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Abstract: In this paper, we describe Remote Monitoring Validation Engineering System (ReMoVES),
a newly-developed platform for motion rehabilitation through serious games and biophysical sensors.
The main features of the system are highlighted as follows: motion tracking capabilities through
Microsoft Kinect V2 and Leap Motion are disclosed and compared with other solutions; the emotional
state of the patient is evaluated with heart rate measurements and electrodermal activity monitored
by Microsoft Band 2 during the execution of the functional exercises planned by the therapist.
The ReMoVES platform is conceived for home-based rehabilitation after the hospitalisation period,
and the system will deploy machine learning techniques to provide an automated evaluation of
the patient performance during the training. The algorithms should deliver effective reports to the
therapist about the training performance while the patient exercises on their own. The game features
that will be described in this manuscript represent the input for the training set, while the feedback
provided by the therapist is the output. To face this supervised learning problem, we are describing
the most significant features to be used as key indicators of the patient’s performance along with the
evaluation of their accuracy in discriminating between good or bad patient actions.

Keywords: game-based rehabilitation; machine learning; post-stroke rehabilitation; serious games;
heart rate; electrodermal activity; microsoft kinect; leap motion

1. Introduction

In recent years, the impact of telemedicine is still growing thanks to the adoption of the concept
of “continuity of care” by the health community. Operators have access to all needed information,
regardless of where they are located, and this helps to improve access to health services for patients
and end users [1].

Societal changes drive the evolution of the healthcare sector, both in Europe and in the rest of
the world. Some of the big issues including the ageing population, chronic diseases, and spread of
disabilities (e.g., stroke and all degenerative diseases) have a great impact on health care strategies
and care solutions. Thanks to the new technological solutions, the patient is increasingly attentive
and aware to their state of health, trying to maintain the highest quality of life level, which requires
continuous assistance and care [2].

Digital innovation is involved in many areas of daily life. It plays a fundamental role in the
field of medical rehabilitation, and more and more facilities consider it as a fundamental part of their
therapeutic and commercial offering. On the market, there are several gaming consoles used for
fitness exercising. In particular, the Nintendo Wii is used in several centres as a rehabilitation device,
to help the recovery of patients in a more enjoyable way [3,4]. Nevertheless, commercial games are
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not designed for people with disabilities, therefore making the patient experience demotivation when
failing to achieve the goals due to their difficulty.

In this scenario, we are disclosing the Remote Monitoring Validation Engineering System
(ReMoVES). We have developed a platform that addresses the problem of continuity of care in a smart
and cost-effective way. It relies on serious games with which the patient interacts through Microsoft
Kinect and Leap Motion. [5].

Many researchers developed similar solutions, but they focused on algorithms to detect body
and hand gestures with a certain level of accuracy [6–8] and on the development of serious games
for health [9]. In this article, which is an extended version of [10], we present a novel approach to
automatically evaluating the performance of the patient during the execution of rehabilitation exercises
when unsupervised by therapists. The methods we will use to process the data collected during the
entire activity session are discussed in detail.

This paper is structured as follows. Section 2 presents the introduction to the system architecture
and presents the characteristics of the serious games that have been developed and included in the
ReMoVES platform. Section 3 explains the methods to process data acquired during the activity
sessions carried out by patients. Section 4 presents some preliminary results with a sample of the data
process. Finally, Section 5 presents a discussion of the results.

2. Description of the System

2.1. Overall Architecture

The ReMoVES platform employs three off-the-shelf devices for motion tracking and biophysical
data acquisition which are activated during the execution of functional exercises. On the back-end,
a cloud architecture was designed and deployed to provide web-services and data processing.

The idea behind the proposed architecture consists of providing a personal rehabilitation program
that is performed at home by the patient themselves, while the therapist can track the performances
and effectiveness of the training from any Internet-connected device. Among others, the monitoring of
eventual compensation movements allows evaluation of whether an exercise is accomplished in the
correct way.

In detail, the built-in algorithms aim to provide a clear and concise report to the therapist,
in order to facilitate the interpretation of the evolution of therapy. According to Figure 1, the following
technologies are deployed by the ReMoVES platform.

The motion and biophysical values originating from the serious games and the peripherals are
stored in the database at 2Hz in an integer or float numeric data type (four bytes, single-precision)
along with a timestamp to identify when that event occurred (it is generated on the machine running
the serious games, not on the cloud back-end since this would be affected by unpredictable delay).
The raw measures from the sensors are provided with different data types and are stored without
rounding as reported in Table 1.

Table 1. Details about the motion and biophysical data collected during the activity: unit of
measurement, typical range of values and data type in the database.

