
RESEARCH ARTICLE

Loop analysis of blood pressure/volume

homeostasis

Bruno BurlandoID
1,2, Franco BlanchiniID

3, Giulia GiordanoID
4*

1 Department of Pharmacy (DIFAR), University of Genova, Genova, Italy, 2 Biophysics Institute, National

Research Council (CNR), Genova, Italy, 3 Department of Mathematics, Computer Science and Physics,

University of Udine, Udine, Italy, 4 Delft Center for Systems and Control, Delft University of Technology, Delft,

The Netherlands

* g.giordano@tudelft.nl

Abstract

We performed a mathematical analysis of the dynamic control loops regulating the vasomo-

tor tone of vascular smooth muscle, blood volume, and mean arterial pressure, which

involve the arginine vasopressin (AVP) system, the atrial natriuretic peptide system (ANP),

and the renin-angiotensin-aldosterone system (RAAS). Our loop analysis of the AVP-ANP-

RAAS system revealed the concurrent presence of two different regulatory mechanisms,

which perform the same qualitative function: one affects blood pressure by regulating vaso-

constriction, the other by regulating blood volume. Both the systems are candidate oscilla-

tors consisting of the negative-feedback loop of a monotone system: they admit a single

equilibrium that can either be stable or give rise to oscillatory instability. Also a subsystem,

which includes ANP and AVP stimulation of vascular smooth muscle cells, turns out to be

a candidate oscillator composed of a monotone system with multiple negative feedback

loops, and we show that its oscillatory potential is higher when the delays along all feedback

loops are comparable. Our results give insight into the physiological mechanisms ruling

long-term homeostasis of blood hydraulic parameters, which operate based on dynamical

loops of interactions.

Author summary

The efficiency and resilience of our body are guaranteed by the presence of myriads of

dynamic control loops that regulate fundamental vital functions. In this work, we studied

the regulatory mechanisms that govern the interplay of vasoconstriction/vasodilation,

blood volume and mean arterial pressure. We analysed the loops in the system and

showed the presence of two coexisting mechanisms for blood pressure regulation, which

perform the same qualitative function, conferring robustness to the system: one mecha-

nism tunes vasoconstriction, the other blood volume. We showed that both systems are

candidate oscillators: either they are stable or they oscillate regularly around their unique

equilibrium. We analysed a subsystem that describes the stimulation of vascular smooth

muscle cells due to the hormones arginine vasopressin (AVP) and atrial natriuretic pep-

tide (ANP): also this system is a candidate oscillator ruled by multiple negative-feedback
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loops, and its potential for oscillations is higher when all the loops have similar delay. Our

results cast light on the fundamental physiological phenomena that preserve the stable

functioning of blood pressure and volume. This could have even wider relevance if other

homeostasis and endocrine systems displayed similar features, with repercussions on the

management of adverse homeostasis shifts like hypertension.

Introduction

Various physiological aspects of mammal physiology are tuned on daily fluctuations depend-

ing on the activity of a molecular circadian clock located in the suprachiasmatic nucleus of the

hypothalamus [1–3]. In addition, it has been shown that different organs, tissues, and isolated

cells retain their own circadian clock in each level [4, 5], and moreover that the suprachias-

matic nucleus regulates body activities over multiple time scales [6–8]. Hence, circadian cycles

seem specific adaptations of a more general tendency of metabolic and physiological processes

to undergo periodic oscillations. This is shown, on different time and anatomical scales, e.g.

by the serum levels of endocrine factors, and by myocardial or neuronal pacemakers. At the

cellular level, well defined oscillatory patterns have been also described, e.g. cytosolic calcium

dynamics occurring in electrically-coupled vascular smooth muscle cells that are thought to

play a role in the spontaneous contractile mechanism of vasomotion [9]. Possible evidence of

complex interacting loops can also be envisaged, e.g. in the heartbeat that exhibits continuous

fluctuations with complex structure occurring on the top of a general oscillatory behaviour

[10, 11].

Such a body of evidence suggests that the organism’s functioning could be described as a

very complex aggregation and interaction of functional loops, while the term loopomics has

been introduced as a comprehensive concept for loop-oriented analysis of physiological traits

[12]. Loop systems would respond to mutual influences and to external stimuli able to modu-

late their activity, but the achievement of organism’s stability, i.e. homeostasis, should require

that the loops are intrinsic oscillators, even though their mutual interaction could yield a very

complex oscillatory behaviour with scale-invariant features [13, 14]. Such hypothesis could

lead to a basic paradigm of the organism’s physiology and is worth being investigated by

exploring the arrangement of loops and their possible unifying traits [15–20].

The endocrine system is particularly suitable for this kind of approach, given a number of

data about the mutual influences of secretory cells that realise closed loops [21, 22]. Following

this way, we carried out a mathematical analysis of the interplay between arginine vasopressin

(AVP), atrial natriuretic peptide (ANP) and the renin-angiotensin-aldosterone systems

(RAAS). Such a complex of agents operates on vascular smooth muscle cells and the renal reg-

ulatory systems of body salt and water content, thereby allowing a fine tuning of mean arterial

pressure (MAP) under various conditions. Besides the relationships among these systems at

the systemic level, a detailed analysis of signalling cascades elicited within smooth muscle cells

was also done.

Given the difficulty of analysing complex neuroendocrine networks, the analysis is aimed

at extracting loop systems and reducing them to essential traits by formal analysis, thereby

obtaining mathematical objects that can be subsequently combined together in a wider analy-

sis, thus allowing a stepwise approach to the modelling of wider domains of the organism. In

particular, our loop analysis revealed that the system functioning relies on negative-feedback

regulatory loops able to exhibit either stability (homeostasis) or persistent oscillations. In the
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overall system, two equivalent subsystems coexist that perform the same qualitative function,

conferring robustness.

