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Abstract. We consider a compressed sensing problem in which both the mea-
surement and the sparsifying systems are assumed to be frames (not necessar-

ily tight) of the underlying Hilbert space of signals, which may be finite or

infinite dimensional. The main result gives explicit bounds on the number of
measurements in order to achieve stable recovery, which depends on the mutual

coherence of the two systems. As a simple corollary, we prove the efficiency

of nonuniform sampling strategies in cases when the two systems are not in-
coherent, but only asymptotically incoherent, as with the recovery of wavelet

coefficients from Fourier samples. This general framework finds applications

to inverse problems in partial differential equations, where the standard as-
sumptions of compressed sensing are often not satisfied. Several examples are

discussed, with a special focus on electrical impedance tomography.
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1. Introduction

The recovery of a sparse signal from a small number of samples is the fundamental
question of compressed sensing (CS). A signal is called sparse if it can be expressed
as a linear combination of a small number of known vectors. The seminal papers
[27, 32] have triggered an impressive amount of research in the last decade, from real
world applications (MRI, X-ray tomography, etc.) to theoretical generalizations in
broader mathematical frameworks [37].

In the finite dimensional case, the general CS problem can be stated as follows.
Given an unknown sparse vector x0 ∈ CN and a measurement operator represented
by a matrix U ∈ CN×N , we want to reconstruct x0 from samples of the form (Ux0)l,
for l ∈ Ω ⊆ {1, . . . , N}. This is done by solving the convex optimization problem

(1) min
x∈CN

‖x‖`1 subject to PΩUx = PΩUx0,

where PΩ is the projection matrix on the entries indexed by Ω. It is natural to ask
under what conditions the solution of the minimization problem (1) coincides with
x0. These can be formulated as a lower bound on the number of measurements
m = |Ω|, which depends on the sparsity of the signal s = |supp(x0)|, the dimension
N of the ambient space, and the matrix U . An interesting feature is that the lower
bound on m does not guarantee exact recovery for all set of indices Ω ⊆ {1, . . . , N}
with |Ω| = m, but only for most of them.

One of the first contributions [27] considered the case where U is the discrete
Fourier transform: exact recovery is guaranteed with high probability provided
that Ω ⊆ {1, . . . , N} is selected uniformly at random with m & s logN . If U is a
general unitary transformation, the problem has been addressed for the first time
in [23], introducing the coherence µ = maxl,j |Ulj |. In this case, the bound becomes
m & sµ2N logN .

Similar results have been recently obtained in the infinite dimensional setting,
where one considers signals belonging to a separable Hilbert space H and the mea-
surement operator is represented as a bounded linear map U : H → `2(N). (Note
that U may be expressed by scalar products with a family of vectors {ψl}l ⊆ H,
namely (Uf)l = 〈f, ψl〉H.) The sparsity of a signal f ∈ H is characterized by the
sparsity of Df , where D : H → `2(N), f 7→ (〈f, ϕj〉H)j , is the analysis operator
associated with a family of vectors {ϕj}j ⊆ H. The first results in this frame-
work were presented in [4], in the case where both U and D are unitary operators,
i.e. correspond to orthonormal bases; the orthonormality of {ψl}l is a standard
assumption taken in virtually all works on CS with deterministic measurements.
These results were further extended in [5], introducing the more advanced concepts
of asymptotic incoherence, local coherence, and local sparsity. An additional im-
provement was given in [72], which deals with the case where {ϕj}j is a Parseval
frame (see also [66, 55, 42]). Allowing the system {ϕj}j to be a frame, i.e. D is not
necessarily invertible, is useful whenever we wish to use a redundant representation
to sparsify the signals in H (e.g. redundant wavelets [38], curvelets [25], ridgelets
[24] and shearlets [61, 60, 54]).

In a large number of inverse problems, where one does not have complete freedom
in the measurement process, the assumption on U being unitary is not verified,
thereby preventing the application of CS to many domains. As a result, two large
research areas as inverse problems in partial differential equations (PDE) and sparse
signal recovery have been almost completely separated so far. The purpose of this
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paper is to provide a solid foundation that is expected to allow a fruitful interaction
between these two domains.

In order to do so, in this work we present a very general CS result that deals
with any bounded and injective linear operators U and D, defined on any separable
complex Hilbert space (finite or infinite dimensional). Equivalently, the families
{ψl}l and {ϕj}j are simply required to be frames of H (not necessarily tight).
Since we do not need the measurement operator U to be unitary, our results cover
the case of anisotropic measurements. These have already been studied in the finite
dimensional case using random and not deterministic measurements in [58]. As far
as we know, our result is new also in the finite dimensional case. We consider the
analysis formulation of the `1 optimization problem, in contrast to the synthesis
formulation given for simplicity in (1).

Another generalization is related to the sampling strategy. Recently, it has
been observed in several works [55, 5] that, when precise bounds for the mutual
coherence are available, uniform sampling strategies do not give sharp estimates
for the minimum number of measurements. Our techniques are also able to cover
this case, also known as structured sampling, just as a simple corollary of the
main result for the uniform sampling. To our knowledge, this is the first infinite
dimensional result under asymptotic incoherence assumptions, where there is no
need to use multi-level sampling strategies and local coherence. For instance, we
analyze the recovery of wavelet coefficients from Fourier samples, and justify the use
of a nonuniform sampling scheme corresponding to the so-called log sampling. This
represents only a first step, and we believe that many other interesting estimates
may be derived as corollaries of the main general result.

As mentioned above, our main motivation in dealing with the infinite dimensional
anisotropic framework comes from inverse problems arising from partial differen-
tial equations [52]. These inverse problems are intrinsically infinite dimensional,
and often the measurement operator cannot be chosen as a unitary transforma-
tion. Moreover, in order to obtain a solution to these problems, an infinite number
of measurements is often needed, even when the signal to be recovered belongs
to a known finite dimensional subspace. CS can thus provide a rigorous, explicit
and numerically viable way to find solutions to such problems when only a finite
number of measurements is available. We explore applications of our main result
to the problems of nonuniform Fourier sampling, (linearized) electrical impedance
tomography (EIT) and photoacoustic tomography. In particular, we show for the
first time that an electrical conductivity may be recovered from a number of lin-
earized EIT measurements proportional to the sparsity of the signal with respect to
a wavelet basis, up to log factors. Many other inverse problems can be tackled with
a similar approach and will be the subject of future work. The interaction between
CS and partial differential equations is not limited to inverse problems: CS has
been recently used for designing numerical methods for solving PDE [17, 74, 19].

The plan of the paper is the following. In Section 2 we introduce the mathe-
matical framework of infinite dimensional CS using the language of frames. We
define the mutual coherence for general frames as well as the balancing property.
The main result is presented in Section 3, which contains also the main corollary
about structured sampling and asymptotic incoherence. Section 4 is devoted to
applications to three inverse problems, while Section 5 contains the proof of the
main result.
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2. Main assumptions

Let N denote the set of all positive natural numbers. Let H be a separable
complex Hilbert space, representing our signal space, which may be either finite
or infinite dimensional. The problem we study in this paper is the recovery of an
unknown signal g0 ∈ H from partial measurements of the form (〈g0, ψl〉H)l, under
a sparsity assumption on g0 with respect to a suitable family of vectors {ϕj}j . The
main assumption of this paper is the following: these families of vectors are required
to be frames of H [28, 30, 31].

Hypothesis 1. Let L and J be two index sets1. Suppose that {ψl}l∈L and {ϕj}j∈J
are two frames ofH with frame constants AU , BU > 0 and AD, BD > 0, respectively,
namely

AU‖g‖2H ≤
∑
l∈L

|〈g, ψl〉H|2 ≤ BU‖g‖2H, AD‖g‖2H ≤
∑
j∈J
|〈g, ϕj〉H|2 ≤ BD‖g‖2H,

for every g ∈ H.

The measurements and the sparsity are expressed by the analysis operators
U : H → `2(L) and D : H → `2(J), defined by

(Ug)l = 〈g, ψl〉H, (Dg)j = 〈g, ϕj〉H.

By construction, the dual operators are given by U∗el = ψl and D∗ej = ϕj , where
{ei}i∈I is the canonical basis of `2(I). By Hypothesis 1, since

∑
l |〈g, ψl〉H|2 =

‖Ug‖22 and
∑
j |〈g, ϕj〉H|2 = ‖Dg‖22, we have that U and D are bounded and the

operator norms satisfy

(2) ‖U‖ = ‖U∗‖ ≤
√
BU , ‖D‖ = ‖D∗‖ ≤

√
BD.

The recovery problem can then be stated as follows: given noisy partial mea-
surements of Ug0, namely ζ = PΩUg0 + η for some (finite) set Ω ⊆ L, recover the
signal g0 ∈ H, under the assumption that Dg0 is sparse. Here we have used the
notation PΩ for the orthogonal projection onto span{ej : j ∈ Ω} (if Ω = {1, . . . , N}
we simply write PN ). The classical way to solve this problem is via `1 minimization,
namely

(3) inf
g∈H

Dg∈`1(J)

‖Dg‖1 subject to ‖PΩUg − ζ‖2 ≤ ε,

where ‖η‖2 ≤ ε is the noise level.
Equivalently, one may adapt a more abstract point of view, starting from a

bounded operator U : H → `2(L) with bounded inverse. It is immediate to verify
that ψl = U∗el gives rise to a frame, as in Hypothesis 1. The formulation with U
allows to consider any linear inverse problem of the form

U : H → `2(L), Ug = ζ.

The only requirement is that, with full data, the inverse problem should be uniquely
and stably solvable. In particular, any linear invertible operator U may be consid-
ered, and not necessarily isometries as in the standard compressed sensing setting
(see Section 4).

1We say that I ⊆ N is an index set if I = N or I = {1, 2, . . . , n} for some n ∈ N.
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Remark. The formulation given in (3) of the `1 optimization problem is the analysis
approach, because of the minimization of ‖Dg‖1, where D is the analysis operator.
This is in contrast with the synthesis formulation

(4) inf
x∈`1(J)

‖x‖1 subject to ‖PΩUD
∗x− ζ‖2 ≤ ε.

In general, the two approaches are not equivalent [33] (see also [41]). We have
decided to work with the analysis approach since, if D yields a redundant repre-
sentation, there may be multiple minimizers of (4) that give the same D∗x. Thus
uniqueness of minimizers is expected to hold for g = D∗x in (3) but not for x in
(4), which complicates the derivation of the estimates.

Remark. When J is infinite, the above minimization problem cannot be imple-
mented numerically. When D and U are unitary operators, it was shown in [4] that
this issue may be solved by looking at a corresponding finite-dimensional optimiza-
tion problem. We expect that the same is true also in our context, and leave this
investigation to future work.

Given the generality of our setting, we need to consider the dual frames of {ψl}l
and {ϕj}j . By classical frame theory (see [31, Lemma 5.1.5]), the frame operators
U∗U and D∗D are invertible, and we can consider the dual frames

ψ̃l := (U∗U)−1ψl and ϕ̃j := (D∗D)−1ϕj ,

which have frame constants B−1
U , A−1

U and B−1
D , A−1

D , respectively. Equivalently,

we may write ψ̃l = U−1el and ϕ̃j = D−1ej , where U−1 and D−1 are the Moore–
Penrose pseudoinverses of U and D, respectively, defined as follows:

U−1 := (U∗U)−1U∗ and D−1 := (D∗D)−1D∗.

Note that they are left inverses of U and D, respectively. Therefore, (U−1)∗ and
(D−1)∗ are the analysis operators of the dual frames, and so arguing as in (2) we
obtain

(5)
∥∥U−1

∥∥ =
∥∥U−∗∥∥ ≤ A−1/2

U ,
∥∥D−1

∥∥ =
∥∥D−∗∥∥ ≤ A−1/2

D .

With an abuse of notation, we have denoted (U−1)∗ and (D−1)∗ by U−∗ and D−∗,
respectively. It can be immediately checked that they are right inverses of U∗ and
D∗, i.e. (U∗)−1 = U−∗ and (D∗)−1 = D−∗. For later use, set κ1 := max(BU , A

−1
U )

and κ2 := max(BD, A
−1
D ), so that by (2) and (5) we obtain

‖U‖ = ‖U∗‖ ≤
√
κ1,

∥∥U−1
∥∥ =

∥∥U−∗∥∥ ≤ √κ1,(6a)

‖D‖ = ‖D∗‖ ≤
√
κ2,

∥∥D−1
∥∥ =

∥∥D−∗∥∥ ≤ √κ2.(6b)

The frames {ψ̃l}l and {ϕ̃j}j are the canonical dual frames, but in general many
other choices are possible. These are in correspondence with all possible bounded
left inverses of U and D, and it is possible to characterize all dual frames [31,
Section 6.3].

We need to measure the coherence between the sensing system {ψl}l and the
representation system {ϕj}j or, equivalently, between the measurement operator U
and the representation operator D.
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Definition 1. The mutual coherence of U and D is defined by

µ := sup
j∈J, l∈L

max{|〈ϕj , ψl〉H|, |〈ϕ̃j , ψl〉H|, |〈ϕj , ψ̃l〉H|, |〈ϕ̃j , ψ̃l〉H|}

= sup
j∈J, l∈L

max{|〈D∗ej , U∗el〉H|, |〈D−1ej , U
∗el〉H|, |〈D∗ej , U−1el〉H|, |〈D−1ej , U

−1el〉H|}.

Let us now discuss a particular case.

Example 1. The above construction simplifies considerably if {ψl}l and {ϕj}j are
Parseval frames, namely if AU = BU = AD = BD = 1, as studied in [72]. In this
case the associated analysis operators U and D are isometries, their left inverses
simplify to U−1 = U∗, D−1 = D∗ and all the operator norms in (6) are simply
bounded by 1. The dual frames and the corresponding frames coincide, and the
coherence reduces to

(7) µ = sup
j∈J, l∈L

|〈ϕj , ψl〉H| = sup
j∈J, l∈L

|〈D∗ej , U∗el〉H|,

which simply involves scalar products between the elements of the two frames.
As an even more particular case, one may consider orthonormal bases {ψl}l

and {ϕj}j (namely, U and D are unitary operators), which represents the usual
assumption in the classical compressed sensing framework, and in its extension to
infinite dimension [4].

