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Abstract. We present a logic-based framework for the specification and validation of distributed
protocols. Our specification language is a logic-based presentation of update rules for arbitrary
graphs. Update rules are specified via conditional rewriting rules defined over a relational lan-
guage. We focus our attention on unary and binary relations as a way to specify predicates over
nodes and edges of a graph. For the considered language, we define assertions that can be applied
to specify correctness properties for arbitrary configurations. We apply the language to model the
distributed version of the Dining Philosopher Protocol. The protocol is defined for asynchronous
processes distributed over a graph with arbitrary topology. We propose then validation meth-
ods based on source to source transformations and deductive reasoning. We apply the resulting
method to provide a succint correctness proof of the considered case-study.

1. Introduction

Verification of distributed systems with parametric dimension is a challenging task. In this setting
protocols are defined on generic configurations of a network, e.g., for an arbitrary number of nodes
and arbitrary connection topology. Protocol rules may depend on the current network configuration.
For instance, in [28] Namjoshi and Trefler introduced a distributed variant of the dining philosopher
protocol in which individual nodes interact asynchronously via shared buffers. Global conditions
formulated on the state of visible buffers are used to regulate the access to resources shared between
adjacent nodes.

In this paper we present a formalization of distributed protocols with all above mentioned fea-
tures based on a logic-based presentation of graphs, called GLog. We use graphs in order to model



both complex topologies and asynchronous operations in a more natural way with respect to standard
transition systems. Point-to-point links can be obtained by using conditions defined on update rules.

The technical contribution of the paper is as follows. We first define the syntax and formal seman-
tics of the GLog specification language. The language is based on conditional update rules. Conditions
are expressed as first order quantified formulas defined over binary predicates without function sym-
bols. Update rules are defined by sets of atomic formulas that specify the ground atoms that have to
be removed from the current configuration and those that have to be added to the new one. The inter-
pretation domain of relations is defined over an infinite set of node identifiers. GLog can be viewed
as a fragment of richer languages for representing evolving databases like DCDS [19]. Unlike DCDS,
designed for updates of relational databases, we are interested here in a minimal fragment of relational
logic to reason about evolving graphs. In this setting we can model handshaking between two agents
via intermediate steps in which agents first connect to proxies and then, by updating the relations con-
necting them, start an interaction between them. In our model we admit multiple connections to the
same proxy.

Concerning qualitative properties, we focus our attention on a special class of decision problems
that can be viewed as parametric versions of reachability problems. More specifically, in order to
reason about families of distributed systems we consider reachability problems existentially quantified
over initial configurations as in previous work on formal verification of parameterized systems e.g.[11,
12, 13, 4, 2]. In the paper we study minimal fragments of GLog in which the considered decision
problem is undecidable. The considered fragments are similar to fragments of multiset rewriting
studied in [22, 23].

As a case-study, we apply our language to model the distributed version of the Dining Philoso-
pher Protocol proposed in [29]. The protocol is defined for asynchronous processes distributed over a
graph with arbitrary topology. We model the protocol by considering dynamic reconfigurations of the
topology. To verify the correctness of our model, we apply a method that combines program transfor-
mations and deductive reasoning. Specifically, we first apply source to source transformations guided
by commutation (permutation) schemes. Commutation schemes are obtained via a proof theoretic
analysis of computations in which pairs are rule applications that can be permuted are used to define
a sort of normal form for computations. A similar kind of reasoning is used when reasoning on se-
mantics based on Mazukiewicz traces or partial order reductions. Permutation schemes can be applied
to derive meta rules obtained by composing sequences of rule applications of the original protocol.
Meta rules can be viewed as specialized protocol rules that embed in their semantics special proper-
ties of computations in the considered case-study. Human ingenuity is used here to analyze and infer
permutation schemes. We then use deductive reasoning to prove mutual exclusion on the resulting
model. Invariants are expressed using parametric formulas, an extension of the assertional language
used in GLog. The extended type of assertions are needed in order to specify reachability problems
parametric on the number of components. The resulting method is based on proof techniques that are
complementary to compositional reasoning [29] and symbolic backward exploration [18].



2. GLog

In this section we will define a logic-based presentation of evolving graphs called GLog, GLog gen-
eralizes the BLog language in [8]. GLog formulas are based on a simple relational calculus that can
be used to express updates of sets of ground atoms. A set of ground atoms can be interpreted as the
current state or configuration of the system we are modeling. Update rules contain a formula working
as a condition and deletion and addition sets that specify ground atoms to be deleted and added to the
current state.

More formally, let P be a finite set of names of (unary and binary) predicate names, N a denu-
merable set of node identifiers equipped with a total order <, V be a denumerable set of variables.
Predicates in P are used to model current configurations. In addition to predicates in P , we interpret
the binary relation lt as the total order < in our model. Our logic has no function symbols but can be
instantiated with elements from N . An atomic formula is either a formula p(x), lt(x, y) or p(x, y),
where p ∈ P , x, y ∈ V ∪N A ground atom is a either a p(n), lt(n,m), or p(n,m), where n,m ∈ N .
A literal is either an atomic formula or the negation ¬A of an atomic formula A. A formula is a first
order formula built on literals, namely, any literal is a formula, conjunctions, disjunctions, universally
and existentially quantified formulas are still formulas. Multiple occurrences of the same variable
implicitly model equality constraints. The set of free variables of a formula F , namely FV (F ), is the
minimal set satisfying

• FV (p(x, y)) = {x, y},

• FV (A ∨B) = FV (A) ∪ FV (B),

• FV (A ∧B) = FV (A) ∩ FV (B),

• FV (¬A) = FV (A),

• FV (∀v.A) = FV (A) \ {v},

• FV (∃v.A) = FV (A) \ {v}.