AVP system

AVP is a peptide hormone whose main sites of production are magnocellular neurons of the

hypothalamic supraoptic (SON) and paraventricular nuclei (PVN). AVP is transported along

neuron axons to the posterior pituitary gland, where it is stored and ultimately released into

the blood stream, inducing antidiuretic and vasoconstrictive effects [23]. SON and PVN nuclei

receive inhibitory afferences from stretch receptors located in the left atrium, as well as from

aortic arch, and carotid sinuses stretch receptors [24].

AVP acts on V2 receptors in renal collecting duct cells through a cAMP-dependent path-

way, leading to increased water permeability, decreased urine excretion, and eventually

causing rises in blood volume and pressure. Moreover, at higher concentrations, such as in

hypovolaemia with decreasing arterial blood pressure, AVP also stimulates vascular smooth

muscle cells, causing vasoconstriction and mean arterial pressure (MAP) rise [25].

Opposing to AVP effects on vascular smooth muscle and blood pressure, the release of

atrial natriuretic peptide (ANP) results in a vasorelaxing effect and fall in cardiac output.

Such a cross-talk between the two hormones is due to increased atrial distension that occurs in

response to increased blood pressure (heart afterload), and increased central venous pressure

and venous return (heart preload) [26].

While atrial stretch receptors stimulate ANP release, they also act to depress AVP release

trough inhibitory stimuli. The circumventricular organs of the brain exert major control on

AVP release following plasma osmolality rise. The subfornical organ (SFO), an element of the

circumventricular system of the third cerebral ventricle, contains osmoreceptors that stimulate

AVP release from SON and PVN nuclei [27]. Conversely, right atrial stretch receptors and aor-

tic arc baroreceptors respond to blood pressure and volume rises via glossopharyngeal and

vagus projections to the nucleus tractus solitarii (NTS) of the dorsal medulla oblongata. By this

way, these afferent fibers affect the activity of SON and PVN neurons, eventually inhibiting

AVP release [28, 29].

ANP system

The ANP is secreted in the heart by atrial myocytes upon atrial stretching and systemic blood

pressure rise [30]. ANP causes, among other effects, vasodilation by relaxing vascular smooth

muscle [31]. The effect is most pronounced in the presence of elevated plasma concentrations

of vasoconstrictor hormones, such as in advanced cardiac failure, since plasma angiotensin,

AVP and other vasoconstrictors are elevated in that setting [32].

RAAS system

Renin is produced by juxtaglomerular cells of the kidneys, which reside in the afferent arteri-

oles of glomeruli. The release of renin is regulated by three primary mechanisms, a renal vascu-

lar baroreceptor, which responds to changes in renal perfusion pressure within the afferent

arteriole, a tubular, macula densa-dependent sensor that measures distal tubular salt concen-

tration in the filtrate, and renal sympathetic nerves. Low blood pressure in the afferent arteri-

ole and low sodium chloride concentration in the tubule at the macula densa both stimulate

renin release [33, 34]. According to the classic view of the renin-angiotensin cascade, renin

acts as a peptidase converting the α-2-globulin angiotensinogen to angiotensin I, followed

by conversion of this latter to angiotensin II (ANGII) by the angiotensin converting enzyme

(ACE) [35].
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Main ANGII effects occur through its binding to the G-protein-coupled AT1 receptor that

triggers Gq/11-dependent phospholipase C activation, followed by IP3-mediated intracellular

Ca2+ rise. This mechanism mediates different ANGII effects, including among others, vascular

smooth muscle contraction leading to blood pressure rise, and increased production of aldo-

sterone from the adrenal zona glomerulosa [36]. It has also been shown that ANGII stimulates

AVP release through the activation of AT1 receptors present in the SFO [37], while it inhibits

renin release in juxtaglomerular cells through an increase of intracellular Ca2+ that overcomes

cAMP stimulation of renin release [38].

Aldosterone is released from adrenal glands following ANGII production under conditions

of hypotension, or elevated plasma K+ levels. Aldosterone mainly acts on distal nephron com-

ponents, viz. distal convoluted tubule, connecting tubule, and collecting duct, by binding to

the intracellular mineralcorticoid receptor (MR), a ligand-activated transcription factor whose

main functional targets include the epithelial Na+ channel (ENaC), the renal outer medullary

K+ channel (ROMK), and the serum- and glucocorticoid-regulated kinase (SGK). Major sys-

temic effects of the aldosterone action on kidneys are changes in vascular tone due to increased

Na+ reabsorption and enhanced excretion of excess K+ [39].

ANP release by atrial myocytes is linked to the RAAS system, but such connection is still

incompletely clarified. However, it has been shown that ANP reduces renin and aldosterone

secretion, sympathetic nerve activity, and renal tubular Na+ reabsorption [40, 41].

Vascular smooth muscle cells

AVP acts on target organs by stimulating G-protein-coupled receptors (GPCRs), including V1

receptors (V1R) in vascular smooth muscle cells [42]. V1R activation triggers a signalling path-

way, sequentially involving the Gq subunit alpha of trimeric G protein, the phospholipase C

alpha (PLCα) and the ensuing inositol trisphosphate (IP3) production, leading to Ca2+ release

from intracellular stores through IP3 receptors (IP3R) [43].

In smooth muscle cells, the rise in intracellular Ca2+ leads to the formation of a complex

between Ca2+ and calmodulin (CaM) that activates myosin light chain kinase (MLCK). This

latter phosphorylates myosin light chain (MLC), thus enhancing myosin activity and initiating

actomyosin interaction [44]. On the other side, activated CaM also binds to the caldesmon

peptide, thus removing its hindering effect on actomyosin interaction in relaxed smooth mus-

cle, due to caldesmon binding to actin-tropomyosin [45]. Hence, different CaM actions coor-

dinately result in promoting smooth muscle contraction.

