solved by
potentials, which will play the role of degrees of freedom for the 3D theory. The identification of
electric and magnetic fields makes possible a physical interpretation of the role of the Maxwell term, as
deformation of the magnetic field. In Section 3, following standard methods of quantum field theory,
the algebra formed by the conserved electromagnetic currents is found, which heavily depends on
the Maxwell term in the bulk action. The algebra, written in terms of the 3D potentials, allows for
the construction, in Section 4, of the 3D theory, whose symmetries are identified. The holographic
contact is realized by means of the equations of motion of the 3D theory, which are required to be
compatible with the boundary conditions of the bulk 4D theory. The resulting equation is recognized
to be the duality relation which characterizes the existence of fermionic degrees of freedom on the
boundary and therefore turns out not to be peculiar of purely topological bulk field theories only. In
other words, the fact that the physical properties are the same in the holographic theory, whether the
Maxwell term is present or not, clarifies the meaning of topological quantum field theories when a
boundary is introduced.

2. The Model: Action, Boundary Conditions and Ward Identities

The action of the 4D Maxwell-BF theory in Euclidean spacetime is

Sbulk =
∫

d4x θ(x3)
(
k1 εµνρσFµνBρσ + k2 FµνFµν

)
, (1)

where the presence of the step-function θ(x3) restricts the model on the half-space x3 ≥ 0, with planar
boundary at x3 = 0, Fµν(x) is the electromagnetic tensor for the gauge field Aµ(x) and Bµν(x) =

−Bνµ(x) is the rank-2 antisymmetric tensor of the 4D topological BF theory [24,25]. The canonical
mass dimensions of the quantum fields are

[A] = 1 ; [B] = 2 . (2)
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Finally, k1 and k2 are constants that could be reabsorbed by a redefinition of the fields, but
we prefer to keep to be able to trace the contributions of the topological BF and Maxwell F2 term,
respectively.

In absence of boundary, i.e., without the θ-function in Equation (1), the action of the Maxwell-BF
theory is invariant under the following two symmetries:

δ(1)Aµ = ∂µΛ

δ(1)Bµν = 0
(3)

and

δ(2)Aµ = 0

δ(2)Bµν = ∂µζν − ∂νζµ ,
(4)

where Λ(x) and ζµ(x) are gauge parameters. The presence of the boundary in Sbulk breaks the δ(2)-
invariance, preserving the usual gauge symmetry δ(1):

δ(1)Sbulk = 0 ; δ(2)Sbulk = −4k2

∫
d4xδ(x3)ζiεijk∂j Ak , (5)

where Latin indices run from 0 to 2: i, j, ... = {0, 1, 2}.
The total action Stot is composed by four terms

Stot = Sbulk + Sg f + Sext + Sbd , (6)

where Sbulk is given by Equation (1), Sg f is the gauge fixing term

Sg f =
∫

d4x θ(x3) (bA3 + diB3i) , (7)

and b(x) and di(x) are Lagrange multipliers implementing the gauge conditions

A3 = B3i = 0 . (8)

In Sext, external sources Ji(x) and Jij(x) are introduced

Sext =
∫

d4x θ(x3)

(
Ji Ai +

1
2

JijBij

)
, (9)

by means of which the quantum fields surviving the gauge conditions in Equation (8) can be defined.
Finally, Sbd is the most general boundary term defined on x3 = 0 compatible with power counting

Sbd =
∫

d4x δ(x3)
(

a1εijk Ai∂j Ak + a2 Ai∂3 Ai + a3εijk AiBjk +
m
2

Ai Ai

)
, (10)

where ai and m are constant parameters and the canonical mass assignments in Equation (2) and
[δ] = 1 have been used. Notice that∫

d4x θ(x3)εµνρσFµνFρσ = 2
∫

d4x θ(x3)∂µ(εµνρσ AνFρσ)

= −4
∫

d4x δ(x3)εijk Ai∂j Ak ,
(11)

which justifies the fact that we did not introduce in Sbulk (Equation (1)) a term FF̃ in favor of its
Chern-Simons-like boundary counterpart, identified by the constant a1 in Equation (10). In addition,
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we chose to keep 3D covariance on the boundary. A more general, non-covariant boundary term could
have been written [26–28].