Given S = {F1, . . . , Fn}, we define FV (S) = FV (F1) ∪ . . . ∪ FV (Fn). Quantified formulas we
will be used as application conditions of rules.

2.1. Configurations, Interpretations and Update Rules

As mentioned before a set of ground atoms will be used to model a configuration. Formally, a config-
uration is a finite set ∆ of ground atomic formulas with predicates in P . A configuration implicitly
defines a graph in which directed edges are represented by atomic formulas whose predicate name acts
as edge label. Configurations can also be viewed as models in which to evaluate a conditions.

An interpretation is a mapping σ from V to N . We use here a fixed interpretation of variables.
The interpretation domain however consists of a denumerable set of node identifiers. For a formula
F we use Fσ as an abbreviation for σ̂(F ), where σ̂ is the natural extension of σ to terms. For a set
S = {A1, . . . , An}, we use Sσ to denote the set {A1σ, . . . , Anσ}.



Update rules consists of conditions defined by quantified formulas with no function symbols, a
deletion and an addition set. The deletion (resp. addition) set defines the set of ground atoms that
have to be cancelled from (resp. added to) the current configuration. A rule has the following form
〈C,D,A〉, where C is a quantified formula, D and A are two sets of atomic formulas with variables
in V and predicates in P , and such that FV (A) ∪ FV (D) ⊆ FV (C).

To fix an operational semantics for our language we need a support for the interpretation of rela-
tions and variables.

We use ∆ |= A to define the satisfiability relation of a quantified formula A s.t. FV (A) = ∅. Let
A[n/X] denote the formula obtained by replacing each free occurrence of X with n. The relation is
defined by induction as follows.

• ∆ |= p(n), if p(n) ∈ ∆;

• ∆ |= lt(n,m), if n < m;

• ∆ |= p(n,m) for p ∈ P , if p(n,m) ∈ ∆;

• ∆ |= A ∧B, if ∆ |= A and ∆ |= B;

• ∆ |= ¬A, if ∆ 6|= A;

• ∆ |= ∀X.A, if ∆ |= A[n/X] for each n ∈ N ;

• ∆ |= ∃X.A, if ∆ |= A[n/X] for some n ∈ N .

Given a configuration ∆, we say that the quantified formula A is satisfied in ∆, if there exists an
interpretation σ s.t. Aσ is satisfiable.

In order to apply a rule 〈C,D,A〉 to ∆, there must be an interpretation σ that satisfies the quantified
formulaC. The same interpretation σ is then applied to the atomic formulas inD andA. The resulting
sets of atoms, say D′ and A′ respectively, are deleted from and added to ∆, respectively.

2.2. Transition System

A protocol P is a set of rules. The operational semantics of P is given by a transition system
TP = 〈C,→〉, where C is the set of possible configurations, i.e., finite subsets of ground atoms with
predicates in P , and→⊆ C × C is a relation defined as follows.

For ∆,∆′ ∈ C and a rule 〈C,D,A〉 ∈ P , ∆ → ∆′ if there exists σ s.t. ∆ |= Cσ and ∆′ =
(∆ \Dσ) ∪Aσ. A computation is a sequence of configurations ∆0∆1 . . . s.t. ∆i → ∆i+1 for i ≥ 0.

We use→∗ to denote the reflexive and transitive closure of→. In a single step of the operational
semantics a rule is evaluated in the current configuration by taking a sort of closed-world assumption,
i.e., ground atomic formulas that do not occur in a configuration are evaluated to false. Furthermore,
ground atomic formulas that are not deleted are transferred from the current to the successor config-
uration. The latter property can be viewed then as a sort of frame axiom. It is important to notice
that, in general, a configuration ∆ has several possible successors. Indeed, depending of the chosen
interpretation of free variables the same rule can be applied to different subsets of ground atoms con-
tained in the same configuration. Furthermore, the choice of the rules to be applied at a given step is
non-deterministic.



2.3. Protocol Example

As an example, we consider possible application of GLog to the specification of distributed protocols.
The key ingredient of the specification language is the combination of complex conditions and update
rules to reason on graphs in which predicates can be viewed as labels of links between agents and
communication buffers. We have shown that we can also add labels to individual agents and buffers,
e.g., to represent their current state. Update rules can be used to dynamically reconfigure the graph,
i.e., change labels, topology and add or delete agents. The separation between agents and buffers is
convenient to model asynchronous communication. For instance, let us consider a protocol in which
two agents need to establish a connection via a shared buffer.

• An agent n1 of type A connects to a buffer e1 in idle state (the buffer is free) and sets the state
of the buffer to ready.

• An agent n2 of type B connects to e1 in state ready and changes the state to readyack.

• Agent n1 sends message m by changing the state of e1 to msgm.

• Agent n2 receives message m and updates the state of the channel to readyack for further
communications.

The protocol can be specified as follows. We use unary predicates to associate states to edges. send
messages are non-deterministically generated.

R C D A

1 idle(B) ∧ ¬req(A,B) {idle(B)} {ready(B), req(A,B)}
2 ready(B) ∧ ¬rec(A,B) {ready(B)} {readyack(B), rec(A,B)}
3 true {} {send(A,B,M)}
4 readyack(B) ∧ send(A,B) {readyack(B), send(A,B)} {msg(B,M)}
5 msg(B,M) ∧ rec(A,B) {msg(B,M), rec(A,B)} {idle(B)}

An initial configuration has the form idle(b1), . . . , idle(bk), where bi < bjfor i 6= j, i, j : 1, . . . , k.
For the sake of simplicity, we do not model the state of agents but only their capabilities (req, rec,
send). In rule 1 a buffer B is locked by a non-deterministically generated request req(A,B) from
sender agent A (a variable). In rule 2 a buffer B is locked by a non-deterministically generated
request rec(A,B) from receiver agent A (a variable). Rule 3 nondeterministically generates a send
action from agentA. Rule 4 synchronizes a send action from agentA with a buffer locked by the same
agent. The (non deterministically generated) message M is stored in the buffer. Rule 5 synchronizes
and consumes a message in the buffer with the receiver agent, releasing the buffer.

