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This paper describes an original technique for the joint feature and model selection in the context of support vector machine
(SVM) classification applied as a diagnosis strategy in model-based fault detection and isolation (FDI). We demonstrate that the
proposed technique contributes to the solution of an open research problem: to design a robust FDI procedure, correctly functioning
with different operating conditions and fault sizes, specifically settled for an electric generation system based on solid oxide fuel
cells (SOFCs). By using a quantitative model of the generation system coupled to an optimized SVM classifier, a satisfactory FDI
procedure is achieved, which is robust against modeling and measurement errors and is compliant with practical deployment.

1. Introduction

The interest in electric generation plants based on the fuel
cell (FC) technology [1, 2] is constantly growing owing to
their high energy conversion efficiency and environmental
compatibility. However, plants based on FC stacks still suffer
from a low reliability and a limited lifetime, and thus the
development of specific methods for the automatic online
fault diagnosis is of paramount importance for their commer-
cial diffusion. According to [3, 4], among the possible FDI
approaches, the model-based scheme [5, 6] is currently the
preferred one in the context of the FC technology.

Although systems based on SOFC stacks are universally
reputed to be one of the best options for distributed electric
generation plants, the literature regarding the FDI procedure
in these systems is still scarce [7–10]. Moreover, in many
of these papers [7, 8], the proposed diagnosis strategy [6]
is limited to inference approaches that use a binary fault
signature matrix arranged according to a fault tree analysis
(i.e., a deductive top-down tool, typically used in safety
and reliability engineering) or an improved version of such

a matrix [10]. To overcome the weaknesses of the binary
signature matrix [11], we recently proposed [9] a supervised
classification approach, implemented through a SVM, as
a possible diagnosis strategy. We demonstrated that the
detection and isolation of faults of random size, occurring in
an SOFC generation system that works under many different
steady-state operating conditions, is possible by using a
supervised SVM classifier.

However, only preliminary results (obtained under the
assumption that the model provides exact predictions) are
reported in [9], leaving many issues unresolved. One of
them is the choice of the best physicochemical variables to
be measured during the system operation and used for the
FDI procedure. Although virtually all the physicochemical
variables that characterize the functioning of an SOFC plant
can be predicted by the related mathematical model [6],
the practical measurement of these variables offers different
levels of difficulty, from variables that are easy to measure to
variables that are extremely difficult to measure. Therefore,
the evaluation of the contribution that each of these variables
provides to the FDI procedure is of crucial importance.
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An additional open issue regards the model selection
for the SVM classifier. Model selection generally consists
in tuning the parameters of the SVM classifier, affecting
the FDI performance and possibly choosing the kernel
function. When the kernel is predefined, the values of the
parameters of the SVM need to be optimized prior to the
training phase of the classifier. In turn, this optimization
depends on the features that are chosen for the classification
procedure. Because in model-based FDI the residuals (i.e.,
the differences between the values of the physicochemical
variables measured during SOFC system operation and the
values of the same variables predicted by the system model)
are used as features [6], it is evident that the selection of
the variables to be used and the parameter optimization are
strictly interconnected and need a combined investigation.

In this paper, we propose an original technique to carry
out feature selection and parameter optimization jointly,
in the context of a model-based FDI procedure applied to
SOFC systems and performed through SVM classification.
Dimensionality reduction has received great attention in
the fault diagnosis field [12–15]. It can be performed with
projections that create a set of a few synthetic features (i.e.,
feature transformationmethods [12, 13, 15]) or by selecting the
most relevant features (i.e., a subset of residuals) for diagnosis
[14, 16, 17].

To determine, among the variables that can be measured
in the SOFC system, those which play the most critical
role in view of the discrimination among the considered
fault classes, we focus on feature selection. This approach
preserves the physical meaning and interpretability of the
features used for classification purposes. Here, a technique
based on the minimization of an analytical error bound
[18, 19] is proposed.Many previous feature selectionmethods
apply discrete optimization algorithms either to interclass
distance measures (e.g., Bhattacharyya or Jeffries-Matusita
distances), computed through parametric (usually multivari-
ate Gaussian) models for the feature statistics conditioned
to class membership, or to the classification accuracy on a
validation set [17]. However, the former method does not
fit the FDI procedure addressed here well because no well-
defined parametric model is available for the joint statistics
of highly heterogeneous physicochemical variables of an
SOFC system. The latter method would be pursuable in the
present application, but it would require setting aside part
of the samples available for the training phase and using
them only for validation purposes. Instead, the proposed
technique extends the algorithm in [20] by combining it with
a nonparametric error bound that can be derived as a by-
product of the SVM training. In this way, the feature selection
is performed without reserving a portion of the training
samples for the validation.

Moreover, while a given kernel function (e.g., a Gaussian
radial basis function, RBF) is predefined, the feature selection
technique is also integrated with the optimization of the
parameters of the SVM classifier (i.e., the model selection)
in a single, innovative method. Working in this way, feature
selection indicates which variables need to be measured
in the SOFC system to attain a given (optimized) level of
performance. In addition, by combining this outcome with

the measurement difficulty, it is possible to derive subsets
of variables that provide a satisfactory performance with an
acceptable measurement difficulty.

The present paper is organized as follows. Section 2 intro-
duces the background concepts, describes the joint feature
and model selection, and presents the SOFC system, its
quantitative model, and the faults considered.The generation
of the dataset and the achieved results with different feature
subsets are described in Section 3. Finally, the conclusions are
drawn in Section 4.

2. Materials and Methods

2.1. Model-Based FDI. In model-based fault diagnosis [5, 6],
a model of the monitored system (encompassing all the
system components) is used to predict the values of several
physicochemical variables that characterize the behavior of
the nonfaulty system under different operating conditions.
The predicted values of these variables are then compared
to the real values and measured during plant operation,
and the residuals (i.e., indicators of deviations between the
measurements and model-based predictions) are used in the
FDI procedure through an appropriate diagnosis strategy.
When the model is run in parallel with the real system
(with the same inputs), the residuals can be computed for
each variable through parity equations [6], whereby the
values predicted by the model are subtracted from the those
measured in the real system.