Description Unit Range Data Type Notes

Heart Rate seconds from 2 to 0.24 float: 5 dec. inter-beat interval
Electrodermal activity kohms from 0 to INF integer

Score integer
Joint position meters from −5 to +5 float: 7 dec. for each X, Y, Z coordinates

Yaw, roll, pitch radians from 0 to 2π float: 7 dec.
Grab strength from 0 to 1 float: 7 dec. 0 palm open, 1 hand closed
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Serious games are digital games that were completely developed in our labs exclusively for the
ReMoVES platform. The system currently includes 10 main serious games and 60 variations:
they encourage the patient to carry out functional exercises autonomously along with the
traditional motion rehabilitation. A representative screenshot for each serious game is given
in Figure 1 (from a to i) and in Figure 2. The creation of these activities involved different
processes, technologies, and specialists. In the case of serious games, special attention must be
paid to the specifications given by physiotherapists and physiatrists, who shared their expertise
to define game parameters such as the level of difficulty. The interface was designed using
the Unity3D platform, which is a popular engine often used for developing games and virtual
reality applications. The games are scripted in C#. All art assets in both 2D and 3D formats were
downloaded from different online sources under Creative Commons license [11]. The whole
set of games shares a core library that were developed to allow easy and straightforward
communication with the Application Programming Interfaces (APIs) exposed by the cloud
back-end that will be presented later.

Microsoft Kinect V2 is a motion sensing input device based on a high-resolution colour camera
and an infrared emitter for depth analysis that can simultaneously 3D-track up to 25 fundamental
joints of the framed human body. It offers a wide field of view (70× 60 degrees) and recognition up
to 4.5 m from the device [12]. Several studies have demonstrated that spatiotemporal parameters
can be validly obtained by Microsoft Kinect V2 [13,14]. The set-up of the interface between the
Microsoft Kinect V2 and the Unity3D engine is effortless because the manufacturer provides
a Software Development Kit (SDK) and a Unity add-on, which gives developers access to body
joint positions and orientations that can be used directly in rehabilitation game development.

Leap Motion is explicitly targeted at hand gesture recognition and computes the position of the
fingertips and the hand orientation. Its interaction zone is limited to a semi-sphere of radius
0.60 m around the device, with a theoretical accuracy of 0.01 mm according to the manufacturer
(or 0.7 mm under real conditions as measured by [15]). Examples of clinical studies that have
used the Leap Motion controller are [16,17]. The manufacturer provides a Unity Assets bundle to
allow a straightforward interface with the development engine.

Microsoft Band 2 is a physiological sensor used to collect the two signals chosen as a measure
of involvement during the rehabilitation program: heart rate (HR) and electrodermal activity
(EDA). It also includes a wide range of additional built-in sensors: accelerometer, gyroscope,
barometer, GPS, skin temperature sensor, ambient light, and ultraviolet sensor. Microsoft Band
2 offers the opportunity to collect real-time data in a continuous manner for at least 4 h without
recharging [18]. Our interface with Microsoft Band 2 is implemented using the Band SDK for the
Universal Windows Platform in C#.

Cloud back-end was developed using state-of-the-art techniques to provide scalable, secure,
and efficient data processing and storage. In Figure 1 it is schematically represented as the Data
Processing cloud. The architecture of this component is not the subject of this paper, but it plays
a fundamental role since it exposes REpresentational State Transfer (REST) APIs for all-around
management (authentication, initialization, data storage) of the activity sessions which can
take place remotely and simultaneously in different locations (rehabilitation centres, hospitals,
or patients’ homes). In detail, the ReMoVES cloud back-end was developed with PHP 5 and is
hosted on an Apache/2.4.6 web server running CentOS 7. The JavaScript Object Notation (JSON)
standard has been adopted for encrypted (over SSL) message communication between the cloud
back-end and other components. Data is stored in a MySQL relational database running on the
same machine: it is made up of tables for users management, rehabilitation sessions scheduling
and game log storage. The motion and biophysical values originating from the serious games
and the peripherals are stored in the database at 2 Hz in an integer or float numeric data type
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(four bytes, single-precision) along with a timestamp to identify when that event occurred (it is
generated on the machine running the serious games, not on the cloud back-end since this would
be affected by unpredictable delay). The raw measures from the sensors are provided with
different data types and are stored without rounding as reported in Table 1.

Figure 1. Summary of the Remote Monitoring Validation Engineering System (ReMoVES) architecture
and list of serious games and their corresponding movement: (a) OwlNest for arm Flexion–Extension
and Abduction–Adduction; (b) ShelfCans for arm Flexion–Extension and Abduction–Adduction;
(c) FlappyCloud for leg Abduction–Adduction; (d) EquilibriumPaint for Sit to Stand; (e) HotAir for
Balance Shift; (f) EndlessZig for hand Radial–Ulnar Deviation; (g) CityCar for Flexion–Extension;
(h) WineBottle for hand Pronation–Supination; (i) FloatingTrap for Grasping.

Figure 2. Relaxation exercise: the patient inhales as the animation grows, then exhales as it shrinks.

2.2. Serious Games

The rehabilitation activity proposed through the ReMoVES platform is used together with the
traditional rehabilitation program. The system proposes a set of exercises from which the therapist can
choose the most useful ones according to the patient disease and disability level.

These activities are presented to the patient as serious games in the specific sequence defined by
the personalised rehabilitation plan designed by the therapist.
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The system currently includes 10 different exercises that can be tweaked according to the
requirement of the patient: level, duration, movement pattern, speed, and other parameters can
be changed for a total of 60 game variations. They are reported in Table 2 and briefly described in
the following.