The partial measurements (Ug0)l = 〈g0, ψl〉H are indexed by l ∈ Ω, where Ω will
be chosen uniformly at random in {1, . . . , N}. In the infinite dimensional case, the
upper bound N has to be chosen big enough, depending on the sparsity s of g0.
This is quantified by the balancing property, introduced in [4] and extended here to
general frames.

Definition 2 (Balancing property). Let s,M ∈ J be such that 2 ≤ s ≤ M . We
say that N ∈ L satisfies the balancing property with respect to U , D, M and s if
for all ∆ ⊆ {1, . . . ,M} with |∆| = s we have

‖PWU∗P⊥NU−∗PW‖H→H ≤
1

8
√√

κ2 log(sκ2
1κ2)

,(8)

‖P⊥∆D−∗P⊥WU∗PNU−∗PW‖H→`∞(J) ≤
1

14
√
sκ2

,(9)

where W := R(D∗P∆) +R(D−1P∆) = {D∗P∆x+D−1P∆y : x, y ∈ `2(J)}.

Remark 1. If L = {1, 2, . . . , |L|} is finite, it is enough to choose N = |L|, since all
the norms on the left hand side vanish. If L = N, the existence of a suitable N
satisfying the above conditions simply follows by the fact that PN → I and P⊥N → 0
strongly (see [4, Proposition 5.2] for the details of the argument).

Remark 2. In many particular cases of practical interest, it is possible to find ex-
plicit bounds on N . For instance, when D is a discrete wavelet transform (satisfying
certain assumptions) and U is the discrete Fourier transform on H = L2([0, 1]) one
can prove that N = O(M logM) [71, 5].

For s,M ∈ J , s ≤M , we use the notation

σs,M (x0) := inf{‖x− x0‖`1(J) : supp(x) ⊆ {1, . . . ,M}, |supp(x)| ≤ s},
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which measures the compressibility of the signal x0 ∈ `1(J) by means of s-sparse
signals x. As in [55], we introduce the localization factor

ηs,M := max{η∆ : ∆ ⊆ {1, . . . ,M}, 3 ≤ |∆| ≤ s},

where

(10) η∆ := max
i=0,1

sup ({‖DiD
∗
i x‖1√
|∆|

: suppx ⊆ ∆, ‖D∗i x‖H = 1} ∪ {1}),

D0 := D and D1 := D−∗. Note that ηs,M = 1 when {ϕj}j is an orthonormal basis
or, equivalently, when D is a unitary operator.

Following [72], for ∆ ⊆ {1, . . . ,M} we denote

(11)
B∆ := max

{
‖D−∗P⊥WD∗‖`∞→`∞ , 1

}
,

Bs,M := max{B∆ : ∆ ⊆ {1, . . . ,M}, 3 ≤ |∆| ≤ s},

where we have used the notation

‖T‖`∞→`∞ := sup
x∈`2(J)\{0}

‖Tx‖`∞(J)

‖x‖`∞(J)
,

for an operator T : `2(J)→ `2(J).

Remark 3. It is worth observing that when D is a unitary operator we simply have

Bs,M = 1.

Indeed, in view of the identity

DP⊥WD
∗x = DP⊥WD

∗(P∆x+ P⊥∆x) = DP⊥WD
∗P⊥∆x = DD∗P⊥∆x = P⊥∆x,

we obtain ‖DP⊥WD∗x‖∞ =
∥∥P⊥∆x∥∥∞ ≤ ‖x‖∞ for every x ∈ `2(J), so that B∆ = 1

for every ∆.

In the other extreme case, it may happen that Bs,M = +∞, even in finite
dimension with a Parseval frame, as the following example shows.

Example 2. Consider H = R with the Parseval frame

ϕ1 = ϕ2 = ϕ3 = 0, ϕj+3 = fj , j ≥ 1,

where f : N→ (0,+∞) is a sequence such that
∑
j f

2
j = 1 and

∑
j fj = +∞ (here

J = N). For ∆ = {1, 2, 3} we have W = {0}, so that B∆ ≥ ‖DP⊥WD∗‖`∞→`∞ =
‖DD∗‖`∞→`∞ . Thus, setting xn = e1 + · · ·+ en+3 ∈ `2(N), since D∗xn =

∑n
j=1 fj

we have

B∆ ≥ |(DD∗xn)4| = |〈D∗xn, ϕ4〉R| = f1

n∑
j=1

fj −→
n→∞

+∞,

whence Bs,M ≥ B∆ ≥ +∞ for any s and M .

These observations show that the quantities ηs,M and Bs,M can be seen as mea-
sures of the redundancy of the frame {ϕj}j (see [55, 72] for more details).

For α ∈ (0, 1], let M̃(α) be the smallest integer such that M̃(α) ≥M and

(12)
√
κ1‖PNUD−1ej‖2 + κ1‖PW̃D

−1ej‖H < α, j ∈ J, j > M̃(α),

where W̃ := R(D∗PM ) +R(D−1PM ).
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Remark 4. If J = {1, 2, . . . ,M} is finite, we simply have M̃(α) = M for every α.

If J = N, M̃(α) is well-defined since D−1ej tends to zero weakly and PN and PW̃
are compact operators.

Remark 5. In the case when D is associated with an orthonormal basis, the con-
dition M̃(α) ≥M is implicit, since κ1‖PW̃D

∗ej‖H = κ1‖D∗ej‖H = κ1 ≥ 1 ≥ α for

j = 1, . . . ,M by definition of W̃. Furthermore, condition (12) reduces to
√
κ1‖PNUD∗ej‖2 < α, j ∈ J, j > M̃(α).

As a consequence, note that if supl≤N |〈ψl, ϕj〉H| ≤ C/
√
j for every j ∈ J, j > M

(which is the case in several concrete applications, see §3.3) one has
√
κ1‖PNUD∗ej‖2 ≤

√
Nκ1‖PNUD∗ej‖∞ ≤

√
Nκ1 sup

l≤N
|〈ψl, ϕj〉H| ≤ C

√
Nκ1/j,

and so

M̃(α) ≤ C2κ1N

α2
,

provided that C2 κ1N
α2 ≥M . In the case where U is the Fourier transform and D a

Wavelet transform in dimension one, a more precise estimate has been derived in
[5], namely M̃(α) = O(M/α).

3. Main results

3.1. Finite and infinite dimensional recovery. We now state the main result
of this work, a recovery guarantee of nonuniform type (valid for a fixed unknown
signal). Recall that H is any separable Hilbert space: we deal with the finite and
infinite dimensional case simultaneously.

Theorem 1. Assume that Hypothesis 1 holds true, and let U and D denote the
corresponding analysis operators, satisfying the bounds given in (6). Let M, s ∈ J
and ω ≥ 1 be such that 3 ≤ s ≤ M . Let N ∈ L satisfy the balancing property with
respect to U , D, M and s, and let Ω ⊆ {1, . . . , N} be chosen uniformly at random
with |Ω| = m. Assume that

m ≥ Cκ1κ2B
2
s,Mη

2
s,Mω

2µ2Ns log
(
κ1κ2M̃

(
C′m

Nω
√
sκ2

))
,

where C,C ′ > 0 are universal constants.
Let g0 ∈ H and η ∈ `2(L) be such that ‖η‖2 ≤ ε for some ε ≥ 0. Let ζ =

PΩUg0 + η be the known noisy measurement. Let g ∈ H be a minimizer of the
minimization problem (3). Then, with probability exceeding 1− e−ω, we have

‖g − g0‖H ≤ 20κ1
√
κ2 σs,M (Dg0) + C ′′κ2

√
κ3

1ωs
N

m
ε,

where C ′′ is a universal constant.

Remark. The generality of our construction allows to treat the finite dimensional
and the infinite dimensional cases simultaneously. However, in finite dimension the
above estimate for m has a simpler form, which is worth pointing out. Suppose that
L = {1, . . . , N} and J = {1, . . . ,M}. By Remarks 1 and 4, we have that N satisfies

the balancing property with respect to U , D, M and s and that M̃
(

C′m
Nω
√
sκ2

)
= M .

Thus, the lower bound for the number of measurements m becomes

m ≥ Cκ1κ2B
2
s,Mη

2
s,Mω

2µ2Ns log (κ1κ2M) ,
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which, when {ϕj}j is an orthonormal basis of H = CM , by (6b), Example 1 and
Remark 3 simply reduces to

m ≥ Cκ1ω
2µ2Ns log(κ1M).

Theorem 1 directly generalizes Theorems 6.1, 6.3 and 6.4 of [4] to the case of
anisotropic measurements. It also extends the results of [5, 72] to the case of general
frames D and U . Our result can also be seen as an infinite dimensional generaliza-
tion of the finite dimentional result in [58] for anisotropic random measurements.

3.2. Asymptotic incoherence and virtual frames. The above result shows
that with random sampling one needs a number of measurements proportional to
the sparsity of the signal (up to logarithmic factors), provided that the coherence

is small enough, namely, µ = O(1/
√
N). While this happens in finite dimension

(H = CN ) in some particular situations, e.g. with signals that are sparse with
respect to the Dirac basis ϕj = ej and with Fourier measurements, in many cases of
practical interest the above result becomes almost meaningless since the coherence µ
is of order one. For instance, this happens when U is the discrete Fourier transform
and D the discrete wavelet transform. As it was shown in [5], this is always the
case in infinite dimension.

Since the early stages of compressed sensing, it was realized that this issue may
be solved by using variable density random sampling [78, 73, 56, 55, 16, 5, 72]. For
instance, in the Fourier-Wavelet case, one needs to sample lower frequencies with
higher probability than the higher frequencies. We now give a result that deals with
this situation; in particular, it takes into account a priori estimates on the coherence
and nonuniform sampling. As it is clear from the proof, it follows as a simple
corollary of Theorem 1, thanks to the flexibility of its assumptions. More precisely,

Theorem 1 is applied to a virtual frame {ψ̂l̂}l̂ obtained from {ψl}l by artificially
repeating its elements. In the Appendix we justify how the uniform sampling on
this virtual frame is equivalent to a nonuniform sampling on the original frame.
More complicated transformations, also involving {ϕj}j , may be considered (taking
into account, for instance, asymptotic sparsity [5]): we leave these investigations
to future work, and we limit ourselves to an example to show the potential of this
framework.

Corollary 1. Assume that Hypothesis 1 holds true, and let U and D denote the
corresponding analysis operators, satisfying the bounds given in (6). Let M, s ∈ J
and ω ≥ 1 be such that 3 ≤ s ≤ M . Let N ∈ L satisfy the balancing property with
respect to U , D, M and s. Let w ∈ RN+ be such that ‖w‖CN ≥ 1 and
(13)

sup
j∈J

max{|〈ϕj , ψl〉H|, |〈ϕ̃j , ψl〉H|, |〈ϕj , ψ̃l〉H|, |〈ϕ̃j , ψ̃l〉H|} ≤ wl, l = 1, . . . , N.

Assume that

(14) m ≥ Cκ1κ2B
2
s,Mη

2
s,Mω

2‖w‖2CN s log
(
κ1κ2M̃

(
C′

Nmω‖w‖2
CN
√
sκ2

))
,

where C,C ′ > 0 are universal constants. Sample m indices l1, . . . , lm indipendently
from {1, . . . , N} according to the probability distribution

νl = CNdNw2
l e, l = 1, . . . , N,
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where CN =
(∑N

l=1dNw2
l e
)−1

, and set Ω = {l1, . . . , lm} (with possible repetitions

to be kept).

Take g0 ∈ H and η ∈ Cm such that ‖η‖w ≤ ε, where ‖η‖2w :=
∑m
i=1

|ηi|2
dNw2

li
e . Set

ζ = PΩUg0 + η, i.e. ζi = (Ug0)li + ηi. Let g ∈ H be a minimizer of

inf
g∈H

Dg∈`1(J)

‖Dg‖1 subject to ‖PΩUg − ζ‖w ≤ ε.

Then, with probability exceeding 1− e−ω, we have

‖g − g0‖H ≤ 20κ1
√
κ2 σs,M (Dg0) + C ′′κ2‖w‖CN

√
κ3

1ωs
N

m
ε,

where C ′′ is a universal constant.

Remark. This result can be seen as a generalization of [55, Corollary 2.9] to infinite

dimension and to the frame case, since νl = dNw2
l e/

∑N
l=1dNw2

l e ≈
w2

l

‖w‖2
CN

.

Remark. Let us show that the weighted norm ‖ ‖w is the natural norm in this con-

text. If l ∈ {1, . . . , N} is sampled according to ν, we have E
( |vl|2
rl

)
=
∑N
i=1

|vi|2
ri
νi =

CN‖v‖2CN for every v ∈ CN . Hence

E(‖PΩv‖2w) = E

(
m∑
i=1

|vli |2

rli

)
=

m∑
i=1

E
(
|vli |2

rli

)
= mCN‖v‖2CN , v ∈ CN .

As a consequence, up to a constant, the expected value of the weighted norm
coincides with the usual Euclidean norm of CN .

Remark. The bound (13) may be completed by the corresponding decays with
respect to the frame {ϕj}j , namely in the variable j. In this case, {ψl}l∈L and
{ϕj}j∈J are asymptotically incoherent [5]. Under this more restrictive assumption,

when D is a unitary operator an explicit bound on the factor M̃ may be derived
using Remark 5 (see §3.3 for an example).

Proof. For l ∈ L, l > N , set

(15) wl = sup
j∈J

max{|〈ϕj , ψl〉H|, |〈ϕ̃j , ψl〉H|, |〈ϕj , ψ̃l〉H|, |〈ϕ̃j , ψ̃l〉H|}.

Let rl = υdNw2
l e for l ∈ L, where υ = 2m2. We want to apply Theorem 1 to {ψ̂l̂}l̂

and {ϕj}j , where the virtual frame {ψ̂l̂}l̂, with associated operator Û , is given as
follows. For l ∈ L normalize ψl by

√
rl and repeat it rl times, namely

(16)
{
ψ̂l̂

}
l̂∈L̂

=

{
ψ1√
r1
, . . . ,

ψ1√
r1︸ ︷︷ ︸

r1 times

, . . . ,
ψl√
rl
, . . . ,

ψl√
rl︸ ︷︷ ︸

rl times

, . . .

}
.

The new index set L̂ coincides with N if L = N and is finite if L is finite (more

precisely, we have |L̂| =
∑
l∈L rl).