Because the model and the real system receive the same
inputs and because the model simulates a nonfaulty system,
when the real system is nonfaulty as well, the residuals are
zero for less than the model uncertainty and measurement
tolerance. Instead, when a fault occurs, themagnitudes of one
or more residuals increase, allowing for fault detection and
possible isolation. Asmentioned above, the diagnosis strategy
can be implemented through an inference or classification
approach [6]. In the present study, we propose a classifica-
tion approach; specifically, we use the classify-before-detect
paradigm [21, 22]. According to this paradigm, the detection
and classification are not a sequence of distinct tasks but
are instead performed jointly, defining the nonfaulty state
as a class of the classification scheme. The advantage of this
approach is that setting (fixed or adaptive) thresholds for the
detection task is no longer necessary.

To train and test an FDI procedure, samples (i.e., sets
of residuals) obtained from the monitored system working
under several different faulty operating conditions are nec-
essary. To circumvent the problems arising from implanting
real faults in real systems (i.e., irreparable damagewith related
economic loss), we follow the approach described in [23].
Indeed, fictitious faults can be implanted into the samemodel
used to predict the physicochemical variables of the healthy
system. In this way, as illustrated in Figure 1, two models are
run in parallel: the first in place of the real system, operating
under healthy or faulty conditions; the second to predict the
variables characterizing a healthy system. The replacement
of the real system with a model able to simulate also the
faulty conditions is effective only if the model is reliable
and accurate. This requirement is typically satisfied when
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Figure 1: Schematic of the simulated deployment of the model-
based FDI procedure in industrial plants, according to the approach
of parity equations [6].

a quantitative mathematical model (i.e., a model that is based
on the physical equations ruling all the processes governing
the real system, also called the “first-principle” or “white-
box” model [4]) is available and has been validated with
experimental trials encompassing several operating condi-
tions. Section 2.5 reports further details about the model of
the electric generation SOFC system under consideration in
the present paper.

The scheme in Figure 1 can be used to both train and test
the FDI procedure [23]. However, the samples used for the
SVM classifier training (i.e., the training set, exploited also
for the joint feature and model selection) should be different
from the samples used to evaluate the FDI performance (i.e.,
the test set).

Training the classifier requires a substantial amount of
data, representative of the possible combinations among
operating conditions, fault classes, and fault sizes. Large data
collections joined with pattern recognition techniques are
typical of data-driven FDI approaches [23–25]. Although
model-based and data-driven approaches are traditionally
considered distinct, alternative approaches to the FDI prob-
lem such as our model-based approach include some aspects
of data-driven approaches. Some authors identified this case
as the hybrid or integrated approach [24, 25]. More precisely,
in the FDI system we propose, data produced by quantitative
experimental validated physically based simulations are used
to assemble a statistical knowledge of the relationships
between residuals and faults, that is, to train the SVM clas-
sifier [23].

2.2. SVM Classification. SVMs are a family of learning
machines that are based on methodological contributions
from statistical learning, kernel-based processing, functional
analysis, and optimization theory [26]. SVMapproaches have
been proposed for classification [19, 26–28], regression [26,
29], and probability density modeling [30].

Focusing first on binary classification, let ℓ samples,
associated with faulty or nonfaulty situations, be generated
through the quantitative model. Let 𝑑 be the number of
features (here, the residuals), let x

𝑖
(𝑖 = 1, 2, . . . , ℓ) be the 𝑑-

dimensional vector collecting the 𝑑 residuals, and let 𝑦
𝑖
be a

binary variable (named label) that takes on the value +1 or
value −1 depending on the membership of the 𝑖th sample to
either one of the two classes.The set {(x

𝑖
, 𝑦
𝑖
)}
ℓ

𝑖=1
is the training

set. An SVMclassifier assigns an unknown sample x ∈ R𝑑 the
class label 𝑦(x) = sgn𝑓(x), where the discriminant function
𝑓(⋅) is the following kernel expansion:

𝑓 (x) =

ℓ

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝐾(x
𝑖
, x) + 𝑏, (1)

and 𝐾(⋅, ⋅) is a kernel function. The coeffcients 𝛼
𝑖
(𝑖 = 1,

2, . . . , ℓ) are determined by solving the following quadratic
programming (QP) problem (multidimensional vectors are
considered column vectors, the 𝑖th component of u ∈ R𝑛 is
denoted as 𝑢

𝑖
(𝑖 = 1, 2, . . . , 𝑛), and the superscript “𝑇” denotes

matrix transpose):

min
𝛼

(
1

2
𝛼
𝑇
𝑄𝛼 − 1𝑇𝛼) ,

y𝑇𝛼 = 0, 0 ≤ 𝛼
𝑖
≤ 𝐶, 𝑖 = 1, 2, . . . , ℓ,

(2)

and the bias 𝑏 is derived as a by-product of this solution.
The matrix 𝑄 is the ℓ × ℓ matrix whose (𝑖, 𝑗)th entry is
𝑄
𝑖𝑗
= 𝑦
𝑖
𝑦
𝑗
𝐾(x
𝑖
, x
𝑗
), 1 is an ℓ-dimensional vector with unitary

components, y is the vector of the labels of the ℓ training
samples, and 𝐶 is a parameter [26]. The expansion (1) is
typically sparse; that is, 𝛼

𝑖
= 0 for the majority of training

samples; those for which 𝛼
𝑖
> 0 are named support vectors.