BreathBall This activity (see Figure 2) helps the patient to relax and focus on their breathing.
It is not an interactive game. The patient is led to breathe with a regular rhythm by following
a “breath ball” displayed on the monitor. The BreathBall exercise makes the subject comfortable
and brings back their heartbeat to a basal value before the actual rehabilitation session starts.

ShelfCans This serious game (Figure 1a) introduces the patient to a virtual environment similar
to a kitchen. With the arm movement, the patient grabs one of the colourful drink cans appearing
in the middle of the screen and drags it to the corresponding shelf. This game is appealing
because it requires the user to be attentive to drop off the drink can in the correct shelf according
to its colour.

OwlNest The patient is encouraged to reach an on-screen target (Figure 1b) with the arm motion
(Reaching Task) in order to achieve a high in-game score. Many colourful owls appear randomly
in any position of the screen for a given time-frame: the user should carry them in the nest before
they disappear.

FlappyCloud This is a functional exercise for the lower limb. The leg Abduction–Adduction
movement reflects the position of a cloud object in the game screen: the patient should make it
move forward without hitting some obstacles (Figure 1c).

HotAir This is an activity to improve control of the patient’s body balance. The user can control
the direction of a hot-air balloon, floating in the sky with the balance shift: in-game scores are
collected when it is led towards the bonus targets (Figure 1d).

EquilibriumPaint This serious game is an interactive version of the Sit to Stand (STS) exercise,
typically used in traditional rehabilitation to evaluate patient performance. The user should
stand up and sit down repeatedly within a predefined amount of time (usually 30 or 60 s [19]);
their trunk must remain erect: an erroneous lateral shift causes the fall of the cans of paint leaning
on an unstable wooden beam (Figure 1e).

WineBottle This exercise mimics a real-world scenario: pouring liquids from a bottle. With the
Pronation–Supination movement of the hand, the patient should control the rotation of a bottle
of wine appearing on the screen. They must fill a glass over and over again to collect as many
points as possible (Figure 1f).

EndlessZig In this activity, the patient drives a marble along a zigzag path appearing on the
screen. Going out of the boundaries causes score loss; similarly, some bonus gems appear on the
path. The patient controls the marble movement with Radial–Ulnar deviation (Figure 1g).

CityCar In this game, the patient drives a car along a randomly-generated road. The user should
steer in the presence of curves and crossroads with the movement of Flexion/Extension of the
wrist. Penalties are introduced when the user goes off-track (Figure 1h).

FloatingTrap In this serious game, the patient is led to open their hand and make a fist alternatively.
This exercise requires a good level of concentration: in fact, the user moves a floating raft on the
left or on right according to the finger Flexion/Extension in order to avoid some objects in the
scene (Figure 1i).
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Table 2. Serious games list including the purpose of the activity, the employed devices, and the
indicators that describe the patient performance during the exercise.

Activity Name Activity Purpose Devices Performance Indicators

BreathBall Relaxation Microsoft Band 2 Heart Rate, Angular coefficient βHR
OwlNest Upper limb rehab Microsoft Kinect V2 Score, Compensation, Barycenter, Target position
ShelfCans Upper limb rehab Microsoft Kinect V2 Score, Compensation, Hand trajectory

FlappyCloud Lower limb rehab Microsoft Kinect V2 Score, Compensation, Elevation
EquilibriumPaint Sit to Stand Microsoft Kinect V2 Repetition rate, Repetition trend, Coronal shift, Shoulder shift

HotAir Balance shift Microsoft Kinect V2 Score, CoP variation, Compensation
EndlessZig Hand rehab Leap Motion Score, Repetition rate, Range of Motion: yaw

CityCar Hand rehab Leap Motion Score, Repetition rate, Range of Motion: pitch
WineBottle Hand rehab Leap Motion Score, Repetition rate, Range of Motion: roll

FloatingTrap Hand rehab Leap Motion Score, Repetition rate, Grab strength

3. Features Description

The core of the ReMoVES platform consists of the remote delivery of a report to the therapist,
through which she/he can understand if the home-based rehabilitation process proposed to the patient
is effective and carried on correctly [10].

To achieve this goal, we are here introducing a study about the most significant indicators
which can be processed by some machine learning algorithms for automatic evaluation of a patient’s
performance rehabilitation session.

In this section, we focus on the definition of appropriate indicators aiming to highlight the patient
engagement and performance during the execution of the functional exercises.

To this end, the therapist feedback that judges the performance of each session carried out by
patients was collected at rehabilitation facilities. This enabled the preparation of a labelled dataset
which was used to test the significance and validity of the defined features.

In detail, data are displayed in the graphs of this section which are provided as examples dealing
with the problem of discriminating between sessions which were correctly performed (labelled by the
therapist as “Good”) and the ones which were inadequately executed (labelled as “Other”). Thanks to
such examples, we are able to evaluate if the selected features have discriminant power, as expected
by their definition. Such a preliminary phase gives an idea about the best feature, although a larger
dataset must be created for a more robust statistical evaluation.

