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Abstract  

Background: Early onset dementias (EOD) are rare neurodegenerative dementias that present before 65 

years. Genetic factors have a substantially higher pathogenetic contribution in EOD patients than in late 

onset dementia.  

Objective: To identify known and/or novel rare variants in major candidate genes associated to EOD by 

high-throughput sequencing. Common-risk variants of apolipoprotein E (APOE) and prion protein (PRNP) 

genes were also assessed.  

Methods: We studied 22 EOD patients recruited in Memory Clinics, in the context of studies investigating 

genetic forms of dementia. Two methodological approaches were applied for the target-Next Generation 

Sequencing (NGS) analysis of these patients. In addition, we performed progranulin plasma dosage, 

C9Orf72 hexanucleotide repeat expansion analysis and APOE genotyping.  

Results: We detected three rare known pathogenic mutations in the GRN and PSEN2 genes and eleven 

unknown-impact mutations in the GRN, VCP, MAPT, FUS, TREM2, NOTCH3 genes. Six patients were 

carriers of only common risk variants (APOE and PRNP), and one did not show any risk mutation/variant. 

Overall, 69% (n=9) of our EAOD patients, compared with 34% (n=13) of sporadic late-onset Alzheimer 

Disease (AD) patients and 27% (n=73) of non-affected controls (ADNI, whole genome data), were carriers 

of at least two rare/common risk variants in the analyzed candidate genes panel, excluding the full penetrant 

mutations. 

Conclusion: Our results show that EOD patients are characterized by polygenic mutations/risk alleles and 

that the genetic load without full penetrant mutations stays on higher than that observed in late-onset AD 

forms. Thus, we recommend the screening of all causative genes in larger EOD cohorts. 

This study suggests that EOD patients without full penetrant mutations are characterized by higher 

probability to carry polygenic risk alleles that patients with LOAD forms. This finding is in line with 

recently reported evidence, thus suggesting that the genetic risk factors identified in LOAD might modulate 

the risk also in EOAD. 
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INTRODUCTION 

The term early onset dementias (EOD) refers to a group of progressive neurodegenerative diseases (e.g. 

Alzheimer’s disease (AD), frontotemporal dementia (FTD) or dementia with Lewy Body (LBD), affecting 

individuals aged between 45 and 65 years and it represents roughly 5% of dementia cases [1]. The 

symptoms of EOD are similar to those of late-onset AD and FTD. However, EOD is thought to be more 

severe and typically causes a rapid decline in health [2,3].  

Both AD and FTD are pathologically heterogeneous disorders, characterized by a complex genetic 

architecture that is not yet completely understood. The heritability rates of the different dementia subtypes 

range from 40 to 80% with EOD showing a higher genetic component than late-onset dementia (for review 

[4]).  

AD is clinically characterized by memory impairment and pathologically by the presence of amyloid  

peptide (the precursor of which is encoded by the APP gene) plaques and intraneuronal tangles of 

hyperphosphorylated forms of tau (a microtubule-associated protein encoded by the MAPT gene). The risk 

AD spectrum is composed of Mendelian genetic traits, genetic population risk factors (susceptibility genes), 

and nongenetic risk factors such as low cognitive reserve and head trauma [5,6]. The apolipoprotein E gene 

(APOE) 4 allele is a known population risk factor [7] that has been found to increase the risk of early onset 

Alzheimer’s disease (EOAD) [8]. Since its discovery, over 550 susceptibility genes have been suggested to 

increase the risk of AD [9], though the impact of most of these genes seems to be much lower than that of 

APOE [10,11]. In particular, the common variants with small individual effects jointly modify the risk and 

age at onset of AD and dementia, showing a stronger effect in carriers homozygous for APOE e4 [12]. 

Three genes have been identified to carry causative mutations for familial EOAD: amyloid precursor protein 

(APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) (for review [11]). The estimated mutation 

frequencies of these three genes are 1% for APP, 6% for PSEN1 and 1% for PSEN2. Together, they explain 

a genetic background of only 5-10% of EOAD patients, leaving a large group of autosomal dominant 

pedigrees genetically unexplained (for review [13]). This finding suggests that additional causal genes 

remain to be identified.  
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FTD is characterized by personality changes, language impairment, and deficits of executive functions 

associated with frontal and temporal lobe degeneration. At least nine autosomal dominant genetic traits have 

been associated with this pathology: mutations in MAPT, in the progranulin gene (GRN), and in the 

hexanucleotide repeat expansion C9orf72 genes are the most common, with the highest prevalence of GRN 

mutations found in populations of northern Italy [14-17]. GRN null mutations cause protein 

haploinsufficiency, leading to a significant decrease in the circulating progranulin levels in plasma, serum 

and cerebrospinal fluid (CSF) of mutation carriers [18-20]. Mutations in valosin-containing protein (VCP), 

TAR DNA-binding protein 43 (TARDBP), charged multivesicular body protein 2B (CHMP2B), fused in 

sarcoma (FUS), dynactin (DCTN1) and triggering receptor expressed on myeloid cell (TREM2) are rarer 

causes of this pathology [4,21]. Mutations in VCP [22], TARDBP [23], and TREM2 [24] have been observed 

in Italian families with a history of FTD. 