Note that {ψ̂l̂}l̂ has the same frame bounds of {ψl}l, i.e. κ̂1 = κ1, by construc-
tion, since

(17)

rl∑
i=1

∣∣∣∣〈f, ψl√rl
〉∣∣∣∣2 =

rl∑
i=1

1

rl
|〈f, ψl〉|2 = |〈f, ψl〉|2.
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We now want to prove that N̂ =
∑N
l=1 rl satisfies the balancing property with

respect to Û , D, M and s. We first notice that Û∗Û = U∗U , since

Û∗Ûf =
∑
l̂∈L̂

〈f, ψ̂l̂〉ψ̂l̂ =
∑
l∈L

rl∑
i=1

〈
f,

ψl√
rl

〉
ψl√
rl

=
∑
l∈L

〈f, ψl〉ψl = U∗Uf.

In passing, we remark that this identity tells us that the dual frame { ˜̂
ψl̂}l̂ of the

virtual frame {ψ̂l̂}l̂ coincides with the virtual frame of the dual frame { ˆ̃
ψl̂}l̂, which

is constructed as in (16). Arguing in the same way, and terminating the above sums

to N̂ and N , respectively, we readily derive

Û∗PN̂ Ûf =

N̂∑
l̂=1

〈f, ψ̂l̂〉ψ̂l̂ =

N∑
l=1

rl∑
i=1

〈
f,

ψl√
rl

〉
ψl√
rl

=

N∑
l=1

〈f, ψl〉ψl = U∗PNUf.

This immediately yields property (9), since Û−∗ = Û(Û∗Û)−1 and Û−1 = (Û∗Û)−1Û∗.
Similarly, (8) follows from the identities

Û∗P⊥
N̂
Û = Û∗(I − PN̂ )Û = Û∗Û − Û∗PN̂ Û = U∗U − U∗PNU = U∗P⊥NU.

We have the following straightforward upper bound for N̂ :

N̂ =

N∑
l=1

υdNw2
l e ≤ υ

N∑
l=1

(Nw2
l + 1) = υN(‖w‖2CN + 1) ≤ 2υN‖w‖2CN .

The factor M̃ associated with Û and D, which we denote by ˆ̃M , verifies ˆ̃M(α) =

M̃(α). Indeed, from the definition of M̃ , we only need to check that ‖PN̂ Ûf‖22 =
‖PNUf‖22, which follows by (17):

‖PN̂ Ûf‖
2
2 =

N̂∑
l̂=1

|〈Ûf, el̂〉|
2 =

N̂∑
l̂=1

|〈f, ψ̂l̂〉|
2 =

N∑
l=1

|〈f, ψl〉|2 = ‖PNUf‖22.

The factors Bs,M and ηs,M do not change since they do not depend on U but only
on D, which is left unchanged.

Let us calculate the new coherence

µ̂ = sup
l̂,j

max{|〈ϕj , ψ̂l̂〉H|, |〈ϕ̃j , ψ̂l̂〉H|, |〈ϕj ,
˜̂
ψl〉H|, |〈ϕ̃j , ˜̂

ψl̂〉H|}.

For l̂ ∈ L̂ there exists l ∈ L with ψ̂l̂ = ψl/
√
rl and

˜̂
ψl̂ = ψ̃l/

√
rl, so that by (13)

and (15) we obtain

max{|〈ϕj , ψ̂l̂〉H|, |〈ϕ̃j , ψ̂l̂〉H|, |〈ϕj ,
˜̂
ψl〉H|, |〈ϕ̃j , ˜̂

ψl̂〉H|}

= max{|〈ϕj ,
ψl√
rl
〉H|, |〈ϕ̃j ,

ψl√
rl
〉H|, |〈ϕj ,

ψ̃l√
rl
〉H|, |〈ϕ̃j ,

ψ̃l√
rl
〉H|} ≤

wl√
rl
≤ 1√

υN
,

since rl = υdNw2
l e. Therefore µ̂ ≤ 1√

υN
.

Now, the factor µ̂2N̂ in the estimate for m given in Theorem 1 applied to Û and
D becomes µ̂2N̂ ≤ 2‖w‖2CN , so that the estimate on m in Theorem 1 transforms
into (14).
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Further, setting ζ̂ = PΩ̂Ûg0 +
(
ηi/
√
rli
)
i
, we have∥∥∥PΩ̂Ûg − ζ̂

∥∥∥
2

=
∥∥(((g, ψli)− ζi) /√rli)i∥∥2

=
‖PΩUg − ζ‖w√

υ
≤ ε√

υ
=: ε̂.

As a result, the factor
√
N̂ ε̂ in the estimate for ‖g − g0‖H given in Theorem 1 is

bounded by ‖w‖CN

√
2N ε.

Finally, it is well known that the sampling without replacement of m elements
Ω′ uniformly at random from{

1, . . . , 1︸ ︷︷ ︸
r1 times

, . . . , N, . . . , N︸ ︷︷ ︸
rN times

}
given in Theorem 1 may be substituted by the variable density sampling scheme
with replacement given in the statement, provided that υ is large enough. More
precisely, letting nl (respectively, n′l) denote the number of l’s in Ω (respectively, Ω′)
for l = 1, . . . , N , by arguing as in [27, Section II.C], by Lemma 4 (in the Appendix
below) we readily derive

P(F (Ω′)) =

m∑
k1,...,kN=0

k1+···+kN=m

P(F (Ω′)|n′1 = k1, . . . , n
′
N = kN )P(n′1 = k1, . . . , n

′
N = kN )

=
∑

k1+···+kN=m

P(F (Ω)|n1 = k1, . . . , nN = kN )P(n′1 = k1, . . . , n
′
N = kN )

≥ 1

2

∑
k1+···+kN=m

P(F (Ω)|n1 = k1, . . . , nN = kN )P(n1 = k1, . . . , nN = kN )

=
1

2
P(F (Ω)),

where F (Ω) = Failure(Ω) is the event where the conclusion of Theorem 1 fails for
the sampling Ω.

�

3.3. Recovery of wavelet coefficients from Fourier samples. For d ∈ N, let
H = L2([0, 1]d) be the signal space. Let {ek}k∈Zd be the Fourier basis of H, namely

ek(x) = e2πik·x, x ∈ [0, 1]d.

Consider a nondecreasing ordering of Zd, namely a bijective map ρ : N→ Zd, l 7→ kl,
such that

l1, l2 ∈ N, l1 ≤ l2 =⇒ ‖ρ(l1)‖ ≤ ‖ρ(l2)‖,
where ‖ ‖ is any norm of Rd. Set ψl = ekl for l ∈ N. Let {ϕj}j∈N be a separable
wavelet basis of H (ordered according to the wavelet scales). Note that both sys-

tems {ψl}l∈N and {ϕj}j∈N are orthonormal bases, so that ψ̃l = ψl and ϕ̃j = ϕj .
Under certain decay conditions on the scaling function (which may be relaxed to a
condition satisfied by all Daubechies wavelets if one considers a different ordering
of the frequencies k ∈ Zd), it was shown in [53] that

sup
j∈N
|〈ψl, ϕj〉H| ≤

C1√
l
, sup

l∈N
|〈ψl, ϕj〉H| ≤

C1√
j
, l, j ∈ N
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Figure 1. A comparison between the log sampling scheme and

the scheme associated with the virtual frame {ψ̂l̂}l̂. The index l̂
is on the x-axis (with an abuse of notation, we added the nega-
tive frequencies with negative indexes, as it is usual). The y-axis
represents frequencies.

for some C1 > 0. In other words, the wavelet basis and the Fourier basis are asymp-
totically incoherent. Thanks to the first of these inequalities, we have that assump-
tion (13) of the corollary is satisfied with wl = C1√

l
, so that ‖w‖2CN ≤ C2

1 (logN + 1).

Further, by the second of these inequalities and Remark 5 we have M̃(α) ≤ C2
1
N
α2 .

As a consequence, estimate (14) of Corollary 1 for the number of measurements m
becomes

(18) m ≥ C ω2s log2N

for some constant C > 0 depending only on C1. The number of measurements
required for the success of the recovery using `1 minimization is directly proportional
to the sparsity of the signals, up to log factors, and so, up to log factors, estimate
(18) is optimal. It is worth observing that one log factor may be removed by
using multilevel sampling, asymptotic sparsity and finer properties of wavelets [5,
Theorem 6.2].

According to our result, the measurements must be chosen at random from
{1, . . . , N} with probabilities

νl ∝ dC2
1N/le, l = 1, . . . , N.

This nonuniform sampling scheme corresponds to a uniform sampling scheme for

the virtual frame {ψ̂l̂}l̂, in which each ψl is repeated dC2
1N/le times and suit-

ably normalized (see the proof of Corollary 1: note that the use of this uniform
sampling scheme allows the choice υ = 1). It is then natural to wonder how the

frequencies {k̂l̂}l̂ associated with {ψ̂l̂}l̂ are arranged. Consider for simplicity the
one-dimensional case with only the positive frequencies k ∈ N, so that the or-

dering ρ is simply the identity map. By construction, the frequency k̂l̂ satisfies
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∑k̂l̂
i=1dC2

1N/ie ≈ l̂, and so C2
1N log k̂l̂ ≈ l̂, which gives

k̂l̂ ≈ e
l̂/(C2

1N).

This is the so-called log sampling scheme [2, 40] (up to a suitable scaling of the
parameters), which is a 1D model for higher dimensional spiral trajectories; these
are common in Magnetic Resonance Imaging. A comparison of the two sampling
schemes is shown in Figure 1; the plot contains the negative frequencies as well
(obtained simply by adding the positive frequencies with the signs changed). As
expected, the log sampling scheme yields a smooth approximation of the sampling

scheme {k̂l̂}l̂. As far as the authors are aware, this is the first time that theoretical
support is given to the use of the log sampling scheme in CS. It is worth observing

that the normalization of the elements ψ̂l̂ by the square root of the number of
repetitions corresponds to the standard normalization of weighted Fourier frames
by the measures of Voronoi regions [3].

4. Applications

4.1. Nonuniform Fourier sampling. The most classical compressed sensing prob-
lem formulated in the continuous setting is the recovery of a function g ∈ L2([0, 1]d)
from Fourier samples

(Ug)(k) := ĝ(k) =

∫
[0,1]d

g(x)e−2πik·x dx = 〈g, e2πik·〉L2([0,1]d), k ∈ Ω,

where Ω ⊆ Zd is a finite set of frequencies where the measurements are taken. Here
U is the discrete Fourier transform given by scalar products with the sinusoids
x 7→ e2πik·x, which form an orthonormal basis of L2([0, 1]d). If g is sparse with
respect to a suitable orthonormal basis with analysis operatorD, this reconstruction
problem fits in the framework discussed in the previous section, and g may be
recovered by `1 minimization, provided that enough random measurements Ω are
taken. The standard theory of compressed sensing may be applied in this case,
since both U and D are unitary operators (see Example 1).

In several applications (such as Magnetic Resonance Imaging, Computed To-
mography, geophysical imaging, seismology and electron microscopy), nonuniform
Fourier sampling arises naturally, i.e. the frequencies are not taken uniformly in
Zd. In this case, the operator U fails to be an isometry, since the corresponding
family of sinusoids may be only a frame, and not an orthonormal basis. The results
discussed in the previous section may be directly applied to this case too.

Let us now give a quick overview of nonuniform Fourier frames; we follow [3].
For additional details, the reader is referred to [30, 2] for the one-dimensional case,
and to [15, 13, 70, 3] for the multi-dimensional case.

Let H be the space of square-integrable functions with support contained in a
compact, convex and symmetric set E ⊆ Rd, i.e. H = L2(E). For g ∈ H, we
consider measurements of the form

ĝ(k) =

∫
E

g(x)e−2πik·x dx = 〈g, ek〉H, k ∈ Z ⊆ R̂d,

namely scalar products with the sinusoids

ek(x) = e2πik·x, x ∈ E.
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Instead of considering the case when Z is a cartesian grid of R̂d (here R̂ denotes the
real line in the frequency domain), which gives rise to uniform Fourier sampling,
we wish to give more general conditions on the set Z so that {ek}k∈Z is a frame of
H.

The first of these conditions requires that the samples are fine enough to capture
all the frequency information in a given direction.

Definition 3 ([15]). We say that the sampling scheme Z ⊆ R̂d is δ-dense if

δ = sup
ŷ∈R̂d

inf
k∈Z
|k − ŷ|E◦ ,

where the norm | |E◦ is given by

|ŷ|E◦ = inf{a > 0 : x · ŷ ≤ a for every x ∈ E}.
The second condition limits the concentration of samples, in order to avoid large

energies in small frequency regions.

Definition 4. We say that the sampling scheme Z ⊆ R̂d is separated if there exists
a constant η > 0 such that

inf
k1,k2∈Z,k1 6=k2

|k1 − k2| ≥ η > 0.

We say that Z is relatively separated if it is a finite union of separated sets.

Under these conditions, the family of sinusoids ek with frequencies k in Z forms
a frame for L2(E).

Proposition 1 ([15, 13, 70]). Let E ⊆ Rd be a compact, convex and symmetric set

and take δ ∈ (0, 1/4). If Z ⊆ R̂d is relatively separated and δ-dense, then {ek}k∈Z
is a Fourier frame for L2(E).

Now, assuming that {ϕj}j∈N is a frame for L2(E), we can apply Theorem 1
and Corollary 1 to this setting. This would provide, to our knowledge, the first
result about recovery of a sparse signal from nonuniform Fourier measurements via
`1 minimization. Even if the measurement frame is generally not tight, we can
provide explicit bounds for the recovery of the wavelet coefficients from nonuniform
Fourier samples.

Some numerical simulations related to this framework are presented in [40, Ex-
ample 5].

4.2. Electrical impedance tomography. EIT is an imaging technique in which
one wants to determine the electrical conductivity σ(x) inside a body O from
boundary voltage and current measurements. It is a non-linear inverse bound-
ary value problem whose mathematical formulation was presented for the first time
by Calderón [22].