Even though more sophisticated methods can be exploited for the feature normalisation step,
in the present study we experienced that simple feature scaling and mean normalisation methods
were sufficient. The standardisation of each feature range herein has the purpose of giving the same
weight to the various indicators. Mean normalisation involves subtracting the average from the
values of an input variable, resulting in a new variable with zero mean. At the end, we expect values
between −1 and +1.

In the following, the indicators specifically designed for each exercise are described along with
an evaluation of their classification power. A summary is provided in Table 2.

3.1. Relaxation

To make the subject comfortable and to return their heartbeat to a basal value before the
rehabilitation session, the patient is led to breathe with a regular rhythm by following a “breath
ball” displayed on the monitor. The ball changes its size, simulating inspiration and expiration
(Figure 2): when it grows, the patient should inhale, then exhale when it shrinks. When a patient had
difficulty following the ball rhythm, we asked them to relax and not strain themselves.

During the execution of this exercise, the Heart rate (HR) signal is acquired. The trend analysis is
performed, and the Angular coefficient βHR of the straight line that best approximates the heart beat
is computed, in order to understand the general pattern of the signal. The patient can be considered
ready for the execution of physical rehabilitation if βHR is equal to or less than zero. In fact, a positive
coefficient means a state of fatigue and excitement, not suitable for the aim of the rehabilitation process.
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3.2. Upper Limb

Microsoft Kinect V2 was deployed in this analysis: the patient interacting with digital games was
encouraged to reach an on-screen target with the arm motion (reaching task) in order to collect a high
in-game score. The main movements at the shoulder joint (glenohumeral joint) tracked during the
execution of functional exercises were: Flexion–Extension and Abduction–Adduction.

Two serious games for upper limb are available in the ReMoVES platform: ShelfCans and OwlNest.
During the execution of the rehabilitation exercise, we extract a large amount of data, but we are

currently focusing on these features for the upper limb:

• Score: the score collected in-game is an abstract quantity associated to the player performance
for their achievements. It acts as a quantitative indicator of success in the game introduced to
motivate patients to attain a better score than their opponents/themselves.

The Score feature is the ratio between the score collected by the user and the theoretical maximum
achievable in the game:

Score = scoreuser/scoremax. (1)

• Hand trajectory: analysis of the hand trajectory is an indicator of the precision and the movement
control level that the patient can keep during the activity. We calculate the distance between the
trajectory (N samples over time handi = (xi, yi), where x and y are the horizontal/vertical
coordinates of the coronal plane) and the shortest line passing through the two points of
target = (xt, yt) (target spawn position) and origin = (xo, yo) (Figure 3b):

Hand trajectorydistance =
1
N

n

∑
i=1

(yt − yo)xi − (xt − xo)yi + xtyo − ytxo√
(yt − yo)2 + (xt − xo)2

. (2)

• Compensation: compensation is an undesired movement strategy adopted by the patient during
the execution of the exercise. In detail, the distance d between the hand and the shoulder (Figure 3a)
while performing the movement is evaluated in order to assess whether the patient reaches the
targets by performing a correct Flexion–Extension or Abduction–Adduction movement or moves
the whole body instead, implying that the hand-shoulder distance remains constant.

Let us define µ the average of distances di with respect to the N observations during a single
session; the Compensation parameter, index of the wrong movement, is then extracted as follows:

Compensation = −

√√√√ 1
N

N

∑
i=1

(di − µ)2. (3)

• Barycenter: this indicator deals with the detection and measurement of a spatial negligence in
hemiparetic patients who ignore the targets that are offered to their attention in a certain part of
the in-game space. Spatial negligence affects approximately 30–40% of patients with acute stroke
and consists of ignoring part of the space as a result of brain damage. The hand coordinates on
the coronal plane, acquired over time, are used to populate a visual heatmap from which the
therapist can evaluate the neglected areas; the spatial map is presented with a colour scale ranging
from dark blue, where no movements were performed, to red, where there was the greatest
occurrence (Figure 3c). This indicator is provided by the horizontal offset of the barycenter of
the hand position observations over the session duration. In the evaluation of this indicator, it is
also important to consider that in some variations of the OwlNest the targets are not equally
distributed on both sides (e.g., to force a patient affected by left hemiparesis to focus his attention
on the left side of the screen only).
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Figure 3. (a) Abduction–Adduction exercise scheme; (b) Hand trajectory in ShelfCans game; (c) Heatmap
to detect neglected areas.

For each serious game we will build a dataset that allows detection of when the patient is
achieving good performances during the rehabilitation process. The data collection process takes place
in a rehabilitation structure where a therapist provides live feedback about the patient’s performances.
This will provide a dataset for supervised learning in the machine learning method.