The model provides other form of interactions. For instance, we can model ordered buffers by
forming lists of messages attached to a given edge as in the representation of the tape of the Turing
machine.

We can also model synchronous communication as in the following example



C link(A,B) ∧ s1(A) ∧ link(E,B) ∧ s2(E)

D {s1(A), link(A,B), link(E,B), s2(E)}
A {link(A,B), s′1(A), link(E,B), s′2(E)}

Here s(A) and s′(A) denote agent A resp. in state s and s′, s1(E) and s′1(E) denote agent E resp. in
state s1 and s′1, and link(A,B) and link(Y,B) denote links to a common buffer B.

3. Decision Problem

We consider decision problems that generalize the standard notion of reachability between config-
urations. The key point is to reason about an infinite set of initial configurations in order to prove
properties for protocol instances with an arbitrary number of nodes. For a set S of configurations,
we first define the Post and Pre operators as follows Post(S) = {∆′ | ∃∆ ∈ S, ∆ → ∆′} and
Pre(S) = {∆′ | ∃∆ ∈ S, ∆′ → ∆}. We use Post∗(S) (resp. Pre∗(S)) to denote the reflexive-
transitive closure of Post (resp. Pre).

We now introduce the ∃-reachability problem defined as follows.

Definition 3.1. Given a protocol P , a set of target configurations T and a possibly infinite set of initial
configurations I , ∃-reachability is satisfied for P , I and T , written ∃Reach(P, I, T ), if there exists
∆ ∈ T and a configuration ∆1 s.t. ∆1 ∈ Post∗(I) and ∆ ⊆ ∆1.

By expanding the definition of Post∗, ∃Reach(P, I, T ) holds if there exists a configuration ∆0 ∈ I
s.t. ∆0 →∗ ∆1 and ∆ ⊆ ∆1 for some ∆ ∈ T . The target T can be interpreted as a pattern to
match or avoid in computations starting from initial configurations. If the set I consists of configura-
tions consisting of an arbitrary, finite number of components than ∃-reachability formally describes a
parameterized verification decision problem for specifications given in GLog.

3.1. Undecidability

The ∃-Reachability problem turns out to be undecidable [8]. A proof can be constructed by reducing
the halting problem for Turing machines to ∃-reachability. The idea of the construction is as follows.

LetM = 〈Σ, Q, δ, q0, F 〉 be a deterministic Turing machine in whichQ is the set of control states,
Σ is the tape alphabet that includes the special blank symbol B, F ⊆ Q is the set of final states, q0 is
the initial state, and δ : Q× Σ→ Q× Σ× {L,R} is the transition relation. We consider the halting
problem from an initial state with empty tape. To encode a configuration of M , we use here three
types of relations:

• The atomic formula q(n1) represents the state of the head pointing to cell n1.

• The atomic formula `(n1) represents a cell n1 containing symbol `.

• The atomic formula next(n1, n2) is used to link cell n1 to its successor cell n2.

To simulate a transition δ(q1, a) = 〈q2, b, R〉 we use the rules defined as follows



R C D A

1
q1(X1) ∧ a(X1)∧
next(X1, X2) ∧ `(X2)

{q1(X1), a(X1)} A1 = {q2(X2), b(X1)}

2
q1(X1) ∧ a(X1) ∧ lt(X1, X2)∧
¬∃Z.next(X1, Z)

{q1(X1), a(X1)} {q2(X2), b(X1), blank(X2)}

The former rule updates the relation associated to the encoding of the cell pointed by the head assum-
ing that there exists another cell to its right. The latter rule generates a representation of a blank cell
by selecting an unused identifier. To simulate a transition δ(q1, a) = 〈q2, b, L〉 we use the rules and
where

R C D A

3
q1(X1) ∧ a(X1) ∧ next(X2, X1)

∧`(X2)
{q1(X1), a(X1)} {q2(X2), b(X1)}

4
q1(X1) ∧ a(X1)∧
lt(X2, X1) ∧ ¬∃Z.next(Z,X1)

{q1(X1), a(X1)} {q2(X2), b(X1), blank(X2)}

The former rule updates the relation associated to the encoding of the cell pointed by the head assum-
ing that there exists another cell to its left. The latter rule generates, when needed, a representation of
a blank cell.

The set of initial configurations I consists of configurations with a single occurrence of atoms
q0(n) and blank(n) for some n ∈ N . Starting from ∆ ∈ I our encoding produces configurations of a
M . Let us indicate with ∆ the configuration of the Turing machine represented by ∆. Namely, if
∆ = {a1(n1), next(n1, n2), a2(n2), . . . , next(ni−1, ni), q(ni), a(ni), next(ni, ni+1), . . . , ak(nk)}
then ∆ = a1 . . . aj−1qiaj . . . ak.

The following properties then holds.

Proposition 3.2. Let PM be the encoding of the Turing machine M and γ0 = q0B be the initial
configuration of M . γ1 is reachable from γ0 if and only if there exists ∆0 ∈ I and ∆1 s.t. ∆0 = γ0,
∆1 = γ1, and ∆0 →∗ ∆1.

