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Amethod formicrowave imaging of dielectric targets is proposed. It is based on a tomographic approach inwhich the field scattered
by an unknown target (and collected in a proper observation domain) is inverted by using an inexact-Newton method developed
in 𝐿𝑝 Banach spaces. In particular, the extension of the approach to multifrequency data processing is reported. The mathematical
formulation of the new method is described and the results of numerical simulations are reported and discussed, analyzing the
behavior of the multifrequency processing technique combined with the Banach spaces reconstruction method.

1. Introduction

The regularization of ill-posed problems in 𝐿𝑝 Banach spaces
exhibits several advantages over the corresponding classical
regularization in Hilbert spaces [1–3]. A significant example
is microwave imaging (MI). MI is a well-known technique
in which an unknown target is inspected by using an elec-
tromagnetic radiation [4]. When illuminated by an incident
field, the target scatters the incident radiation depending on
its physical properties, geometrical shape, and dimensions.
For dielectric targets with dimensions comparable with the
wavelength of the incident waves, the scattering phenomena
are quite complicated [5]. However, the scattered electric
field can be collected around the target and the properties
of the object can be retrieved by inverting the equation
governing the electromagnetic scattering problem. Several
approaches to solve this inverse problem with qualitative [6–
8] or quantitative techniques [9–11] have been reported in the
scientific literature, with reference to both two- and three-
dimensional configurations [12–14]. Among these methods,
it has been proved in [15] that, exploiting the properties of the
norms in the 𝐿𝑝 Banach spaces, it is possible to obtain better
reconstructions than developing the corresponding approach

in Hilbert spaces. In particular, in [16] an inexact-Newton
method has been applied to a tomographic configuration,
in which the target is assumed to be a cylindrical one
and the imaging process is performed in free space and at
a fixed frequency. In this paper, the above formulation is
extended to multifrequency imaging, in which the use of
more than one incident radiation results in an improved
processing, due to the additional information included in the
input data (samples of the scattered electric field at different
frequencies).

The mathematical formulation of the proposed approach
is described in the following with reference to transverse-
magnetic illumination conditions. The capabilities and lim-
itations of the proposed extended method are evaluated
by means of numerical simulations concerning targets in
noisy environments for which the forward problem is solved
by using the method of moments. The inverse solution is
obtained, as mentioned, by using a two-loop inexact-Newton
method, which has been developed in the framework of
𝐿
𝑝 Banach spaces. In particular, after the discretization of

the continuous model (based on the electric field integral
equation (EFIE)), the outer loop performs a linearization
of the resulting nonlinear algebraic equation, whereas the
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inner loop solves the obtained (ill-posed) linear equation in a
regularized sense by using a truncated Landweber scheme in
Banach spaces.

The paper is organized as follows. The mathematical for-
mulation of the developed approach is discussed in Section 2.
Section 3 reports some numerical results aimed at validating
the inversion procedure. Finally, conclusions are drawn in
Section 4.

2. Mathematical Formulation

Let us consider the configuration shown in Figure 1. A
cylindrical target, whose cross section is enclosed in an inves-
tigation domain D𝐼 ⊂ R2, is illuminated by a set of known
time-harmonic, TM-𝑧 electromagnetic fields characterized
by angular frequencies 𝜔1, . . . , 𝜔𝐹. As it is well known, under
such hypotheses, the scattering problem turns out to be two-
dimensional and scalar [4]. The resulting scattered electric
field is collected in a measurement domainD𝑀 ⊂ R2.

For the sake of simplicity, in the following a single view
case is described. Moreover, the 𝑒𝑗𝜔𝑡 dependence is omitted,
assuming a frequency domain formulation. The scattered
electric field in the measurement domain, 𝐸𝜔

𝑠
(r), r ∈ D𝑀, at

the angular frequency 𝜔 is related to the dielectric properties
of the inspected area by the relationship [4]

𝐸
𝜔

𝑠
(r) = 𝐺𝜔D𝑀 (𝐾

𝜔
⋅ 𝑥) 𝐸
𝜔

𝑡
(r) , r ∈ D𝑀, (1)

where

𝑥 (r) = [
𝜖𝑟 (r) − 1
𝜎 (r)

] (2)

is a vector containing the relative dielectric permittivity 𝜖𝑟 and
the electric conductivity 𝜎, 𝐾𝜔 = [1 −𝑗/𝜔𝜖0]

𝑇 (𝜖0 is the free
space dielectric permittivity and the superscript𝑇denotes the
transposition operator), 𝐸𝜔