A function 𝐾 of two vectors is a kernel if it is equivalent
to the evaluation of an inner-product in some nonlinearly
transformed space. Specifically, there are a separable Hilbert
space H and a mapping Φ : X → H from a compact
subset X of R𝑑 to H, such that 𝐾(x, x󸀠) = ⟨Φ(x), Φ(x󸀠)⟩
for all x, x󸀠 ∈ X (where ⟨⋅, ⋅⟩ denotes the inner product
on H) [26, 31]. The compactness of X yields no loss of
generality because a compact subset (e.g., a box or a closed
ball) that includes all training samples always exists. The so-
called Mercer’s conditions are known for a function𝐾 to be a
kernel. Details can be found in [26]. Here, we only recall that
a well-known example is the Gaussian RBF kernel:

𝐾(x, x󸀠) = exp(−

󵄩󵄩󵄩󵄩󵄩
x − x󸀠󵄩󵄩󵄩󵄩󵄩

2

2𝜎2
) (x, x󸀠 ∈ X) , (3)

where 𝜎 is a positive parameter.
It is also possible to prove that (1) is equivalent to a linear

discriminant function in the transformed spaceH:

𝑓 (x) = ⟨𝑤,Φ (x)⟩ + 𝑏, (4)

where𝑤 ∈ H and the bias 𝑏 ∈ R solve the following minimi-
zation problem [26]:

min
𝑤,𝜉,𝑏

(
1

2
⟨𝑤,𝑤⟩ + 𝐶 ⋅ 1𝑇𝜉) ,

𝑦
𝑖
(⟨𝑤,Φ (x

𝑖
)⟩ + 𝑏) ≥ 1 − 𝜉

𝑖
, 𝜉
𝑖
≥ 0, 𝑖 = 1, 2, . . . , ℓ.

(5)

{𝜉
𝑖
}
ℓ

𝑖=1
is a set of slack variables that determine if and how

much the discriminant function erroneously classifies the
training samples. On one hand, the term 1𝑇𝜉 to the objective
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function in (5) favors fitting the discriminant function with
the available training set. On the other hand, it can be proven
that the term ⟨𝑤, 𝑤⟩ in (5) favors minimizing the expectation
(over the probability distribution of the training samples)
of the error on an unknown test sample and minimizing
overfitting [26]. 𝐶 tunes the tradeoff between the two terms.

Mapping to the usually higher (possibly infinite) dimen-
sional space H optimizes the chances that a linear decision
boundary can effectively discriminate the classes, while
equivalently providing a flexible nonlinear decision boundary
in the original space R𝑑. At the same time, H is never
computationally involved because all calculations only use
the kernel𝐾 (see (1) and (2)).

Unlike other popular approaches to nonparametric learn-
ing, such as neural networks, the training problem (2) is
quadratic and is not plagued with many local minima. Case-
specific numerical algorithms have also been proposed to
efficiently address it [32].

Generalization to 𝑀 classes (𝑀 > 2) is usually achieved
by decomposing the multiclass problem into a collection
of binary subproblems [19, 26, 28]. Here, the one-against-
one (OAO) approach is used, which is usually a good
tradeoff between accuracy and computational burden. First, a
binary discriminant function 𝑓

ℎ𝑘
(⋅) is separately determined

to discriminate between the ℎth and 𝑘th classes (ℎ, 𝑘 =

1, 2, . . . ,𝑀; 𝑘 > ℎ).Then, to label an unknown sample x, each
function 𝑓

ℎ𝑘
(⋅) is applied to x and a vote is cast in favor of

either the ℎth or the 𝑘th class depending on the sign of𝑓
ℎ𝑘
(x).

Finally, x is assigned to the class that received the most votes.

2.3. Feature and Model Selection. A relevant issue in the
present FDI scheme is to determine which of the residuals
are most informative with respect to the discrimination of
the considered classes to minimize both the number of mea-
surements to be taken on the SOFC system and the memory
and computational requirements of the FDI procedure. At
the same time, the SVM classifier involves parameters (i.e.,
𝐶 in the QP problem (2)) and possible additional parameters
in the kernel (e.g., 𝜎 in (3)). Their values generally affect
the classification performance and need to be set prior to
training.

Here, a novelmethod is developed and embedded into the
proposed FDI procedure to select jointly the most informa-
tive residuals (i.e., to perform feature selection) and optimize
the parameters (i.e., to perform model selection, after fixing
the kernel type). The goal is to achieve full automation of
the FDI procedure. The key idea is to identify the feature
subset and the parameter configuration that minimize an
analytical error bound, that is, the so-called span bound.
Under mild assumptions, the span bound can be proven to
be a tight upper bound on the leave-one-out error rate [18]. It
also exhibits a usually high correlation with the error rate on
test samples disjointed from the training samples, provided
that they are drawn from the same distribution [19, 29].
However, its computation remarkably involves only training
samples and no additional validation data. To minimize the
span bound, the proposed method combines the approaches
introduced in [19, 20] for SVM parameter optimization and
feature selection, respectively.

Let R, S, and 𝜃 be the set of all 𝑑 features (i.e., the
residuals), a subset of 𝑚 features (S ⊂ R), and a vector
collecting the input SVM parameters (e.g., 𝐶 and 𝜎, if the
Gaussian RBF kernel is used), respectively. Considering again
the binary case first, let us explicitly stress the dependence on
S and 𝜃 by denoting as𝛼

𝑖
(S, 𝜃) (𝑖 = 1, 2, . . . , ℓ) and𝑓(⋅ | S, 𝜃)

the solution of the QP problem in (2) and the discriminant
function in (1), respectively, when the SVM is trained using
the 𝑚 features in S and the input parameter vector 𝜃. The
span bound is defined as the fractionJ(S, 𝜃) of the training
samples such that 𝛼

𝑖
(S, 𝜃) > 0 and (𝑖 = 1, 2, . . . , ℓ):

𝛼
𝑖 (S, 𝜃) 𝑆

2

𝑖
(S, 𝜃) ≥ 𝑦

𝑖
𝑓 (x
𝑖
| S, 𝜃) , (6)

where the coefficient 𝑆2
𝑖
(S, 𝜃) (named span) can be obtained

as a by-product of the training phase by solving a further
QP problem [18] or through a fast linear algebra argument
[33]. In the multiclass case, J(S, 𝜃) is computed through
OAOas aweighted average of the span bound values obtained
separately for each pair of distinct classes, the weights being
proportional to the relative frequencies of the classes in the
training set [19]. Further details on this point can be found in
[19, 33].