ANP acts on target cells by activating NPRA and NPRB transmembrane receptors endowed

with intracellular guanylyl cyclase activity, leading to increased cellular levels of cyclic guano-

sine monophosphate (cGMP) [46]. Thereafter, cGMP-dependent protein kinase (PKG) acts as

a major mediator of ANP-induced smooth muscle relaxation, through the activation of myo-

sin-light-chain phosphatase (MLCP) [47]. The extent of actomyosin interaction and ensuing

smooth muscle contraction is determined by the balance between the activities of CaM-acti-

vated MLCK on one side, and MLCP on the other side [48]. MLCP dephosphorylates MLC,

thereby contrasting MLCK activity on MLC, and relaxing the muscle [49].

Furthermore, there is also evidence that ANP acting through NPRA exerts an activating

effect on the plasma membrane calcium ATPase pump (PMCA), leading to a reduction of

intracellular Ca2+ levels, followed by CaM deactivation [50].

On the other hand, in smooth muscle cells AVP is known to activate RhoA, a member of

the Rho family small GTPases, through the coupling of its GPCR receptor to G12/13 subunit

and activation of guanine nucleotide exchange factor (GEF) [51]. RhoA becomes activated

by GEF in a GTP-bound form, and in turn activates its downstream Rho-associated protein
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kinase (ROCK). This latter phosphorylates and inhibits MLCP, resulting in increased MLC

phosphorylation and actomyosin contraction [52]. ROCK also phosphorylates MLC directly,

causing more muscle contraction, and concomitantly activates the protein phosphatase 1 regu-

latory subunit 14A (CPI-17), a phosphorylation-dependent inhibitor of MLCP [53].

Results

Loop arrangement of the complete AAR system

We built a model that describes dynamic control loops regulating the vasomotor tone of vascu-

lar smooth muscle, blood volume, and mean arterial pressure. The key players and their inter-

actions are visually represented by the diagram of Fig 1.

The system is a completely-closed one, i.e. it has no free-terminal ends. It shows the inter-

play among AVP, ANP, and RAAS systems that occurs through their regulatory effects on

vascular smooth muscle, blood volume and pressure. The activity and connections of barore-

ceptor (stretch receptors) and osmoreceptors are also included. The diagram consists of nodes,

representing body systems producing physiological variations, and arcs connecting nodes, rep-

resenting the mediators of these variations, viz. hormones, mechanical effects exerted by blood

volume and pressure changes, and nerve signal conduction and neurotransmitter release. We

denote this loop arrangement as the AAR (AVP-ANP-RAAS) system.

In the loop analysis of control systems, time constants and delays are essential parameters

in the mathematical description of the system behaviour. Time constants are associated with

the time intervals spanning between the stimulation and the activation of a functional agent

at a given node. Delays correspond to the time intervals spanning between the activation of

Fig 1. Diagram depicting antagonistic regulatory effects on vasoconstriction and blood pressure due to loop

interrelationships among AVP, ANP, and RAAS neuroendocrine systems. Labels for functional agents are the

following. ACO: adrenal cortex; ACR: aortic arc and carotid sinus stretch receptors; ASR: atrial stretch receptors; DTC:

renal distal tubule and collecting duct; HMY: heart myocytes; JGC: juxtaglomerular cells; NTS: nucleus tractus solitarii;

SFO: subfornical organ; SPN: supraoptic and paraventricular nuclei; VSM: vascular smooth muscle. Labels for effect

mediators are the following. AVP: arginine vasopressin; ANP: atrial natriuretic peptide; ANGII: angiotensin II; CNS:

central nervous system. Lines with arrow ending indicate activation; lines with butt ending indicate inhibition.

https://doi.org/10.1371/journal.pcbi.1007346.g001
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a functional agent at one node, and the stimulation of another functional agent at the down-

stream node. In the herein presented systems, the different processes can be grouped into four

time-scale ranges: endocrine signals; mechanical effects operating on stretch receptors; nerve

signal conduction; and intracellular signal transduction pathways.

The time response for endocrine signals is not always known with precision, but a wide

complex of evidence on endocrine axes suggests that the time spanning from the secretion of

a hormone to the response of its target cells should range between 30-60 min [54–56]. Data

about the herein considered hormones are scarce, but pulsatile ANP secretion with a median

frequency of 36 min has been found in healthy human subjects, thus being in line with the

above estimates [57].

Also, an estimate for the time responses of stretch receptors to mechanical stimuli can be

inferred from a study in the dog, where ANP secretion has been found to increase within 2.0

min of atrial distension, and to decline with cessation of atrial distension, with a half-time of

4.5 min [58]. These responses appear to be one order of magnitude faster than those of endo-

crine signals.

The time response along the nervous tracts of the system, depending on nerve signal con-

duction and synaptic interaction, can be estimated at below 1.0 min [59], while intracellular

signal transduction pathways are even faster.

The presence of different processes characterised by time responses that differ of orders

of magnitude enables mathematical simplifications relying on time-scale separation, which

allowed us to rigorously analyse the complex interplay of interactions in the AAR systems.

Loop analysis of the AAR system. Consider the system represented in Fig 1. A structural

loop analysis was performed to achieve the following main result: the overall control scheme

can be functionally split into two redundant control systems, based on negative loops, which

operate in parallel and qualitatively perform the same control action.

As discussed in detail in the Models and methods section, this result was achieved by

1. analysing the two control loops due to vascular smooth muscle and to renal distal tubule

separately, which is justified since DTC and VSM do not mutually interact;

2. introducing proper simplifications based on time-scale separation arguments;

3. showing that both control loops can be seen as a negative feedback loop affecting a mono-

tone system [60–65].

The schemes describing the two coexisting regulation systems (which can be achieved from

Fig 1 through the mathematical processing outlined in the three steps above—see also the

Models and methods section below) are reported in Fig 2.

It is important to stress that each of the two systems in Fig 2, the one including DTC and

the one including VSM, is a candidate oscillator according to the results in [15, 16], since it is

the negative feedback of a monotone system (see the Models and methods section for details;

[60–65]). Being a candidate oscillator, each of these systems admits a single equilibrium point

(for each given choice of the parameter values), corresponding to all the variables being at

steady state (homeostatic conditions); if the equilibrium becomes unstable, then persistent

oscillations occur.