𝑡
(r), r ∈ D𝐼, is the total electric

field inside the investigation domain, and

𝐺
𝜔

D𝑀
(⋅) (r) = −𝜔2𝜇0𝜖0 ∫

D𝐼

(⋅) (r󸀠) 𝑔𝜔
0
(r, r󸀠) 𝑑r󸀠,

r ∈ D𝑀,

(3)

𝑔
𝜔

0
being the free space Green’s function at the angular

frequency𝜔 [17, 18]. It is worth noting that, assuming nondis-
persive materials, 𝑥 results to be frequency independent and
real-valued. The total electric field inside the investigation
area is given by

𝐸
𝜔

𝑡
(r) = 𝐸𝜔

𝑖
(r) + 𝐺𝜔D𝐼 (𝐾

𝜔
⋅ 𝑥) 𝐸
𝜔

𝑡
(r) , r ∈ D𝐼, (4)

where 𝐸𝜔
𝑖
is the known incident electric field and 𝐺

𝜔

D𝐼
is

defined as

𝐺
𝜔

D𝐼
(⋅) (r) = −𝜔2𝜇0𝜖0 ∫

D𝐼

(⋅) (r󸀠) 𝑔𝜔
0
(r, r󸀠) 𝑑r󸀠,

r ∈ D𝐼.

(5)
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Figure 1: Configuration of the electromagnetic inverse scattering
problem and representation of the measurement setup.

Combining (1) and (4), the scattering problem at the
frequency 𝜔 can be written as

𝐸
𝜔

𝑠
(r) = L

𝜔
(𝑥) (r) , (6)

whereL𝜔 is defined as

L
𝜔
(𝑥) (r)

= 𝐺
𝜔

D𝑀
(𝐾
𝜔
⋅ 𝑥) [𝐼 − 𝐺

𝜔

D𝐼
(𝐾
𝜔
⋅ 𝑥)]
−1

𝐸
𝜔

𝑖
(r) .

(7)

By applying (6) for all the available frequencies and by
separating real and imaginary parts of the involved complex
functions, the scattering problem can be written as the
solution of the following nonlinear system of equations:

𝐹 (𝑥) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

R {L𝜔1 (𝑥)}

I {L𝜔1 (𝑥)}

R {L𝜔2 (𝑥)}

I {L𝜔2 (𝑥)}

.

.

.

R {L𝜔𝐹 (𝑥)}

I {L𝜔𝐹 (𝑥)}

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

R {𝐸
𝜔1
𝑠
}

I {𝐸
𝜔1
𝑠
}

R {𝐸
𝜔2
𝑠
}

I {𝐸
𝜔2
𝑠
}

.

.

.

R {𝐸
𝜔𝐹
𝑠
}

I {𝐸
𝜔𝐹
𝑠
}

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

= 𝑦, (8)

where 𝑥 ∈ 𝑋 ∈ 𝐿
𝑝, 𝑦 ∈ 𝑌 ∈ 𝐿

𝑝, and 𝐹 : 𝑋 → 𝑌.
The inverse problem that must be solved in order to

retrieve the dielectric properties of the targets consists in
finding the unknown 𝑥 from the nonlinear equation (8), with
𝑦 being the known term. To this end, a Newton-type method
[19–21] developed in the framework of Banach spaces [15, 16]
is used. The proposed approach performs a minimization of
the functional Ψ : 𝑋 → R given by

Ψ (𝑥) =
1

2

󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝑦
󵄩󵄩󵄩󵄩

2

𝑌
, (9)
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with ‖ ⋅ ‖𝑌 being the norm of the 𝐿
𝑝 Banach space 𝑌.

In particular, the method contains two nested loops: the
outer one performs a linearization of the scattering operator
𝐹 around the currently reconstructed function 𝑥, whereas
the inner loop finds a suitable regularized solution of the
resulting linearized problem by using a truncated Landweber
algorithm developed in 𝐿𝑝 Banach spaces [15].

The reconstruction method is thus composed by the
following steps (Newton iterations are denoted by the index 𝑖
and Landweber iterations by the index 𝑙):

(a) Start the algorithm with an initial guess 𝑥0. If no a
priori information is available, 𝑥0 = 0 is assumed.