Interestingly, mutations in some of these genes, such as MAPT, GRN and C9orf72 have also been detected at 

low frequencies in AD patients, supporting the notion that a genetic heterogeneity exists for these diseases 

and that both diseases could form an AD-FTD disease continuum (for review [13]). An AD-like phenotype 

has also been described with the presence of a nonsense mutation in the prion protein gene (PRNP 

p.Q160*), which is responsible for inherited neurodegenerative spongiform encephalopathies [25]. In 

addition, the common coding polymorphism, methionine (M) to valine (V) at position 129 (M129V) in 

PRNP has been associated with EOAD, where the risk is higher for the VV genotype and is increased in 

patients with a positive family history [26].  

The recent development of extremely powerful, massively, parallel DNA sequencing technologies allows for 

the systematic screening of individual genomes for DNA sequence variations at base-pair resolution, 

enabling researchers to address the missing hereditability question and, thus, to uncover novel and/or 

potentially pathogenic rare variants in candidate genes. As previously documented [27-29], targeted re-

sequencing of a clinically significant gene panel may represent a powerful and cost-time-effective technique 

compared to the previously used sequential Sanger sequencing.  
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On this basis, we aimed to identify known and/or novel rare variants in candidate genes using next 

generation sequencing (NGS) and to evaluate the contribution of the common-risk variants in the APOE and 

PRNP genes in a selected cohort of Italian EOD patients. 

Recently, Cruchaga C et al. [30], confirmed that the genetic factors identified in LOAD modulate the risk 

also in EOAD cohorts, where the burden of these risk variants is associated with familial clustering and 

earlier onset of AD. In the present study, we estimated the genetic load in EOAD and LOAD, by identifying 

known and novel, both rare and common risk variants in candidate genes. We applied next generation 

sequencing (NGS) analysis in a selected retrospective cohort of Italian EOD patients and compared the 

frequencies of variants found with those estimated in samples from the ADNI database. 

 

MATERIALS AND METHODS 

Participants 

A retrospective sample of patients were was recruited in the context of studies investigating genetic forms of 

dementia at IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia Italy, Fondazione Case 

Serena, Pontoglio, Brescia, Italy and Fondazione Europea Ricerca Biomedica, Centro di Eccellenza 

Alzheimer, Ospedale Briolini Gazzaniga, Bergamo, Italy. Specifically, twenty-two patients fulfilled the 

following inclusion criteria for the present study: i) phenotype of AD, FTD, or LBD and ii) early disease 

onset (<65 years old), or iii) family history suggestive of an autosomal dominant genetic form of dementia 

(i.e., high or medium risk of identifying a mutation according to Loy and Woods criteria [31,32], as 

described below). Family history was collected through interviews with a first-degree relative or the spouse 

of the proband. The clinical and medical history of each family member was collected, and all of the 

available documentation for affected members was acquired. The probability of identifying a genetic 

mutation for AD or FTD was estimated considering the family medical history, the number of first and 

second-degree affected family members and the age of symptom onset, according to the criteria developed 

by Loy and colleagues [31]. According to Loy et al.’s criteria for AD, we defined a probability of 

identifying a genetic mutation of ≥86% as a high risk, a probability of 68-85% as a medium risk, a 

probability of 15-67% as a low risk, and a probability <15% as apparently sporadic/unknown significance. 
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Considering the same criteria for FTD patients, we considered an ≥88% probability of identifying a genetic 

mutation as a high risk, a 31-41% probability as a medium risk, and a probability <13% as a low risk. FTD 

pedigrees were also scored according to Wood’s pedigrees classifications criteria [32,33]. 

All participants were of Italian ancestry. Demographic features and clinical data (age at onset, MMSE) are 

reported in Table 1. As the sample was retrospectively pooled for the analysis, a standard protocol for 

biomarker characterization was not applied. When available, information on disease biomarkers status was 

included. Sixteen patients underwent one of the following examinations as part of their diagnostic exam: 

magnetic resonance imaging (MRI), positron emission tomography (FDG-PET) or Single Photon Emission 

Computed Tomography (SPECT), and/or lumbar puncture. MRI and PET/SPECT scans were visually 

evaluated to determine medial-temporal atrophy and hypometabolism, respectively. CSF samples were 

processed with local procedures to determine the level of Ab, tau and p-tau. Positive diagnosis was 

determined based on established cut-offs. 

Blood samples were collected from all patients. DNA and plasma were obtained according to standard 

procedures. Patients provided written informed consent. This study was approved by the local ethics 

committee (CEIOC, 62/2013). 

NGS panel analysis screening 

Genomic DNA was extracted from whole-blood samples with a commercially available kit according to 

standard procedures (GENTRA Minneapolis, MN, USA).  