In the OwlNest game, we are evaluating these relations: Score–Compensation and Barycenter–Target
positions (Figure 4). In the former case, a good performance is achieved with a high Score and low
Compensation. In the latter, a good performance is achieved when there is a linear dependency between
the position of the hand and the position where the target on the screen spawned. With this analysis,
we can discern when a shift from 0 in the Barycenter feature is caused by the patient’s syndrome or
just by a bias in the positions where in-game targets (the coloured owls) are generated. For example,
when most of the targets are generated in the left part of the screen, it is totally correct to collect
a negative (left) Barycenter value and this is not an evidence of spatial negligence.
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Figure 4. Plot of Score–Compensation and Barycenter–Target position features in OwlNest game. Data were
labelled as “Good” or “Other” by the therapist according to patients’ performance.

For the ShelfCans game we are evaluating the relations: Score–Compensation and Hand trajectory–Compensation
(Figure 5). The first case was already depicted for the OwlNest game. The latter highlights good
performances when the hand follows a straight trajectory matching the shortest path as much as
possible, while the functional exercise is carried out without strategies of compensation.

3.3. Lower Limb

Microsoft Kinect V2 is deployed in this kind of activity. The user must accomplish the
Abduction–Adduction movement with their impaired leg while they are standing. The therapist
can suggest to the patient to hold on to a physical support, such as the back of a chair, in order to
prevent falls or equilibrium instability. The elevation of the leg and additional body joint positions are
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tracked with the Microsoft Kinect V2 to detect the balance status of the user’s body: to accomplish the
exercise correctly, the patient must keep the trunk erected and straight.
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Figure 5. Plot of Score–Compensation and Hand trajectory–Compensation features in ShelfCans game.
Data were labelled as “Good” or “Other” by the therapist according to patients’ performance.

FlappyCloud is currently the only serious game included in the ReMoVES platform that is
developed around a functional exercise for the lower limbs.

During the execution of the rehabilitation exercise, we extract a large amount of data, but we are
currently focusing on these features for the lower limbs:

• Score: same as previous activities.
• Elevation: it is the maximum elevation of the impaired leg calculated as the angle between

legs during the Abduction–Adduction movement. The Elevation feature is the ratio between the
maximum angle reached by the user and the maximum reached on average by healthy subjects:

Elevation = elevationuser/elevationhealthy. (4)

• Compensation: to accomplish the exercise correctly, the patient must keep the trunk erected
and straight. In this case, the angle between the patient’s trunk and the ideal vertical attitude
is considered.

Compensation = ]trunk,vertical . (5)

For the FlappyCloud game, we are evaluating these relations: Score–Compensation and Elevation–Compensation
(Figure 6). The first case was already depicted for other games. In the latter case, a good performance
is achieved when the patient collects high Elevation value during the Abduction–Adduction while
keeping their truck erected and straight.
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Figure 6. Plot of Score–Compensation and Elevation–Compensation features in the FlappyCloud game.
Data were labelled as “Good” or “Other” by the therapist according to patients’ performance.
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3.4. Sit to Stand

Microsoft Kinect V2 was deployed in this analysis: the patient must stand up and sit down
repeatedly, keeping the trunk as straight as possible. The serious game developed around the STS
functional exercise is EquilibriumPaint.

Among the possible parameters we extracted, the following features were taken into account for
Sit to Stand evaluation:

• Repetition rate: number of repetitions in a given time; it is proportional to the in-game score.
The Repetition rate is the ratio between the rate maintained by the user and the average kept by
healthy subjects:

Repetition rate = rateuser/ratehealthy. (6)

• Repetition trend: the trend of the time required by the user to accomplish a single STS cycle.
The analysis of the variability during a single session is, for example, important to detect the
fatigue level of the patient. Given i the repetition number and ti the cycle duration, the Repetition
trend is the slope (m) of the linear regression of ti with respect to i:

m, q = LinearRegression(i, t),

Repetition trend = m.
(7)

• Coronal shift: verification of the correct strategy used by the patient to stand up, considering the
trunk tilt on coronal plane (Figure 7a). Even though the movement trajectory projected in the
sagittal plane must show some forward/backward displacement, the correct coronal trajectory
must be linear and constant around the zero value.

• Shoulder tilt: to accomplish the exercise correctly, the patient must stand up and sit down without
twisting or tilting the shoulders. A correct movement provides very small angles of inclination
with a tolerance of about 10 degrees, and therefore the average value must be around 0 degrees
(Figure 7b).
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Figure 7. (a) Trunk tilt on sagittal and coronal planes; (b) Shoulder tilt detection.

For the EquilibriumPaint game, we are evaluating these relations: Repetition rate–Coronal shift and
Repetition trend–Shoulder tilt (Figure 8). In the former case, a good performance is achieved when the
patient collects high in-game Score while keeping the Coronal shift around zero during the STS exercise.
In the latter, a good performance is achieved when the Repetition Trend remains constant (or even
increases) during the whole session, while the average value of Shoulder tilt remains around 0 degrees.
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Figure 8. Plot of Repetition rate–Coronal shift and Repetition trend–Shoulder tilt features in the
EquilibriumPaint game. Data were labelled as “Good” or “Other” by the therapist according to
patients’ performance.