(b) Compute the Newton linearization of the operator 𝐹
around the current value 𝑥𝑖 by means of its Fréchet
derivative 𝐹𝑥𝑖 : 𝑋 → 𝑌; that is,

𝐹𝑥𝑖
𝛿𝑖 = 𝑦 − 𝐹 (𝑥𝑖) . (10)

(c) Find a function 𝛿𝑖 by using a truncated Landweber
regularization loop in Banach spaces, initialized with
𝛿𝑖,0 = 𝛿𝑖,0 = 0 (the symbol ⋅ indicates that the function
belongs to the dual space𝑋∗ of𝑋):

𝛿𝑖,𝑙+1 = 𝛿𝑖,𝑙 − 𝜌𝐹
∗

𝑥𝑖
𝐽
𝑌
(𝐹𝑥𝑖

𝛿𝑖,𝑙 − 𝑦 + 𝐹 (𝑥𝑖)) ,

𝛿𝑖,𝑙+1 = 𝐽
𝑋
∗

(𝛿𝑖,𝑙+1) ,

(11)

where𝜌 > 0 is an adequate step length,𝐹∗
𝑥𝑖
: 𝑌
∗
→ 𝑋
∗

is the adjoint operator of𝐹𝑥𝑖 , and the operators 𝐽
𝑌 and

𝐽
𝑋
∗

are the duality maps of the spaces 𝑌 and 𝑋∗. We
recall that, in 𝐿𝑝 Banach spaces, the duality maps are
defined as

𝐽
𝐿
𝑝

(𝑎) = ‖𝑎‖
2−𝑝

𝐿𝑝
|𝑎|
𝑝−1 sign (𝑎) (12)

with

sign (𝑎) =
{{{{

{{{{

{

−1 𝑎 < 0

0 𝑎 = 0

1 𝑎 > 0.

(13)

The Landweber steps (11) are iterated for 𝑙 =

0, 1, . . . , 𝐿
LW
max.

(d) Update the solution with the increment 𝛿𝑖; that is,
𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑖. (14)

(e) Iterate Newton steps (b)–(d) for 𝑖 = 0, 1, . . . , 𝐼
IN
max, or

until an a priori stopping criterion is reached.
An important remark has to be devoted to the Fréchet

derivative 𝐹𝑥𝑖 of the operator 𝐹, necessary for performing
steps (b) and (c). In this case, it has the following structure:

𝐹𝑥𝑖
=

[
[
[
[
[
[
[

[

𝐿
𝜔1
𝑥𝑖

𝐿
𝜔2
𝑥𝑖

.

.

.

𝐿
𝜔𝐹
𝑥𝑖

]
]
]
]
]
]
]

]

, (15)

where

𝐿
𝜔

𝑥𝑖
=

[
[
[

[

R {L𝜔
𝑥𝑖
}

1

𝜔𝜖0

I {L𝜔
𝑥𝑖
}

I {L𝜔
𝑥𝑖
} −

1

𝜔𝜖0

R {L𝜔
𝑥𝑖
}

]
]
]

]

. (16)

In (16), the operatorL𝜔
𝑥𝑖
is defined as

L
𝜔

𝑥𝑖
V = 𝐺𝜔

𝑥𝑖
V𝐸𝜔
𝑥𝑖

(17)

with 𝐸𝜔
𝑥𝑖
(r) = [𝐼−𝐺𝜔D𝐼(𝐾

𝜔
⋅𝑥𝑖)]
−1
𝐸
𝜔

𝑖
(r) being the electric field

due to the dielectric profile 𝑥𝑖, and

𝐺
𝜔

𝑥𝑖
(⋅) (r) = −𝜔2𝜇0𝜖0 ∫

D𝐼

(⋅) (r󸀠) 𝑔𝜔
𝑥𝑖
(r, r󸀠) 𝑑r󸀠,

r ∈ D𝐼,

(18)

where 𝑔𝜔
𝑥𝑖
is the inhomogeneous Green’s function related to

the dielectric profile 𝑥𝑖 [4].

3. Numerical Results

The proposed multifrequency imaging method in 𝐿𝑝 Banach
spaces has been validated by using synthetic data. In the
simulations presented in this section, we assume a multiview
measurement setup, in which the object is sequentially
illuminated by transmitting antennas located in 𝑆 different
positions. With reference to the configuration reported in
Figure 1, in the 𝑠th view (𝑠 = 1, . . . , 𝑆) the incident electric
field is generated by an antenna, modeled as a line-current
source, located at

r𝑠 = (𝑟𝑀 cos𝜓𝑠, 𝑟𝑀 sin𝜓𝑠) (19)

with 𝑟𝑀 = 0.15mand𝜓𝑠 = 2𝜋(𝑠−1)/𝑆. For each view, the field
scattered by the target is collected in𝑀 = 𝑆−1measurement
points on the same circumference at positions

r𝑠,𝑚 = (𝑟𝑀 cos𝜓𝑚,𝑠, 𝑟𝑀 sin𝜓𝑚,𝑠) , (20)