The equations of motion of the fields Ai and Bij are

δStot

δAi
= θ(x3)[−2k1εijk∂3Bjk − 4k2∂2

3 Ai − 4k2∂2
j Ai + 4k2∂i∂j Aj + Ji]

+ δ(x3)[(a3 − 2k1)εijkBjk + (a2 − 4k2)∂3 Ai + 2a1εijk∂j Ak + mAi] = 0
(12)

and
δStot

δBij
= θ(x3)[4k1εijk∂3 Ak + Jij] + δ(x3)[2a3εijk Ak] = 0 . (13)

From the equations of motion (Equations (12) and (13)) and performing limε→0
∫ +ε
−ε dx3, we get

the boundary conditions

(a3 − 2k1)εijkBjk + (a2 − 4k2)∂3 Ai + 2a1εijk∂j Ak + mAi

∣∣∣
x3=0

= 0 (14)

a3 Ai|x3=0 = 0 . (15)

The equations of motion lead also to the following Ward identities, broken due to the presence of
the boundary ∫ ∞

0
dx3 ∂i Ji = −∂i

(
2k1εijkBjk + 4k2∂3 Ai

)∣∣∣
x3=0

(16)

∫ ∞

0
dx3 ∂j Jij = (4k1 − 2a3) εijk∂j Ak

∣∣∣
x3=0

, (17)

where, to obtain Equation (16), the boundary conditions in Equation (14) have been used. On
the boundary x3 = 0 and at vanishing external sources, i.e., on the mass shell, the above Ward
identities imply

∂i

(
2k1εijkBjk + 4k2∂3 Ai

)∣∣∣
x3=0

= 0 (18)

and
εijk∂j Ak

∣∣∣
x3=0

= 0 . (19)

Notice that, due to Equation (19), the a1-term in the boundary action Sbd in Equation (10) vanishes.
Therefore, without loss of generality, we may rule it out

a1 = 0 . (20)

Equations (18) and (19) reveal an electromagnetic structure on the boundary x3 = 0, since they
suggest to define an “electric” and a “magnetic” field:

Ei ≡ Ai (21)

Hi ≡ k1εijkBjk + 2k2∂3 Ai , (22)

which allow identifying the degrees of freedom on the boundary x3 = 0 as the corresponding
electromagnetic potentials. Indeed, Equations (18) and (19) are solved by introducing a 3D vector field
ξi(X) and a 3D scalar field Φ(X), respectively:

√
Mεijk∂jξk(X) ≡ 2k1εijkBjk(x) + 4k2∂3 Ai(x)

∣∣∣
x3=0

(23)

1√
M

∂iΦ(X) ≡ Ai(x)|x3=0 , (24)
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where a massive scaling parameter M has been introduced in order to make compatible the mass
dimensions in Equation (2) of the 4D fields Aµ and Bµν with those of their 3D boundary counterparts
Φ and ξi [29]. In 3D spacetime dimensions, in fact, vector fields and scalar fields should have the
following mass dimensions:

[ξ] = [Φ] =
1
2

. (25)

A comment is in order: It turns out that a particular solution of the general boundary conditions
in Equations (14) and (15) exists, which makes the physics independent of the Maxwell term. In fact,
the choice

a2 6= 4k2 ; a3 = 2k1 ; m = any (26)

implies, from Equations (14) and (15), (Dirichlet and) Neumann boundary conditions for the gauge
field Ai on x3 = 0

∂3 Ai = 0|x3=0 . (27)

Consequently, the Ward identities do not depend on the coupling k2 of the Maxwell term in the
action in Equation (1), and the theory is indistinguishable, under any respect, from the pure topological
BF theory with planar boundary. The fact that the Neumann condition for the gauge field Ai, which
is a solution of the general boundary conditions in Equations (14) and (15), makes the Maxwell term
transparent and the non-topological theory equivalent to a topological one, is the first nontrivial result
of this paper. Since the aim of this paper is to study if and how the non-topological Maxwell term
has an impact on the physics on the boundary, we proceed from now disregarding the solution in
Equation (26). In particular, the boundary condition in Equation (15) is solved by

a3 = 0 . (28)