Let O ⊂ Rd, d ≥ 3, be an open bounded domain with Lipschitz boundary and
σ ∈ L∞(O), σ(x) ≥ σ0 > 0 for almost every x ∈ O, be the electrical conductivity.
Given a voltage f ∈ H1/2(∂O) on the boundary of the domain, the associated
potential u is the unique H1(O) solution of the following Dirichlet problem for the
conductivity equation:

(19) div(σ∇u) = 0 in O, u = f on ∂O,
where Hb, b > 0, are the classical Sobolev spaces. The boundary current associated
with the voltage f is represented by the trace of the normal derivative of the
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potential u on ∂O. More precisely, we define the Dirichlet-to-Neumann (DN) map
Λσ : H1/2(∂O)→ H−1/2(∂O) as

(20) Λσ(f) = σ
∂u

∂ν

∣∣∣∣
∂O

,

where ν is the unit outer normal to ∂O and u is the unique solution of (19).
Calderón’s inverse conductivity problem asks if it is possible to determine a

conductivity σ from the knowledge of its associated DN map Λσ. Positive answers
to this question have been given since 1987 [76, 69, 68].

If σ is sufficiently smooth, the problem can be reduced to the so-called Gel’fand-
Calderón problem for the Schrödinger equation,

(21) (−∆ + q)ũ = 0, q =
∆
√
σ√
σ
,

via the change of variables u = ũ/
√
σ in (19). This inverse problem consists in the

reconstruction of the potential q from the knowledge of the DN map

(22) Λq : ũ|∂O 7→
∂ũ

∂ν

∣∣∣∣
∂O

.

One of the biggest open questions concerning inverse boundary value problems
such as Calderón’s or Gel’fand-Calderón’s is the determination of a conductiv-
ity/potential from a finite number of boundary measurements. A priori assump-
tions on the unknown are needed in this case, and to the best of our knowledge
the only result concerns piecewise constant coefficients with discontinuities on a
single convex polygon [39]. For conductivities/potentials belonging to some finite
dimensional subspaces, an infinite number of measurements have always been a fun-
damental requirement to guarantee uniqueness and reconstruction. For instance,
several works have studied the general piecewise constant case with infinitely many
measurements [9, 14]. In what follows, we will consider finitely many measurements,
and present a first result in this direction for the linearized Gel’fand-Calderón prob-
lem, using the theory developed in this paper. A first result for the full nonlinear
problem has been obtained very recently by the authors in [7].

In order to linearize the problem, we assume that q = q0 + δq where q0 is
known and δq is small. Given two boundary voltages f, g ∈ H1/2(∂O) we have
Alessandrini’s identity [8]:

〈g, (Λq − Λq0)f〉
H

1
2 (∂O)×H−

1
2 (∂O)

=

∫
O
δq ugu

0
f dx,

where ug (resp. u0
f ) solves the Schrödinger equation (21) with potential q (resp.

q0) and Dirichlet data g (resp. f). The quantity on the left of this identity is
known since q0 is known and Λqf is the boundary measurement corresponding to
the chosen potential f (g should be seen as a test function). Since for δq ≈ 0
we have ug ≈ u0

g, the linearization consists in assuming that we can measure the

quantity
∫
O δq u

0
gu

0
f dx for given f, g. Focusing on the solutions themselves instead

of on their boundary values, this inverse problem may be rephrased as follows.

Problem (Linearized Gel’fand-Calderón problem). Given a finite number of scalar
products of the form

∫
O δq u1u2 dx, where u1 and u2 are solutions of

(23) (−∆ + q0)ui = 0
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in O, find δq ∈ L2(O).

Without loss of generality, we can assume that O ⊆ Td, where T = [0, 1]. Extend
δq by zero to H := L2(Td) and assume that q0 ∈ Hb(Td) for some b > d/2. In
the rest of this subsection, with an abuse of notation, several different positive
constants depending only on d, b and ‖q0‖Hb(Td) will be denoted by the same letter
c. By a classical uniqueness result for the Calderón problem [76] we have that for

every k ∈ Zd and t ≥ c we can construct solutions uk,ti of (23) in Td of the form

uk,ti (x) = eζ
k,t
i ·x(1 + r(x, ζk,ti )), x ∈ Td,

where ζk,ti ∈ Cd are such that ζk,t1 + ζk,t2 = −2πik and

(24) ‖r(x, ζk,ti )‖Hb(Td) ≤
c

t
, i = 1, 2.

These solutions uk,ti are known as exponentially growing solutions, Faddeev-type
solutions [36] or complex geometrical optics (CGO) solutions.

We need to consider an ordering of Zd, namely a bijective map ρ : N→ Zd, l 7→ kl.
For each k ∈ Zd fix tk ≥ c and define the measurement operator UGC : H → `2(N)
by

UGC(δq) = (〈δq, ψl〉)l, ψl = u
kl,tkl
1 u

kl,tkl
2 .

We call the family {ψl}l∈N a CGO frame (see Lemma 1 below). Using the same
ordering of Zd, we define the discrete Fourier transform F : H → `2(N) by

F (δq) = (〈δq, ekl〉)l,

where ek(x) = e2πik·x.
We can now state the following consequence of Corollary 1 for the linearized EIT

problem.

Corollary 2. Let {ϕj}j be an orthonormal basis of L2(Td) and D : L2(Td)→ `2(N)
be its analysis operator. Let M, s ∈ N and ω ≥ 1 be such that 3 ≤ s ≤M . Assume
that N ≥ s satisfies the balancing property with respect to F , D, M and s with
the right-hand side of the inequalities (8) and (9) divided by 2. Assume that there
exists C1 > 0 such that

(25) sup
j∈N
|〈ϕj , ekl〉| ≤

C1√
l

and sup
l∈N
|〈ϕj , ekl〉| ≤

C1√
j

for every l ≤ N and j > M . Let {ψl}l be the CGO frame constructed with tk ≥
c
√
N(|k|b + 1) for every k ∈ Zd. Assume

m ≥ C ω2s log2N,

where C > 0 is a constant depending only on C1.
Sample m indices l1, . . . , lm indipendently from {1, . . . , N} according to the prob-

ability distribution νl = CNd(C1 +1)2N/le, where CN =
(∑N

l=1d(C1 + 1)2N/le
)−1

,

and set Ω = {l1, . . . , lm}.
Let δq ∈ L2(Td) and η ∈ Cm be such that ‖η‖w ≤ ε for some ε ≥ 0, where ‖η‖2w =∑m
i=1

|ηi|2
d(C1+1)2N/lie . Let ζi =

∫
Td δq ψli dx + ηi be the known noisy measurements.
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Let g ∈ L2(Td) be a minimizer of

inf
g∈L2(Td)

Dg∈`1(N)

‖Dg‖1 subject to
∥∥(∫

Td g ψli dx− ζi
)
i

∥∥
w
≤ ε.

Then, with probability exceeding 1− e−ω, we have

‖g − δq‖L2(Td) ≤ 80σs,M (D(δq)) + C ′
√
ωsN logN

m
ε,

where C ′ is a universal constant.

Corollary 2 provides a first general recipe to recover or approximate a sparse or
compressible conductivity from a small number of linearized EIT measurements.
The assumption that the sparsifying basis {ϕj}j∈N and the Fourier basis {ekl}l∈N
must be asymptotically incoherent is not restrictive: as already mentioned in §3.3,
a large class of wavelet bases satisfy (25) [53]. Note that in the 1D Fourier-Wavelet
case we have N = O(M logM) (Remark 2). It would be very interesting to test
this algorithm numerically: this is left for future work.

Note that for the incoherence and balancing property we made assumptions only
on the Fourier basis and not directly on the CGO frame {ψl}l. This is possible
thanks to the following lemma, which also shows that UGC is an invertible operator
with bounded inverse, provided that the tks are chosen big enough.

Lemma 1. There exists c′ > 0 depending only on d, b and ‖q0‖Hb(Td) such that if

tk ≥ c′λ(|k|b + 1) for every k ∈ Zd and for some λ ≥ 2 then the operator UGC is
bounded and invertible and

‖UGC‖H→`2(N) ≤ 3/2, ‖U−1
GC‖`2(N)→H ≤ 2,(26)

‖UGC − F‖H→`2(N) ≤ 1/λ, ‖U−1
GC − F

∗‖`2(N)→H ≤ 1/λ,(27)

sup
l∈N
‖F (r( · , ζkl,tkl

i ))‖`1(N) ≤ 1/λ, for i = 1, 2.(28)

Proof. Since ψl = e−2πikl·x(1+r(x, ζ
kl,tkl
1 ))(1+r(x, ζ

kl,tkl
2 )), setting rli = r( · , ζkl,tkl

i )
we have

‖ekl − ψl‖L2(Td) ≤ ‖r
l
1‖L2(Td) + ‖rl2‖L2(Td) + ‖rl1‖L∞(Td)‖rl2‖L2(Td) ≤

c

|tkl |
,

where we used estimate (24) and the Sobolev embedding Hb(Td) ↪→ L∞(Td) for
b > d/2. This implies |((UGC − F )δq)l| ≤ ‖δq‖L2(Td)

c
c′λ(|kl|b+1)

, so that

‖UGC − F‖H→`2(N) ≤
c

c′λ

(∑
k∈Zd

1

(|k|b + 1)2

) 1
2

≤ c

c′λ

(note that the series is finite as 2b > d). Choosing c′ ≥ c immediately yields ‖UGC−
F‖ ≤ 1

λ ≤
1
2 . The first part of (27) follows. Hence ‖UGC‖ ≤ ‖UGC − F‖+‖F‖ ≤ 3

2 ,
since F is an isometry. Moreover, we have the Neumann series expansion

U−1
GC = F−1

+∞∑
k=0

(−1)k
(
(UGC − F )F−1

)k
,
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and so
∥∥U−1

GC

∥∥ ≤ 2, as desired. In addition, the latter identity readily gives the

second part of (27), since F−1 = F ∗. The last estimate (28) can be proven as
follows. We readily derive

‖Frli‖1 =
∑
h∈N
|(Frli)h|(1 + |kh|2)

b
2 (1 + |kh|2)−

b
2

≤
√∑
h∈N
|(Frli)h|2(1 + |kh|2)b

√∑
h∈N

(1 + |kh|2)−b.

Since b > d/2, the series on the right is convergent. Hence, by definition of the
Sobolev norm we obtain

‖Frli‖1 ≤ c‖rli‖Hb(Td) ≤
c

c′λ(|kl|b + 1)
≤ c

λc′
≤ 1

λ
,

provided that c′ ≥ c. This finishes the proof of the lemma. �

We are now in a position to prove Corollary 2.

Proof of Corollary 2. We want to apply Corollary 1 to UGC and D. Set c = 84c′,
where c′ is given by Lemma 1, so that λ = 84

√
N .

First note that κ1 = 4 by (26) and κ2 = 1 since {ϕj}j is an orthonormal basis.
We begin by showing that N satisfies the balancing property (with the original right
hand side in the definition) with respect to UGC , D, M and s. Consider condition
(9) ((8) can be shown by using the same argument): by the triangle inequality we
have

‖P⊥∆D−∗P⊥WU∗GCPNU−∗GCPW‖H→`∞ ≤ ‖P
⊥
∆D

−∗P⊥W(U∗GC−F ∗)PNU−∗GCPW‖H→`∞

+ ‖P⊥∆D−∗P⊥WF ∗PN (U−∗GC − F )PW‖H→`∞ + ‖P⊥∆D−∗P⊥WF ∗PNFPW‖H→`∞ ,

and so by (26)-(27) and since N satisfies the balancing property with respect to F ,
D, M and s with the bounds divided by 2 we obtain

‖P⊥∆D−∗P⊥WU∗GCPNU−∗GCPW‖H→`∞ ≤
2

λ
+

1

λ
+

1

28
√
s
≤ 1

14
√
s
,

since λ ≥ 84
√
s.

Next, we show that estimate (13) with weights wl = C1+1√
l

is valid for the CGO

frame:

sup
j∈N

max{|〈ϕj , ψl〉H|, |〈ϕj , ψ̃l〉H|} ≤
C1 + 1√

l
, l = 1, . . . , N,

This inequality is readily obtained from the first bound in (25) and the estimates

(27), since λ ≥
√
N .

In order to simplify the term M̃ in the estimate for the number of measurements
m, we now show the following decay of the coherence:

(29) sup
l≤N
|〈ϕj , ψl〉H| ≤

2C1√
j
, j > M.

Write ψl = eklrl, where rl = 1 + rl1 + rl2 + rl1r
l
2 and rli = r( · , ζkl,tkl

i ). Expand rl in
Fourier series rl =

∑
h∈N(Frl)hekh , so that eklrl =

∑
h∈N(Frl)hekh+kl . Then we
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have

|〈ϕj , ψl〉H| = |〈ϕj , eklrl〉H| ≤ ‖Frl‖`1(N) sup
h∈N
|〈ϕj , ekl+kh〉H| ≤

C1‖Frl‖`1(N)√
j

,

using (25). By Young’s inequality for discrete convolution and (28) we have

‖Frl‖`1(N) ≤ ‖F1‖`1(N) + ‖Frl1‖`1(N) + ‖Frl2‖`1(N) + ‖(Fr1
l ) ∗ (Fr2

l )‖`1(N)

≤ 1 +
1

λ
+

1

λ
+

1

λ2

≤ 2.

Combining the last two inequalities we obtain (29). By Remark 5, this implies

M̃(α) ≤ 16C2
1
N
α2 .

We can now apply Corollary 1, and the result follows. �

Let us make some concluding remarks about this inverse problem. We have

chosen the functions uk,ti from [76] for the sake of simplicity. Other families of
functions with similar decay properties might be used as well, leading to similar
results as Lemma 1, with lower regularity assumptions on the coefficients to be
recovered.

In two dimensions it is unclear if results such as Lemma 1 could hold: for the
linearized Calderón problem we cannot use CGO solutions to approximate the
Fourier transform as in higher dimensions. For the linearized Gel’fand-Calderón
problem one could use the Bukhgeim approach [20] to recover pointwise values of
a potential via stationary phase type techniques.

More generally, the results of this subsection may be applied to a large class
of linearized inverse boundary value problems for which we have families of CGO
solutions with good decay properties: inverse problems for the Helmoltz equation,
the elasticity system and Maxwell’s equations, for instance.