Indeed, J(S, 𝜃) is a nondifferentiable function of 𝜃 [18].
According to the definition recalled above for the binary
case, ℓ ⋅ J(S, 𝜃) is integer-valued and J(S, 𝜃) proves to be
piecewise constant on the space of the admissible parameter
vectors 𝜃. Similar comments hold in the multiclass case
as well. This prevents applying numerical minimization
algorithms that make use of derivatives (e.g., the gradient
or the Newton-Raphson’s methods) [34]. In general, suitable
numerical gradients and difference quotients might be used
to replace gradients and derivatives, but ad hoc convergence
theorems would be necessary for their specific application to
the span bound. In [34], a regularized differentiable version
of the span bound is introduced to allow gradient descent
to be applied, but an additional regularization parameter,
which has to be manually tuned, is necessary. Here, similar
to [19], the Powell’s algorithm is used to minimize J(S, 𝜃)

with respect to 𝜃. Powell’s method is an unconstrained
minimization technique that emulates the behavior of the
conjugate gradient method without using derivatives and
converges, undermild assumptions, to a local minimum [35].

To minimize the resulting functional,

J
∗ (S) = min

𝜃

J (S, 𝜃) , (7)

with respect to S, the steepest ascent algorithm in [20] is
adapted and extended. It is an iterative algorithm, initialized
with a preliminary subset of 𝑚 features, which has been
demonstrated to be effective when applied to the maximiza-
tion of Bayesian interclass distance measures in problems
of remote sensing image classification [20, 36]. Here, it is
extended to the minimization (steepest descent) of the span
bound functional, combined with the Powell’s algorithm, and
integrated in the proposed FDI procedure.

Specifically, given a subset S of 𝑚 features, the proposed
feature selection and parameter optimization method eval-
uates each possible replacement of one of the 𝑚 features in
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Figure 2: Flowchart of the proposed joint feature and model selection algorithm for FDI in SOFC systems.R,S, and𝑚 denote the set of all
available features (residuals), a feature subset, and the desired number of features to be selected, respectively. |S| denotes the cardinality ofS.

S by one of the (𝑑 − 𝑚) features outside S (i.e., in R −

S) by computing the corresponding value of J
∗
(⋅), that is,

by running Powell’s algorithm until convergence (see (7)).
Let J󸀠

∗
be the minimum span bound obtained across all

these 𝑚(𝑑 − 𝑚) possible replacements. If J󸀠
∗

< J
∗
(S), the

replacement is performed andS is correspondingly updated.
This procedure is iteratively repeated, while reductions in
the span bound are feasible through some replacement of a
feature inside by a feature outside the current subset.

The collection of the subsets of 𝑚 features is finite, so
finite-time termination is guaranteed. As discussed in [20],
convergence to a local minimum ofJ

∗
(⋅) is also guaranteed,

whereby the notion of the local minimum is interpreted by
endowing the discrete space of the subsets ofRwith ametric-
space topology through the well-known Hamming distance.
This property, together with the aforementioned convergence
behavior of the Powell’s algorithm, suggests that, at the least,
local minima of the span bound functional are identified by
the proposedmethod in the searches for both a feature subset
and a parameter vector.

Initialization of the method is performed through the
sequential forward selection (SFS) algorithm, that is, a well-
known suboptimal approach to feature selection [17]. First,
SFS starts from an empty subset of features, separately
computes the values of J

∗
(⋅) associated with the 𝑑 subsets

composed of one feature each, and selects the feature cor-
responding to the smallest value of J

∗
(⋅). Then, it evaluates

J
∗
(⋅) for all the (𝑑 − 1) subsets of two features, which are

obtained by separately pairing the previously selected feature
with each other feature. Again, the resulting feature pair with
the smallest value ofJ

∗
(⋅) is selected. Then, the procedure is

repeated iteratively, progressively adding one feature at a time
until the desired number 𝑚 of features is reached. Figure 2
displays a flowchart of the proposed feature selection and
parameter optimization algorithm. Further details on the SFS
and steepest descent (ascent) algorithms can be found in
[20, 36].

2.4. SOFC SystemDescription. In this study, themodel-based
FDI scheme and SVM classification are applied to an electric
generation system consisting basically of a reformer, an SOFC
stack (formed by a number of planar cells superimposed
to each other), and a post burner. The reformer contains a
suitable catalyst that promotes the steam reforming reaction
within the feeding mixture (3 : 1 vol. methane and steam),
which is partially converted into hydrogen and carbon
monoxide. This partially reformed fuel is then fed into the
anode compartment of the SOFC stack, while air is fed
into the cathode side. The SOFC stack (average operating
temperature of 850∘C) is composed of a number of rect-
angular planar cells superimposed onto each other, each
of which develops an electrochemical reaction producing
steam and carbon dioxide along with electrical power and
heat. Nevertheless, the anode exhaust contains a significant
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percentage of flammables. Thus, the anode exhaust is mixed
with the cathode exhaust and burned in an off-gas burner to
reduce the release of pollutants and increase the temperature
of the flue gas for further utilization or energy recovery in
subsequent components (not considered here). The system
scheme is displayed in Figure 3; further details can be found
in [37].

2.5. Quantitative Model and Fault Classes. The model of the
electric generation SOFC system is a quantitative model,
which embeds the physical equations of the phenomena
occurring in the process, earning the classification of “first-
principle” or “white-box” model. Overall, the model is
obtained by coupling the quantitative models of the three
components, that is, reformer, fuel cell stack, and burner.
The SOFC stack model assumes all cells are identical along
the stack. The single cell model is then developed according
to a typical scheme applied to chemical reactors [38] and
includes the equations of the local chemical and electro-
chemical reaction kinetics. In turn, the latter includes the
evaluation of the Nernst voltage and of all the sources of
losses (anodic activation, cathodic activation, and ohmic).
The local kinetics is then coupled to local mass, energy, and
momentum balances. A partial differential/algebraic system
of equations is obtained, integrated using a relaxationmethod
for the energy balance, and combined with a finite difference
method to solve the other equations. Reformer and burner are
simulated throughmacroscopicmass and energy balances. In
the previous case, the steam reforming reaction is assumed
to be at thermodynamic equilibrium. In the latter case, all
the flammables are considered to be combusted completely.
Further details can be found in [37].