Influence analysis of the AAR system. An influence analysis showed that the two sepa-

rate, but coexisting, regulation systems have the same qualitative behaviour and execute the

same function, although the two schemes are structurally different. Indeed there is no one-to-

one correspondence between the arcs. Precisely, the scheme in Fig 2, left, where the regulation

is performed by DTC, has an additional activating arc, from ACO to DTC. Moreover, in the

scheme in Fig 2, right, where the regulation is performed by VSM, the inhibitory arc from
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DTC to JGC is replaced by an activating arc from JGC to VSM. Remarkably, the influence

matrices associated with the two systems are structurally consistent, as shown next.

The entry Mij of the influence matrix M [66–68] (see also [20, 69–71]) expresses the sign of

the steady-state variation of the ith variable of a dynamical system due to a persistent positive

excitation caused by an external input applied to the dynamic equation of the jth variable. In

our structural (parameter-free) analysis [66, 71], each entry of the influence matrix can assume

the following values

Mij 2 fþ; � ; 0; ?g

where ‘+’ means that the sign of steady-state variation of the ith variable is always positive,

regardless of the parameter values in the system; ‘−’ means that the sign of steady-state varia-

tion of the ith variable is always negative, regardless of the parameter values in the system; ‘0’

means that the sign of steady-state variation of the ith variable is always zero, regardless of the

parameter values in the system; ‘?’ means that the sign of steady-state variation of the ith vari-

able depends on the parameters.

The structural influence matrices corresponding to the systems in Fig 2 are

ð1Þ

Fig 2. The two coexisting feedback schemes: The Renal Distal Tubule and Collecting Duct regulation (left) and the Vascular Smooth Muscle

regulation (right).

https://doi.org/10.1371/journal.pcbi.1007346.g002
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and

ð2Þ

These matrices are qualitatively derived by considering only the sign matrices SDTC and

SVSM associated with the schemes in Fig 2 (reported in the Models and methods section),

since MDTC = sign[adj(−SDTC)] and MVSM = sign[adj(−SVSM)]; they can be efficiently com-

puted by means of the algorithm proposed in [66].

Both the matrices are almost totally structurally determined: very few entries have a sign

that depends on the parameters (and hence are ‘?’). Also, the two schemes are (weakly) consis-

tent, because there is no contradiction between corresponding entries in the two structural

influence matrices, apart from the first column, which is different because ACO does not affect

any other key player in the VSM system, while in the DTC system it directly activates DTC,

and thus indirectly affects all other key players.

Loop arrangement of the AAV subsystem

After having examined the complete system, consisting of nodes acting at the systemic level,

we made an attempt at combining the systemic and cellular levels. The nodes of the loops of

our complete system (see Fig 1) represent cells that transfer signals from upstream to down-

stream elements by intracellular signal transduction pathways. Therefore, we analysed a

system consisting of a subset of the above one, including ANP and AVP stimulation of vascular

smooth muscle, a complex of crosstalks between AVP- and ANP-dependent signal transduc-

tion pathways operating within vascular smooth muscle cells, and stretch receptors closing

loops onto AVP and ANP secretory systems. The system representation is shown in Fig 3. We

denote this loop arrangement as the AAV (AVP-ANP-VSM) subsystem.

The choice for selecting vascular smooth muscle cells derives from the rather good knowl-

edge of the interplay between AVP- and ANP-elicited pathways within these cells. Moreover,

the choice of the AVP and ANP endocrine systems resides in their antagonistic effects, and the

presumable similarity of their delays, since both involve only one slow endocrine step (time-

limiting step), and a series of rapid intracellular processes, receptor responses, and nerve signal

conduction steps.

Loop analysis of the AAV system. A structural loop analysis allowed us to obtain the fol-

lowing results, derived in the Models and Methods section:

• the AAV subsystem is monotone and evolves on a faster time scale than all other processes,

hence it can be approximated as a single differential equation with first order dynamics;

• the subsystem is affected by three external negative feedback loops, which are reasonably

modelled as due to delayed signals.

Hence, also this system is a candidate oscillator, as defined above [15, 16].

The system corresponds to the following dynamic model, associated with the graph in

Fig 4.

YVSM _xVSM þ xVSM ¼ gðxHMYÞ þ f ðxSPNÞ ð3Þ

Loop analysis of blood pressure/volume homeostasis
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xHMY ¼ ft1ðxVSMÞ ð4Þ

xSPN ¼ gt2ðxVSMÞ þ gt3ðxVSMÞ ð5Þ

where ΘVSM is the overall time constant of the VSM subsystem, f denotes increasing functions

(associated with activation) and g decreasing functions (associated with inhibition), while the

τi’s denote delays. This simple dynamical system can effectively capture the essence of the vaso-

constriction/vasodilation phenomenon.

Fig 3. Diagram depicting antagonistic regulatory effects on vasoconstriction consisting of AVP and ANP endocrine systems acting on

crosstalking signal transduction pathways of VSM, and stretch receptors closing the loops. Labels for functional agents are the following. AMI:

actomyosin interaction; ANPR: atrial natriuretic peptide receptor; CaM: calmodulin; CPI-17: protein phosphatase 1 regulatory subunit 14A; GC:

guanylate cyclase; GEF: guanine nucleotide exchange factor; Gq: Gq alpha subunits of heterotrimeric G proteins; G12/13: G12/G13 alpha subunits of

heterotrimeric G proteins; IP3R: inositol trisphosphate receptor; MLC myosin light chain; MLCK: myosin light chain kinase; MLCP: myosin-light-

chain phosphatase; PKG: cGMP-dependent protein kinase; PLC: phospholipase C; PMCA: plasmamembrane Ca2+-ATPase; RhoA: Ras homolog gene

family member A small GTPase; ROCK: Rho-associated protein kinase; V1R vasopressin receptor 1. Labels for effect mediators and anatomical districts

are the following. cGMP: cyclic guanosine monophosphate; IP3: inositol trisphosphate. Other labels and line endings as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1007346.g003
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In particular, to study its oscillatory properties, we analysed the linearised version of the

system around an equilibrium point:

YVSM _yðtÞ þ y ¼ � k1u1ðtÞ þ k2½u2ðtÞ þ u3ðtÞ� ð6Þ

u1ðtÞ ¼ m1yðt � t1Þ ð7Þ

u2ðtÞ ¼ � m2yðt � t2Þ ð8Þ

u3ðtÞ ¼ � m3yðt � t3Þ ð9Þ

where y, u1 and u2+ u3 are the variations of xVSM, xHMY and xSPN with respect to the equilib-

rium value, while ki and μi denote the absolute value of the function derivatives.