The k2-Maxwell term manifests itself on the r.h.s. of the Ward identity in Equation (16) by means
of ∂3 Ai|x3=0. We observe that, on the boundary x3 = 0, the fields Ai|x3=0 and ∂3 Ai|x3=0 must be
treated as independent dynamical fields [30]. Consequently, we need to couple, on the boundary
x3 = 0, an external source Ĵi to ∂3 Ai|x3=0, as done in [31], where the 3D Maxwell theory with boundary
has been studied:

Sext → Ŝext =
∫

d4x
[

θ(x3)

(
Ji Ai +

1
2

JijBij

)
+ δ(x3) Ĵi∂3 Ai

]
. (29)

3. The Boundary Algebra

Differentiating the two Ward identities in Equations (16) and (17) with respect to the external
sources Ji(x), Jij(x) and Ĵi(x) and then going at J = 0 lead to six algebraic relations. We consider the
subalgebra obtained as follows.

Differentiating the Ward identity in Equation (16) with respect to Jm(x′), and then going at
vanishing external source, we get

∂X
mδ(3)(X− X′) = ∂X

i

(
−2k1εijk∆AmBjk (X′, X)− 4k2∆Am∂3 Ai

(X′, X)
)

. (30)

In Equation (30), ∂X
i ≡

∂
∂Xi

, and the time-ordered propagator between two generic fields Φ(X)

and Φ(X) is defined on the generating functional of the connected Green functions Zc[J], as usual, as

∆ΦΨ(X, X′) ≡ δ(2)Zc

δJΦ(X)δJΨ(X′)

∣∣∣∣∣
JΦ=JΨ=0

= θ(x0 − x′0)〈Φ(X)Ψ(X′)〉+ θ(x′0 − x0)〈Ψ(X′)Φ(X)〉.

(31)
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Hence, from Equation (30), we have

∂X
mδ(3)(X− X′) = δ(x0 − x′0)〈[Am(X′), 2k1B̃(X) + 4k2∂3 A0(X)]〉

− 2θ(x0 − x′0)〈
[
∂X

i

(
k1εijkBjk + 2k2∂3 Ai

)
(X)Am(X′)

]
〉

− 2θ(x′0 − x0)〈
[

Am(X′)∂X
i

(
k1εijkBjk + 2k2∂3 Ai

)
(X)

]
〉,

(32)

where we define
B̃(X) ≡ εαβBαβ(X) . (33)

The last two terms on the r.h.s. of Equation (32) vanish on-shell due to Equation (18), so that, at
vanishing external sources, we get

∂X
mδ(3)(X− X′) = δ(x0 − x′0)〈[Am(X′), 2k1B̃(X) + 4k2∂3 A0(X)]〉 . (34)

Following the same steps, differentiating the Ward identity in Equation (16) with respect to the
external sources Jmn(x′) and Ĵm(x′) , we get, respectively,

δ(x0 − x′0)〈[Bmn(X′), k1B̃(X) + 2k2∂3 A0(X)]〉 = 0 (35)

and
δ(x0 − x′0)〈[k1B̃(X) + 2k2∂3 A0(X), ∂3 Am(X′)]〉 = 0 . (36)

On the other hand, deriving the Ward identity in Equation (17) with respect to Jmn(x′), we obtain

δ(x0 − x′0)〈[Bmn(X′), k1B̃(X) + 2k2∂3 A0(X)]〉 = 0 . (37)

From the above algebraic relations, we get the following subalgebra formed by equal-time
commutators:

〈[Aα(X), 2k1B̃(X′) + 4k2∂3 A0(X′)]〉x0=x′0
= ∂X

α δ(2)(X− X′) (38)

〈
[
Aα(X), Aβ(X′)

]
〉x0=x′0

= 0 (39)〈[
2k1B̃(X) + 4k2∂3 A0(X), 2k1B̃(X′) + 4k2∂3 A0(X′)

]〉
x0=x′0

= 0 , (40)

which, written in terms of the 3D boundary fields ξi(X) (Equation (23)) and Φ(X) (Equation (24)),
implies

〈[Φ(X), εαβ∂αξβ(X′)]〉x0=x′0
= δ(2)(X− X′) (41)