Proof:
By construction, the application of a rule produced by the encoding preserve the well-formedness of
the encoding of configurations. We prove it by induction on the length of a computation. Let us
consider the initial configuration ∆ = {q0(n), blank(n)} s.t. ∆0 = γ0. By applying C2 we obtain a
configuration

∆ = {q1(n1), blank(n1), a(n), next(n, n1)} n < n1

that represents configuration aq1B. C3 produces a similar effect by adding a blank to the left of the
head positions. Now let

∆ = {a1(n1), next(n1, n2), a2(n2), . . . , q(ni), a(ni), next(ni, ni+1), . . . , ak(nk)}



be a configuration obtain after m steps s.t. ∆ = a1a2 . . . ak. If i < k by applying rule C1, we obtain

∆′ = {a1(n1), next(n1, n2), a2(n2), . . . , ak(nk), . . . , a′(ni), next(ni, ni+1), q
′(ni+1), . . . , ak(nk)}

and ∆′ = a1a2 . . . a
′q′ai+1 . . . ak. If i = k by applying rule C2, we obtain

∆ = {a1(n1), next(n1, n2), a2(n2), . . . , a′(ni), next(ni, n′), q′(n′), blank(n′)} ni < n′

and ∆′ = a1a2 . . . a
′q′ai+1. A similar case analysis applies for rules that move the tape head to the

left.
Viceversa, if γ1 is reachable from γ0, then, by construction, we can build a computation from

∆ = {q0(n), blank(n)} that mimics each step of the machine M . The proof is again for induction on
the length of the computation in M with a case analysis similar to the if case. ut

The following property then holds.

Theorem 3.3. Let PM be the encoding of the Turing machine M . The Halting problem for M can
be reduced to ∃-Reachability in PM by taking the formula Φ =

∨
q∈F q(X,Y ) as representation of

sub-configurations denoting a final state.

3.2. Fragments of GLog

We consider here a restricted form of update rules, namely we only consider relabeling rules.

Definition 3.4. A relabeling rule is an update rule of the form 〈C,D,A〉, where

• C = D = {p1(X1, Y1), . . . , pk(Xk, Yk)}

• A = {q1(X1, Y1), . . . , qk(Xk, Yk)}

where pi, qi ∈ P for i : 1, . . . , k.

Observe that D is used both as enabling condition and deletion set so as to ensure the existence of all
elements to be deleted. Free variables occurring inD andA are implicitly existentially quantified. For
instance, consider the rule 〈D,D,A〉 such that D = {p(X,Y )} and A = {q(X,Y )}. The previous
rule non-deterministically selects a link with label p and updates its label to q. Relabeling rules
only change labels of existing links. We focus our attention on relabeling rules since our assertional
language cannot represent arbitrary formulas as those allowed in conditions. Relabeling however
induces very expressive transition systems. To clarify this point, we first say that a set of configurations
S is regular if there exists a set of rules with associated successor operator Post and a finite set
I of configurations such that S = Post∗(I). In other words S can be generated by a finite set
of configurations by applying GLog rules. The following property holds for regular set of initial
configurations.

Proposition 3.5. The ∃-reachability problem is undecidable for GLog specifications consisting of
relabeling rules and regular set of initial configurations.



Proof:
We present here a sketch of the proof. We first notice that edge addition and deletion can be simulated
by introducing a special predicate name (i.e. edge label) ε. To simulate edge creation, we can use
relabeling rules that update ε-edges. For instance, the rule D = {ε(X,Y )}, A = {p(X,Y )} non-
deterministically introduces an occurrence of a p-edge. Similar constructions have been proposed
for graph rewriting with addition/deletion of edges or with relabeling in [3]. Undecidability of ∃-
reachability depends from the assumptions on the shape of initial states.

Let us consider initial states consisting of (directed) paths (i.e. chains of atomic formulas) of ar-
bitrary length with an initial label q0 followed by ε labels only, then we can use such a configuration
as initial structure on which to run a simulation of a Turing powerful model such a two counter ma-
chine. Every path corresponds to the maximum amount of memory needed during the execution of a
machine. The initial state q0 can then be transformed into a pointer to visit each element (an edge) of
the memory and to modify its contents (e.g. flip it from one to zero or from zero to one). To represent
the value k for counter c with use k occurrences of label c along the path.

More specifically, if the transition from q1 to q2 increments counter c we use the following set of
rules:

R D A

1 {q1(X,Y ), ε(Y,Z)} {q2(X,Y ), c(Y, Z)}
2 {q1(X,Y ), c(Y,Z)} {q11(X,Y ), c1(Y,Z)}
3 {q1(X,Y ), d(Y,Z)} {q11(X,Y ), d1(Y,Z)}
4 {c1(X,Y ), c(Y,Z)} {c1(X,Y ), c1(Y,Z)}
5 {c1(X,Y ), ε(Y,Z)} {c2(X,Y ), c(Y, Z)}
6 {d1(X,Y ), ε(Y,Z)} {d2(X,Y ), c(Y, Z)}
7 {d1(X,Y ), d(Y,Z)} {d1(X,Y ), d1(Y,Z)}
8 {d1(X,Y ), c(Y,Z)} {d1(X,Y ), c1(Y,Z)}
9 {c1(X,Y ), c2(Y,Z)} {c2(X,Y ), c(Y, Z)}
10 {c1(X,Y ), d2(Y,Z)} {c2(X,Y ), d(Y, Z)}
11 {d1(X,Y ), d2(Y,Z)} {d2(X,Y ), d(Y, Z)}
12 {c1(X,Y ), d2(Y,Z)} {c2(X,Y ), d(Y, Z)}
13 {q11(X,Y ), c2(Y, Z)} {q2(X,Y ), c(Y, Z)}
14 {q11(X,Y ), d2(Y, Z)} {q2(X,Y ), d(Y, Z)}

The rules just scan the chain passing through c and d labels until the first ε label is found. During the
scan each label is marked to prepare the second phase of the simulation. When the ε label has been
found, it is replaced with c and then the chain is traversed back in order to restore the original c and d
labels and to move the control state to q2. Decrement of counter d is handled in a simmetric way.