To investigate the problem from a mathematical standpoint, we introduced a suitable oscil-

lation-propensity index. As discussed in [19], for oscillations to occur:

Fig 4. Visual representation of the reduced system in Eqs (3)–(5).

https://doi.org/10.1371/journal.pcbi.1007346.g004
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• at least a negative loop must exist, associated with a delayed signal;

• the signal amplification through the negative loop, called loop gain, must be large enough.

Therefore, we took as oscillation-propensity index the minimum loop gain that is neces-

sary for the onset of oscillations. The smaller this value, the more the system is prone to

oscillations.

Delay analysis of the AAV subsystem. Through our delay analysis we showed that, when

all the loops have approximately the same delay, so that they can be regarded as a single nega-

tive loop with delay, the system is prone to oscillations. Conversely, when the loops can have

different delay, oscillations may be ruled out, because the resulting gain stability margin is

larger when the delays are non-homogeneous.

First, we analysed the case of two different loop delays:

t1 and t2 ¼ t3;

which corresponds to assuming that the feedback signals u2 and u3, associated with the right

atrium stretch receptors, have the same delay. This assumption is physiologically motivated by

the fact that the interactions from HMY to VSM and from SNP to VSM (see Fig 4) are respon-

sible for the largest part of the time delay.

Then, the system of Eqs (6)–(9) becomes

YVSM _yðtÞ þ y ¼ � k1m1yðt � t1Þ � k2ðm2 þ m3Þyðt � t2Þ ¼ � pyðt � t1Þ � qyðt � t2Þ ð10Þ

This equation involves two negative-feedback delayed signals with gains p = k1μ1 and

q = k2(μ2 + μ3), and delays τ1 and τ2, while the time constant is ΘVSM.

For small values of the gains p and q, the system is stable and does not oscillate. If we

increase the gains above a certain threshold, oscillations will appear. The critical condition for

the onset of oscillations is given by the equation

joYVSM þ 1þ pejt1o þ qejt2o ¼ 0 ð11Þ

for some p, q and some ω> 0, where j is the imaginary unit and ω = 2πf is the pulsation corre-

sponding to the oscillation frequency f.
In general, we can measure the oscillation propensity as follows. For given p, q, τ1, τ2 and

ΘVSM, we consider the minimal distance of the curve jωΘVSM + 1 + pejτ1ω + qejτ2ω from the ori-

gin of the complex plane (see Fig 5). The oscillation propensity is defined as

J� ¼
1

r
ð12Þ

where ρ is the radius of the circle tangent to the curve and centered at the origin (the blue circle

in Fig 5, tangent to the black curve). Therefore, the smaller the radius (the closer the curve is to

the origin), the larger the oscillation propensity. Note that, when (11) is satisfied for some �o,

we have ρ = 0, hence J� =1.

Concerning the values of p and q, we obtained the following result.

Proposition 1 A necessary condition for Eq (11) to be satisfied is p + q� 1. For p + q = 1, the
equation has a solution (corresponding to ω = π/τ) if and only if ΘVSM = 0 and all the delays are
equal, τ1 = τ2.

In fact, Eq (11) can only hold if jωΘVSM + 1 = −pejτ1ω−qejτ2ω, which is only true if the two

moduli are equal. Since |jωΘVSM + 1|� 1 if ω> 0, the modulus |pejτ1ω + qejτ2ω|, which is at

most p + q, must be larger than or equal to 1 as well.
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The result indicates that the ideal situation for the onset of oscillations is that the two delays

are close, τ1� τ2, and the time constant ΘVSM is small. Hence, we can normalise the gains to

get

pþ q ¼ 1 ð13Þ

so that no oscillations are possible for ΘVSM> 0.

Then, given p and q satisfying Eq (13), and given ΘVSM, we can study the oscillation pro-

pensity as a function of the delay values τ1 and τ2. Fig 6 reports the results for ΘVSM = 0.5 min-

utes and for various choices of the pair p and q = 1 − p, when τi are varied in the range [2, 4]

minutes. The results show that the oscillation propensity is maximal when τ1 = τ2, namely

when all the loop delays are equal, while it decays rapidly when the two delays are different.

An important consequence is the following: assuming that all the loops have approximately

the same delay in normal conditions, then altering one of them by artificially changing its

delay will hinder the oscillatory behaviour of the system.

Discussion

Control loops are ubiquitous in biology at all scales, from individual cells to entire organisms,

and are fundamental to rule the dynamic behaviour of living processes and to ensure homeo-

stasis [72, 73]. Hence, living beings can be seen as fully integrated complexes of control sys-

tems, operating by loop dynamics. Biological and physiological mechanisms result from an

extremely complex interplay of interactions; this complexity has been given theoretical inter-

pretations in the framework of organisational closure [74, 75] and has been successfully ana-

lysed using system-theoretic and control-theoretic approaches [72, 73]. In complex biological

networks, the presence of network motifs [76, 77] is fundamental to explain important behav-

iours; one of the most recurrent network motifs is the so-called feed-forward loop [73, 78].