3.5. Balance Shift

The Nintendo Wii Balance Board (WBB) has already been validated as a suitable alternative to
a laboratory-grade force platform in the measures of Centre of Pressure (CoP) in contexts where a
clinical assessment of balance is required without an elevated precision level [20,21]. The ReMoVES
platform does not employ the WBB despite its adequate performances in the serious games context;
in fact, according to the preliminary studies we have carried out, the Microsoft Kinect V2 can be
exploited for the estimation of the oscillation of the CoP on the mediolateral axis and WBB would be
redundant and anti-economic. The following procedure will disclose the method for the CoP estimation
using the Microsoft Kinect V2:

• Track the position in space of these fundamental body joints provided by Kinect SDK: right ankle
(Ar), left ankle (Al), the base of the spine (Sbottom), and the spine at the shoulder height (Stop)
(Figure 9a).

• Compute the position in space of the middle point (M) between the right ankle and the left ankle.
• Compute the difference between the angles related to the shift of lower and higher sections of

the trunk:
Tiltbottom = ](Ar, M, Sbottom)−](Al , M, Sbottom),

Tilttop = ](Ar, M, Stop)−](Al , M, Stop).
(8)

• Calculate the average between the Tiltbottom and Tilttop to get the estimated CoP:

CoP =
Tiltbottom + Tilttop

2
. (9)

a) b) c)

AlAr

Sbottom

Stop

M

Figure 9. (a) Tracked joints for Centre of Pressure (CoP) estimation; (b) Gameplay during a serious
game session; (c) Erroneous balance shift detection.
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We used this experimental setup to evaluate the performance of the proposed algorithm:
three subjects repeated a 2-min-long serious game for postural assessment ten times. Data were
synchronously recorded from WBB and Microsoft Kinect V2 and the CoP oscillation on the mediolateral
were normalised and compared calculating the Pearson correlation coefficient. The average of the
coefficients calculated for each test sessions brought the result of ∼0.89. Figure 10 shows a sample of
synchronised and normalised data in a 2-min-long test session.

The serious game focused around the balance shift functional exercise is HotAir. During the
execution of the rehabilitation exercise, we extract a large amount of data, but we are currently focusing
on these features for balance shift:

• Score: same as for upper limb games.
• Centre of pressure variation: during the Balance shift functional exercise, the patient must

load weight on the two legs alternately, and thus the variation of CoP on the mediolateral axis
is calculated.

CoPvariation = −

√√√√ 1
N

N

∑
i=1

(CoPi − µ)2. (10)

• Compensation: to accomplish the exercise correctly, the patient must alternate the load on the
lower left and right limbs without compensating the movement by shifting the upper part of the
body. This erroneous strategy can be detected by computing the difference between Tiltbottom and
Tilttop (Figure 9c):

Compensation = Tiltbottom − Tilttop. (11)

-1 
-0,5 

0

0,5

1

Titolo	del	grafico

Microsoft	Kinect	V2 Nintendo	Wii	Balance	Board
[s]

Figure 10. Normalised CoP oscillation acquired both with Microsoft Kinect V2 and Wii Balance Board
during a comparison test. Time is on the x-axis (2-min-long trial).

For the HotAir game, we are evaluating these relations: Score–CoP variation and CoP variation–Compensation
(Figure 11). In the first case, a good performance is achieved when the patient collects a high in-game
Score while their effort in shifting the load between left and right limbs is high. In the second analysis,
the correct performance is achieved with high CoP variation and low Compensation.
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Figure 11. Plot of Score–CoP variation and CoP variation–Compensation features in HotAir game. Data
were labelled as “Good” or “Other” by the therapist according to patients’ performance.
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3.6. Hand Movements

Leap Motion was deployed in this analysis: the digital games encourage the patient to control
in-game objects with hand, wrist, and finger motion. The main movements tracked during the
execution of functional exercises are: Radial–Ulnar deviation (Figure 12a), Flexion–Extension (Figure 12b),
Pronation–Supination (Figure 12c), and Grasping (Figure 12d).

From the motion data, we extract these fundamental features:

• Repetition rate: same as previous activities.
• Maximum angle: maximum angle reached in each of the proposed movement (corresponding

to yaw, pitch, and roll). These values are tracked, respectively, in EndlessZig, CityCar, and
WineBottle games.

• Grab strength: evaluation of the grasping exercise with Grab strength function provided by Leap
Motion SDK that returns values between 0 and 1 respectively when the hand is open or when it is
closed in a grabbing pose. This feature is currently tracked in the FloatingTrap serious game.

Figure 12. Movements detected during hand rehabilitation with Leap Motion: (a) Radial–Ulnar
deviation movement in EndlessZig game; (b) Flexion–Extension movement in CityCar game;
(c) Pronation–Supination movement in WineBottle game; (d) Grasping movement in FloatingTrap game.

3.7. Heart Rate and Electrodermal Activity

During daily rehabilitation therapy, it is very important to monitor the patient’s emotional
involvement in order to inform the therapist about the proper performance of the assigned plan
of care [22]. For this reason, heart rate (HR) and electrodermal activity (EDA) were recorded and
analysed to monitor major changes during the different phases of a rehabilitation session. These data
were compared with those from motion sensors to monitor the progress of therapy and the patient’s
involvement in the rehabilitation session.