In principle, themodel is developed to simulate nonfaulty
operating conditions, but it can also be extended to simulate
faulty operating conditions by including suitable equations
for the simulation of typical faults occurring in SOFC systems
[37]. Thus, the following four main fault classes have been
simulated [37].

SOFC Stack Degradation. A number of different faults can
occur inside the SOFC stack, affecting the cell structure and,
in particular, the electrolyte/electrodes coupling in different
ways. A comprehensive overview is given in [37], in which it
is also demonstrated that, for the purposes of plant simulation
under faulty conditions, the effect of all these different faults
is correctly simulated with an increase of the overall internal
stack losses. Thus, the latter have been increased between
105% and 160% of their nominal value.

Air Leakage. In addition to providing the oxidant necessary
for the electrochemical reaction, the cathode air flow allows
the temperature of the stack to be controlled. A potential air
leak between the air flow meter and the SOFC stack has been
simulated by reducing the flow entering the stack to between
50% and 95% of its nominal rate.

Fuel Leakage. Inside the reformer, the methane/steam feed is
converted into a mixture with a high percentage of hydrogen.
Fuel leakage is likely to occur because of the low dimension

Fuel Exhaust

Reformer Burner

Anode

SOFC
stack

Cathode

Air

Figure 3: Schematic of the SOFC system.

and high diffusivity of the hydrogenmolecule. A leak between
the exit of the reformer and the entrance of the stack has been
simulated by reducing the flow rate to between 75% and 95%
of its nominal value.

Reformer Degradation. A reduced conversion of methane
can be achieved in the reformer due to a number of faulty
effects (e.g., catalyst degradation, carbon deposition, or sul-
fur poisoning). Several possible degrees of deviation from
equilibriumhave been simulated by reducing the equilibrium
constant of the steam reforming reaction to between 30% and
95% of its thermodynamic value.

As indicated in Figure 3, the SOFC plant under consid-
eration includes an SOFC stack, a methane steam reformer,
a burner, a fuel feeding system, and an air feeding system.
Given that the burner is a well-tested and mature technology,
its faults are not taken into account. On the other hand, the
faults of the other four plant components are all considered,
one fault for each component. As mentioned above, the
different faults that can occur in the SOFC stack end up
giving similar effects [37]. Thus, they can be lumped together
as one single fault class. Similar considerations hold for the
steam reforming reactor. Consequently, the FDI procedure
proposed here cannot be used to distinguish among the
different types of faults that can occur in the SOFC stack
or in the methane steam reformer. If necessary, further
investigations (e.g., chemical or electrochemical tests) must
be carried out to identify in detail the microscopic cause of
the failure, as suggested in [37].

The reliability of the predictions obtained by the SOFC
systemmodel is assured by its validation against experimental
data. This validation was performed under both steady-state
and dynamic working regimes. Moreover, as described in
[37], for these working regimes, different operating con-
ditions have been considered. Circumscribed experimental
validation under faulty operating conditions has been per-
formed as well [39].
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Even if our model of the SOFC system is able to sim-
ulate faults occurring during transient system operation, as
discussed in [39], the development of an FDI procedure for
application in transient conditions requires an analysis of
the time-dependent behavior of residuals that is beyond the
scope of the present paper. The latter is devoted to an inves-
tigation of faults occurring during steady-state operation of
the system. Starting with the system working in an unfaulty
steady-state operating condition, we simulate the occurrence
of a fault, which triggers a transient behavior that is simulated
by our model until a new (faulty) steady-state condition is
reached. Residuals thatwe consider are those calculated as the
difference between values of the observed physicochemical
variables in the faulty and unfaulty steady states.

The experimental SOFC plant that provided the exper-
imental data is identical to the plant described above (see
Figure 3).Theplant has beenmanufactured by StaxeraGmbH
(D) [40] and tested by EBZ GmbH (D) within the European
project GENIUS [41].

2.6. Computation of Residuals. As discussed previously and
according to [23], in this study, the real plant is replaced by a
copy of the quantitative model, modified in view of simulat-
ing the effect of different faults of various size occurring in the
plant (see Figure 1). Whereas ideal conditions were assumed
in [9], here, the model uncertainty and measurement toler-
ance are considered by adding random errors to the values
of the physicochemical variables simulated for the real plant
(see Figure 1). This allows us to attain realistic residuals and
to investigate the sensitivity of the FDI procedure by testing
different error magnitudes.

To introduce the model uncertainty and measurement
tolerance, each observed variable calculated by the model
used in place of the real plant is multiplied by a random
variable 𝛾

𝜀
, uniformly distributed in [1 − 𝜀, 1 + 𝜀], where

100𝜀 represents the maximum percentage error. Therefore,
the residual 𝛿

𝑉
related to a given monitored variable 𝑉 is

computed as follows:

𝛿
𝑉

= 𝑉
𝑚
𝛾
𝜀
− 𝑉
𝑝
, (8)

where 𝑉
𝑚
is the observed variable calculated by the (simu-

lated) plant under faulty and nonfaulty conditions and 𝑉
𝑝

is the same variable predicted by the model for a nonfaulty
plant.The value assumedby the randomvariable𝛾

𝜀
is updated

each time the residual 𝛿
𝑉
is computed.

The residuals of the ten physicochemical variables of the
SOFC system, listed in Table 1, are used as features for the
classification algorithm. Although these ten variables are easy
to access in numerical simulations, their measurement in a
real plant raises some complexity concerns. Thus, we have
classified them as easy to extremely difficult to measure, as
reported in Table 1. The feature selection method proposed
here makes it possible to assess the contribution provided
by each of these variables toward a correct classification.
This information, combined with themeasurement difficulty,
allows us to select the variables to be monitored in a real
application of the FDI procedure.

Table 1: Residuals used for the FDI procedure with the related
measurement difficulty.