Such a network analysis has been carried out not only at the cellular level, but also at the

Fig 5. Function jωΘVSM + 1 + pejτ1ω + qejτ2ω plotted in the complex plane: Case with higher oscillation propensity

(red), case with lower oscillation propensity (black). The radius of the blue circle centered in the origin and tangent

to the curve is inversely proportional to the oscillation propensity.

https://doi.org/10.1371/journal.pcbi.1007346.g005
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organismal level, leading to network physiology [79–81], which aims at explaining physiologi-

cal functions based on the topology of the network of interactions.

In particular, the loop structures that can be found in the complex networks of dynamical

interactions ruling life seem crucial to enable life-preserving dynamic behaviours in biology

and physiology, and the functioning of each organism appears in fact as the result of complex

aggregations and interactions of functional loops.

The well-documented AVP-ANP-RAAS endocrine control of body fluids and blood pres-

sure was therefore analysed using mathematical tools, to highlight the loop arrangement

and its dynamic function. The loop analysis of the whole system (AAR) shows that it can be

split into two coexisting dynamic systems, which contain alternatively the VSM and DTC

Fig 6. The oscillation propensity J� for ΘVSM = 0.5 minutes as a function of the delays τ1 and τ2 in the range [2, 4] minutes,

corresponding to p = 0.5 and q = 0.5 (top left), p = 0.4 and q = 0.6 (top right), p = 0.3 and q = 0.7 (bottom left), p = 0.2 and q = 0.8

(bottom right).

https://doi.org/10.1371/journal.pcbi.1007346.g006
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functional agents (as loop nodes), thereby exerting their effects on blood pressure and blood

volume, respectively. The influence matrix analysis shows that the two systems are qualitatively

equivalent in that they perform the same control function, even though the physiological

mechanisms are different. Moreover, the loop analysis shows that both the VSM and the DTC

loop systems are candidate oscillators having a single equilibrium point, which can be either

stable or yield persistent oscillations under instability conditions. Also the AAV subsystem,

combining functional agents acting at cellular and systemic scales, can be described as a candi-

date oscillator, whose propensity to exhibiting actual sustained oscillations is higher when the

delays of all the loops in the subsystem are comparable.

Hence, our mathematical analysis suggests that the physiological mechanisms regulating

long-term homeostasis of blood hydraulic parameters are arranged into a complex of equiva-

lent loop systems, consisting of candidate oscillators with a single equilibrium point. Also, the

whole system can be split into two systems displaying essentially the same functioning, an

apparent redundancy that could offer alternatives for coping with accidental defaults, similar

to the well-known, alternative kidney-lung regulation of blood pH [82]. Of course, our model

must be seen as functionally coupled to other body systems, like the sympathetic and parasym-

pathetic neurovegetative branches [83], while the interaction of multiple negative loop systems

could be at the basis of complex oscillatory behaviours, with stochastic flavour, detected in the

time course of physiological processes [84].

It is worth stressing that all the results we derived are completely independent of the

exact functional expressions associated with activating and inhibitory interactions in the loop

dynamics, and of the exact function parameters. Hence we can be sure that they hold for any

system with this qualitative structure, even when we lack precise quantitative information.

Future research will be oriented to understanding if other homeostasis and endocrine sys-

tems display the same features, in order to possibly formulate a general paradigm in terms of

loop dynamics. This achievement could have repercussions on the study and management of

adverse homeostasis shift, e.g. due to chronic diseases like hypertension, frequently causing

premature death [85].

Models and methods

Mathematical model of the AAR system

To build the dynamical system associated with the scheme in Fig 1, we model the activating

and inhibitory interactions in terms of monotonic functions: we denote by

• f an activation function, monotonically increasing in its argument(s),

• g an inhibition function, monotonically decreasing in its argument(s),

• h an activation/inhibition function, increasing in the first argument and decreasing in the

second.

Common examples are, for instance, the Hill-type functions:

f ð½X�Þ ¼ a
½X�p

1þ b½X�p
; gð½X�Þ ¼ g

1

1þ d½X�p
; hð½X�; ½Y�Þ ¼ s

½X�p

1þ �½X�p þ Z½Y�p
; ð14Þ

where [X] and [Y] represent the concentration of chemical species X and Y, p is the Hill coeffi-

cient (typically a cooperativity index), while α, β, γ, δ, σ, � and η are positive coefficients. Note

that the functions in Eq (14) are just examples of possible functional expressions, but our

results are totally independent of the exact functional expressions associated with activations

and inhibitions, and of the function parameters. Hence, we do not use any information beyond
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the fact that f and g are monotonic functions, increasing and decreasing respectively. Then, the

system in Fig 1 is qualitatively described by the following differential equations:

YACO
d
dt
½ACO� þ ½ACO� ¼ f ð½JGC�Þ þ gð½HMY�Þ ð15Þ

YJGC
d
dt
½JGC� þ ½JGC� ¼ gð½HMY�Þ þ gð½DTC�Þ ð16Þ

YHMY
d
dt
½HMY� þ ½HMY� ¼ f ð½ASR�Þ ð17Þ

YSPN
d
dt
½SPN� þ ½SPN� ¼ gð½NTS�Þ þ f ð½SFO�Þ ð18Þ

YDTC
d
dt
½DTC� þ ½DTC� ¼ f ð½ACO�Þ þ gð½HMY�Þ þ f ð½SPN�Þ ð19Þ

YVSM
d
dt
½VSM� þ ½VSM� ¼ f ð½JGC�Þ þ gð½HMY�Þ þ f ð½SPN�Þ ð20Þ

YASR
d
dt
½ASR� þ ½ASR� ¼ f ð½DTC�Þ þ f ð½VSM�Þ ð21Þ

YACR
d
dt
½ACR� þ ½ACR� ¼ f ð½DTC�Þ þ f ð½VSM�Þ ð22Þ

YNTS
d
dt
½NTS� þ ½NTS� ¼ f ð½ASR�Þ þ f ð½ACR�Þ ð23Þ

YSFO
d
dt
½SFO� þ ½SFO� ¼ f ð½JGC�Þ þ gð½DTC�Þ ð24Þ

This system of differential equations can be simplified in view of time-scale separation argu-