4.3. An inverse problem for the wave equation. Our main result can also
be applied to another linear infinite dimensional inverse problem, the observability
problem for the wave equation [50, 65, 62, 34, 6]. This is a classical inverse problem,
and consists in the reconstruction of the initial source of the wave equation from
boundary measurements of the solution. In addition to the direct link with control
theory, this inverse problem appears in the formulation of thermoacoustic and pho-
toacoustic tomography in a bounded domain [10, 59, 1, 51, 29] (for the free-space
formulation, see [57]).

Let d ≥ 2 and O ⊆ Rd be a bounded smooth domain. We consider the following
initial value problem for the wave equation2

(30)


∂ttp−∆p = 0 in (0, T )×O,
p(0, ·) = f in O,
∂tp(0, ·) = 0 in O,
p = 0 on (0, T )× ∂O,

where T > 0 and f ∈ H1
0 (O) := {u ∈ H1(O) : u = 0 on ∂O} is the unknown initial

condition. The above problem admits a unique weak solution p ∈ C([0, T ];H1
0 (O))

2For simplicity, we consider the case of constant sound speed (normalized to 1), but this analysis
may be generalized to the case of a spatially varying sound speed c. Similarly, considering a non-

homogeneous initial condition for ∂tp would not add any substantial complications.
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(see [35, Section 7.2] and [18, Theorem 10.14]). The inverse problem of interest
may be formulated as follows.

Problem (Observability of the wave equation). Supposing that the trace of the
normal derivative ∂νp is measured on an open subset Γ of ∂O for all t ∈ (0, T ),
where ν is the exterior unit normal to ∂Ω, find the initial condition f in O.

Observe that the forward problem is always well-posed: by an inequality of
Rellich’s, the measurement operator

V : H1
0 (O)→ L2((0, T )× Γ), f 7→ ∂νp,

where p is the solution of (30), is well-defined and bounded [65, (1.20)].
In order to apply our techniques to the inverse problem we need more than

continuity, namely injectivity and bounded invertibility of the map V . In this case,
f is uniquely and stably determined by the boundary data V f = ∂νp on (0, T )×Γ.
This solves the above-mentioned inverse problem when we can perfectly measure
∂νp on the whole (0, T )× Γ.

There is a wide literature concerning assumptions on Γ and T that guarantee the
invertibility of V (see [12] and references therein). Here we only mention a sufficient
condition by Ho [50] and J. L. Lions [65] (see also [34, §5.3.4] and [6, Theorem 2.8]):
if {x ∈ ∂O : (x − x0) · ν > 0} ⊆ Γ for some x0 ∈ Rd and T > 2 supx∈O |x − x0|,
then V is invertible with bounded inverse. In the following, we shall assume that
V is invertible with bounded inverse.

In order to let compressed sensing come into play, we will make use of the
following identity, which follows by a simple integration by parts [6, Corollary 2.13].
For every v ∈ L2((0, T )× Γ), we have

(31) (V f, v̄)L2((0,T )×Γ) =

∫
(0,T )×Γ

∂νp v dtdσ = 〈∂tUv(0, ·), f〉H−1(O),H1
0 (O),

where Uv ∈ C
(
[0, T ];L2(O)

)
∩ C1

(
[0, T ];H−1(O)

)
is the solution of

(32)


∂ttUv −∆Uv = 0 in (0, T )×O,
Uv(T, ·) = 0 in O,
∂tUv(T, ·) = 0 in O,
Uv = χΓv on (0, T )× ∂O,

which is defined in the sense of transposition [64, 65], where χΓ is the characteristic
function of Γ and H−1(O) is the dual of H1

0 (O). Identity (31) shows that we can
use the dual solution Uv to probe the unknown f : we measure different moments
of f by varying v.

Since observability is equivalent to exact controllability [64, 65], we have that for
every h ∈ H−1(O) there exists vh ∈ L2 ((0, T )× Γ) such that ∂tUvh(0, ·) = h. The
control vh can be explicitly constructed via an optimization problem. By (31) we
obtain:

(V f, vh)L2((0,T )×Γ) = 〈h, f〉H−1(O),H1
0 (O).

Let −∆: H1
0 (O) → H−1(O) be the Dirichlet Laplacian. By definition we have

〈−∆ψ, g〉H−1(O),H1
0 (O) = (g, ψ)H1

0 (O) (the scalar product in H1
0 (O) is defined by

(g, ψ)H1
0 (O) =

∫
O∇g · ∇ψ dx). Inserting this expression into the above identity

yields

(33) (V f, v−∆ψ)L2((0,T )×Γ) = (V f, v−∆ψ)L2((0,T )×Γ) = (f, ψ)H1
0 (O), ψ ∈ H1

0 (O).
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Let {ψl}l∈N be a frame of H1
0 (O) and {vl}l∈N be a family of L2((0, T )×Γ) such

that

(34) vl = v−∆ψl
⇐⇒ ψl = (−∆)−1∂tUvl(0, ·).

These relations show that one may first choose the frame {ψl}l and then construct
the related family {vl}l, or viceversa. Define the measurement operator

Uobs : H1
0 (O)→ `2(N), f 7→

(
(f, ψl)H1

0 (O)

)
l
,

which can be measured, thanks to (33). Then, representing f in another frame
{ϕj}j of H1

0 (O) we can apply Theorem 1 (or Corollary 1) to this setting, pro-
vided that {ψl}l and {ϕj}j are incoherent (or asymptotically incoherent). There-
fore, via `1 minimization we can reconstruct f from the partial measurements
{(f, ψl)H1

0 (O)}l∈Ω, for some subsampling subset Ω ⊆ N, provided that f is sparse

with respect to {ϕj}j .
Note that, in order to measure (f, ψl)H1

0 (O) = (V f, vl)L2((0,T )×Γ), in principle we

might need to know V f on the whole (0, T )×Γ. The subsampling procedure would
then become useless. In order to overcome this issue, one has to choose the func-
tions vl in such a way that the computation of each (V f, vl)L2((0,T )×Γ) only requires
a partial knowledge of V f . For instance, one could choose compactly supported
functions vl’s in order to sample subsets of (0, T ) × Γ: this would correspond to
having sensors only on particular locations of the boundary at specific times. Sim-
ilarly, scalar products with slowly varying vls would correspond to local averages
of V f , which may be obtained with integrating area or line detectors [21, 75, 49].
More general vl’s are considered in [11].

In summary, the challenge is to construct families {ϕj}j , {ψl}l ⊆ H1
0 (O) and

{vl}l ⊆ L2((0, T )× Γ) such that:

• {ψl}l and {ϕj}j are frames of H1
0 (O);

• {ψl}l and {vl}l are related via (34), which involves the solution of the PDE
(32);

• {ψl}l and {ϕj}j are incoherent (or asymptotically incoherent);
• and each scalar product (V f, vl)L2((0,T )×Γ) may be computed with partial

measurements of V f .

A detailed analysis of these issues goes beyond the scope of this paper, and is a very
interesting direction for future work, at the interface of applied harmonic analysis
and PDE theory.

5. Proof of Theorem 1

The aim of this section is to prove Theorem 1.

5.1. Concentration inequalities. Certain large deviation bounds for sums of
vector and matrix valued random variables are required to prove some of the key
results. Inspired by the paper of Kueng and Gross [58] we use Bernstein inequalities
instead of applying Talagrand as done by Adcock and Hansen [4]. We give a particu-
lar vector inequality not depending on the dimension taken from [58, Proposition 7]
which originally appears in [63, Chapter 6.3, Eqn. (6.12)] with a direct proof in [47].

Lemma 2 (Vector Bernstein inequality). Let {Xl} ⊂ Cd be a finite sequence of
independent random vectors. Suppose that E[Xl] = 0, ‖Xl‖2 ≤ B almost surely and
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l E
[
‖Xl‖22

]
≤ σ2 for some B, σ > 0. Then for all 0 ≤ t ≤ σ2

B

(35) P

(∥∥∥∥∥∑
l

Xl

∥∥∥∥∥
2

≥ t

)
≤ exp

(
−t2

8σ2
+

1

4

)
.

The matrix deviation estimate that we use is due to Tropp [77, Theorem 1.6].

Lemma 3 (Matrix Bernstein inequality). Consider a finite sequence {Xl} ⊂ Cd×d
of independent random matrices. Assume that each random matrix satisfies E[Xl] =
0 and ‖Xl‖ ≤ B almost surely, where ‖ · ‖ stands for the spectral norm, i.e. the
natural norm induced by ‖ · ‖2. Define

σ2 := max

{∥∥∥∥∥∑
l

E (XlX
∗
l )

∥∥∥∥∥ ,
∥∥∥∥∥∑

l

E (X∗l Xl)

∥∥∥∥∥
}
.

Then for all t ≥ 0

(36) P

(∥∥∥∥∥∑
l

Xl

∥∥∥∥∥ ≥ t
)
≤ 2d exp

(
−t2/2

σ2 +Bt/3

)
.

5.2. Six useful estimates. Our proofs rely on several estimates. We provide them
below, following mostly [4, 58, 72], and using a structure similar to [26]. In order
to avoid repetitions and enhance clarity, we summarize here the assumptions we
make throughout this subsection:

• Assume that Hypothesis 1 holds true, and let U and D denote the corre-
sponding analysis operators with index sets L and J , respectively, satisfying
the bounds given in (6);
• Let M ∈ J and ∆ ⊆ {1, . . . ,M} satisfy |∆| ≥ 2, and set W = R(D∗P∆) +
R(D−1P∆);
• Let N ∈ L satisfy the balancing property with respect to U , D, M and |∆|;
• For a fixed θ ∈ (0, 1], let {N, . . . , 1} ⊇ Ω ∼ Ber(θ), i.e.

Ω = {l ∈ {1, . . . , N} : δl = 1},

where {δl}Nl=1 are Bernoulli variables with P(δl = 1) = θ;
• Set EΩ = U∗PΩU

−∗.

The first estimate reads as follows.

Proposition 2. For g ∈ H and t ≥ 1

7
√
|∆|κ2

we have

P
(
‖θ−1P⊥∆D

−∗P⊥WEΩPWg‖`∞(J) > t‖g‖H
)

≤ 2M̃( tθ2 ) exp

 −t2θµ−2

8κ1B∆

(
B∆ +

η∆

√
2|∆|t
6

)
 .

Proof. Without loss of generality we may assume that ‖g‖H = 1. We shall need
the following inequality:

|〈UP⊥WD−1ej , el〉| ≤ |〈ej , D−∗P⊥WD∗D−∗U∗el〉| ≤ B∆‖D−∗U∗el‖∞ ≤ B∆µ,(37)

where B∆ and µ are defined in (11) and in Definition 1, respectively.
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Since
N∑
l=1

ele
∗
l = PN and

N∑
l=1

δlele
∗
l = PΩ we have

(38) θ−1P⊥∆D
−∗P⊥WEΩPWg =

N∑
l=1

Yl + P⊥∆D
−∗P⊥WU

∗PNU
−∗PWg,

where Yl = θ−1P⊥∆D
−∗P⊥WU

∗(δl− θ)ele∗l U−∗PWg. For j ∈ J we define the random

variable Xj
l = 〈Yl, ej〉. By the balancing property (9) we have

P
(
‖θ−1P⊥∆D

−∗P⊥WEΩPWg‖∞ > t‖g‖H
)
≤ P

(∥∥∥∥∥
N∑
l=1

Yl

∥∥∥∥∥
∞

>
t

2

)
.

Let us estimate this quantity by studying the random variables Xj
l via Lemma 3

with d = 1. In order to do that, first observe that since E(δl) = θ, then E(Xj
l ) = 0.

We next study the upper bounds on E
(
|Xj

l |2
)

and |Xj
l | for l = 1, . . . , N .

On the one hand, by (37) we have

|〈D−∗P⊥WU∗ele∗l U−∗PWg, ej〉| = |〈U−∗PWg, el〉||〈UP⊥WD−1ej , el〉|
≤ µB∆|〈U−∗PWg, el〉|,

so that E
[
(δl − θ)2

]
= θ(1− θ) implies for j ∈ J

E
(
|Xj

l |
2
)

= θ−2E
(

(δl − θ)2
∣∣〈P⊥∆D−∗P⊥WU∗ele∗l U−∗PWg, ej〉∣∣2)

≤ θ−1(1− θ)µ2B2
∆

∣∣〈U−∗PWg, el〉∣∣2 .
Therefore, since ‖U−∗‖ ≤ √κ1, we deduce that

N∑
l=1

E
(
|Xj

l |
2
)
≤ θ−1(1− θ)µ2B2

∆‖U−∗PWg‖22 ≤ θ−1µ2B2
∆κ1 =: σ2.

On the other hand, setting hi =
PWi

U−1el

‖PWi
U−1el‖H

∈ Wi for i = 0, 1, where Wi =

R(D∗i P∆), D0 = D and D1 = D−∗, we readily derive∥∥PWiU
−1el

∥∥
H = |〈hi, U−1el〉| = |〈Dihi, D

−∗
i U−1el〉| ≤ µ‖Dihi‖1 ≤ µη∆

√
|∆|,

where η∆ is given by (10). This yields the estimate

(39)
∥∥PWU−1el

∥∥2

H ≤
∥∥PW0

U−1el
∥∥2

H +
∥∥PW1

U−1el
∥∥2

H ≤ 2µ2η2
∆|∆|.

For later use, note that we analogously have

(40) ‖PWU∗el‖2H ≤ 2µ2η2
∆|∆|.

Thus, since ‖g‖H = 1, by (37) we have

|〈D−∗P⊥WU∗ele∗l U−∗PWg, ej〉| = |〈g, PWU−1el〉||〈UP⊥WD−1ej , el〉| ≤ µ2B∆η∆

√
2|∆|.