〈
[
Φ(X), Φ(X′)

]
〉x0=x′0

= 0 (42)

〈
[
εαβ∂αξβ(X), εαβ∂αξβ(X′)

]
〉x0=x′0

= 0 . (43)

4. The Action Induced on the 3D Boundary

The commutators in Equations (41)–(43) can be interpreted as equal-time canonical commutation
relations for the 3D canonically conjugate variables

q(X) ≡ 1√
M

Φ(X)

p(X) ≡
√

Mεαβ∂αξβ(X) ,
(44)

and this allows us to identify the most general action S3D[Φ, ξ] induced on the planar boundary x3 = 0
of the 4D Maxwell-BF theory, which must display the following features:
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1. The 3D action S3D[Φ, ξ] must be a local integrated functional of the 3D fields in Equations (23)
and (24), with canonical mass dimension equal to three.

2. The 3D Lagrangian L3D[Φ, ξ] must be such that the relation between the canonically conjugate
variables in Equation (44) holds true:

p(X) =
∂L3D
∂q̇(X)

, (45)

which implies that the Lagrangian L3D[Φ, ξ] must contain time derivatives only in the term pq̇.
3. The action S3D[Φ, ξ] must display the two symmetries, which leave invariant the definitions in

Equation (23) and (24):

(a) gauge symmetry
δgaugeξi = ∂iΛ (46)

(b) shift symmetry
δshi f tΦ = constant . (47)

The most general action satisfying the above requests is

S3D[Φ, ξ] =
∫

d3X
[
c1(εαβFαβ

)(∂0Φ) + c2FαβFαβ + c3∂αΦ∂αΦ
]

, (48)

where Fαβ = ∂αξβ − ∂βξα and ci, i = 1, 2, 3 are constants. From the action S3D[Φ, ξ], we get the
equations of motion

δS3D
δΦ

= −2∂α(c1εαβ∂0ξβ + c3∂αΦ) = 0 (49)

δS3D
δξα

= 2∂β(c1εαβ∂0Φ + 2c2Fαβ) = 0 . (50)

5. Holographic Constraint and Duality

The equations of motion (Equations (49) and (50)) of the scalar-vector 3D action S3D[Φ, ξ]

(Equation (48)) must be compatible with the boundary conditions in Equations (14) and (15) of
the 4D Maxwell-BF theory on the planar boundary x3 = 0. To make this holographic contact [32],
the boundary condition in Equation (14) written in terms of the boundary degrees of freedom ξi
(Equation (23)) and Φ (Equation (24)) is

εijk∂jξk − κ∂iΦ = 0 , (51)

where, besides Equations (20) and (28), we cho0se

a2 = 0 , (52)

and we define the dimensionless normalized mass parameter

κ ≡ m
M

. (53)

We recognize in Equation (51) the duality relation found in [33], which extracts fermionic degrees
of freedom from bosonic ones [18,19,34]. We come back to this point below. Here, it appears as the
unique boundary condition that relates the 4D Maxwell-BF theory with boundary and its holographic
3D counterpart(s), as explicitly shown below.
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Notice that the three components i = {0, α} of Equation (51) are

εαβFαβ − 2κ∂0Φ = 0 (54)

εαβ∂0ξβ − εαβ∂βξ0 + κ∂αΦ = 0 , (55)

which are compatible with Equations (49) and (50) if

c2 = − 1
2κ

c1 ; c3 = κc1 (56)

and if the temporal gauge choice for the 3D gauge field ξi is imposed

ξ0 = 0 . (57)

6. Summary of Results and Discussion

When a boundary is introduced in a quantum field theory, a crucial role is played by the boundary
term, which in the case studied in this paper is represented by Sbd (Equation (10)), which depends by a
number of constant parameters which need to be fine tuned in order to determine the holographic
theory induced on the boundary. For the 4D Maxwell-BF theory, the boundary term finally reduces to

Sbd =
m
2

∫
d4x δ(x3)Ai Ai , (58)

which depends on one massive parameter m only.
In presence of a boundary, the question naturally arises of which boundary conditions should be

imposed. The procedure described in this paper leads to the following boundary condition compatible
with the holographic construction:

2k1εijkBjk + 4k2∂3 Ai −mAi

∣∣∣
x3=0

= 0 , (59)

which involves both the k1-BF and the k2-Maxwell terms. Notice that it depends on one parameter
only (m). It is of a nonstandard type, since it does not fall into the usual Dirichlet, Neumann or
Robin boundary conditions on each field, separately. On the contrary, it mixes both the fields, and the
effect of the Maxwell term is to introduce a dependence on the transverse component of the gauge
field with respect to the planar boundary, which is independent of the longitudinal components, and
consequently must be treated as an independent dynamical variable on the boundary. As we remarked,
an unexpected consequence of the boundary conditions in Equations (14) and (15) is that they can be
solved by the set of parameters in Equation (26), which implies, in particular, Neumann boundary
condition for the gauge field Aµ. This corresponds to eliminating any dependence from k2, i.e., from
the Maxwell term, in the physics on the boundary, represented by the current algebra as well as the
boundary conditions themselves.

The boundary breaks all the invariances of the unbounded theory: translations, parity and gauge
symmetries. The first consequence concerns the choice of the gauge conditions, implemented by the
gauge fixing term Sg f in Equation (7), which does not need to be covariant. With deeper consequences,
the Ward identities describing the Ward identities are broken by boundary terms:∫ ∞

0
dx3 ∂i Ji = −∂i

(
2k1εijkBjk + 4k2∂3 Ai

)∣∣∣
x3=0

(60)

∫ ∞

0
dx3 ∂j Jij = 4k1 εijk∂j Ak

∣∣∣
x3=0

. (61)
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At J = 0, i.e., going on-shell, the vanishing of the boundary breakings lead to define on x3 = 0 an
“electric” field and a “magnetic” field, and the corresponding potentials:

Ei ≡ Ai ∝ ∂iΦ (62)

Hi ≡ k1εijkBjk + 2k2∂3 Ai ∝ εijk∂jξk , (63)

which allow physically interpreting the contribution of the Maxwell term as a deformation of the
magnetic field on the boundary. Without Maxwell term, i.e., at k2 = 0, the fields Ai and Bij are
interpreted as electric and magnetic fields on the boundary, respectively. Their transverse component
do not enter in the game and could safely be eliminated by Neumann boundary conditions. In the
presence of the Maxwell term, this is no longer true for the gauge field A, for which both the
longitudinal and transverse components are physically important: the former as electric field, and the
latter as deformation of the main magnetic field represented by the dual of the B-field. The potentials
corresponding to the boundary electric and magnetic fields (Equations (62) and (63)) are the degrees of
freedom by means of which the holographic 3D theory is constructed: a vector field ξi and a scalar
field Φ.

The algebra obtained from the broken Ward identities in Equations (60) and (61) by differentiating
them with respect to the external sources J, written in terms of the boundary degrees of freedom is

〈[Φ(X), εαβ∂αξβ(X′)]〉x0=x′0
= δ(2)(X− X′) (64)

〈
[
Φ(X), Φ(X′)

]
〉x0=x′0

= 0 (65)

〈
[
εαβ∂αξβ(X), εαβ∂αξβ(X′)

]
〉x0=x′0

= 0 , (66)

which can be seen as equal-time canonical commutation relations between canonical variables q(X)

and p(X).
Once the canonical variables are identified, the corresponding action is found to be

S3D[Φ, ξ] = c1

∫
d3X

[
(εαβFαβ)(∂0Φ)− 1

2κ
FαβFαβ + κ∂αΦ∂αΦ

]
, (67)

which is the most general 3D local integrated functional built with a scalar and a vector field, respecting
power counting and invariant under the gauge (Equation (46)) and shift (Equation (47)) symmetries,
and, most importantly, whose equations of motion are compatible with the boundary conditions
in Equation (59):

εijkFjk − 2κ∂iΦ = 0 . (68)