ments, since the time constants ΘACR, ΘASR, ΘNTS and ΘSFO have the order of magnitude of

few seconds or minutes, while all the others are of several (15 or more) minutes. Therefore we

neglect the differential Eqs (21)–(24) by assuming

YASR ¼ YACR ¼ YNTS ¼ YSFO ¼ 0 ð25Þ

and in Eqs (15)–(20) we substitute the expressions:

f ð½ASR�Þ ¼ f ðf ð½DTC�Þ þ f ð½VSM�ÞÞ ¼ f ð½DTC�; ½VSM�Þ ð26Þ

gð½NTS�Þ ¼ gðf ð½ASR�Þ þ f ð½ACR�ÞÞ ¼ gð½ASR�; ½ACR�Þ ¼ gð½DTC�; ½VSM�Þ ð27Þ

f ð½SFO�Þ ¼ f ðf ð½JGC�Þ þ gð½DTC�ÞÞ ¼ hþ� ð½JGC�; ½DTC�Þ ð28Þ

where we exploit the fact that the composition of increasing functions is increasing, the com-

position of an increasing and a decreasing function is decreasing, and the composition of two

functions, one increasing and one decreasing, with an increasing function produces a function

h+ − that is increasing in the first argument and decreasing in the second. The new system of
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equations becomes

YACO
d
dt
½ACO� þ ½ACO� ¼ f ð½JGC�Þ þ gð½HMY�Þ ð29Þ

YJGC
d
dt
½JGC� þ ½JGC� ¼ gð½HMY�Þ þ gð½DTC�Þ ð30Þ

YHMY
d
dt
½HMY� þ ½HMY� ¼ f ð½DTC�; ½VSM�Þ ð31Þ

YSPN
d
dt
½SPN� þ ½SPN� ¼ gð½DTC�; ½VSM�Þ þ hþ� ð½JGC�; ½DTC�Þ ð32Þ

YDTC
d
dt
½DTC� þ ½DTC� ¼ f ð½ACO�Þ þ gð½HMY�Þ þ f ð½SPN�Þ ð33Þ

YVSM
d
dt
½VSM� þ ½VSM� ¼ f ð½JGC�Þ þ gð½HMY�Þ þ f ð½SPN�Þ ð34Þ

The interaction matrix associated with the system, which reports the signs of the entries of

the system Jacobian matrix (hence we basically associate a “+” with f, a “−” with g, and a “+”

and a “−” with h+−), is then

ð35Þ

By changing sign to the third variable, [HMY], we obtain

ð36Þ

where we can see that all the interactions among the first four variables are cooperative: they

are all associated with activations.

Therefore, the original system is equivalent, up to a state transformation where the sign of

some variables is changed, to a cooperative system. Hence, it is a monotone system [60–65],

characterised by a neat order-preserving behaviour that guarantees interesting properties. The

fact that the overall system is the negative feedback loop of a monotone system implies that it

admits a single equilibrium point, achieved when all the variables are at steady state [15, 16].

Proposition 2 The variables [ACO], [JGC], [HMY] and [SPN] form an input-output mono-
tone subsystem, which is affected by two negative feedback loops, one due to [DTC] and one due
to [VSM].
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In fact, both [DTC] and [VSM] are activated by the variables in the subsystem, which in

turn they inhibit. Note that [DTC] and [VSM] do not interact with each other.

In view of these considerations, we can analyse separately the effect of the renal distal tubule

[DTC] and the vascular smooth muscles [VSM]. They both can be considered as exerting a

control action on the monotone subsystem including the variables [ACO], [JGC], [HMY] and

[SPN]: the two loop schemes are in Fig 2.

The interaction matrices associated with the two schemes are:

ð37Þ

and

ð38Þ

where the entries + and − denote, respectively, an arbitrary positive and negative value; the

exact values depend on the system parameters and are unknown.

Note that each of the two systems, DTC and VSM, is a candidate oscillator according to the

results in [15, 16], since it is the negative feedback of a monotone system. Being a candidate

oscillator, each of these systems admits a single equilibrium point, corresponding to all the var-

iables being at steady state (homeostatic conditions); if the equilibrium becomes unstable, then

persistent oscillations occur.

Based on SDTC and SVSM (note that det[−SDTC] and det[−SVSM] are structurally positive,

regardless of the signed values of the entries), the structural influence matrices corresponding

to the two schemes in Fig 2 can be efficiently computed based on the algorithm proposed in

[66], and are reported in the Results section.

Mathematical model of the AAV subsystem

Consider the ensemble of intra- and inter-cellular loops regulating vasoconstriction and vaso-

dilation through vascular smooth muscle cell contraction, visually represented by the diagram

in Fig 3. We label the variables as x1 = [AMI], x2 = [caldesmon], x3 = [MLC], x4 = [MLCP],

x5 = [MLCK], x6 = [CaM], x7 = [PKG], x8 = [CPI-17], x9 = [RhoA/ROCK], x10 = [IP3R], x11 =

[Gq/PLC], x12 = [G12/13/GEF], x13 = [PMCA], x14 = [ANPR/GC], x15 = [V1R], x16 = [HMY],

x17 = [SPN], x18 = [NTS], x19 = [ASR], x20 = [ACR]. Let us denote the time derivative of xi as

_xi ¼
d
dt xi and the associated time constant as Θi.