We have obtained that for j ∈ J and l = 1, . . . , N∣∣∣Xj
l

∣∣∣ ≤ max{θ−1(1− θ), 1}µ2B∆η∆

√
2|∆| ≤ θ−1µ2B∆η∆

√
2|∆|κ1 =: B,

where in the last inequality we used the fact that 1 ≤ κ1.
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Now let Γ ⊆ J be a set such that

P

(
sup
j∈Γ

∣∣∣∣∣
N∑
l=1

Xj
l

∣∣∣∣∣ ≥ t

2

)
= 0 and |Γc| ≤ M̃

( tθ
2

)
,

where Γc := J \ Γ. By the Bernstein inequality (36) with d = 1 we have

P

(
sup
j∈J

∣∣∣∣∣
N∑
l=1

Xj
l

∣∣∣∣∣ ≥ t

2

)
≤ P

(
sup
j∈Γc

∣∣∣∣∣
N∑
l=1

Xj
l

∣∣∣∣∣ ≥ t

2

)

≤ 2M̃( tθ2 ) exp

(
− t2θ

8κ1µ2B∆(B∆ + η∆

√
2|∆|t/6)

)
,

which is the final estimate.
To finish the proof, we need to show that such Γ exists. Note that, because of

(6a) and ‖g‖H = 1 we have∣∣∣∣∣
N∑
l=1

Xj
l

∣∣∣∣∣ =

∣∣∣∣∣
N∑
l=1

〈θ−1P⊥∆D
−∗P⊥WU

∗(δl − θ)ele∗l U−∗PWg, ej〉

∣∣∣∣∣
= θ−1

∣∣〈g, PWU−1 (
∑
l(δl − θ)ele∗l )UP

⊥
WD

−1P⊥∆ ej〉
∣∣

≤ θ−1‖PWU−1 (
∑
l(δl − θ)ele∗l )UP

⊥
WD

−1ej‖H
≤ θ−1√κ1‖ (

∑
l(δl − θ)ele∗l )UP

⊥
WD

−1ej‖2
≤ θ−1√κ1‖PNUP⊥WD−1ej‖2
≤ θ−1√κ1

(
‖PNUD−1ej‖2 +

√
κ1‖PW̃D

−1ej‖H
)
.

We then define

Γ =

{
j ∈ J : θ−1√κ1

(
‖PNUD−1ej‖2 +

√
κ1‖PW̃D

−1ej‖H
)
<
t

2

}
,

which is a finite set and satisfies |Γc| ≤ M̃(tθ/2) by (12). The proof follows. �

Remark. Observe that in the above proof we used the full generality of Definition 1:
all four terms appear in the derivation.

Proposition 3. For g ∈ W and
(

4
√√

κ2 log(|∆|κ2
1κ2)

)−1

≤ t ≤ 2κ1 we have

P
(∥∥(θ−1PWEΩPW − PW

)
g
∥∥
H > t‖g‖H

)
≤ exp

(
−t2θ

64|∆|µ2η2
∆κ1

+
1

4

)
.

Proof. Without loss of generality we assume that ‖g‖H = 1. For l ∈ L, let

ξl = PWU
∗el, αl = PWU

−1el.

We first make the following observations which will be useful along the proof, and
follow from (40), (39) and (6a):

‖ξl‖2H = ‖PWU∗el‖2H ≤ 2η2
∆µ

2|∆|,(41)

‖αl‖2H = ‖PWU−1el‖2H ≤ 2η2
∆µ

2|∆|,(42)

N∑
l=1

|〈αl, g〉|2 =

N∑
l=1

∣∣〈el, U−∗PWg〉∣∣2 ≤ ‖U−∗PWg‖22 ≤ ‖U−∗‖2 ≤ κ1.(43)
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For u, v ∈ W, let u ⊗ v denote the continuous operator W → W defined by
(u⊗ v)(w) = 〈w, v〉u for w ∈ W (note that u⊗ v is linear in u and antilinear in v).
We have that

N∑
l=1

ξl ⊗ αl = PWU
∗PNU

−∗PW ,
∑

l∈L\{1,...,N}

ξl ⊗ αl = PWU
∗P⊥NU

−∗PW ,

θ−1
N∑
l=1

δl(ξl ⊗ αl) = θ−1PWU
∗PΩU

−∗PW , PW =
∑
l∈L

ξl ⊗ αl.

Hence, we have∥∥(θ−1PWU
∗PΩU

−∗PW − PW
)
g
∥∥
H

=

∥∥∥∥∥∥
(

N∑
l=1

(θ−1δl − 1)(ξl ⊗ αl)

)
g −

∑
l∈L\{1,...,N}

(ξl ⊗ αl)g

∥∥∥∥∥∥
H

≤

∥∥∥∥∥
(

N∑
l=1

(θ−1δl − 1)(ξl ⊗ αl)

)
g

∥∥∥∥∥
H

+
∥∥(PWU∗P⊥NU−∗PW) g∥∥H .

Therefore, by the balancing property (8) it follows that

P
(∥∥(θ−1PWU

∗PΩU
−∗PW − PW

)
g
∥∥
H > t

)
≤ P

(∥∥(θ−1PWU
∗PΩU

−∗PW − PW
)
g
∥∥
H >

t

2
+
∥∥PWU∗P⊥NU−∗PW∥∥)

≤ P

(∥∥∥∥∥
N∑
l=1

(θ−1δl − 1)(ξl ⊗ αl)g

∥∥∥∥∥
H

>
t

2

)

for t ≥
(

4
√√

κ2 log(|∆|κ2
1κ2)

)−1

.

Let us estimate the above probability by using Lemma 2. We define

Xl = (θ−1δl − 1)(ξl ⊗ αl)g ∈ W ∼= Cd,

with d = dimW. First note that E(Xl) = 0. Next, observe that

‖Xl‖2H = (θ−1δl − 1)2|〈g, αl〉|2‖ξl‖2H ≤ (θ−1δl − 1)2‖αl‖2H‖ξl‖
2
H.

Thus, by (41) and (42) it follows that

‖Xl‖H ≤ max{θ−1 − 1, 1}‖ξl‖H‖αl‖H ≤ 2θ−1|∆|µ2η2
∆ =: B.

In addition, since E(θ−1δl − 1)2 = θ−1 − 1, by (41) and (43) we obtain

N∑
l=1

E
(
‖Xl‖2H

)
≤ 2(θ−1 − 1)|∆|µ2η2

∆

N∑
l=1

|〈αl, g〉|2 ≤ 2θ−1|∆|µ2η2
∆κ1 =: σ2.

Therefore, applying the Vector Bernstein inequality (35) we get the desired esti-
mate. �

The next proposition involves an operator containing U−1PΩU
−∗.

Proposition 4. For g ∈ W, we have

P
(∥∥θ−1PWU

−1PΩU
−∗PWg

∥∥
H > 2κ1‖g‖H

)
≤ exp

(
−κ1θ

16µ2η2
∆|∆|

+
1

4

)
.
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Proof. Without loss of generality we assume that ‖g‖H = 1. For l ∈ L, let αl =
PWU

−1el. Arguing as in the proof of Proposition 3 we have

‖θ−1PWU
−1PΩU

−∗PWg‖H

≤

∥∥∥∥∥
(

N∑
l=1

(θ−1δl − 1)(αl ⊗ αl)

)
g

∥∥∥∥∥
H

+ ‖PWU−1PNU
−∗PWg‖H

≤

∥∥∥∥∥
(

N∑
l=1

(θ−1δl − 1)(αl ⊗ αl)

)
g

∥∥∥∥∥
H

+ κ1.

Therefore it follows that

P
(∥∥θ−1PWU

−1PΩU
−∗PWg

∥∥
H > 2κ1

)
≤ P

(∥∥∥∥∥
N∑
l=1

(θ−1δl − 1)(αl ⊗ αl)g

∥∥∥∥∥
H

> κ1

)
.

We will bound this probability using Lemma 2. We define

Xl = (θ−1δl − 1)(αl ⊗ αl)g ∈ W ∼= Cd,

with d = dimW. First note that E(Xl) = 0. Next, observe that

‖Xl‖2H = (θ−1δl − 1)2|〈g, αl〉|2‖αl‖2H ≤ (θ−1δl − 1)2‖αl‖4H.

Thus, by (42) it follows that

‖Xl‖H ≤ max{θ−1 − 1, 1}‖αl‖2H ≤ 2θ−1|∆|µ2η2
∆ =: B.

In addition, since E(θ−1δl − 1)2 = θ−1 − 1, by (43) we obtain

N∑
l=1

E
(
‖Xl‖2H

)
≤ 2(θ−1 − 1)|∆|µ2η2

∆

N∑
l=1

|〈αl, g〉|2 ≤ 2θ−1|∆|µ2η2
∆κ1 =: σ2.

Therefore, applying the Vector Bernstein inequality (35) for t = κ1 we get the
desired estimate. �

In the next result we deal with a matrix operator containing U−1PΩU .

Proposition 5. We have

P
(∥∥(θ−1PWU

−1PΩUPW − PW
)∥∥
H→H >

1

2

)
≤ 4|∆| exp

(
−3θ

208|∆|µ2η2
∆κ1

)
.

Proof. We consider ξl = PWU
∗el, αl = PWU

−1el, and arguing as in Proposition 3,
we arrive to

P
(∥∥(θ−1PWU

−1PΩUPW − PW
)∥∥ > 1

2

)
≤ P

(∥∥θ−1PWU
−1PΩUPW − PW

∥∥ > 1

4
+
∥∥PWU−1P⊥NUPW

∥∥)
≤ P

(∥∥∥∥∥
N∑
l=1

(θ−1δl − 1)(αl ⊗ ξl)

∥∥∥∥∥ > 1

4

)
,

where the last probability of the above inequality will be estimated by using Lemma 3.
Let us define now

Xl = (θ−1δl − 1)(αl ⊗ ξl) : W →W.
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SinceW is finite dimensional, Xl may be identified with an element in Cd×d, where
d = dimW ≤ 2|∆|. We have E(Xl) = 0. Further, since 1 ≤ κ1 and by (41) and
(42), it follows that

‖Xl‖ ≤ max{θ−1 − 1, 1}‖αl‖H‖ξl‖H ≤ 2θ−1µ2η2
∆|∆|κ1 =: B.

We next study E(X∗l Xl) and E(XlX
∗
l ). Since X∗l = (θ−1δl − 1)ξl ⊗ αl, we have

X∗l Xl = (θ−1δl − 1)2(ξl ⊗ αl)(αl ⊗ ξl) = (θ−1δl − 1)2‖αl‖2H ξl ⊗ ξl,
XlX

∗
l = (θ−1δl − 1)2(αl ⊗ ξl)(ξl ⊗ αl) = (θ−1δl − 1)2‖ξl‖2H αl ⊗ αl.

As a consequence, since ξl = PWU
∗el, for every h ∈ H with ‖h‖H = 1 we have

N∑
l=1

E(X∗l Xl)h = (θ−1 − 1)PWU
∗
N∑
l=1

‖αl‖2H〈h, PWU∗el〉Hel,

and, by (6a) and (42), we readily deduce∥∥∥∥∥
N∑
l=1

E(X∗l Xl)h

∥∥∥∥∥
H

≤ 2θ−1√κ1η
2
∆µ

2|∆|

(
N∑
l=1

|〈UPWh, el〉H|2
) 1

2

≤ 2θ−1κ1η
2
∆µ

2|∆|.

Arguing in the same way, we obtain∥∥∥∥∥
N∑
l=1

E(XlX
∗
l )

∥∥∥∥∥ ≤ 2θ−1κ1η
2
∆µ

2|∆|.

Hence we can choose

σ2 := 2θ−1µ2η2
∆|∆|κ1,

and applying the Bernstein inequality (36) for t = 1
4 , we deduce the result. �

In the next result we deal with a matrix operator containing U−1PΩU
−∗.

Proposition 6. We have

P
(∥∥θ−1PWU

−1PΩU
−∗PW

∥∥
H→H > 2κ1

)
≤ 4|∆| exp

(
−3κ1θ

16|∆|µ2η2
∆

)
.

Proof. The proof is very similar to that of Proposition 5, and only a sketch will be
provided.

Set αl = PWU
−1el. The bound

∥∥PWU−1PNU
−∗PW

∥∥ ≤ κ1 yields

P
(∥∥θ−1PWU

−1PΩU
−∗PW

∥∥ > 2κ1

)
≤ P

(∥∥PWU−1(θ−1PΩ − PN )U−∗PW
∥∥ > κ1

)
= P

(∥∥∥∥∥
N∑
l=1

Xl

∥∥∥∥∥ > κ1

)
,

where

Xl = (θ−1δl − 1)(αl ⊗ αl) : W →W.

SinceW is finite dimensional, Xl may be identified with an element in Cd×d, where
d = dimW ≤ 2|∆|. We have E(Xl) = 0. Further, by (42), it follows that

‖Xl‖ ≤ max{θ−1 − 1, 1}‖αl‖2H ≤ 2θ−1µ2η2
∆|∆| =: B.
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Note that X∗l = Xl. We next study E(X∗l Xl) = E(XlX
∗
l ). We have X∗l Xl =

(θ−1δl − 1)2‖αl‖2H αl ⊗ αl. As a consequence, for every h ∈ H with ‖h‖H = 1 we
have

N∑
l=1

E(X∗l Xl)h = (θ−1 − 1)PWU
−1

N∑
l=1

‖αl‖2H〈h, PWU−1el〉Hel,

and, by (6a) and (42), we readily deduce∥∥∥∥∥
N∑
l=1

E(X∗l Xl)h

∥∥∥∥∥
H

≤ 2θ−1√κ1η
2
∆µ

2|∆|

(
N∑
l=1

|〈U−∗PWh, el〉H|2
) 1

2

≤ 2θ−1κ1η
2
∆µ

2|∆|.

Hence we can choose σ2 := 2θ−1µ2η2
∆|∆|κ1, and applying the Bernstein inequal-

ity (36) for t = κ1, we deduce the result. �

We conclude this subsection with the following estimate.

Proposition 7. We have

P
(

sup
j∈∆c

‖θ−1P{j}D
−∗P⊥WU

∗PΩUP
⊥
WD

−1P{j}‖`2(J)→`2(J) > 2κ1κ2

)
≤ 2M̃(θ) exp

(
−3θκ1κ2

8µ2B2
∆

)
.

Proof. Fix j ∈ ∆c and let T = UP⊥WD
−1. We have

‖θ−1P{j}T
∗PΩTP{j}‖ ≤

∣∣∣∣∣
N∑
l=1

Y jl

∣∣∣∣∣+ ‖P{j}T ∗PNTP{j}‖,

where

Y jl = (θ−1δl − 1)〈T ∗(el ⊗ el)Tej , ej〉 = (θ−1δl − 1)|〈el, T ej〉|2.
Note that E(Yl) = 0. Since, from our main assumptions,

‖P{j}T ∗PNTP{j}‖ ≤ κ1κ2,

we obtain

P
(
‖θ−1P{j}T

∗PΩTP{j}‖ > 2κ1κ2

)
≤ P

(∣∣∣∣∣
N∑
l=1

Y jl

∣∣∣∣∣ > κ1κ2

)
.