Due to logistics issues, some samples were analysed through the use of the Ion Torrent PGM (Thermo 

Fisher Scientific, Waltham, MA USA) sequencer as NGS platform, by using a candidates genes panel, 

already described in Beck et al [27]. Briefly, for library construction, 5 ng of genomic DNA were amplified 

using the Ion Ampliseq Dementia Research gene panel (Ampliseq™, Thermo Fisher Scientific, Waltham, 

MA USA), and the Ion Ampliseq™ Library kit 2.0, according to manufacturer’s instructions. The generated 

amplicon library includes PRNP, PSEN1, PSEN2, APP (Amyloid Beta A4 Precursor Protein), GRN, MAPT, 

TREM2, CHMP2B, CSF1R (Colony Stimulating Factor 1 Receptor), FUS, ITM2B (Integral Membrane 

Protein 2B), NOTCH3 (Notch 3), SERPINI1 (Serpin Peptidase Inhibitor, Clade I (Neuroserpin), Member 1), 

TARDBP, TYROBP (TYRO Protein Tyrosine Kinase Binding Protein), VCP, SQSTM1 (Sequestosome 1). 
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Amplicons were ligated to Ion Torrent Barcodes/adapters P1 using DNA ligase. A first step of Agencourt 

AMPure XP bead (Beckman Coulter Inc., Brea CA, USA) purification was followed by nick-translation of 

adapter-ligated products and PCR-amplification. A second purification step using AMPure beads was 

performed and the concentration and size of the libraries were determined using an Agilent BioAnalyzer 

DNA High-sensitivity LabChip (Agilent Technologies, Santa Clara, CA USA). After dilution to 100 pM, 

libraries were clonally amplified on Ion sphere™ particles (ISP) by emulsion PCR with the Ion PGM™ 

template OT2 200 kit on the IonOne Touch 2 instrument according to the manufacturer’s instructions 

(Thermo Fisher Scientific, Waltham, MA USA). ISP were enriched using the Ion One Touch ES module, 

loaded on an Ion 314 chip kit V2 and sequenced with an Ion Torrent PGM System (Thermo Fisher Scientific 

, Waltham, MA USA). 

The remaining samples were analysed with the Illumina MiSeq platform and the TruSight One Sequencing 

Panel (Illumina, Inc., San Diego, CA, USA). This panel includes 125,395 probes targeting a 12-Mb region 

spanning 4,813 genes, among which the genes investigated by Ion Torrent PGM (PRNP, PSEN1, PSEN2, 

APP, GRN, MAPT, TREM2, CHMP2B, CSF1R, FUS, ITM2B, NOTCH3, SERPINI1, TARDBP, TYROBP, 

VCP, SQSTM1). The data regarding the other all genes were not used. The obtained sequence reads were 

aligned to the hg19 human reference sequence using the Burrow–Wheeler Aligner (BWA version 0.7.12). 

Duplicated reads were removed with Picard tools. Local realignment, recalibration, and variant calling were 

conducted with the Genome Analysis Tool Kit (GATK version 3.30). In order to have comparable results 

between the two sequencing approaches, we extracted from TruSight One Variant Call Format file (i.e., 

VCF file), the variants located in the regions sequenced by Ion Torrent PGM panel using BEDTools [34]. 

APOE genotyping 

Genetic variation at the APOE locus was determined by using the SNaPshot technique [35]. Briefly, assays 

for the APOE polymorphisms were performed using PCR reactions, which were subsequently combined to 

perform a single SNaPshot reaction. The amplification assay was designed with the following forward and 

reverse primers: APOE F: 5’ CCAAGGAGCTGCAGGCGGCGCA 3’ and APOE R: 5’ 

GCCCCGGCCTGGTACACTGCCA 3’. A product of PCR-amplification was used as a template in the 

SNaPshot Multiplex assay. The following specific primers were used: SNAP APOE112: 5’ 
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ACTGCACCAGGCGGCCGC 3’ and SNAP APOE158: 5’ATGCCGATGACCTGCAGAAG 3’. Finally, 

the samples were analysed, and allele peaks were determined using the ABI 3130xl genetic analyzer and the 

GeneMapper 4.0 program (Applied Biosystems, Foster City, CA, USA). 

C9Orf72 hexanucleotide repeat expansion  

PCR sizing of the GGGGCC hexanucleotide repeat was performed using previously published primers [36] 

on the ABI 3130xl genetic analyzer (Applied Biosystems, Foster City, CA, USA). The PCR reaction was 

carried out in a mixture containing 5% dimethylsulfoxide and 7-deaza-2-deoxy GTP in substitution for 

dGTP. Allele identification and scoring were performed using GeneMapper v4.0 software (Applied 

Biosystems).  

GRN plasma level measurement 

Plasma progranulin levels were measured in duplicate using an ELISA kit (Human Progranulin ELISA Kit, 

AdipoGen Inc., Seoul, Korea).  

Statistical and Bioinformatics analyses  

To classify a variant as rare, its frequency should be lower than 1% in at least one of the three reference 

databases (1000 Genomes Project http://www.internationalgenome.org/, Exome Sequencing Project 

http://evs.gs.washington.edu/EVS/ and Exome Aggregation Consortium http://exac.broadinstitute.org) [37]. 

In order to predict the functional consequences of non-synonymous variations, we exploited eight different 

bioinformatics tools, namely: SIFT, PolyPhen-2, FATHMM, phyloP, MutationTaster, LRT, and CADD and 

GERP++ [38-45]. A variant is classified as damaging if for at least three tools the mutation is predicted to be 

deleterious.  

Finally, to evaluate the mutation rate of the candidate genes selected in the NGS panel, we considered the 

gene damage index (GDI, a genome-wide, gene-level metric of the mutational damage that has accumulated 

in the general population), according to Itan et al. [46]. 

ADNI whole genome data: 

As a genetic replication cohort, we considered whole genome data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). From the whole genome data, we extracted 

http://www.internationalgenome.org/
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org)/
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the variants within the regions included in our sequencing panel and we applied the same variants annotation 

and classification performed for our sample.  