The HR is an informative biological parameter that is easy to record and therefore to introduce
in the home setting. In other words, a simple bracelet sensor is sufficient to understand the patient’s
condition during the rehabilitation program. By analysing the heartbeat signal, it is also possible
to detect if the patient is too fatigued because the activity is excessively difficult or the duration
established by the therapist is inappropriate. In the literature, there are different works which indicate
that HR and heart rate variability (HRV) may be useful for measuring the valence of emotions, like joy,
sadness, and fear [23–25].

Both HR and EDA were chosen as biophysical signals to be correlated with activity performance
in order to detect a particular state of stress during the rehabilitation process.

The EDA is defined as a change in the electrical properties of the skin [26]. The EDA signal is
composed of both tonic and phasic components. The slowly varying base signal is the tonic EDA part,
also called the skin conductance level (SCL). The faster-changing part (phasic activity) is related to
external stimuli or non-specific activation, and it is called skin conductance response (SCR). Recently,
EDA has been used as a biofeedback mechanism in order to teach meditation or emotional control
and to treat anxiety disorder [27]. The EDA signal was also widely used as an indicator of the actual
state, related in particular to changes in the arousal level. Many studies reported that magnitude
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of electrodermal change and the intensity of emotional experience are almost linearly associated
in arousal dimension. For example, in [28], the authors used EDA and HR to evaluate immersive
virtual reality environment, finding significant results of correlation between the two signals and the
environment.

In this work, by fixing an observation window W, corresponding to each exercise duration,
standard statistical parameters, such as mean, variance, maximum and minimum value, and the
Pearson correlation coefficient between HR and EDA, were computed.

For the EDA signal, in order to obtain the phasic data by removing the tonic level of the signal,
unrelated to arousal, a median filtering process was applied. The median EDA value of the surrounding
samples based on a ±4 s interval centred on the current sample was computed for each sample and
the average subtracted from the current sample. After obtaining the phasic data, a peak detection
algorithm was applied in order to find skin conductance responses to external stimuli that can influence
patients during the execution of rehabilitation activity. A value of 0.01 µS was chosen as a significant
threshold to discriminate skin conductance variations. The same processing method was applied to
the HR signal.

To evaluate the general pattern of the two signals, a trend analysis was computed and evaluated
by applying the least-squares method. After applying it, the slopes of the straight lines, βHR and βEDA,
were calculated.

As explained above, HR and EDA are, respectively, indexes of valence and arousal. Once the
two signals were normalised between −1 and 1, the β variable and θ angle were used to define the
emotional index (Ie) as follows:

HRnorm = {hr1, hr2, . . . , hrn} , n = |HR| = |EDA|,

EDAnorm = {eda1, eda2, . . . , edan} , ∀i = 1, . . . , n,

θi = arctan (hri, edai)

IF θi < 0⇒ βi = |θi|+
π

2
,

IF θi ≤
π

2
⇒ βi =

π

2
− θi,

IF θi >
π

2
⇒ βi =

5
2

π − θi,

∀i = 1, . . . , n iei = 1− βi
π

,

Ie = {ie1, ie2, . . . , ien} .

The emotional index was represented as a graphical parameter (Figure 13) by evaluating how
strong the emotion was experienced in a given second in relation to all the emotions perceived
throughout the whole rehabilitation activity.

The two normalised signals HRnorm and EDAnorm were also represented in the Valence–Arousal
circumplex chart. The valence (HR variation) is represented on the x-axis and the arousal (EDA
variation) is represented on the y-axis (Figure 14). Emotions can in fact be mapped out, classifying
arousal (from high to low) and valence (from pleasure to displeasure) experienced during a particular
task. In the right part of the graph, positive emotions are related to a patient which is experiencing
happiness, serenity, calmness, and relaxation. On the contrary, the left part contains negative emotions
like sadness, depression, fatigue, and tension. The aim of this part of the study is to detect and classify
the emotions felt by the patient during the rehabilitation session, in order to personalise the plan of
care and, for example, to simplify an exercise if the patient, not achieving the goal, feels fatigued.
For each second of the acquisition, a point that represents the perceived emotion is plotted. The dots
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are printed with a colour that varies from dark blue to yellow in order to have a clear indication of the
start and end points of the recording, and therefore the trend over time. The classification analysis of
the emotions related to the rehabilitation exercises will be the subject of future studies when a larger
dataset for the training phase will be collected.
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Figure 13. The emotional index graph: Time is on the x-axis and the emotional index in terms of
emotion experienced during the execution of rehabilitation exercise is on the y-axis.
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Figure 14. Valence–Arousal circumplex chart: on the x-axis the valence and on the y-axis the arousal
of emotions. The data concentration in the left part of the graph can indicate that the type of exercise
assigned by the therapist is too difficult.
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4. Results

The ReMoVES system is in the test phase at the Complex Recovery and Rehabilitation Facility of
the Colletta Hospital in Arenzano (Genoa, Italy) and at the Rehabilitation Centre of Don Carlo Gnocchi
Foundation in Fivizzano (Massa-Carrara, Italy).