Number Residual Measurement
difficulty

1 Generated electric power Easy
2 Air flow rate entering the stack Easy
3 Fuel flow rate entering the stack Easy

4 Air pressure loss between the inlet and
outlet of the FC stack Easy

5 Temperature at the burner outlet Easy
6 Average stack temperature Difficult

7 Anodic activation losses Extremely
difficult

8 Cathodic activation losses Extremely
difficult

9 Ohmic losses Extremely
difficult

10 Nernst voltage Extremely
difficult

2.7. Control Strategies and Operating Conditions. In this
study, both typical control strategies employed in FC gen-
eration plants (i.e., constant-current and constant-voltage)
have been considered. The generation plant is assumed to
be equipped with a power inverter that, in addition to the
task of converting the DC electrical power to AC electrical
power, controls the power supplied by the plant and the
operation mode of the stack. Thus, the inverter can force
the stack to generate a constant voltage or constant current
according to the 𝑉-𝐼 characteristic curves of the SOFC
stack.

The reference operating condition for the SOFC plant
described above includes a constant electrical current of
26.2 A (or a constant SOFC stack potential of 42.5 V), a
fuel utilization factor of 0.75, a reformer temperature of
650∘C, and an average SOFC stack temperature of 850∘C.
In this condition, the plant generates an electrical power of
approximately 1.1 kW. Starting from this reference operat-
ing condition, for each control strategy, different operating
conditions are defined by tuning the values imposed for
the constant current (or constant voltage) and the fuel
utilization factor. During operation, the reformer is kept at
fixed temperature (650∘C) through an electrical heater, and
the SOFC stack temperature is maintained at the desired level
by regulating the air inlet flow rate. For the constant-current
control strategy, ten operating conditions are considered by
modifying the electrical current (ranging from 6 to 30A)
and/or fuel utilization factor (ranging from 0.35 to 0.75) with
respect to their reference values. For the constant-voltage
control strategy, ten operating conditions are considered as
well. The stack potential is modified between 41 and 53V,
and the fuel utilization factor is modified between 0.35 and
0.75.

Further details regarding the control strategy and operat-
ing conditions of the SOFC generation plant under consider-
ation are given in [37].
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3. Results and Discussion

3.1. Model Uncertainty. As mentioned in Section 2.5, the
SOFC system model has been validated experimentally. The
maximum difference between the measured and predicted
values of the monitored variables is approximately 3% [37].
On the basis of this value, the maximum magnitude for the
random errors to be introduced when the measurement of
the ten observed variables is simulated (see Figure 1) can be
set. Here, the following three values are considered for the
maximum percentage error: 2%, 4%, and 6%.

3.2. Dataset Composition. Due to a generalized lack of exper-
imental faulty data in SOFC systems [41], which in turn is
strictly related to their high cost, the simulated approach
depicted in Figure 1 is used to assemble the dataset. Although
the available experimental data are not sufficient to train
and test an SVM classifier, they are adequate for validating
a physics-based quantitative modeling tool, able to simulate
unfaulty [37] and faulty [39] operating conditions, which can
then produce the dataset pool necessary for training and
validating the SVM classifier.

For each operating condition, ten different sizes of a given
fault (inside the range defined in Section 2.5) are considered.
Thus, for a given control strategy, 100 combinations of steady-
state operating conditions and fault sizes are identified for
each fault. After setting themaximum errormagnitude, inde-
pendent random errors are introduced for each monitored
variable of each combination. As a result, for each control
strategy, a dataset of approximately 500 feature vectors is
available (5 classes are indeed considered: 4 faulty classes and
the nonfaulty class). The hundred vectors for the nonfaulty
class are generated by repeating the realization of the random
errors for each operating condition ten times.

Subsequent realizations of the independent random
errors enable the generation of an arbitrary number of
datasets. Thus, we have produced a pool of datasets for
each control strategy (i.e., constant-voltage and constant-
current) and for each maximum percentage error (i.e., 2%,
4%, and 6%). Each dataset is composed of approximately 500
feature vectors, and each feature vector is composed of ten
features (see Table 1). In each resulting dataset, the sets of
training samples of the various classes have approximately
the same size. A fuel cell will for the most part operate in a
nonfaulty state, so the nonfaulty class is expected to have a
larger prior probability than the individual faulty classes, a
common situation in a detection problem. This may suggest
using a larger training set size for “no-fault” than for the
other classes. However, SVM-based classifiers are known to
be generally sensitive to significantly unbalanced numbers
of training samples per class. Therefore, the aforementioned
approach was used to take benefit from the opportunity
to actively generate the training set and make sure that
balanced setswere constructed for the various classes. Indeed,
if a different strategy was used and more training samples
were available for the nonfaulty class than for the other
classes, sample pre-selection algorithms such as [42] could
be applied to make sure that strongly unbalanced classes are
avoided.

All the features of a given dataset have been preliminarily
normalized to ensure that each has a zero mean and unitary
variance. This normalization is necessary because of the
significantly different orders of magnitude of the measured
residuals. It also helps preventing overflow and favors numer-
ical stability in the solution of the QP problem for SVM
training.

3.3. Fault Detection and Isolation. In real systems, the design
of a classifier that, working with a given residual subset, pro-
vides a satisfactory performance when the error magnitude is
not perfectly known and potentially varies over time has great
relevance. To this end, a training set has been composed for
each control strategy by joining three datasets together: one
dataset for eachmaximum percentage error (i.e., 2%, 4%, and
6%). Here, this training set is used to train SVM classifiers in
which the Gaussian RBF kernel in (3) is adopted. The joint
feature and model selection method described in Section 2.3
provides the optimal feature subset, when the number of
residuals𝑚 is increased from 1 to 10.

For each control strategy and optimal feature subset, the
SVM classifier trained using the aforementioned mixture of
error magnitudes is tested with several datasets (excluding
those already used to compose the training set), characterized
by given error magnitudes. The performance of the classifier
is evaluated through the overall accuracy (OA), that is, the
fraction of the correctly classified test samples (an estimate
of the probability of correct classification). An average OA
(referred to as OAavg) is introduced by averaging the three
OA values obtained with regard to the 2%, 4%, and 6% error
magnitudes. Finally, to evaluate the classifier performance for
each specific class, the average producer accuracy (PAavg) is
introduced; that is, the fraction of the test samples belonging
to a given class that are correctly classified, averaged over the
three error magnitudes (2%, 4%, and 6%).