Equation (68) coincides with the duality relation between a scalar and a vector field which has
been invoked in [18,19,33] as the main tool for the mechanism of fermionization of bosonic degrees
of freedom. In other words, the effective dynamical variables living on the boundary of the 4D
Maxwell-BF are fermionic. This feature is crucial for the interpretation of the boundary degrees of
freedom as the edge states of the 3D topological insulators [35,36]. The new fact that we are recovering
here is that this property, which has been related to the topological character of the bulk theory [17],
indeed also holds for a non-topological theory such as Maxwell-BF theory. We comment in more detail
on this point below. The duality relation in Equation (68) has also more field theoretical consequences.
Thanks to Equation (68), indeed, the action in Equation (67) is covariant, despite the appearances.
In fact, the scalar field Φ can be eliminated from the action through Equation (68), and we find the 3D
Maxwell theory

SMax[ξ] =
c1

2κ

∫
d3X FijFij . (69)
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Alternatively, the duality relation in Equation (68) allows us to trade the vector for the scalar field

SKK[Φ] = κc1

∫
d3X ∂iΦ∂iΦ . (70)

The scalar–vector 3D theory described by Equation (67), the Maxwell action in Equation (69)
and the massless Klein–Gordon action in Equation (70) are all holographic counterparts of the 4D
Maxwell-BF theory with planar boundary. The two actions in Equations (69) and (70) are related by
the duality relation in Equation (51), which may be written in a way to emphasize its strong–weak
coupling aspect:

∂iΦ↔ εijkFjk ∪ κ ↔ 1
κ

. (71)

In this form, it is apparent that the coupling κ in Equation (53) governs the regimes where one
type of action dominates with respect to the other: at strong coupling (very large κ), the dominating
term is the Maxwell one, while, at weak coupling (very small κ), it is the massless scalar action which
dominates. At intermediate regimes, both the degrees of freedom are present, and the relevant action
is Equation (67), whose degrees of freedom are fermionic, due to Equation (68), as remarked above.
It is this intermediate regime which is relevant for the topological insulators, for which the same action
in Equation (67) has been proposed in [35]. Surprisingly, the order parameter κ, which distinguishes
the various regimes, is directly related through Equation (53) to the only effective parameter m, which
survives in the boundary term in Equation (58), and hence plays a much more crucial role than one
might expect at first sight.

We conclude this paper with a remark concerning the effect of the presence of the Maxwell term
in the bulk action in Equation (1) together with a general consideration on the topological nature of
quantum field theories. The main feature of topological quantum field theories is the lack of local
observables, the only observables being global geometrical properties of the manifolds on which they
are built. Technically, this means that the local cohomology of the BRS operator is empty. Examples
of topological quantum field theories are the 3D Chern–Simons theory and BF theories, which may
be defined in any spacetime dimensions. The 4D Maxwell-BF theory studied in this paper is not
topological, since its action depends on the metric through the Maxwell term, and its cohomological
structure is nontrivial. Nevertheless, the bulk action has no local observables since the equations of
motion enforce the vanishing of the Fµν tensor; thus, we are looking at a different class of “topological”
theories where the boundary is expected to carry all the physical information. If a boundary is
introduced, as above, this nontriviality reflects in the algebra derived from the Ward identities in
Equations (60) and (61), which is rather complicated. We write down the four relations (out of six) as
Equations (34)–(37), where the dependence on the Maxwell term is highlighted by the coefficient k2.
In addition, the boundary condition in Equation (59) explicitly depends on the Maxwell term, which
physically results in a perturbation of the magnetic fieldH (Equation (63)). On the other hand, when
constructing the holographic scalar-vector 3D theory, the presence of the Maxwell term is buried in
the definition of the vector potential ξi in Equation (63), and both 3D actions (in their duality-related
representations, Equations (67), (69) and (70), and the duality relation, Equation (68)) are the same as
in the case of pure BF with boundary. In other words, from the holographic point of view, Maxwell-BF
theory with boundary is indistinguishable from the pure topological BF theory, as if holography would
protect the topological character of bulk theories.