The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression of Mild 

Cognitive Impairment (MCI) and early AD. The aim of ADNI project is to collect, validate and utilize 

heterogeneous clinical and biological data (including MRI and PET images, genetics, cognitive tests, CSF 

and blood biomarkers) to study the progression of AD. For up-to-date information see www.adni-info.org. 

RESULTS 

Target screening: Plasma progranulin and C9ORF72 analyses  

As a first step, progranulin plasma levels were assayed to screen for GRN null mutations (Table 1). One 

FTD patient was found to have progranulin plasma levels lower than the optimized cut-off value for null 

mutations detection of 61.55 ng/ml [19,47]. For 5 samples, it was no possible to detect the progranulin 

levels, due to the lack of plasma samples from these patients.  

None of the EOD patients carried the pathogenic hexanucleotide repeat expansion of C9ORF72. All patients 

were found to have less than 12 repeats [48]. 

 

NGS screening: identification of known and unknown rare variants  

Through the target re-sequencing of the 17 candidate genes panel, we identified fourteen rare variants in 

68% of the selected EOD cases (15 patients) (Table 1). These variants were defined as “pathogenic” when 

previously described in the literature, and they were classified as “damaging” by bioinformatic tools or as 

“unknown impact” when no data were available in literature and no deleterious effect was predicted by 

bioinformatics tools.  

Pathogenic variants  

Among the 14 identified rare variants, three were classified as pathogenic and damaging and have been 

described in Italian pedigrees unrelated to the patients analysed in the present study. Two variants were 

located in the PSEN2 gene (p.M239V=rs28936379 code case: 26_1, [49]; p.M239I=rs63749884 code cases: 
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30_1, L031, [50]); and one variant was a p.L271fs null mutation in the GRN gene (code cases: 29_1; L029) 

(Table 1).  

The PSEN2-M239V (Table 1, code: 26_1) was identified in an AD subject belonging to a pedigree with four 

affected family members. The patient presented with behavioural disturbances at the age of 50 years and 

likely inherited the disease from an affected parent who also showed behavioural disorders at a similar age. 

The affected parent’s twin sibling was also affected by a neurodegenerative disease, and a second-degree 

relative developed dementia before the age of 44 years. 

The PSEN2-M239I variant (Table 1, code: 30_1) was identified in an AD patient with disease onset at an 

age of 54 years. The proband belongs to a pedigree with four affected individuals in two generations. The 

patient likely inherited the disease from an affected parent who was diagnosed with AD before the age of 54 

years. The two siblings of this individual presented with behavioural problems that progressed to dementia 

before the age of 65 years . 

Another patient carrying the same M239I mutation (Table 1, code: L031) was diagnosed as having AD at 66 

years of age (onset of symptoms at 64 years). Her father and brother were affected with AD with onset at 66 

and 62 years of age, respectively. 

The GRN L271fs mutation was identified in a pedigree with seven affected subjects in two generations 

(Table 1, index case code: 29_1). The presence of this mutation was confirmed in other two siblings with 

FTD, characterized by age of onset of 60 and 61 years, respectively. 

Same L271fs mutation was identified also in another pedigree, where the index case (Table 1, code: L029) 

showed behavioural and speech disturbances at 62 years of age, diagnosed as FTD at 63 years.  

Finally, an heterozygous R93C mutation of the VCP gene was detected in a patient (Table 1, code: 36_1) 

affected by Paget’s disease of bone diagnosed at 44 of age and no signs of dementia at the last examination 

(47 years). Family history showed multiple individuals with FTD and Paget’s disease with autosomal 

dominant inheritance.  

Variants of unknown impact  

Two variants in the TREM2 gene (R62H=rs143332484, D87N=rs142232675, [51]) (Table 1) were observed 

in three of the 22 patients (14%), including a patient with LBD.  
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Moreover, in GRN gene, we found variants in the 5'UTR (rs76783532) and two rare missense variants 

(V77I=rs148531161; R19W=rs63750723; Table 1), which have been reported as “pathogenic nature 

unclear” and “not pathogenic”, respectively, in online database (www.molgen.en.ua.ac.be/FTDmutations). 

Accordingly, these missense mutations did not influence the progranulin level in plasma (Table 1). 

Other variants reported in online databases were those at 3'UTR of the FUS (rs80301724) and a missense 

mutation (V1183M=rs10408676) in NOTCH3 gene resulting “damaging” according to bioinformatics tools.  

Moreover, we detected rare mutations which have not been reported in the literature and databases. In 

particular, we found a mutation localized in the 5'UTR region and a missense mutation R93C (NM_007126: 

exon3: c.C277T:p.R93C) in the VCP gene, a deletion (NM_001203251:c.*55delA) in MAPT gene at 3’UTR 

region, a splicing variant (NM_000435: exon24: c.3838-1G>T) in NOTCH3 gene.  

 

Screening of known common variants  

All EOD patients were genotyped for the rs429358 and rs7412 polymorphisms in the APOE gene and the 

rs1799990 polymorphism in the PRNP gene. APOE 4 and PRNP 129Val are known to be risk alleles. The 

results indicated that the frequencies of the APOE 4 carriers and the PRNP 129Val carriers were 59% for 

both. Twenty (91%) of the 22 subjects carried at least one of the two risk variants; of these subjects, 27% 

(six out of 22) carried both the APOE 4 and the PRNP 129Val risk alleles. Six patients were carriers of at 

least one risk allele (APOE 4 or PRNP 129Val) (Table 1).  