Next, by (37) we have

|Y jl | = |(θ
−1δl − 1)||〈el, T ej〉|2 = |(θ−1δl − 1)||〈el, UP⊥WD−1ej〉|2 ≤ θ−1µ2B2

∆ =: B.

In addition, using again (37) yields

N∑
l=1

E(|Y jl |
2) = (θ−1 − 1)

N∑
l=1

|〈el, T ej〉|4

≤ (θ−1 − 1)µ2B2
∆

N∑
l=1

|〈el, T ej〉|2

≤ θ−1µ2B2
∆‖Tej‖22

≤ θ−1µ2B2
∆κ1κ2 =: σ2.
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Now, assume that there exists a non-empty set Γ ⊆ J such that

P
(

sup
j∈Γ
‖θ−1P{j}T

∗PΩTP{j}‖ > 2κ1κ2

)
= 0 and |Γc| ≤ M̃(θ).

By the matrix Bernstein inequality (36) for d = 1 and t = κ1κ2 and the union
bound, we obtain

P
(

sup
j∈∆c

‖θ−1P{j}T
∗PΩTP{j}‖ > 2κ1κ2

)
= P

(
sup

j∈∆c∩Γc

‖θ−1P{j}T
∗PΩTP{j}‖ > 2κ1κ2

)
≤ 2M̃(θ) exp

(
−3θκ1κ2

8µ2B2
∆

)
,

which is our final estimate.
We only have to show the existence of Γ and provide a bound on |Γc|. Note that

‖θ−1P{j}T
∗PΩTP{j}‖ ≤ θ−1√κ1κ2‖PΩTP{j}‖

≤ θ−1√κ1κ2‖PNTej‖2
= θ−1√κ1κ2‖PNUP⊥WD−1ej‖2
≤ θ−1√κ1κ2

(
‖PNUD−1ej‖2 +

√
κ1‖PW̃D

−1ej‖H
)
.

We then define, similarly to Proposition 2,

Γ =
{
j ∈ J : θ−1√κ1

(
‖PNUD−1ej‖2 +

√
κ1‖PW̃D

−1ej‖H
)
< 2κ1

√
κ2

}
,

which satisfies |Γc| ≤ M̃(2κ1
√
κ2θ) ≤ M̃(θ) by (12). The proof follows. �

5.3. The dual certificate. We now show how the existence of a dual certificate
ρ satisfying certain properties guarantees exact recovery up to measurement noise.
The result is standard, and we follow closely [72, Proposition 6.1]. An analogous
result holds true for more general operators [43, 44, 45, 48], and this would allow
considering the case where the inverse of U is unbounded: this is left for future
work.

Proposition 8. Assume that Hypothesis 1 holds true, and let U and D denote the
corresponding analysis operators, satisfying the bounds given in (6). Let ∆ ⊆ J and
Ω be a finite subset of L. Let g0 ∈ H and η ∈ `2(L) be such that ‖η‖2 ≤ ε for some
ε ≥ 0. Let ζ = PΩUg0 + η be the known noisy measurement. Assume that there
exist ρ = U∗PΩρ

′ for some ρ′ ∈ `2(L), Q > 0 and 0 < θ ≤ 1 with the following
properties:

(i) ‖
(
θ−1PWU

−1PΩUPW
)−1 ‖W→W ≤ 2,

(ii) ‖θ−1PWU
−1PΩU

−∗PW‖W→W ≤ 2κ1,
(iii) supj∈∆c ‖θ−1P{j}D

−∗P⊥WU
∗PΩUP

⊥
WD

−1P{j}‖`2(J)→`2(J) ≤ 2κ1κ2,

(iv) ‖PWρ−D∗sgn(P∆Dg0)‖H ≤ 1
16κ1

√
κ2

,

(v) ‖P⊥∆D−∗P⊥Wρ‖l∞(J) ≤ 1
4 ,

(vi) ‖ρ′‖`2(L) ≤ Q
√
κ1κ2|∆|.

Let g ∈ H be a minimizer of the problem

inf
g∈H

Dg∈`1(J)

‖Dg‖1 subject to ‖PΩUg − ζ‖2 ≤ ε.
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Then

‖g − g0‖H ≤ 20κ1
√
κ2‖P⊥∆Dg0‖1 + ε

√
κ1

(
10 θ−1/2 + 20Qκ1κ2

√
|∆|
)
.

Proof. We start from the following identity, for any g̃ ∈ H:

(44) P⊥W g̃ = P⊥WD
−1Dg̃ = P⊥WD

−1P⊥∆Dg̃.

This follows from the fact that D−1D is the identity and that PW is the orthogonal
projection onto R(D−1P∆) + R(D∗P∆). From estimates (6b) we obtain, for any
g̃ ∈ H,

(45) ‖g̃‖H ≤ ‖PW g̃‖H + ‖P⊥W g̃‖H ≤ ‖PW g̃‖H +
√
κ2‖P⊥∆Dg̃‖1.

From the last inequality applied to h = g − g0, we see that it is enough to bound
‖PWh‖H and ‖P⊥∆Dh‖1 in order to finish the proof. Let us start from ‖PWh‖H.

First note that since ‖PΩUg − ζ‖2 ≤ ε we have

(46) ‖PΩUh‖2 ≤ 2ε.

Set T = θ−1/2PWU
−1PΩ. By (ii) we have ‖T‖ =

√
‖TT ∗‖ ≤

√
2κ1. Thus, using

(46) and (i) we find

‖PWh‖H = ‖(PWU−1PΩUPW)−1PWU
−1PΩUPWh‖H

≤ 2θ−1/2‖θ−1/2PWU
−1PΩU(h− P⊥Wh)‖H

≤ 2θ−1/2
√

2κ1(2ε+ ‖PΩUP
⊥
Wh‖2).

We bound the last term as follows. Set Tj = θ−1/2PΩUP
⊥
WD

−1P{j}. By (iii) we

have ‖Tj‖ =
√∥∥T ∗j Tj∥∥ ≤ √2κ1κ2. Then

‖θ−1/2PΩUP
⊥
Wh‖2 = ‖θ−1/2PΩUP

⊥
WD

−1P⊥∆Dh‖2
≤ sup
j∈∆c

‖θ−1/2PΩUP
⊥
WD

−1ej‖2‖P⊥∆Dh‖1

= sup
j∈∆c

‖Tj‖‖P⊥∆Dh‖1

≤
√

2κ1κ2‖P⊥∆Dh‖1,

where we used identity (44). Thus we have found

(47) ‖PWh‖H ≤ 2
√

2κ1(2εθ−1/2 +
√

2κ1κ2‖P⊥∆Dh‖1).

We now pass to the estimate of ‖P⊥∆Dh‖1. Note that

‖Dg‖1 = ‖P⊥∆D(g0 + h)‖1 + ‖P∆D(g0 + h)‖1
≥ ‖P⊥∆Dh‖1 − ‖P⊥∆Dg0‖1 + ‖P∆Dg0‖1 + Re〈P∆Dh, sgn(P∆Dg0)〉

≥ ‖P⊥∆Dh‖1 − 2‖P⊥∆Dg0‖1 + ‖Dg0‖1 − |〈P∆Dh, sgn(P∆Dg0)〉|.

Singe g is a minimizer, we find that

‖P⊥∆Dh‖1 ≤ 2‖P⊥∆Dg0‖1 + |〈P∆Dh, sgn(P∆Dg0)〉|.
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Now, since ρ = U∗PΩρ
′ and by (44), (46), (47), (iv), (v) and (vi) we have

|〈P∆Dh, sgn(P∆Dg0)〉| = |〈h,D∗sgn(P∆Dg0)〉|

≤ |〈h,D∗sgn(P∆Dg0)− PWρ〉|+ |〈h, ρ〉|+ |〈h, P⊥Wρ〉|

≤ ‖PWh‖H‖D∗sgn(P∆Dg0)− PWρ‖H + ‖PΩUh‖2‖ρ′‖2 + |〈D−1P⊥∆Dh,P
⊥
Wρ〉|

≤ 1

16κ1
√
κ2
‖PWh‖H + 2εQ

√
κ1κ2|∆|+

1

4
‖P⊥∆Dh‖1

≤ 1

8κ1
√
κ2

√
2κ1(2εθ−1/2 +

√
2κ1κ2‖P⊥∆Dh‖1) + 2εQ

√
κ1κ2|∆|+

1

4
‖P⊥∆Dh‖1

≤ ε
(

θ−1/2

2
√

2κ1κ2
+ 2Q

√
κ1κ2|∆|

)
+

1

2
‖P⊥∆Dh‖1.

Thus we have obtained

‖P⊥∆Dh‖1 ≤ 4‖P⊥∆Dg0‖1 + ε

(
θ−1/2

√
2κ1κ2

+ 4Q
√
κ1κ2|∆|

)
,

which by (45) and (47) yields the final estimate

‖h‖H ≤ ‖PWh‖H +
√
κ2‖P⊥∆Dh‖1

≤ 4
√

2κ1εθ
−1/2 + (4κ1

√
κ2 +

√
κ2)‖P⊥∆Dh‖1

≤ 4
√
κ2(4κ1 + 1)‖P⊥∆Dg0‖1

+ ε
√
κ1

(
θ−1/2

(
6
√

2 +
1√
2κ1

)
+ (4κ1 + 1)4Qκ2

√
|∆|
)
.

This concludes the proof. �

By using the results of §5.2, we now show that the dual certificate ρ can be
constructed. The proof is based on a golfing scheme [47, 46].

Proposition 9. Assume that Hypothesis 1 holds true, and let U and D denote the
corresponding analysis operators, satisfying the bounds given in (6). Let M ∈ J ,
ω ≥ 1 and ∆ ⊆ {1, . . . ,M} be such that |∆| ≥ 3. Let N satisfy the balancing
property with respect to U , D, M and |∆|. Let Ω ⊆ {1, . . . , N} be chosen uniformly
at random with |Ω| = m. Take g0 ∈ H. If

m ≥ Cµ2η2
∆|∆|κ1κ2ω

2B2
∆N log

(
κ1κ2M̃

(
C′m

Nω
√
|∆|κ2

))
,

then, with probability exceeding 1−e−ω, there exist ρ = U∗PΩρ
′ for some ρ′ ∈ `2(L)

and Q ≤ C ′′′
√
ωNm satisfying the properties (i)-(vi) of Proposition 8, with θ = m/N ,

where C,C ′, C ′′′ > 0 are universal constants.

Proof. The proof is based on a recursive procedure to construct a sequence of
vectors {Yi} converging to the dual certificate ρ with high probability.

The set Ω ⊆ {1, . . . , N} is chosen uniformly at random with |Ω| = m. It is well
known (see [27, Section II.C]) that we may, without loss of generality, replace this
way of choosing Ω with the model {1, . . . , N} ⊇ Ω ∼ Ber(θ) for θ = m/N (θ will
have this value throughout the proof). This is equivalent to choosing Ω as

Ω = Ω1 ∪ . . . ∪ Ωl′
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with Ωl′ following a Bernoulli distribution as explained below (see also [4, Section
9.1]). The main difference with the golfing scheme in [4] is that the number l′ of
sampled sets is greater than l, the number of iterations in our recursive scheme
(both to be determined later). In fact, given qi for i = 1, . . . , l, we will sample l′ ≥ l
sets distributed as Ber(qi), and will keep only l of them for the construction of the
certificate.

To initialize the iterations, set

Y0 = 0,

and define

(48) Zi = D∗sgn(P∆Dg0)− PWYi, i = 0, . . . , l.

Let us define the sequence {Yi}li=1 iteratively as follows. Given qi, for j = 1, 2, . . .

we choose Ωji ⊆ {1, . . . , N} at random such that Ωji ∼ Ber(qi). Let EΩj
i

=

U∗PΩj
i
U−∗. We repeat the choice for j = 1, 2, . . . until the conditions∥∥∥(PW − q−1

i PWEΩj
i
PW
)
Zi−1

∥∥∥
H
≤ αi‖Zi−1‖H,(49) ∥∥∥q−1

i P⊥∆D
−∗P⊥WEΩj

i
Zi−1

∥∥∥
∞
≤ βi‖Zi−1‖H,(50) ∥∥∥q−1

i PWU
−1PΩj

i
U−∗PWZi−1

∥∥∥
H
≤ 2κ1‖Zi−1‖H,(51)

hold for some parameters αi, βi ∈ R that will be chosen later. We set

ri = min{j = 1, 2, . . . : (49), (50) and (51) are satisfied},

namely ri denotes the number of repetitions of the i-th step. We also set

Ω =

l⋃
i=1

ri⋃
j=1

Ωji , Ωi = Ωrii , Yi =

i∑
k=1

q−1
k EΩk

Zk−1,

and

ρ = Yl, ρ′ =

l∑
i=1

q−1
i PΩi

U−∗Zi−1,

so that ρ = U∗PΩρ
′.

The identities (48) and Yi = Yi−1 + q−1
i EΩiZi−1 yield

Zi = Zi−1 − q−1
i PWEΩiPWZi−1 = (PW − q−1

i PWEΩiPW)Zi−1.

Thus by (6b) and (49) it follows that

‖Zi‖H ≤ αi‖Zi−1‖H ≤
i∏

j=1

αj‖Z0‖H ≤
√
κ2|∆|

i∏
j=1

αj ,

which together with Zl = D∗sgn(P∆Dg0)− PWρ gives

‖D∗sgn(P∆Dg0)− PWρ‖H ≤
√
κ2|∆|

l∏
i=1

αi.

Moreover by (50) we have,

‖P⊥∆D−∗P⊥Wρ‖∞ ≤
l∑
i=1

∥∥q−1
i P⊥∆D

−∗P⊥WEΩi
Zi−1

∥∥
∞ ≤

√
|∆|κ2

l∑
i=1

βi

i−1∏
j=1

αj .
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(For i = 1 we set Πi−1
j=1αj = 1.) Now let ρ′i = q−1

i PΩi
U−∗Zi−1 for i = 1, . . . , l. By

(51) we have

‖ρ′i‖22 ≤ q−2
i 〈PΩi

U−∗Zi−1, PΩi
U−∗Zi−1〉

= q−1
i 〈q

−1
i U−1PΩiU

−∗Zi−1, Zi−1〉
= q−1

i 〈q
−1
i PWU

−1PΩiU
−∗PWZi−1, Zi−1〉

≤ q−1
i ‖q

−1
i PWU

−1PΩi
U−∗PWZi−1‖H‖Zi−1‖H

≤ 2κ1q
−1
i ‖Zi−1‖2H

≤ 2κ1κ2|∆|q−1
i

i−1∏
j=1

α2
j .