If the transition from q1 to q2 decrement counter c we use the following set of rules:

R D A

1b {q1(X,Y ), c(Y, Z)} {q2(X,Y ), ε(Y,Z)}
2b {q1(X,Y ), d(Y, Z)} {q11(X,Y ), d3(Y,Z)}
3b {d3(X,Y ), d(Y, Z)} {d3(X,Y ), d3(Y, Z)}
4b {d3(X,Y ), c(Y, Z)} {d4(X,Y ), ε(Y,Z)}
5b {d3(X,Y ), d4(Y,Z)} {d4(X,Y ), d(Y,Z)}
6b {q11(X,Y ), d4(Y,Z)} {q2(X,Y ), d(Y,Z)}

The rules just scan the chain passing through d labels until the first c label is found. During the scan
each label is marked to prepare the second phase of the simulation. When the c label has been found,
it is replaced with ε and then the chain is traversed back in order to restore the original d labels and to
move the control state to q2. Decrement of counter d is symmetric.

Similarly, zero test on counter c is implemented by the rules

R D A

1c {q1(X,Y ), ε(Y, Z)} {q2(X,Y ), ε(Y,Z)}
2c {q1(X,Y ), d(Y, Z)} {q11(X,Y ), d5(Y,Z)}
3c {d5(X,Y ), d(Y, Z)} {d5(X,Y ), d5(Y, Z)}
4c {d5(X,Y ), ε(Y, Z)} {d6(X,Y ), ε(Y,Z)}
5c {d5(X,Y ), d6(Y,Z)} {d6(X,Y ), d(Y,Z)}
6c {q11(X,Y ), d6(Y,Z)} {q2(X,Y ), d(Y,Z)}

The rules scan the chain passing through all d labels in search of the first ε. The test fails if there are c
labels (i.e. counter c is greater than one).

Rules of non-zero test are implemented in a similar way.
The simulation is successful only for paths with the necessary amount of memory (i.e. length).

The halting problem for such a program can be formulated as an existential reachability problem via
an assertion ∃X,Y.link(halt,X, Y ) used to single out the halting control state of the program. ut

The freedom in fixing the shape of the initial set of configurations is central here in order to give
enough power to relabeling rules. Indeed, if the initial configurations are arbitrary graphs, e.g., with ε
labels, then relabeling is not expressive enough to make existential reachability undecidable.

Proposition 3.6. ∃-reachability for relabeling rules is decidable if the set of initial configurations
consists of arbitrary fully connected graphs with ε-transition.

Proof:
The difficulty in building a perfect simulation of a (Turing or counter) machine when starting from ar-
bitrary graphs with epsilon transitions is due to the fact that relabeling rules can non-deterministically



be applied at any position. For every configuration in which a relabeling is applied to a given link, we
can find another configuration with additional links attached to the same nodes, involved in the first
application of the rule, in which the same relabeling can be applied several times. Since the additional
links can be adjacent to the original ones, it is not possible to use chains of predicates to define lists of
cells or other regular structures. In other words, the effect of a relabeling rule is only that of enabling
other possible rule applications. The same effect can be obtained by considering rewriting rules oper-
ating on a finite set of labels (predicate symbols). As a side effect there is no more difference between
links and paths.
∃-reachability can then be reformulated as a reachability problem starting from the singleton con-

taining ε and with the set of labels occurring in the target assertion as final configuration. Since we
only consider finitely many predicate symbols, this kind of reachability problem becomes decidable.
Similar reductions have been proposed for coverability in graph rewriting with relabeling rules, and in
broadcast protocols with non deterministic reconfigurations of links [10]. ut

The previous result shows that relabeling rules defined over finite alphabets are not very expressive.

4. Distributed Dining Philosophers

We consider here a distributed version of the dining philosopher mutual exclusion problem presented
in [28]. Agents are distributed on an arbitrary graph and communicate asynchronously via point-to-
point channels. Channels are viewed as buffers with state. Distributed Dining Philosophers (DDP) is
defined as follows. The goal is to ensure that agents can access a resource shared in common with
their neighbors in mutual exclusion. The protocol from the perspective a single agent consists of the
following steps:

• Initially, all agents are in idle state.

• When an agent A wants to get a resource, A has to acquire the control of each buffer shared
with his/her neighbors.

• To acquire a channel, A marks the channel with its identifier. If the channel is already marked,
A has to wait.

• A acquires the resources when all channels shared with neighbors are marked with his/her iden-
tifier.

• To release a resource, A first resets each buffer. When all buffers are reset, Amoves back to idle
state.

In a statically defined topology, agent A gets access to a resource when all neighbors are either idle
or are waiting for acquiring some channel. Communication between two neighbors is asynchronous.
Indeed, they interact by reading and writing on the shared channel. The protocol should guarantee that
two agents that share the same channel cannot acquire and use a resource simultaneosly. The protocol
should be robust under dynamic reconfigurations of the network.



4.1. Formal Specification of DDP

In this section we present a formal specification of the DDP protocol. Network configurations are
expressed as GLog configurations. The dynamics in a protocol interaction is expressed via a finite
set of update rules. We use a predicate link to represent connections from an agent to a possibly
shared buffer. To model dynamic reconfigurations, we can non-deterministically add and remove link
predicates between pairs of agents and buffers. We model buffers with states using unary predicates.
Asynchronous communication is modeled as in the previous example, i.e., agents interact only via a
common buffer. Communication between two agents is not atomic. Instead of modeling identifiers
and buffers with data, we introduce a special relation own that is used to model ownership of a given
buffer to which a agent is linked. Ownership is normed in the same way as the labeling of buffers in the
original protocol, i.e., an agent can acquire ownership only if the buffer is not owned by other agents.
We model this behavior using the following predicates and rules (rules have the form (Ci, Di, Ai) for
i : 1, . . . , 6):

R C D A

link ¬link(X,E) ∅ {link(X,E)}
unlink link(X,E) {link(X,E)} ∅
getE link(X,E) ∧ ∀Z.¬own(Z,E) ∅ {own(X,E)}
relE {own(X,E)} {own(X,E)} ∅
acquire idle(X) ∧ ∀E.(link(X,E) ⊃ own(X,E)) {idle(X)} {busy(X)}
release {busy(X)} {busy(X)} {idle(X)}

An initial state configuration has the following form idle(n1), . . . , idle(nk), where ni 6= nj for i 6= j,
i, j : 1, . . . , k and k ≥ 1.