Up to this point, research efforts have been focused on the definition of the indicators aiming
to highlight the patient performance during the execution of the functional exercises. This process
requires mutual collaboration between ReMoVES platform developers and therapists. Moreover,
the feedback given by the patients plays a crucial role in this testing phase: the system was tried by
41 participants (gender: 19 male, 22 female) aged between 30 and 86 (Figure 15) who were hospitalised
due to various causes (stroke, fractures, prostheses, and Parkinson’s disease) (Figure 16); an informed
consent has been collected from the involved subjects and data have been recorded anonymously.

Emiplegic

male:22female:19

1

4 4

9

16

7

0
2
4
6
8
10
12
14
16
18

30-39 40-49 50-59 60-69 70-79 80-89 Age	class

Figure 15. Demographic characteristics of the patients.

Figure 16. Classification of the diseases affecting the patients that tested the ReMoVES platform.
The patients affected by hemiparesis are a subcategory of the ones affected by stroke (red box).

Our test group was roughly made up of half post-stroke (11 hemiparetic and 8 with general
diseases caused by stroke) and half orthopaedic patients, except for one participant affected by
Parkinson’s disease and a young tetraplegic man (upper limb was slightly involved). The therapist
integrated the patients’ traditional rehabilitation program with a set of additional exercises of their
choice from among the ones provided by the ReMoVES platform. In Figure 17, an overview of the
overall number of serious games sessions accomplished is provided. In accordance with Section 3.1,
the most frequent exercise was the “BreathBall”, since it is usually carried out before the actual
rehabilitation session to induce relaxation.

In this paper, we are providing preliminary results. We want to offer an overall glimpse of the
method we have defined to introduce machine learning systems for the automatic evaluation of patient
activity performance. At the moment, we have performed the initial steps required by the application
of supervised learning methods:

• Determine the training examples. We have decided which features are going to be used as training
set for each of our serious games.

• Gather a training set. Thus, a set of input objects is gathered and corresponding outputs are also
gathered according to care providers. In detail, “labelled” information consist of flagged data by
the therapist as “Good” when the patient performance is valid, and “Other” when the patient
carried out the exercise erroneously/inadequately.
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Figure 17. Classification of available serious games and frequency of use.

Unfortunately, despite the conspicuous number of sessions carried out by patients, the amount of
data actually available for analysis is limited. In fact, during this initial testing phase, the focus of the
operators (technicians and therapists) was on the stability of the system, the user experience, and the
definition of the indicators of each individual game instead of on the labelling phase regarding the
evaluation of the patient’s performance.

Most of the game sessions in our database are unlabelled and nearly useless for supervised
analysis. Figure 18 shows the results of the classification process achieved with the implementation
of a logistic regression model to predict whether a patient performed well during the rehabilitation
activity through serious games.
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Figure 18. Cont.
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Figure 18. Training data with decision boundary for OwlNest (a,b); ShelfCans (c,d); FlappyCloud (e,f);
EquilibriumPaint (g,h); and HotAir (i,j) serious games.

The results are not conclusive because of the reduced dataset (we have nearly 20 labelled sessions
for each game), but they highlight how it is possible to classify the “Good” sessions from those labelled
as “Other”, showing that the choice of the selected features pairs was effective. We will re-analyze the
issue with more data available.

5. Discussion

As reported in the paper, the system had a good impact on the rehabilitation procedures of the
individuals involved in the study. Patients and therapists were deeply involved in the assessment and
improvement of the overall structure of the system, with particular attention paid to usability and ease
of use of the platform.

The general aim was to determine which parameters are useful to the therapist in order to evaluate
the patients’ performances. Thanks to the professional involvement of the medical and therapeutic
personnel, it was possible to set up a rough dataset that will be used by supervised learning algorithms.

Further steps planned are related to an improvement of the usability and an extension of use
to a larger and diversified number of patients, in order to make the dataset larger and more solid.
To improve the session labelling process a companion web application for the therapist is under
development: this tool is accessible from any device—including a smartphone—and displays a minimal
user interface with just two buttons corresponding to “Good” and “Other” label. The therapist will
no longer have to note down manually his opinion about the patient performance, but he will label
the game session in real-time through the companion web application while the patient is performing
the rehabilitation activity. This solution will also bring a remarkable increase of data collection since
the therapist will be able to provide multiple feedback over time (for example every 20 s), instead of
just one overall final opinion. More granularity will also deliver more precise data for classification
since the patient performance could be meaningfully different throughout a single game session and
a single label for the entire session could be misleading under certain conditions.

Despite the limited data collected, we are confident that our work is going to bring innovation to
the rehabilitation processes. For this reason the team is starting to move the system to a domestic and
home-based environment, simplifying and lightening the general rehabilitation process in order to
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give a better service both to patients and therapists and in the near future to expand the possibility of
improving real home-based care.
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