 

One patient did not show any rare or common risk variants (Table 1).  

 

Comparison to whole genome data 

We compared and calculated the rare and common risk variants frequencies of the 17 candidate genes in our 

panel, with the data from ADNI whole genome sequencing database (ADNI, Alzheimer Disease 

Neuroimaging Initiative). In ADNI database, sporadic late-onset (38 patients), early onset (7 patients) AD 

cases and 272 controls subjects were available. In our sample, the results indicated that, excluding the full 
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penetrant mutations present in five patients, 9 patients (69%) showed ≥ 2 rare/common risk variants, 

compared with 13 (34%) and 73 (27%) observed in ADNI late-onset AD cases (LOAD) and controls, 

respectively (Chi-squared test: χ2=15.8, df=4, p=0.003; Table 2). If we add to our sample, the seven EOAD 

patients coming from ADNI database (n tot=20), the percentage of genetic load did not change (65%, n=13, 

Chi-squared test: χ2=17.9, df=4, p=0.001; Table 2).  

 

DISCUSSION 

This study suggests that EOD patients without full penetrant mutations are characterized by higher 

probability to carry polygenic risk alleles that patients with LOAD forms. This finding is in line with 

recently reported evidence [30], thus suggesting that the genetic risk factors identified in LOAD might 

modulate the risk also in EOAD. 

Moreover, This study reports a high throughput targeted re-sequencing of candidate dementia disease genes 

(PRNP, PSEN1, PSEN2, APP, GRN, MAPT, TREM2, CHMP2B, CSF1R, FUS, ITM2B, NOTCH3, 

SERPINI1, TARDBP, TYROBP, VCP and SQSTM1) in a selected cohort of EOD patients. we confirmed the 

role of GRN and PSEN2 genes in EOD, with the involvement of specific rare mutations already known. We 

also detected additional rare variants of unknown impact, located in the 5'/3' UTRs regulatory gene region of 

the GRN, VCP, MAPT and FUS genes, missense mutations in TREM2, GRN, NOTCH3 and VCP, genes 

and a splicing variant in NOTCH3 gene. According to the gene damage index (GDI) [46], mutations in these 

genes showed a value of “medium”, suggesting that these genes are not frequently mutated in healthy 

populations. This finding further implies that mutations in these genes could be disease-causing.  

Rare mutations of known significance 

Twenty three percent of the cases carried one pathogenic mutation for dementia. In line with previous 

studies [14], mutations in the PSEN2 gene, a rare cause of dementia worldwide, were frequent in our cohort 

(14%). Looking at the geographical distribution of PSEN2 mutations described to date, it is noteworthy that 

80% of these mutations were uncovered in two southern European countries, Italy and Spain. Thus, we can 

speculate that the non-homogeneous distribution of pathogenic mutations might be a result of genetic drift.  
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The GRN p.L271fs mutation is one of the most common GRN mutations worldwide. An analysis of this 

mutation in northern Italy showed that almost all families can be traced to a single founder. The origin of the 

mutation was dated to the Middle Ages at the turn of the first millennium, which explains the high frequency 

of this mutation in this geographic area [52].  

Rare mutations of unknown significance 

The role for novel variants of unknown significance in both common and rare dementia-associated genes 

was not exhaustively elucidated. Recently, novel, likely pathogenic variants were described in Italian 

patients with dementia [53]. 

We found two AD patients carrying the R62H mutation in the TREM2 gene, which has an unknown impact. 

A recent review on the correlation between TREM2 and AD [54], showed a meta-analytic association of this 

mutation with the late onset form of the disease. Our results also showed its involvement in the early onset 

form of AD. Since the two patients were also homozygous for the APOE 4 allele, this finding suggests 

interactions between TREM2 and APOE, as already demonstrated in vitro [55,56]. TREM2 is a lipid sensor 

that interacts with several AD risk factors involved in lipid metabolism, including APOE, which could 

decrease the threshold of disease occurrence [57]. 

In the specific case of two AD patients carrying the GRN p.V77I and R19W mutations, there is evidence of 

AD pathology in imaging and from biofluid biomarkers (Table 1). Since these missense mutations do not 

affect the progranulin levels, a pathogenic role of these mutations seems unlikely. However, we cannot 

exclude that they might have a pathogenic role other than “loss of function”, as no functional studies have 

been performed. Their presence in AD patients might rather indicate that this gene could be implicated also 

in the pathophysiological mechanisms leading to AD dementia. 

Our analyses showed the presence of additional rare variants located in the 5'/3' UTR regulatory gene region 

of the GRN, VCP, MAPT and FUS genes. A recent study reported that 3’UTR SNPs, such as rs80301724 in 

the FUS gene, are present in microRNA binding sites and could impact the post-transcriptional regulation, 

resulting in overexpression of the protein [58]. Also missense mutations in TREM2, GRN, NOTCH3 and 