5. Correctness Proof

Correctness Mutual exclusion for the considered protocol can be formulated in its more general
form, i.e., for any number of agents, as the negation of an ∃-reachability problem. More specifically,
let Φ be the formula

∃N,M,G.busy(N) ∧ busy(M) ∧ link(N,G) ∧ link(M,G)

that denotes a configurations in which two agents share the same channel. ∃Reach(DDP, I,Φ) holds
if and only if mutual exclusion does not hold for DDP.

Taking DDP as main example, in the rest of the paper we will present an incomplete verifica-
tion methodology for the ∃-Reachability problem. Our approach follows the principles of deduc-
tive verification, i.e., prove that a given assertion is an invariant under application of the protocol
rules. The method is combined with protocol transformations guided by permutation and deletion
schemes. Transformations produce simpler rules schemes that, combined with the above mentioned
proof method, yield correctness proofs of very simple form.



5.1. Code-to-code Transformations

We start our analysis by introducing a sort of canonical form for computations in Pddp obtained via
permutation and deletion schemes that we can be used to synthesize derived rules. We first consider
deletion and permutation properties of rule applications within a given computation. We focus our
attention on link and unlink rules, i.e., dynamic reconfigurations of the graph topology.

5.1.1. Permutation of link/unlink

Let θ = ∆0∆1∆2 be a computation in Pddp and let r1, r2 be the transitions applied in each step.

• We first observe that if r2 is an instance of the unlink rule applied to n1, e1, and r1 is an instance
of rule link applied to the same pair, they can be eliminated since ∆0 = ∆2.

• If r1 is an instance of the getE rule applied to agent n1, e1, and r2 is an application of relE
applied to the same pair, then they can be eliminated since ∆0 = ∆2.

• We now observe that unlink can be permuted with every other rule applied to different pairs to
its left in a computation. Namely, if r2 is an instance of the unlink rule applied to n1, e1, and
r1 is a rule that is not applied to n1, e1, then we can permute the application of the two rules and
obtain a new computation leading to the same configuration.

• If r1 is an instance of the link rule applied to n1, e1, and r2 is an application of any other rule
on a different pair, then we can permute the applications of the two rules and obtain a new
computation leading to the same configuration.

We can now reason on the previous properties in order to consider sets of equivalent computations
and infer derived blocks of rules and new permutation rules. More specifically, given a computation θ
we can obtain an equivalent, w.r.t. our correctness criteria, computation θ′ by applying the following
steps:

• We can eliminate all applications of reconfigurations, i.e., link and unlink, performed on the
same pair n, e, if in between their occurrences in a computation there are no occurrences of
instances of getE on the same pair. The property can be obtained by repeatedly applying per-
mutation rules so as to push applications of link towards the first occurrence of unlink and
then apply the corresponding deletion rules.

• We can eliminate all applications of acquire getE and relE on the same pair n, e, if there
are no occurrences of acquire involving n in between. Again, the property can be obtained
by repeatedly applying permutation rules so as to push applications of relE towards the first
occurrence of getE to its left.

• We can push the application of link rules close to the first occurrence of a corresponding getE
rule to its left.



Following from the previous properties, from any computation we can extract a subcomputation in
which occurrences of relE occur only after occurrences of acquire on the same pair. Similarly, we
can push occurrences of unlink so as to occur only after occurrences of acquire. In other words we
can derive rules obtained by combining link and reqE. The resulting pattern, link getE, is used to
simultaneously link an agent to an edge and acquire its ownership. Similarly, since computations in
which relE and unlink on specific pairs occur after acquire, we can use permutations in order to
cluster all occurrences of patterns relE unlink occurring before an acquire. In other words, we can
use permutations of patterns link getE with other rules or patterns operating on different agents, in
order to push all their occurrences close to the first acquire on their right involving the same agent. The
above properties lead to patterns of the form (link getE)∗acquire. We now observe that the pattern
can be used by agent n to simultaneously acquire the ownership of a given set of edges e1, . . . , en,
and update the local state to busy.

We can reason on permutations of unlink, relE and release in a similar way, i.e., apply permu-
tations to cluster the sequence of applications of these rules involving the same agent after an acquire.
The resulting sequence can be represented by the pattern (relE unlink)∗release. In other words
in the resulting patterns the link relation is updated in parallel with the own relation. The patterns
identified in the previous section cannot be represented via a single rule in our specification language,
since they may involve an arbitrary number of edges. To express our patterns, we will use families of
updates rules and use them to reason about the correctness of our specification

5.1.2. Link-Request Pattern

To express the pattern (link getE)∗acquire, we can use a family R = {rk}k≥0 of rules, where
rk = (Ck, Dk, Ak) is defined as:

• Ck = idle(X) ∧ (
∧k

i=1 ¬link(X,Ei)) ∧ (∀Z.
∧k

i=1 ¬own(Z,Ei))

• Dk = {idle(X)}

• Ak = {busy(X), link(X,E1), own(X,E1), . . . , link(X,Ek), own(X,Ek)}

The rule associates agent X to an arbitrary subset of edges. The association is defined via the owner-
ship predicate.

5.2. Release-Unlink Pattern

The pattern (relE unlink)∗release is expressed by an infinite family S = {sk}k≥0 of rules, where
rule sk = (Ck, Dk, Ak) is defined as:

• Ck = busy(X) ∧ (
∧k

i=1 link(X,Ei) ∧ own(X,Ei))

• Dk = {busy(X), link(X,E1), own(X,E1), . . . , link(X,Ek), own(X,Ek)}

• Ak = {idle(X)}



This rule can be applied to a subset of all edges connected to a given agent. This corresponds to a
sequence of applications of release and relE.