where 𝜓𝑚,𝑠 = 𝜓𝑠 + 2𝜋𝑚/𝑆 (with𝑚 = 1, . . . ,𝑀; 𝑠 = 1, . . . , 𝑆).
The scattered field data are computed by a numerical code

based on the method of moments [22] and then corrupted
by a Gaussian noise with zero mean value and variance
corresponding to a fixed signal-to-noise ratio (SNR). The
considered investigation domain is a square area of side
𝐷 = 0.2m, centered at the origin. It has been discretized
into 𝑁𝑓 = 63 × 63 square subdomains for solving the
forward electromagnetic problem and 𝑁 = 40 × 40 cells
for the inverse one. The object under test is composed of
a known lossless structure (a circular cylinder of radius
𝑟1 = 0.075m, centered at the origin, with relative dielectric
permittivity 𝜖𝑟 = 2) with three cylindrical inclusions of
different shapes and dimensions. The first one is a cylinder
with rectangular cross section, characterized by 𝜖𝑟 = 3,
centered at (0.04, 0)m, with 𝑥 side and 𝑦 side of length
𝑑𝑥 = 0.03m and 𝑑𝑦 = 0.06m, respectively. In addition, we
have two circular cylinders of radii 𝑟2 = 0.015m and 𝑟3 =
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Figure 2: Reconstructed distributions of the relative dielectric permittivity of the investigation domain in different operating conditions,
with 𝑆 = 20 and SNR = 20 dB. Banach space reconstructions: (a) 𝐹 = 1, 𝑝 = 1.3; (b) 𝐹 = 2, 𝑝 = 1.3; (c) 𝐹 = 3, 𝑝 = 1.6. Hilbert space
reconstructions: (d) 𝐹 = 1, 𝑝 = 2.0; (e) 𝐹 = 2, 𝑝 = 2.0; (f) 𝐹 = 3, 𝑝 = 2.0.
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Figure 3: Reconstructed distributions of the relative dielectric permittivity of the investigation domain in different operating conditions, with
𝑆 = 20 and SNR = 5 dB: (a) 𝐹 = 1, 𝑝 = 2.0; (b) 𝐹 = 3, 𝑝 = 2.0; (c) 𝐹 = 3, 𝑝 = 1.3.

0.01m, centered at (−0.0125, 0.015)m and (−0.03, −0.03)m,
with relative dielectric permittivities 𝜖𝑟 = 4 and 𝜖𝑟 =

5, respectively. Such values have been chosen since many
materials commonly used in industrial processes (e.g., plastic
and ceramic compounds, wood, and concrete) have dielectric
properties in this range.

The object under test has been illuminated by means of
electromagnetic fields at three different frequencies: 𝑓1 =

2GHz, 𝑓2 = 3GHz, and 𝑓3 = 4GHz. The behavior of the
inversion method has been evaluated with different numbers
of frequencies used by the multifrequency reconstruction
procedure (𝐹). For instance, with 𝐹 = 1 only the data at
frequency𝑓1 is considered; for𝐹 = 2we use the data obtained
at 𝑓1 and 𝑓2, and for 𝐹 = 3 all the available frequency data
are used. As regards the inversion method, 𝐿LWmax = 10 inner
Landweber iterations and 𝐼

IN
max = 20 outer Gauss-Newton

steps have been executed in all cases. The algorithm has
been initialized with the outer (known) dielectric cylinder of
radius 𝑟1 and relative dielectric permittivity 𝜖𝑟 = 2 as starting
guess.

In order to analyze the method’s performance in different
operating conditions, numerical simulations with SNR ∈

{5, 10, 15, 20, 15, 30} dB and 𝑆 ∈ {10, 15, 20, 25, 30} have been
performed. Firstly, let us consider the case with 𝑆 = 20 and
SNR = 20 dB. The results obtained by the present Banach
space inversion technique are shown in Figures 2(a)–2(c).

For comparison purposes, the results provided by a
standard inexact-Newton method working in Hilbert spaces
[20] are also provided in Figures 2(d)–2(f). From (a) to (c)
and from (d) to (f), the dielectric reconstructions obtained
with one, two, and three frequencies are shown. Clearly,
the improvement introduced by the Banach space approach
is evident, even with a single operating frequency. An
increment in the number of considered frequencies produces
a further enhancement in the reconstruction quality, with
both the Hilbert space and the Banach space techniques.
However, as can be seen in Figure 2, the Banach spacemethod
outperforms the standard Hilbert space one in all cases.
Furthermore, from a practical point of view, the Banach
space results obtained with one and three frequencies are
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Figure 4: Reconstructed distributions of the relative dielectric permittivity of the investigation domain in different operating conditions,
with 𝑆 = 10 and SNR = 20 dB: (a) 𝐹 = 1, 𝑝 = 2.0; (b) 𝐹 = 3, 𝑝 = 2.0; (c) 𝐹 = 3, 𝑝 = 1.6.

comparable. Therefore, we can say that in this case the
proposed technique is able to provide very good results even
with a reduced amount of data.