Funding: This research received no external funding

Author Contributions: A.B. and N.M. equally contributed to all phases of preparation of this article.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2019, 11, 921 11 of 12

References

1. Witten, E. Supersymmetry and Morse theory. J. Diff. Geom. 1982, 17, 661. [CrossRef]
2. Witten, E. Topological Quantum Field Theory. Commun. Math. Phys. 1988, 117, 353. [CrossRef]
3. Atiyah, M. Topological quantum field theories. Inst. Hautes Etudes Sci. Publ. Math. 1989, 68, 175. [CrossRef]
4. Witten, E. (2+1)-Dimensional Gravity as an Exactly Soluble System. Nuclear Phys. B 1988, 311, 46. [CrossRef]
5. Moore, G.W.; Seiberg, N. Taming the Conformal Zoo. Phys. Lett. B 1989, 220, 422. [CrossRef]
6. Cattaneo, A.S.; Mnev, P.; Reshetikhin, N. Classical and quantum Lagrangian field theories with boundary.

PoS CORFU 2011, 2011, 044. [CrossRef]
7. Symanzik, K. Schrodinger Representation and Casimir Effect in Renormalizable Quantum Field Theory.

Nuclear Phys. B 1981, 190, 1. [CrossRef]
8. Amoretti, A.; Blasi, A.; Maggiore, N.; Magnoli, N. Three-dimensional dynamics of four-dimensional

topological BF theory with boundary. New J. Phys. 2012, 14, 113014. [CrossRef]
9. Blasi, A.; Ferraro, D.; Maggiore, N.; Magnoli, N.; Sassetti, M.; Symanzik’s Method Applied To The Fractional

Quantum Hall Edge States. Ann. Phys. 2008, 17, 885. [CrossRef]
10. Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Introduction of a boundary in topological

field theories. Phys. Rev. D 2014, 90, 125006. [CrossRef]
11. Chern, S.S.; Simons, J. Characteristic forms and geometric invariants. Ann. Math. 1974, 99, 48. [CrossRef]
12. Blasi, A.; Collina, R. The Chern-Simons model with boundary: A Cohomological approach. Int. J. Mod.

Phys. A 1992, 7, 3083. [CrossRef]
13. Horowitz, G.T. Exactly Soluble Diffeomorphism Invariant Theories. Commun. Math. Phys. 1989, 125, 417.

[CrossRef]
14. Karlhede, A.; Rocek, M. Topological Quantum Field Theories in Arbitrary Dimensions. Phys. Lett. B 1989,

224, 58. [CrossRef]
15. Blasi, A.; Maggiore, N.; Montobbio, M. Noncommutative two dimensional BF model. Nuclear Phys. B 2006,

740, 281. [CrossRef]
16. Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G. Topological field theory. Phys. Rept. 1991, 209, 129.

[CrossRef]
17. Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Holography in flat spacetime: 4D theories

and electromagnetic duality on the border. J. High Energy Phys. 2014, 1404, 142. [CrossRef]
18. Aratyn, H. A Bose Representation For The Massless Dirac Field In Four-dimensions. Nuclear Phys. B 1983,

227, 172. [CrossRef]
19. Aratyn, H. Fermions From Bosons In (2+1)-dimensions. Phys. Rev. D 1983, 28, 2016. [CrossRef]
20. Blasi, A.; Maggiore, N.; Magnoli, N.; Storace, S. Maxwell-Chern-Simons Theory with Boundary. Class. Quant.

Grav. 2010, 27, 165018. [CrossRef]
21. Maggiore, N. Holographic reduction of Maxwell-Chern-Simons theory. Eur. Phys. J. Plus 2018, 133, 281.

[CrossRef]
22. Deser, S.; Jackiw, R.; Templeton, S. Topologically Massive Gauge Theories. Ann. Phys. 1982, 140, 372–411.

Erratum in: 2000, 281, 409. Erratum in: 1988, 185, 406. [CrossRef]
23. Deser, S.; Jackiw, R.; Templeton, S. Three-Dimensional Massive Gauge Theories. Phys. Rev. Lett. 1982, 48, 975.