VCP genes and a splicing variant in NOTCH3 gene were detected but, except for some information from 

bioinformatic tools, their specific functional impact was not assessed. The involvement of NOTCH3 gene in 
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dementia patients is interesting, both with a missense and with a splicing variant. This gene encodes a 

single-pass trans-membrane protein of 2321 amino acids, predominantly expressed in vascular smooth 

muscle cells in adults. It is well documented that NOTCH3 mutations play a critical role in the pathogenetic 

mechanism of vascular smooth muscle cell degeneration linked to CADASIL, one of the most common 

hereditary forms of stroke [59]. A recent hypothesis of AD [60] suggested that in CADASIL triggering 

events in the pathogenic cascade are not amyloid deposits but damaged blood vessels caused by 

inflammatory reactions that lead to ischemia, amyloid accumulation, axonal degeneration, synaptic loss, and 

eventually irreversible neuronal cell death. Inflammation and blood vessel damage are well recognized 

complications of AD, but what causes them and why the cerebral microvasculature is affected is still under 

debate [60]. Mutations in NOTCH3 gene are known to provoke inflammatory reactions and damage the 

brain in a wide variety of diseases [59], thus it is possible that one or more mutations in this gene may 

damage the microvasculature of the brain eventually leading that leads to dementia. The V1183M mutation 

was classified as a polymorphism in an Italian population [61], though the A allele frequency observed was 

0.006.  

Inclusion body myopathy with Paget’s disease of bone and IBMPFD is a recently identified autosomal 

dominant disorder due to mutations in the VCP gene affecting muscle, bone and brain. Interestingly, in our 

cohort we found the R93C (47832C>T) mutation in the VCP gene already described in patients with 

IBMPFD [62-65].  

Common variants 

In this study, we investigated the most established common risk variant for AD, the APOE 4 haplotype. 

The functional role of this polymorphism in AD pathogenesis is unclear. However, there is now strong 

evidence that APOE 4 could affect amyloid deposition [66]. Consistent with this evidence, in our cohort, 4 

haplotype carriers showed abnormal CSF biomarker levels of amyloid protein (Table 1). Consistent with this 

evidence, in our cohort all APOE4 carriers with available CSF were amyloid positive (Table 1), except for 

the case code 19_1 of which we discuss separately (see below). The frequency of the 4/4 genotype (n=4, 
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17%, exact confidence interval 3-32%) was higher than that commonly observed in the Caucasian 

population (1000 genomes), which is reported to be 2%.  

Moreover, we investigated the non-synonymous polymorphism p.Met129Val in the PRNP gene. Although 

there are no data on the functional effect of this polymorphism, we observed that the frequency of the risk 

variant allele G/Val was higher (59%) than the frequency reported in the general European population 

(frequency G/Val=33% reported by the Exome Aggregation Consortium). A recent meta-analysis showed 

that the p.Met129Val allele was associated with decreased disease risk in late-onset AD, but not in EOAD 

[67]. 

Six patients from the present cohort carry only common risk variants. They could be sporadic cases with 

onset at the extreme end of expected age range. However, the hypothesis that EOD is caused by mutations in 

genes not included in the NGS panel cannot be ruled out. In this regard, whole genome sequencing could 

foster the investigation of additional genetic factors underlying apparently sporadic EOD. Nonetheless, this 

task was beyond the scope of the present work. 

Additional observations  

Interestingly, fifteen (68%) of the 22 patients carried at least one rare variant (TREM2, GRN, PSEN2, 

MAPT, VCP, NOTCH3 or FUS). Among these, fourteen subjects carried also a common variant (APOE 

and/or PRNP). This result supports the hypothesis that EOD results from the interconnected mechanisms 

leading to neurodegeneration, where multiple genes can be implicated in one or more systems. Indeed, 

recent biochemical approaches [55,56] have shown interactions among these genes, such as between TREM2 

and APOE in vitro. These results strongly implicate a potential additive/synergic effect in EOD forms linked 

to the variable inter- and intra-familiar expressivity. To indirectly assess this effect, we found through the 

ADNI database that, excluding the full penetrant mutations, 71% of our sample showed ≥ 2 rare/common 

risk variants, as compared to 34% and 27% in sporadic late-onset AD patients and controls, respectively. 

This indicates that the EOD is more often associated with rare variants or risk alleles, and this could be 

useful in the genotype-phenotype correlations. Moreover, <10% of subjects, in our cohort, and in late onset 

AD patients, compared to 25% in a control group, were not carriers of any of the examined variants, which 

strengthens the idea of using an NGS whole/exome genome approach in a larger sample.  
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One AD patient with a very early age of onset (41 years) showed neither rare nor common-risk variants. 

Even an exome clinic investigation detected no rare or common risk variants. The family history was 

negative, as no other first-degree relatives were affected (neither the parents nor three siblings, two of whom 

were older than the patient, presented with the disease). Misdiagnosis is unlikely since this patient was 

positive for all AD biomarkers (abnormal CSF amyloid and tau levels, hypometabolism on FDG-PET, and 

medial temporal atrophy on MRI). Although we considered the possibility that the patient may show an 

extreme early-onset presentation of sporadic AD, this finding suggests that additional genes could be 

implicated in EOD, which strengthens the evidence that the panel of candidate genes needs to be expanded 

in the future. 

For the first time, the D87N mutation in the TREM2 gene was detected in a LBD patient with early onset. 