We will refer to the specification containing the two families of rules R and S as DDP#. The
operational semantics can be extended in such a way that transitions are applied by selecting an in-
stantiation from one of the rules in R ∪ S. The following proposition then holds.

Proposition 5.1. If ∃Reach(DDP#, I,Φ) does not hold, then ∃Reach(DDP, I,Φ) does not hold.

Proof:
We first observe that, by construction, every computation in DDP can be transformed into a computa-
tion in DDP# by exploiting the permutation and deletion schemes described at the beginning of this
section. The computation is obtained by reordering the application of transitions and by removing
unnecessary attempts of linking to nodes that cannot be owned.

Computations in the abstract protocol can be decomposed into simpler steps of the original pro-
tocol. Furthermore, an arbitrary number of link/unlink steps can be reintroduced in the computation.
However, the resulting intermediate configurations correspond to attempts that cannot bring an agent
to the busy state. Thus, it is not possible that intermediate configurations satisfy Φ while configurations
restricted to application of rules in DDP# do not satisfy Φ.

We now observe that DDP# contains computations that do not correspond to computations in
DDP. Indeed, while patterns in R can be decomposed into sequence of rule applications taken from
DDP, there are patterns in S that do not correspond to computations in DDP. This may happen when
an instance for a given k of a rule in S is applied to a strict subset of the existing set of links owned
by an agent. In this case the some of the edges are not released by the agent. Since the agent moves
to state idle those edges will remain blocked forever, making the corresponding buffer unusable in
successive computations. This corresponds to a sort of loss transition in which some of the buffers
move to a sink state. This overapproximation however is conservative w.r.t. our correcteness proof. If
bad configurations cannot be reached in DDP#, then they will not be reached in DDP. ut

5.3. Deductive Proof

We now move to a formal correctness proof of our DDP specification by reasoning on DDP#. Our
goal is to prove that the formula

Ψ = ¬∃N,M,G.busy(N) ∧ busy(M) ∧ link(N,G) ∧ link(M,G)

holds in the initial states and that it is an invariant for DDP#. This will give us a proof that existential
reachability does not hold for Ψ in DDP#. By Prop. 5.1, we will obtain a correctness argument that
can also be applied to DDP.

To prove the property, we will strenghten the invariant proving that

Ψ′ = Υ ∧Ψ

where
Υ = (∀Z,E.link(Z,E) ⊃ own(Z,E))



is still an invariant of our model. By definition Ψ′ holds in any initial configuration ∆m,n, since initial
configurations only contain agents in state idle. The key point is to show that Ψ′ is preserved by
applications of rule rk and sk for any k ≥ 0.

Consider a configuration ∆ with cardinality n and assume that ∆ |= Ψ′. Now consider rk s.t.
k ≤ n. If rk can be applied to ∆, there exists an interpretation σ s.t. ∆ |= Ckσ where

Ck = (idle(X) ∧
k∧

i=1

¬link(X,Ei) ∧ ∀Z.
k∧

i=1

¬own(Z,Ei))

This implies that there exists an agent n s.t. idle(n) ∈ ∆, and there exist e1, . . . , en s.t.

link(m, ei), own(m, ei) 6∈ ∆ for i : 1, . . . , k

and for any m occurring in ∆. The application of the rule yields a configuration ∆′ defined as

∆′ = ∆ ∪ {link(n, e1), . . . , link(n, ek), own(n, e1), . . . , own(n, ek), busy(n)}

Since by assumption own(m, ei), link(m, ei) 6∈ ∆ for any m occurring in ∆ and i : 1, . . . , k, we
have that ∆′ |= Ψ′.

Now consider a configuration ∆ with cardinality n and assume that ∆ |= Ψ′. Now consider sk s.t.
k ≤ n. If sk can be applied to ∆, there exists an interpretation σ s.t. ∆ |= Ckσ where

Ck = (busy(X) ∧
k∧

i=1

link(X,Ei) ∧ own(X,Ei))

This implies that there exists an agent n s.t. busy(n) ∈ ∆, and there exist e1, . . . , en s.t.

link(n, ei), own(n, ei) ∈ ∆ for i : 1, . . . , k

The application of the rule yields a configuration ∆′ defined as

∆′ = ∆ \ {link(n, e1), . . . , link(n, ek), own(n, e1), . . . , own(n, ek)} ∪ {idle(n)}

Although the rule might remove a strict subset of link and own predicates involving n, the resulting
configuration still satisfies Ψ′.

Since ∆, k, and σ are chosen in arbitrary way, we have that the considered invariant Ψ′ is an
invariant for the whole family of rules of type sk and rk with k ≥ 0.

Finally, we observe that for any ∆ we have that if ∆ |= Ψ′ then ∆ |= Ψ. This proves that Ψ is still
an invariant for DDP#. We conclude then by applying Prop. 5.1 obtaining correctness argument 1 be
applied to DDP.