TheOAavg value of the classifiers, trainedwith themixture
of error magnitudes, with the number of adopted features
increasing from 1 to 10, is reported in Table 2 for the constant-
voltage case and in Table 3 for the constant-current case.
The subset of residuals obtained by the feature selection
technique and the value of OA for each error magnitude
are also listed. For the sake of brevity, the corresponding
parameter configurations obtained by the proposed joint
model and feature selection algorithm are not listed. How-
ever, as detailed in [19, 29], the parameter vector obtained
by minimizing the span bound through Powell’s algorithm
typically yield classification accuracies very similar to those
obtained by time-expensive grid searches for the minimum
cross-validation error rate over a predefined grid in the
parameter space. Details on this aspect can be found in
[19, 29] with regard to SVM for classification and regression,
respectively.

Except for𝑚 = 1, the classification performance decreas-
es as the error magnitude increases, as expected, and the OA
values obtained for the constant-voltage control are higher
than the related values obtained for the constant-current
control.

The performance behavior as a function of the number
of features 𝑚 is more complex. For both control strategies,
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Table 2: Residuals and OAs, with the number of features 𝑚

increasing from 1 to 10, for the constant-voltage case. Training set
including a mixture of error magnitudes.

𝑚 Residual subset
Overall accuracy (OA)

Test-set max. error OAavg
2% 4% 6%

1 9 0.41 0.42 0.42 0.42
2 1, 2 0.90 0.88 0.82 0.87
3 2, 3, 8 0.95 0.89 0.80 0.88
4 2, 3, 4, 8 0.97 0.92 0.84 0.91
5 1, 2, 3, 4, 8 0.97 0.90 0.83 0.90
6 1, 2, 3, 4, 8, 9 0.98 0.89 0.80 0.89
7 1, 2, 3, 4, 7, 8, 9 0.98 0.88 0.79 0.89
8 1, 2, 3, 4, 5, 7, 8, 9 0.98 0.92 0.82 0.91
9 1, 2, 3, 4, 5, 6, 7, 8, 9 0.98 0.92 0.86 0.92
10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 0.98 0.92 0.86 0.92

Table 3: Residuals and OAs, with the number of features 𝑚

increasing from 1 to 10, for the constant-current case. Training
including a mixture of error magnitudes.

𝑚 Residual subset
Overall accuracy (OA)

Test-set max. error OAavg
2% 4% 6%

1 2 0.61 0.59 0.58 0.59
2 2, 3 0.76 0.76 0.72 0.75
3 2, 3, 4 0.83 0.83 0.79 0.82
4 2, 3, 4, 7 0.90 0.84 0.75 0.83
5 1, 2, 3, 4, 7 0.90 0.81 0.72 0.81
6 1, 2, 3, 4, 7, 8 0.90 0.83 0.72 0.82
7 1, 2, 3, 4, 5, 7, 8 0.92 0.81 0.73 0.82
8 1, 2, 3, 4, 5, 7, 8, 9 0.92 0.80 0.73 0.82
9 1, 2, 3, 4, 5, 6, 7, 8, 9 0.69 0.68 0.63 0.67
10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 0.76 0.75 0.72 0.74

the value of OAavg monotonically increasesmoving from𝑚 =

1 to 𝑚 = 4. In the constant-current case, for 4 ≤ 𝑚 ≤ 8, the
OAavg value is nearly constant, exhibiting small oscillations
that do not exceed 0.02. For 𝑚 > 8, the OAavg value sharply
decreases. In the constant-voltage case, for 𝑚 ≥ 4, the OAavg
value is nearly constant, exhibiting small oscillations that do
not exceed 0.02. Concerning the residuals that are selected
when the value of 𝑚 is increased, we can observe that, in
the constant-current case, the residuals selected for a given
𝑚 are those selected for 𝑚 − 1 plus one new residual. This
behavior is not forced by the feature and model selection
method presented in Section 2.3. In fact, in the constant-
voltage case, this behavior is observed only for 𝑚 > 3, where
the performance approaches its maximum.

Because the use of a number of residuals larger than four
does not increase or increases negligibly the performance,
in the following sections of this paper, we focus on the
performance achieved for 𝑚 = 4 and the related residuals.

Table 4: OA when two subsets of easy-to-measure residuals are
adopted. The training set included a mixture of error magnitudes.

Control str. Residual
subset

Overall accuracy (OA)
Test-set max. error OAavg
2% 4% 6%

Constant-voltage 2, 3, 4 0.87 0.78 0.70 0.78
1, 2, 3, 4 0.97 0.89 0.82 0.89

Constant-current 2, 3, 4 0.83 0.83 0.79 0.82
1, 2, 3, 4 0.90 0.82 0.74 0.82

In the constant-voltage case, OAavg is equal to 0.91 and OA
decreases by 0.13 when increasing the error magnitude from
2% to 6%. The selected residuals are those numbered with 2,
3, 4, and 8 in Table 1. In the constant-current case, OAavg is
equal to 0.83, and the OA decreases by 0.15 when increasing
the errormagnitude from2% to 6%.The selected residuals are
those numbered with 2, 3, 4, and 7.We note that residuals 2, 3,
and 4 are selected for both control strategies. These residuals
are considered easy to measure in Table 1 (as opposed to
residuals 7 and 8, which are extremely difficult to measure).
Moreover, when 𝑚 increases from 4 to 5, the feature that
is selected is residual 1, which is easy to measure. We can
conclude that among the easy-to-measure residuals, those
numbered with 2, 3, and 4 are the most informative for both
control strategies. In addition, the residual numbered with 1
is potentially useful.

3.4. Performance of Easy-to-Measure Residuals. The results
obtained by the joint feature andmodel selection can be used
to design a classifier that working with a limited number
of easy-to-measure residuals provides performance close to
the optimal one. In other words, we attempt to exclude
the residuals that are not easy to measure, limiting the
performance decrease.