LBD is the second most common form of dementia after AD, with a prevalence rate of 4% in the general 

population [68]. The core symptoms of LBD include sleep disturbances, hallucinations, and cognitive 

deficits, accompanied within the first year by Parkinsonian motor symptoms. A recent twin study did not 

show a strong support for a genetic contribution to LBD. However, other studies have demonstrated that 

LBD aggregates in families and may have an autosomal inheritance pattern (for review [4]). To date, a few 

genetic markers have been identified. For instance, duplication and SNPs within   −synuclein genes 

have been associated with increased risk of LBD [69,70]. Moreover, mutations in the glucocerebrosidase 

(GBA) gene are more common in LBD, in addition to mutations in the MAPT or leucine rich repeat kinase 2 

(LRRK2) genes (for review [4]). Only one genome-wide linkage study has been performed among patients 

with familial LBD. A locus on chromosome 2q35-q36 was identified, though none of the genes in this 

region could explain the relation with LBD [71]. Although further confirmation is needed, the presence of a 

TREM2 mutation in an LBD patient adds a new actor to its genetic architecture. Mutations in TREM2, a 

microglial receptor, can lead to aberrant innate immune cell signalling, contributing to the initiation and 

propagation of several neurodegenerative phenotypes [72-83], including LBD. Moreover, this LBD patient 

was a carrier of the GG (Val/Val) PRNP risk genotype. This finding is in agreement with a previous study 

[84] that described a patient carrying the M232R mutation in the PRNP gene who developed dementia and 
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died six years after onset. An autopsy revealed the patient had dementia with Lewy bodies, not Creutzfeldt-

Jakob disease.  

Conclusions 

This study confirms the role of GRN and PSEN2 mutations in EOD, in the Italian population and provides 

evidence for roles of novel rare mutations located in the 5'/3' UTRs regulatory gene region of the GRN, 

VCP, MAPT and FUS genes, missense mutations in TREM2, GRN, NOTCH3 and VCP, genes and a splicing 

variant in NOTCH3 gene, with a “medium” GDI value. As previously observed, mutations in the PSEN2 

gene, a rare cause of dementia worldwide, are frequent in Italian patients. We also confirmed that mutations 

in GRN gene were present in both FTD and AD phenotypes. Moreover, six patients were carriers of only 

common risk variants (APOE and PRNP), and one patient did not show any mutation/variant. Overall, 69% 

(n=9) of our EAOD patients, compared with 34% (n=13) of sporadic LOAD patients and 27% (n=73) of 

non-affected controls, were carriers of at least two rare/common risk variants in the analysed candidates’ 

genes panel. 

Our results show that EOD patients are characterized by polygenic mutations/risk alleles and that the genetic 

load without full penetrant mutations stays on higher than that observed in late-onset AD forms. Thus, as 

recently supported by Bartoletti-Stella et al. we recommend the screening of all causative/candidate genes in 

larger EOD cohorts. 

Though our findings are consistent with results obtained from large cohorts [12], independent replications in 

larger samples are warranted. To further validate the role of polygenic risk variants in EOD, a systematic 

screening of rare and common variants in dementia-associated genes should be implemented in prospective 

cohorts with full clinical and biomarker characterization. 
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Table 1 Demographic, clinical features and presence of rare/common risk variants in candidate genes in early onset dementia 
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4_1 F 60 AD 
Apparently 

sporadic 
n.a. n.a. n.a n.a. n.a. n.a. 130 TREM2 G185A R62H Missense rs143332484 unknown T B N N T 8.315 -0.214 -0.173 e4/e4 Met/Met 

5_1 M 57 AD 
Unknown 

significance 
10/30 + + + + + 104 GRN G229A V77I Missense rs148531161 unknown T B N N T 10.3 -3.85 -0.864 e3/e4 Met/Met 

15_1 M 45 AD 
Unknown 

significance 
n.a. n.a n.a n.a n.a. n.a. n.a.               e3/e4 Met/Val 

16_1 M 51 AD 
Unknown 

significance 
4/30 n.a. + n.a. - n.a. 97               e3/e4 Met/Met 

19_1 F 41 AD 
Apparently 

sporadic 
n.a. + + n.a + + 111               e2/e3 Met/Met 

20_1 F 57 AD 
Unknown 

significance 
25/30 + + n.a - + 115               e3/e4 Met/Met 

21_1 F 48 AD 
Unknown 

significance. 
23/30 - - + + + 97               e3/e3 Met/Val 

25_1 M 52 AD 
Medium  

to high 
26/30 + - - + + 104 FUS *41G>A  3'UTR rs80301724 n.a.         e4/e4 Met/Met 

26_1 F 50 AD Medium 14/30 n.a n.a n.a + + 86 PSEN2 A715G M239V Missense rs28936379 yes D P D A D 19.5 4.92 9.213 e3/e3 Val/Val 

30_1 F 54 AD Medium 12/30 + n.a n.a - n.a. 85 PSEN2 G717A M239I Missense rs63749884 yes D D D A D 27.8 4.92 9.734 e3/e3 Met/Val 

            MAPT *55delA  3’UTR na n.a.           

32_1 F 60 AD Medium 22/30 n.a n.a n.a + + 102 TREM2 G185A R62H Missense rs143332484 unknown T B N N T 8.315 -0.214 -0.173 e4/e4 Val/Val 

            VCP 
-216/-215 

insGCTGCC 
 5’UTR  n.a.           