1that can



5.4. Related Work

We first focus our attention on a class of formal models for concurrent and distributed systems in
which synchronization is achieved by using broadcast communication, a less standard communication
primitive than rendez-vous or point-to-point communication. Rendez-vous communication involves
a fixed a priori number of agents (e.g. a sender and a receiver in point-to-point communication).
Properties of rendez-vous communication have been investigated deeply in the field of automated ver-
ification, see e.g. [17]. Interactions in models with broadcast communication are usually defined by
allowing a finite but arbitrary number of agents to react to a given message or signal. This type of
communication is particularly useful to define protocols for replicated systems, e.g. cache coherence
protocols, algorithms with global conditions, e.g., simultaneous resets of local variables, and com-
munication in an open environment like an Ad Hoc or Wireless network. Algorithmic verification of
models with broadcast communication started receiving more attention after the introduction of the
Broadcast Protocols of Emerson and Namjoshi [14]. FAST [1, 38], TRex [37], LASH [39], and MIST
[31] are tools that can analyze counter abstractions of network models via encodings into vector ad-
dition systems and their extensions. For what concerns our case-study, a limit of these approaches is
that they do not provide specification languages for topology-sensitive protocols. Indeed, the tools are
specialized for handling models based on Petri Nets. MAP [15] is a tool based on transformations
of constraint logic programs that can be applied to infinite-state systems with linear configurations
and relations over data variables. MCMT [32] is a symbolic backward reachability engine based on
SMT solvers that can handle parameterized systems with linear configurations. The MCMT tool is
based on the EPR fragment of first order logic with arrays and applies different types of heuristics in-
cluding invariant generation to reduce the state space. PFS [35] and UNDIP [36] are tool specifically
devised to handle parameterized systems. MAPS, MCMT, PFS and UNDIP deal with systems with
linear configurations, only. Concerning multithreaded programs, Boom [34] is a tool that applies sym-
bolic algorithms, see, e.g., [21, 25, 26, 20], to verify counter abstractions of multithreaded programs.
The algorithms behind the tool go beyond backward search. Indeed they combine several types of
heuristics like those based on dynamic generation and refinement of over-approximations (defined in
terms of upward closed set of states). PCW [33] is a tool that applies ordered counter abstraction [16],
a refinement of monotonic abstraction with CEGAR, for the verification of parameterized systems.
In this setting over-approximations are refined by using stronger and stronger orderings that can be
used to define upward closed sets that ”forbid” specific patterns (e.g. they forbid sets of points de-
fined by a given equation). In view of the considered type of abstractions (Boolean progams, linear
configurations) these tools do not seem adequate to model graph protocols.

AUGUR 2 [24] is a tool devised for the analysis of Graph Transformation Systems using approx-
imated unfoldings based on Petri nets. The approximated systems can then be verified using regular
expressions, first order logic and coverability checking techniques. AUGUR 2 does not handle global
operations like those needed for modeling broadcast communication. PETRUCHIO [27] is a tool that
extracts a Petri net representation from specifications of dynamic networks based on the π-calculus.

UNCOVER [30, 40] is a tool that performs a symbolic backward reachability analysis for GTS
with universally quantified conditions. The tool exploits a generalization of monotonic abstraction to
quantifications over graph patterns as a heuristic to manipulate infinite sets of configurations using
minimal constraints (given in form of graphs) only. UNCONVER can be viewed as the counterpart of



UNDIP and PFS for systems in which configurations have a graph structure. Differently from [30, 40]
and [28], our specification logic can be applied to define invariants involving an arbitrary but fixed
number of nodes. For this purpose, we use assertions with parametric formulas. Global conditions can
be defined using universally quantified formulas.

The use of SMT solvers in the style of the parallel verifier Cubicle [6] for graph-based specification
is an interesting direction to explore.

There exist several proposals of formal languages for protocol specifications. GLog is inspired to
languages based on multiset rewriting [5, 7], and evolving databases [19]. In [5] the authors adopted
multiset rewriting on first order terms to specify security protocols. An extension of the language with
constraints have been proposed in [7]. Undecidability results for restricted fragments (e.g. relabeling)
can be reformulated for other restrictions of multiset rewriting rules like the balanced rules defined
in [22, 23]. In [19] the authors introduce a logic-based language to specify evolving databases. In
this setting conditions of update rules can be arbitrary queries on the current state (database). Unde-
cidability results for problems like reachability have been studied for the above mentioned languages
via reduction to Turing equivalent models (Turing machines, Minsky machines). Although the proof
technique is similar in spirit, in this paper we do not study reachability problems. Indeed, we consider
a decision problem in which (a) initial states are not fixed a priori (they are defined by an infinite set
of configurations), and (b) consider a relaxed version of reachability problems that is very close to the
coverability problem studied in Petri nets.

Concerning the considered case-study, for building a proof for the DDP case-study we took inspi-
ration from methods applied in proof theory (e.g. to focus on special classes of rules) and concurrency
(e.g. partial order reduction). The use of permutation schemes seems less standard in approaches
based on deductive verification. In particular the other approaches applied to the formal verification
of the DDP protocol [30, 40, 28] are based on much more intricate machineries (assume-guarantee
methods with complex circular proof systems, or symbolic backward analysis based on graph trans-
formation systems). The use of a specification logic based on simple conditional update rules, and of
source to source transformations help us in providing a much simpler proof of the desired correctness
properties.

6. Conclusions

We have presented a formal language for the specification of asynchronous distributed systems based
on logic-based update rules. For the considered language, we have presented a verification approach
that combines transformation schemes based on commutation properties and inductive verification.
The proposed approach can be applied to verify the correctness of a distributed version of the dining
philosopher protocol regardless the network topology and the number of nodes. Mechanization of the
considered proof method could be an interesting direction for future work. One step could be that of
introducing proof rules to reason symbolically on sets of configurations that represent graphs and on
their structural properties (paths, link, cycles). In [9] the author introduces an assertional language
with path-predicates defined for configurations of GLog specification. path-predicates can be used
to define sets of configurations that satisfy reachability properties between nodes with certain labels.
This kind of assertions can be used to reason about more complex structural properties of distributed



protocols (e.g. loop-freedom, existence of connection paths). Symbolic methods for automatically
reason about this kind of properties have very high complexity due to a possible combinatorial ex-
plosion when matching them against symbolic representations of configurations. More investigations
seem needed in order to find restricted assertional languages (e.g. using path constraints as in CLP
languages) with a reasonable complexity.
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