The graphs in Figure 3 are about a high-noise case,
with SNR = 5 dB. Even in this situation, the benefits of
combining the Banach space regularization with the mul-
tifrequency processing are clear. In fact, the Hilbert space
(𝑝 = 2) reconstruction with 𝐹 = 3 frequencies presented
in Figure 3(b) suffers from significant ringing effects on the
background and on the object area. By lowering the Banach
space norm parameter 𝑝 to 1.3 (Figure 3(c)) it is possible to
reduce these unwanted effects, improving the reconstruction
performance.

In Figure 4 the inversion results with a low number
of views (𝑆 = 10) are presented. Under these operating
conditions, due to the small amount of data, the Banach
space method combined with the multifrequency approach
seems to be useful for reducing the reconstruction artifacts,
as can be seen from the comparison of Figure 4(a) (the
standard single frequency Hilbert space reconstruction) with
the results in Figures 4(b) and 4(c).

The inversion results have been quantitatively evaluated
using the following relative reconstruction error on the whole
investigation domain

𝑒tot =
1

𝑁
∑

r𝑛∈D𝐼

󵄨󵄨󵄨󵄨𝜖𝑟 (r𝑛) − 𝜖𝑟 (r𝑛)
󵄨󵄨󵄨󵄨

𝜖𝑟 (r𝑛)
, (21)

where 𝜖𝑟(r𝑛) denotes the actual value of the relative dielectric
permittivity in the 𝑛th cell (𝑛 = 1, . . . , 𝑁) of the investigation
domain D𝐼 and 𝜖𝑟(r𝑛) is the corresponding reconstructed
quantity.The trends of the reconstruction error 𝑒tot versus the
SNR and the norm parameter 𝑝 are reported in Figure 5. As
can be noticed, in the multifrequency results of Figures 5(b)
and 5(c) the relative reconstruction error is generally lower
than the single frequency case of Figure 5(a). Moreover, the
effectiveness of the Banach space reconstruction approach
with 𝑝 < 2 in the multifrequency case appears to be more
evident in presence of low values of SNR. In Figure 6 the
behavior of the reconstruction error versus the number of
views 𝑆 and the parameter 𝑝 is shown.
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Figure 5: Relative reconstruction error on the investigation domain versus the 𝐿𝑝 Banach space norm parameter 𝑝 and the SNR, for 𝑆 = 20:
(a) one frequency, 𝐹 = 1; (b) two frequencies, 𝐹 = 2; (c) three frequencies, 𝐹 = 3.
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Figure 6: Relative reconstruction error on the investigation domain versus the 𝐿𝑝 Banach space norm parameter 𝑝 and the number of views
𝑆, for SNR = 20 dB: (a) one frequency, 𝐹 = 1; (b) two frequencies, 𝐹 = 2; (c) three frequencies, 𝐹 = 3.
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In this case, too, we can observe that on one hand
the reconstruction error decreases with an increase in the
number of considered frequencies; on the other hand, the use
of a Banach space norm leads to significant improvements
especially with a reduced number of views 𝑆 (i.e., with a low
amount of data).

4. Conclusions

In this paper, a previously developed approach to microwave
imaging has been extended to deal with multifrequency
processing in free space. The proposed technique is based
on an inexact-Newton method and is aimed at inspecting
inhomogeneous dielectric cylinders of arbitrary shapes under
transverse-magnetic illumination conditions. The use of the
inexact-Newton method (modified to take profit of the fea-
tures of 𝐿𝑝 Banach space norms) has been found to represent
a very effective regularization tool for solving the electric field
integral equations considered in this paper. Numerical results
have confirmed the above reconstruction capabilities of the
two-loop inversion method with reference to a tomographic
imaging configuration. Moreover, the advantages in terms of
the reconstruction accuracy of usingmultifrequency imaging
have been proved at least for the considered targets. Future
works will be devoted to a more comprehensive numerical
assessment of the method, for example, by considering
differentmeasurement setups or targets with higher dielectric
contrasts. Moreover, experimental data will also be used to
further validate the proposed technique in more realistic
conditions.
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