11_1 F 51 FTD High 23/30 +/- - + + n.a. 108 GRN -3895G>T  5’UTR rs76783532 n.a.         e3/e3 Met/Val 

29_1 M 56 FTD High n.a. n.a n.a n.a n.a. n.a. 39 GRN 811_814del L271fs Deletion n.a. yes         e3/e3 Met/Val 

14_1 M 57 LBD 
Unknown 

significance 
5/30 n.a n.a n.a n.a. n.a. n.a. TREM2 G259A D87N  rs142232675 unknown T D D N T 12.5 5.51 2.597 e3/e3 Val/Val 

34_1 F 49 AD 
Medium  
to high  

15/30 + - - - + 149 GRN C55T R19W Missense rs63750723 unknown T B N N T 8.7 0.13 0.17 e3/e4 Met/Val 

35_12 F 54 AD Medium n.a. n.a. n.a. n.a. + n.a n.a.               e3/e4 Met/Val 

36_1 M n.a. 
FTD- 

IBMPFD 
n.a. n.a. n.a. n.a. n.a. n.a. n.a. 145 VCP C277T R93C Missense  unknown  P D M D 3.8 19.39 2.70 e3/e4 Met/Val 

37_2 F 62 AD Low n.a. n.a. n.a. n.a. n.a. n.a. 138 NOTCH3 G3547A V1183M Missense rs10408676  D D  M D 3.9 3.09 2.32 e3/e4 Met/Met 

1413pcl M 62 
Familial 

Dementia 

Unknown 

significance 
5/30 n.a n.a. n.a. n.a. + 98               e3/e4 Met/Met 
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L028 F 63 AD Low 28/30 + + n.a. - + 161 NOTCH3 3838-1G>T  Splicing           e4/e4 Met/Val 

L029 F 62 FTD High 18/30 n.a n.a. n.a. + + n.a. GRN 811_814del L271fs Deletion n.a. yes         e3/e3 Met/Met 

L031 F 64 AD Medium 4/ 27 n.a n.a. n.a. n.a. + n.a. PSEN2 G717A M239I Missense rs63749884 yes D D D A D 27.8 4.92 9.734 e3/e3 Met/Val 

 

 

Keys: APOE, Apolipoprotein E (E4 risk allele); PRNP, Prion protein (G/val risk allele); PGRN/GRN, Progranulin; PSEN2, Presenilin 2; TREM2, 

Triggering receptor expressed on myeloid cell; FUS, Fused in sarcoma; MAPT, Microtubule-associated protein TAU; VCP, Valosin-containing protein; 

A, known damaging; B, benign; D, damaging; N, neutral; P, possibly damaging; T, tolerant; na, not available; CADD, CADD phred-scaled (a score of 

20 means 1% percentile highest scores of whole genome); dbSNP, single nucleotide polymorphism database (rs number); GERP, genomic evolutionary 

rate profiling score; GERP++, evolution score; MT, mutation taster; Phylop, phyloP100way vertebrate; PP2, PolyPhen2; SIFT, Sorting Intolerant from 

Tolerant; FATHMM, Functional Analysis through Hidden Markov Models (v2.3); LRT, Likelihood Ratio Test; AD, Alzheimer Disease; FTD, Fonto 

Temporal Dementia; LBD, Levy Body Dementia; FTD-IBMPFD, Inclusion Body Myopathy-Paget’s disease of bone; “Genetic risk” denotes the 

estimated probability of identifying a genetic mutation base on Loy and Wood criteria for AD and FTD; “Unknown Significance” denotes lack of 

information about diagnosis or clinical details; “Apparently sporadic” indicates no other affected case in the family; H-M, Hypo metabolism. 
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Table 2. Comparison of frequencies of rare (excluding the full penetrant) and common risk variants in our sample (This study) versus controls, late onset 

and early onset  AD patients (LOAD and EOAD respectively) obtained from ADNI database 

  Variants 

  n=0 n=1 n≥2 

  total 
Only 

rare 

Only 

common 
total 

Only 

rare 

Only 

common 

1 rare 

+ 

1 common 

1 rare 

+ 

2 common 

2 rare 

+ 

1 common 

2 rare 

+ 

2 common 

3 rare 

+ 

1 common 

total 

Groups Sample (N) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) 

 Controls (272) 67 (25) 9 (7) 123 (93) 132 (49) 2 (3) 28 (38) 25 (34) 8 (11) 8 (11) 0 (0) 2 (3) 73 (27)$ £ 

ADNI LOAD (38) 3 (8) 0 (0) 22 (100) 22 (58) 0 (0) 10 (77) 2 (15) 0 (0) 1 (8) 0 (0) 0 (0) 13 (34)$ £ 

 EOAD (7) 1 (14) 0 (0) 2 (0) 2 (29) 0 (0) 3 (75) 1 (25) 0 (0) 0 (0) 0 (0) 0 (0) 4 (57) 

This study AD (13) 1 (8) 0 (0) 3 (100) 3 (23) 0 (0) 2 (22) 4 (44) 2 (22) 0 (0) 1 (11) 0 (0) 9 (69)$ 

ADNI 

+ 

This study 

EOAD 

+ 

AD (20) 

2 (10) 0 (0) 5 (100) 5 (25) 0 (0) 5 (38) 5 (38) 2 (15) 0 (0) 1 (8) 0 (0) 13 (65)£ 

 

$ Chi-squared test: Controls vs LOAD-ADNI vs AD-our study, χ2=15.8, df=4, p=0.003 

£ Chi-squared test: Controls vs LOAD-ADNI vs EOAD-ADNI+AD-our study, χ2=17.9, df=4, p=0.001 