Since ρ′ =
∑l
i=1 ρ

′
i we find

‖ρ′‖2 ≤
√

2κ1κ2|∆|
l∑
i=1

q
−1/2
i

i−1∏
j=1

αj .

We next choose the parameters l, αi and βi in a suitable way to show that (iv), (v)
and (vi) in Proposition 8 are satisfied. Letting

l =
⌈
log2(κ1

√
|∆|κ2) + 2

⌉
, α1 = α2 =

1

4
√√

κ2 log(|∆|κ2
1κ2)

, β1 = β2 =
1

7
√
|∆|κ2

and for i ≥ 3

αi =
1

2
, βi =

4 log(|∆|κ2
1κ2)

7
√
|∆|

,

from the above estimates we readily derive

‖D∗sgn(P∆Dg0)−PWρ‖H ≤
1

16κ1
√
κ2
, ‖P⊥∆D−∗P⊥Wρ‖∞ ≤

1

4
, ‖ρ′‖2 ≤

√
|∆|κ1κ2Q,

where Q =
√

2
∑l
i=1 q

−1/2
i

∏i−1
j=1 αj will be estimated at the end of the proof.

Next, we need to establish that the total number of sampled Ωji remains small
with high probability. More precisely, we will bound the probability

p4 = P

(
(r1 > 1) or (r2 > 1) or

l∑
i=1

ri > l′

)
for some l′ to be chosen later. To that end, denote the probability that (49) fails in
the i-th step by p1(i), the probability of failure for (50) by p2(i) and the probability
of failure for (51) by p3(i). We want to use Propositions 3, 2 and 4 to bound these
probabilities. Proposition 3 for t = αi gives the estimate

p1(i) ≤ exp

(
−α2

i qi
64|∆|µ2η2

∆κ1
+

1

4

)
.

Thus if

qi ≥
64µ2|∆|η2

∆κ1

α2
i

(ω + log γ +
1

4
),
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then p1(i) ≤ 1
γ e
−ω, where γ > 0 will be chosen later. Similarly, Proposition 2 for

t = βi yields

p2(i) ≤ 2M̃(qiβi/2) exp

(
−β2

i qi

8κ1µ2B∆(B∆ + η∆

√
2|∆|βi/6)

)
.

Thus if

qi ≥
8µ2κ1B∆(B∆ + η∆

√
2|∆|βi/6)

β2
i

(ω + log(2M̃(qiβi/2)γ)),

then p2(i) ≤ 1
γ e
−ω. Finally, Proposition 4 yields

p3(i) ≤ exp

(
−κ1qi

16µ2η2
∆|∆|

+
1

4

)
.

Thus if

qi ≥ 16µ2|∆|η2
∆(ω + log γ +

1

4
),

then p3(i) ≤ 1
γ e
−ω. Choose γ = 9. Assume qi are chosen as follows:

q1 = q2 ≥ cµ2κ1κ2η
2
∆|∆|B2

∆ω log
(
|∆|κ2

1κ2M̃(q1β1/2)
)
,(52)

qi ≥ cµ2κ1κ2η
2
∆|∆|B2

∆ω
log M̃(qiβi/2)

log(|∆|κ2
1κ2)

, i ≥ 3,(53)

where c ≥ 100 is an absolute constant sufficiently large so that p1(i), p2(i), p3(i) ≤
1
9e
−ω ≤ 1

24 for i ≥ 1 (we use that κ2, B∆, η∆ ≥ 1, M ≥ 3 and |∆|κ2
1κ2 ≥ 3). In

particular, we obtain

P((49), (50) and (51) are satisfied) ≥ 7/8, i ≥ 1.

As a consequence, since
∑l
i=1 ri > l′ if and only if fewer than l of the first l′

samplings satisfied (49), (50) and (51), we have

P

(
l∑
i=1

ri > l′

)
≤ P(X < l) = P(X ≤ l − 1), X ∼ Bin

(
l′,

7

8

)
,

(see equation (45) in [46]). Thus we need to bound the probability of obtaining
less than l outcomes in a binomial process with l′ repetitions and individual suc-
cess probability 7

8 . Following [47, 58] we bound this quantity using a standard
concentration bound from [67]

P (Bin(n, p)− np ≤ −τ) ≤ e−2τ2/n,

which implies

P

(
l∑
i=1

ri > l′

)
≤ exp

(
−2
(

7
8 l
′ − l + 1

)2
l′

)
.

Therefore, choosing l′ = 16
7 (l − 1) + 32

49 (ω + log 9), we get

P

(
l∑
i=1

ri > l′

)
≤ 1

9
e−ω,
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and, as a consequence, we obtain

p4 ≤ p1(1) + p2(1) + p3(1) + p1(2) + p2(2) + p3(2) +
1

9
e−ω ≤ 7

9
e−ω.

Let us now consider property (i) of Proposition 8. Our aim is to show that

p5 = P
(∥∥θ−1PWU

−1PΩUPW − PW
∥∥ > 1

2

)
≤ 2

27
e−ω.

From Proposition 5 we immediately obtain that if θ satisfies

(54) θ ≥ 70µ2η2
∆|∆|κ1(ω + log |∆|+ log 54),

then p5 ≤ 2
27e
−ω.

Now, let p6 be the probability that property (iii) of Proposition 8 fails. We want
to show that

p6 = P
(

sup
j∈∆c

‖θ−1P{j}D
−∗P⊥WU

∗PΩUP
⊥
WD

−1P{j}‖ > 2κ1κ2

)
≤ 2

27
e−ω.

By Proposition 7, if θ satisfies

(55) θ ≥ 3B2
∆µ

2(ω + log M̃(θ) + log 27),

we have p6 ≤ 2
27e
−ω.

Now, let p7 be the probability that property (ii) of Proposition 8 fails, namely

p7 = P
(
‖θ−1PWU

−1PΩU
−∗PW‖ > 2κ1

)
.

By Proposition 6, if θ satisfies (54), then in particular p7 ≤ 2
27e
−ω.

In order to finish the proof we need to give a bound on m (or, equivalently, θ)
and construct qi such that conditions (52), (53), (54) and (55) are satisfied.

Let θ satisfy

(56) θ ≥ 9cµ2η2
∆|∆|κ1κ2ω

2B2
∆ log

(
|∆|κ2

1κ2M̃

(
β1θ

18ω

))
.

Then conditions (54) and (55) are clearly satisfied (using M̃
(
β1θ
18ω

)
≥ M̃(θ) and

9c ≥ 900). Now recall that at each iteration i we sampled ri sets Ωji ∼ Ber(qi) and

we stopped after
∑l
i=1 ri ≤ l′ sampling. Following the same arguments as in [4,

Section 9.1], since

Ω =

l⋃
i=1

ri⋃
j=1

Ωji , Ω ∼ Ber(θ), Ωji ∼ Ber(qi),

we have the identity Πl
i=1(1− qi)ri = 1− θ, which yields the constraint

(57)

l∑
i=1

riqi ≥ θ.

Define

q1 = q2 =
θ

9
, q = qi = 1−

(
1− θ

(1− q1)(1− q2)

) 1
r3+···+rl

, i ≥ 3.
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By (56), condition (52) is satisfied (using also M̃
(
β1θ
18ω

)
= M̃(β1q1

2ω ) ≥ M̃(β1q1/2)).
By (57), since r1 = r2 = 1 and l′ ≥

∑
i ri, we have

(l′ − 2)q ≥
l∑
i=3

riqi ≥ θ − 2q1 =
7

9
θ.

As a consequence, since

l′ − 2 =
16

7
dlog2

(
κ1

√
|∆|κ2

)
+ 1e+

32

49
(ω + log 9)− 2

≤ 16

7
log2

(
κ1

√
|∆|κ2

)
+

32

7
+

32

49
(ω + log 9)− 2

=
8

7
log2 e log(|∆|κ2

1κ2) +
18

7
+

32

49
(ω + log 9)

≤ 7 log(|∆|κ2
1κ2)ω,

by using (56) it is straightforward to check that condition (53) is satisfied as well.

Here we have also used the fact that βiqi/2 ≥ β1θ
18ω for i ≥ 3.

We can now estimate the constant Q =
√

2
∑l
i=1 q

− 1
2

i

∏i−1
j=1 αj . We have:

Q√
2

= q
− 1

2
1 + q

− 1
2

2 α1 +

l∑
i=3

q−
1
2α1α2

i−1∏
j=3

αj

= q
− 1

2
1

1 +
1√

16
√
κ2 log(|∆|κ2

1κ2)

+
q−

1
2

16
√
κ2 log(|∆|κ2

1κ2)

l∑
i=3

1

2i−3

≤ 5

4
q
− 1

2
1 +

q−
1
2

8 log(|∆|κ2
1κ2)

≤ C1θ
− 1

2 + C2θ
− 1

2
(l′ − 2)

1
2

log(|∆|κ2
1κ2)

≤ C3θ
− 1

2ω
1
2 ,

where we have used the fact that |∆| ≥ 3, the definition of q1, q2 and the inequalities
above involving q, θ and l′ − 2 (here C1, C2 and C3 are universal constants).

Finally, the union bound gives p4 + p5 + p6 + p7 ≤ e−ω, which finishes the proof
of the proposition (note that the factor |∆| in the logarithm may be removed since

M̃
(
β1θ
18ω

)
≥M ≥ |∆|). �

5.4. Proof of Theorem 1. The proof is now immediate. By Proposition 9, under
our assumptions with high probability there exists a dual certificate. Thus, by
Proposition 8 we have

‖g − g0‖H ≤ 20κ1
√
κ2‖P⊥∆Dg0‖1 + ε

√
κ1

√
N

m

(
10 + 20C ′′′κ1κ2

√
ωs
)

for every ∆ ⊆ {1, . . . ,M} such that |∆| = s ≥ 3. Observing that

σs,M (Dg0) = inf{‖x−Dg0‖1 : supp(x) ⊆ {1, . . . ,M}, |supp(x)| ≤ s}
= inf{‖x−Dg0‖1 : supp(x) ⊆ ∆ ⊆ {1, . . . ,M}, |∆| = s}

= inf{‖x− P∆Dg0‖1 +
∥∥P⊥∆Dg0

∥∥
1

: supp(x) ⊆ ∆ ⊆ {1, . . . ,M}, |∆| = s}

= inf{
∥∥P⊥∆Dg0

∥∥
1

: ∆ ⊆ {1, . . . ,M}, |∆| = s},
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and that
10 + 20C ′′′κ1κ2

√
ωs ≤ C ′′κ1κ2

√
ωs

for some absolute constant C ′′ > 0, gives the desired estimate.
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Appendix A. On samplings with or without replacement

Take m,N, s1, . . . , sN ∈ N with m ≤ N . We select m elements from {1, . . . , N}
at random (with possible repetitions) following these two distributions.

(1) For υ ∈ N, let Ω′ be chosen uniformly at random as a subset of cardinality
m (namely, without replacement) of{

1, . . . , 1︸ ︷︷ ︸
υs1 times

, . . . , N, . . . , N︸ ︷︷ ︸
υsN times

}
.

Letting n′l denote the number of l’s in Ω′ for l = 1, . . . , N , we have

(58) P(n′1 = k1, . . . , n
′
N = kN ) =

(
υs1
k1

)
· · ·
(
υsN
kN

)(
υ(s1+···+sN )

m

) , k1 + · · ·+ kN = m,

according to the multivariate hypergeometric distribution.
(2) The set Ω is formed by selecting m elements from {1, . . . , N} with replace-

ment following the variable density sampling

pl =
sl

s1 + · · ·+ sN
, l = 1, . . . , N.

This corresponds to the multinomial distribution, and we have

(59) P(n1 = k1, . . . , nN = kN ) = m!

N∏
l=1

pkll
kl!

, k1 + · · ·+ kN = m,

where nl denotes the number of l’s in Ω for l = 1, . . . , N .

A classical result in probability theory states that as the number of objects tends to
infinity, the multivariate hypergeometric distribution converges to the multinomial
distribution. We need the following quantitative version.

Lemma 4. Assume that υ ≥ 2m2. For every k1, . . . , kN ∈ N ∪ {0} such that
k1 + · · ·+ kN = m we have

P(n′1 = k1, . . . , n
′
N = kN ) ≥ 1

2
P(n1 = k1, . . . , nN = kN ).
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Proof. For l = 1, . . . , N we have(
υsl
kl

)
=
υklskll
kl!

(
1− 1

υsl

)
· · ·
(

1− kl − 1

υsl

)
,(

υs

m

)
=
υmsm

m!

(
1− 1

υs

)
· · ·
(

1− m− 1

υs

)
,

where s = s1 + · · ·+ sN . In view of (58) we obtain

P(n′1 = k1, . . . , n
′
N = kN ) =

m!

N∏
l=1

skll
kl!

kl−1∏
t=1

(
1− t

υsl

)

sm
m−1∏
t=1

(
1− t

υs

) ,

where the product
∏kl−1
t=1 is equal to 1 when kl = 0 or kl = 1. Thus, identity (59)

yields

P(n′1 = k1, . . . , n
′
N = kN )

P(n1 = k1, . . . , nN = kN )
=

N∏
l=1

kl−1∏
t=1

(
1− t

υsl

)
m−1∏
t=1

(
1− t

υs

) .

Using that the denominator is smaller than 1 and that

N∏
l=1

kl−1∏
t=1

(
1− t

υsl

)
≥

N∏
l=1

kl−1∏
t=1

(
1− m

υ

)
≥

N∏
l=1

(
1− m

υ

)kl
=
(

1− m

υ

)m
,

since υ ≥ 2m2 we obtain

P(n′1 = k1, . . . , n
′
N = kN )

P(n1 = k1, . . . , nN = kN )
≥
(

1− 1

2m

)m
≥ 1

2
,

as desired. �
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