[CrossRef]
24. Blau, M.; Thompson, G. A New Class of Topological Field Theories and the Ray-singer Torsion. Phys. Lett. B

1989, 228, 64. [CrossRef]
25. Blau, M.; Thompson, G. Topological Gauge Theories of Antisymmetric Tensor Fields. Ann. Phys. 1991, 205,

130 [CrossRef]
26. Maggiore, N. From Chern–Simons to Tomonaga–Luttinger. Int. J. Mod. Phys. A 2018, 33, 1850013. [CrossRef]
27. Blasi, A.; Maggiore, N. Massive deformations of rank-2 symmetric tensor theory (a.k.a. BRS characterization

of Fierz–Pauli massive gravity). Class. Quant. Grav. 2017, 34, 015005. [CrossRef]
28. Blasi, A.; Maggiore, N. Massive gravity and Fierz-Pauli theory. Eur. Phys. J. C 2017, 77, 614. [CrossRef]
29. Blasi, A.; Maggiore, N.; Montobbio, M. Instabilities of noncommutative two dimensional bf model. Mod. Phys.

Lett. A 2005, 20, 2119. [CrossRef]
30. Karabali, D.; Nair, V.P. Boundary Conditions as Dynamical Fields. Phys. Rev. D 2015, 92, 125003. [CrossRef]

http://dx.doi.org/10.4310/jdg/1214437492
http://dx.doi.org/10.1007/BF01223371
http://dx.doi.org/10.1007/BF02698547
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://dx.doi.org/10.1016/0370-2693(89)90897-6
http://dx.doi.org/10.22323/1.155.0044
http://dx.doi.org/10.1016/0550-3213(81)90482-X
http://dx.doi.org/10.1088/1367-2630/14/11/113014
http://dx.doi.org/10.1002/andp.200810323
http://dx.doi.org/10.1103/PhysRevD.90.125006
http://dx.doi.org/10.2307/1971013
http://dx.doi.org/10.1142/S0217751X92001381
http://dx.doi.org/10.1007/BF01218410
http://dx.doi.org/10.1016/0370-2693(89)91050-2
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.028
http://dx.doi.org/10.1016/0370-1573(91)90117-5
http://dx.doi.org/10.1007/JHEP04(2014)142
http://dx.doi.org/10.1016/0550-3213(83)90148-7
http://dx.doi.org/10.1103/PhysRevD.28.2016
http://dx.doi.org/10.1088/0264-9381/27/16/165018
http://dx.doi.org/10.1140/epjp/i2018-12130-y
http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1016/0370-2693(89)90526-1
http://dx.doi.org/10.1016/0003-4916(91)90240-9
http://dx.doi.org/10.1142/S0217751X18500136
http://dx.doi.org/10.1088/1361-6382/34/1/015005
http://dx.doi.org/10.1140/epjc/s10052-017-5205-y
http://dx.doi.org/10.1142/S0217732305018372
http://dx.doi.org/10.1103/PhysRevD.92.125003


Symmetry 2019, 11, 921 12 of 12

31. Maggiore, N. Conserved chiral currents on the boundary of 3D Maxwell theory. J. Phys. A 2019, 52, 115401.
[CrossRef]

32. Amoretti, A.; Braggio, A.; Maggiore, N.; Magnoli, N. Thermo-electric transport in gauge/gravity models.
Adv. Phys. X 2017, 2, 409. [CrossRef]

33. Amoretti, A.; Blasi, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Duality and Dimensional Reduction of 5D BF
Theory. Eur. Phys. J. C 2013, 73, 2461. [CrossRef]

34. Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. 3+1D Massless Weyl spinors from bosonic
scalar-tensor duality. Adv. High Energy Phys. 2014, 2014, 635286. [CrossRef]

35. Cho, G.Y.; Moore, J.E. Topological BF field theory description of topological insulators. Ann. Phys. 2011, 326,
1515. [CrossRef]

36. Blasi, A.; Braggio, A.; Carrega, M.; Ferraro, D.; Maggiore, N.; Magnoli, N. Non-Abelian BF theory for 2+1
dimensional topological states of matter. New J. Phys. 2012, 14, 013060. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1751-8121/ab045a
http://dx.doi.org/10.1080/23746149.2017.1300509
http://dx.doi.org/10.1140/epjc/s10052-013-2461-3
http://dx.doi.org/10.1155/2014/635286
http://dx.doi.org/10.1016/j.aop.2010.12.011
http://dx.doi.org/10.1088/1367-2630/14/1/013060
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Model: Action, Boundary Conditions and Ward Identities
	The Boundary Algebra
	The Action Induced on the 3D Boundary
	Holographic Constraint and Duality
	Summary of Results and Discussion
	References