On the basis of the considerations drawn in Section 3.3,
we analyze the performance of the SVM classifiers that use
the two following subsets of residuals, (2, 3, 4) and (1, 2, 3,
4), and are trained by the aforementioned mixture of error
magnitudes (see Table 4). While the residual subset (2, 3,
4) is the optimum choice for the constant-current case with
𝑚 = 3 (see Table 3), all the three remaining combinations
reported in Table 4 are surely suboptimal. To maximize the
performance, for the four possible combinations between
control strategy and residual subset, the model parameters
of the SVM classifiers have been optimized by minimizing
the span bound (computed for a given subset of features)
through the Powell’s algorithm, according to the description
in Section 2.3.

Table 4 displays the performance of the four classifiers
when tested with samples with a given error magnitude
as well as the average figure OAavg. Comparing Tables 2
and 4, we observe that for the constant-voltage case, the
performance obtained with the residual subset (2, 3, 4) is
significantly lower than that obtained with the optimum
subset (2, 3, 8). Instead, when four features are adopted, the
use of the easy-to-measure subset (1, 2, 3, 4) provides anOAavg
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Table 5: PAavg when two subsets of easy-to-measure residuals are
adopted. The training set included a mixture of error magnitudes.
Class number meaning: 0: nonfaulty system; 1: SOFC stack degra-
dation; 2: air leakage; 3: fuel leakage; 4: reformer degradation.

Control str. Residual
subset

Average producer accuracy (PAavg)
Class number

0 1 2 3 4

Constant-voltage 2, 3, 4 0.87 0.68 0.88 0.88 0.49
1, 2, 3, 4 0.89 0.89 0.89 0.92 0.85

Constant-current 2, 3, 4 0.97 0.45 0.83 0.89 0.97
1, 2, 3, 4 0.85 0.57 0.90 0.86 0.99

that is only marginally lower than that obtained with the
optimum subset for𝑚 = 4 (i.e., 0.89 against 0.91). In addition,
in the constant-current case, the use of the easy-to-measure
subset (1, 2, 3, 4) provides an OAavg that is only marginally
lower than that obtained with the optimum subset for 𝑚 = 4

(i.e., 0.82 against 0.83). However, this performance is equal to
that obtained by using the optimum subset (2, 3, 4) composed
of only three features. In the constant-current case, the choice
between three and four features can be driven by the error
magnitude that is expected in real applications.The subset (2,
3, 4) provides a higher OAwhen the maximum error tends to
6%; the subset (1, 2, 3, 4) is preferable when the maximum
error tends to 2%. On the contrary, in the constant-voltage
case, the results reported in Table 4 indicate that the subset
(1, 2, 3, 4) is always preferable.

While OAavg encompasses the results related to the five
considered classes, PAavg provides a performance evaluation
for each specific class. Table 5 displays the PAavg values for
the four classifiers that work with a limited number of easy-
to-measure residuals, that is, the classifiers considered in
Table 4. We observe that in the constant-voltage case, the
addition of the feature number 1 improves all the PAavg values,
especially those related to classes numbers 1 and 4. With
the feature subset (1, 2, 3, 4), the nonfaulty status and all
the considered faults are identified with an average accuracy
higher than 85%. In the constant-current case, the addition
of feature number 1 improves the PAavg values for classes
1, 2, and 4 and worsens the PAavg values for classes 0 and
3. Although the OAavg does not change (see Table 4), better
performance uniformity is obtained. All the considered faults
except for SOFC stack degradation are identified with an
average accuracy higher than 85%. PAavg for SOFC stack
degradation does not exceed 57% when the constant-current
control is adopted, demonstrating that in this specific case
the identification of this fault through four easy-to-measure
residuals is critical. We also verified that the addition of the
last easy-to-measure residual (i.e., feature number 5) to the
subset (1, 2, 3, 4) does not improve this performance. A
further investigation of this specific misclassification shows
that the feature vectors for the SOFC stack degradation fault
are sometimes assigned to the fuel leakage fault.

More generally, the addition of residual 5 to the subset (1,
2, 3, 4) does not provide any improvement in the obtained
performance. In the constant-voltage case, the addition of

residual 5 slightly decreases the OA values, especially when
the maximum error is equal to 6%.

Finally, it is worth noting that the PAs for the nonfaulty
class (i.e., the class number 0) were generally high; that is,
a few false alarms were generated by the proposed system,
although the nonfaulty class is expected to have a larger prior
probability than individual faulty classes. This confirms the
discrimination capability of the SVM approach and suggests
that the generation of balanced sets of training samples per
class did not erroneously favor the faulty classes.

4. Conclusions

In the context of SVM classification, we propose an original
technique for the joint feature and model selection. This
technique is applied to an open research problem: the design
of a model-based FDI procedure, integrated with a data-
driven diagnosis, for an SOFC electric generation plant. The
FDI procedure is demonstrated to perform properly in a wide
range of steady-state operating conditions and fault sizes and
for various statistics of the random errors affecting the model
predictions.

The joint feature and model selection make it possible
to evaluate the relative importance of the residuals used as
features for the robust FDI procedure, assuring the optimum
performance for every cardinality of the feature vector.More-
over, for a given residual subset, if the maximum prediction
error is increased by a factor of 3 (from 2% to 6%), the related
OA decreases by a factor that does not exceed 1.26. Thus,
because the performance reduction is very gradual despite
the wide range of operating conditions and fault sizes that
are considered, the robustness of the FDI procedure against
modeling and measurement errors is proven.

Joining the results achieved by the feature selection to
the evaluation of the difficulty in measuring the different
residuals, we conclude that the use of the easy-to-measure
residuals numbered 1, 2, 3, and 4 altogether are sufficient
to achieve an overall performance that is very close to the
absolute maximum observed when the use of all the residuals
is enabled.This holds for both constant-voltage and constant-
current control strategies. The only exception is the identifi-
cation of the SOFC stack degradation under constant-current
control. The accuracy for this fault is significantly lower
than those observed for other faults. Further electrochemical
investigations will be devoted to individuate new residuals
able to provide a better discrimination of the SOFC stack
degradation fault.

When a large number of combinations between the
operating conditions and fault sizes are considered (for both
training and testing), the SVM classifier using the four
aforementioned residuals provides an OA, averaged over
three values for the maximum prediction error (i.e., 2%, 4%,
and 6%) that is higher than 80% for the constant-current case
and is close to 90% for the constant-voltage case.
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