We adopt the same conventions as in the previous model to denote activating and inhibi-

tory interactions. Moreover, we denote by fτ([X](t)) and gτ([X](t)), respectively, the functions f
and g of the variable [X] delayed of a time interval τ:

ftð½X�ðtÞÞ ¼ f ð½X�ðt � tÞÞ; gtð½X�ðtÞÞ ¼ gð½X�ðt � tÞÞ:
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Then, the system in Fig 3 is qualitatively described by the following differential equations:

Y1 _x1 þ x1 ¼ gðx2Þ þ f ðx3Þ ð39Þ

Y2 _x2 þ x2 ¼ gðx6Þ ð40Þ

Y3 _x3 þ x3 ¼ gðx4Þ þ f ðx5Þ þ f ðx9Þ ð41Þ

Y4 _x4 þ x4 ¼ f ðx7Þ þ gðx8Þ þ gðx9Þ ð42Þ

Y5 _x5 þ x5 ¼ f ðx6Þ ð43Þ

Y6 _x6 þ x6 ¼ hðx10; x13Þ ð44Þ

Y7 _x7 þ x7 ¼ f ðx14Þ ð45Þ

Y8 _x8 þ x8 ¼ f ðx9Þ ð46Þ

Y9 _x9 þ x9 ¼ f ðx12Þ ð47Þ

Y10 _x10 þ x10 ¼ f ðx11Þ ð48Þ

Y11 _x11 þ x11 ¼ f ðx15Þ ð49Þ

Y12 _x12 þ x12 ¼ f ðx15Þ ð50Þ

Y13
_x13 þ x13 ¼ f ðx14Þ ð51Þ

Y14 _x14 þ x14 ¼ f ðx16Þ ð52Þ

Y15 _x15 þ x15 ¼ f ðx17Þ ð53Þ

where x16 and x17 are external inputs and x1 is the output, coupled in a feedback loop with the

differential equations describing the effect of the heart and aortic arc / carotid sinus stretch

receptors, and of the central nervous system nuclei NTS and SPN:

Y16
_x16 þ x16 ¼ ft1ðx19Þ ð54Þ

Y17 _x17 þ x17 ¼ gðx18Þ ð55Þ

Y18
_x18 þ x18 ¼ ft3ðx19Þ þ ft2ðx20Þ ð56Þ

Y19 _x19 þ x19 ¼ f ðx1Þ ð57Þ

Y20 _x20 þ x20 ¼ f ðx1Þ ð58Þ

where x1 is the external input and x16 and x17 are the outputs.

Remarkably, the dynamical system formed by Eqs (39)–(58) can be seen as the negative

feedback loop of an input-output monotone subsystem, formed by Eqs (39)–(53) (smooth
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muscle cell subsystem), where three distinct loops coexist, due to the effect of: (i) ANP released

by the heart myocytes, stimulated by right atrium stretch receptors; (ii) AVP released by SPN,

stimulated by right atrium stretch receptors; (iii) AVP released by SPN, stimulated by aortic

arc / carotid sinus stretch receptors.

The AAV subsystem is monotone. Consider the equivalent graph of the system in Fig 7,

left, where the nodes represent variables and the arcs represent interactions. A path is a

sequence of arcs connecting a starting node to a final node, passing through several intermedi-

ate nodes. A path is negative if it contains an odd number of negative (inhibitory) arcs. A loop

is a closed path, where the starting node is the same as the final node.

We can change the sign of some variables in the system, associated with the graph nodes,

so that inhibitory arcs become activating, and vice versa [61]: if the variable associated with a

node changes sign, then all the arcs entering and leaving the node change their sign (activating

or inhibitory) as well.

Changing sign to the six variables x2, x4, x7, x13, x14, x17 (associated with the nodes repre-

sented in blue in Fig 7, right) and sequentially changing the associated arc types yields the

equivalent graph in Fig 7 (right). There, we see that the subsystem included in the box only

contains activating arcs, meaning that all the variables are cooperating: it is a cooperative

system.

Since the original subsystem included in the green box in Fig 7, left, is equivalent to a coop-

erative system by means of a state transformation where the sign of some variables is changed,

it is a monotone system [60–65].

Proposition 3 The AAV subsystem formed by Eqs (39)–(53)

1. is a monotone system and has no internal loops;

2. has two inputs, x16 (associated with the activity of HMY releasing ANP) that inhibits the out-
put x1, and x17 (associated with the activity of SPN releasing AVP) that activates x1;

3. has asymptotically stable equilibrium points: for any constant value of x16 and x17, all state
variables converge to a steady-state value.

In fact, any linearisation of this monotone system has a dominant negative real eigenvalue,

which characterises its evolution and guarantees asymptotic stability.

Fig 7. The interaction graph in Fig 3 (left) and its modified version (right). Pointed arrows represent activation arcs, while circle-head arrows

represent inhibition arcs.

https://doi.org/10.1371/journal.pcbi.1007346.g007
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All loops are negative. The inspection of the diagram in Fig 3, or equivalently in Fig 7,

allows us to state the following fact.

Proposition 4 All the loops in the system formed by Eqs (39)–(58) are negative and include
variable x1 (AMI).

Hence, the overall system is a candidate oscillator [15, 16]. This implies that it admits a sin-

gle equilibrium point (when all the variables are at steady state); if the equilibrium becomes

unstable due to the effect of the external loops, then oscillations occur.

In particular, the overall system can be seen as the feedback of the monotone subsystem,

formed by the variables in the smooth muscle cell compartment, with three distinct negative

feedback loops. Indeed, variable x16 has an inhibitory effect on x1, while x17 has an activating

effect on x1; x1 has an activating effect on x16 and an inhibitory effect on x17.

Since all the elements in the smooth muscle cell subsystem evolve on a faster time scale

with respect to those in the external loops, it is reasonable to approximate the whole subsystem

given by Eqs (39)–(53) with a single variable x1, which evolves as a first order process with

inputs x16 and x17:

Y1 _x1 þ x1 ¼ gðx16Þ þ f ðx17Þ ð59Þ

Moreover, since the effect of the delays τi strongly dominates with respect to the time con-

stants also for the dynamics of the nodes in the external negative loops, the external connec-

tions can be seen as delayed static effects:

x16 ¼ ft1ðx1Þ ð60Þ

x17 ¼ gt2ðx1Þ þ gt3ðx1Þ ð61Þ

Hence, x16 and x17 are functions of delayed values of x1.
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