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Abstract 

The effort to develop an electronic skin is highly motivated by many application domains namely robotics, biomedical 
instrumentations, and replacement prosthetic devices.  Several e-skin systems have been proposed recently and have demonstrated 
the need of an embedded electronic system for tactile data processing either to mimic the human skin or to respond to the application 
demands. Processing tactile data requires efficient methods to extract meaningful information from raw sensors data.  

In this framework, our goal is the development of a dedicated embedded electronic system for electronic skin. The embedded 
electronic system has to acquire the tactile data, process and extract structured information. Machine Learning (ML) represents an 
effective method for data analysis in many domains: it has recently demonstrated its effectiveness in processing tactile sensors data. 

This paper presents an embedded electronic system based on dedicated hardware implementation for electronic skin systems. It 
provides a Tensorial kernel function implementation for machine learning based on Tensorial kernel approach. Results assess the 
time latency and the hardware complexity for real time functionality. The implementation results highlight the high amount of 
power consumption needed for the input touch modalities classification task. Conclusions and future perspectives are also presented.  
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1. Introduction 

Human skin is the physical barrier through which we interact with our surroundings, allowing us to perceive various 
shapes and textures, changes in temperature, and varying degrees of contact pressure. To achieve high sensing 
capabilities, several different types of highly specialized sense receptors are embedded within our skin. These receptors 
first transduce information generated by mechanical stimuli into electrical signals and then transmit it to the central 
nervous systems for more complex processing. The collected signals are eventually interpreted by the somatosensory 
cortex, [1] permitting us to perceive the sense of touch and to easily interact with our physical world. 

The effort to create an electronic skin with human-like sensory capabilities is motivated by the possibility of being 
highly applicable for autonomous artificial intelligence (e.g., robots), biomedical instrumentations, and replacement 
prosthetic devices capable of providing the same level of sensory perception of the organic equivalent. Endowing 
appliances with the capability of sensing and processing touch enables tactile interaction between electronic devices 
and the environment.  

Following the definition given by Dahiya et al. [2], tactile sensing involves the detection and measurement of 
contact parameters in a predetermined contact area and subsequent processing of the signals to extract structured and 
meaningful information which is subsequently transmitted to higher system levels for perceptual interpretation. The 
development of electronic skin starts from defining the system specifications, designing and fabricating the mechanical 
arrangement of the skin itself (i.e. soft or rigid mechanical support, structural and functional material layers, etc.) 
together with the electronic embedded system for tactile data processing. The different e-skin tasks are far from being 
properly addressed and are still in their infancy even if many research groups are addressing the topic with numerous 
different approaches at each level of the problem [3-9]. 

Significant progress in the development of e-skin has been achieved in recent years by the concentration on 
mimicking the mechanically compliant highly sensitive properties of human skin. For the sensing materials, stretchable 
electrodes for e-skin have been developed in [10], and the transformation of a typically brittle material, Si, into flexible, 
high-performance electronics by using ultrathin (100 nm) films connected by stretchable interconnects is presented in 
[11]. Someya et al. have fabricated flexible pentacene-based organic field-effect transistors (OFETs) for large-area 
integrated pressure-sensitive sheets with active matrix readout [12]. For the system implementation however, the 
design of a tactile sensor patch to cover large areas of robots and machines that interact with human beings is reported 
in [13]. The realizations are mostly custom-built and the sensor is implemented with commercial force sensors. This 
had the benefit of a more foreseeable response of the sensor if its behavior is understood as the aggregation of readings 
from all the individual force sensors in the array. [14] introduced a cheap, scalable, discrete force cell and integrated 
it, along with other (discrete) sensor devices, into a multi-modal artificial skin, based from hexagonal shaped, 
intelligent unit cells (i.e. PCBs). However, the huge amount of data, the complexity of data processing algorithms and 
the relevant amount of energy and area restrict the current implementations of e-skin systems to networked PCB 
systems.  

In this paper, we present an embedded electronic system architecture and implementation for electronic skin 
systems. The design is based on machine learning based on Tensorial kernel approach. Results assure the feasibility 
of the approach despite the hardware complexity when real time functionality is aimed. Moreover, the paper highlights 
the high amount of power consumption needed for the input touch modalities classification task.  

The rest of the paper is organized as follows: Section 2 describes the e-skin system defining the different structural 
components for the system development. Section 3 presents the computational architecture for the Tensorial kernel 
approach. It analyzes the computational load of the proposed approach and provides the dedicated hardware 
implementation results.  A classification study based on hardware implementation results is elaborated in section 4,   
and finally conclusions and future perspectives are reported in section 5. 

2. E-skin System 

From a system perspective, e-skin is usually defined as a set of multiple sensing components including structural 
and functional materials, signal conditioning and acquisition, integrated with a dedicated sensor information 
processing embedded electronic system [15]. Figure 1 shows a general block diagram of the e-skin systems.  
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Tactile sensor array is the first component to be addressed in e-skin development process. The adequate functional 
material enabling certain sensing capabilities should be identified. As the functional skin requirements are debatable 
and application dependent, piezoelectric polymer films of Polyvinylidene Fluoride (PVDF) [16] have been chosen as 
meeting the target requirements of mechanical flexibility, high sensitivity, detectability of dynamic touch (1Hz-1kHz 
frequency range) and robustness. The system consists of 8×8 tactile sensor array based on piezoelectric transducers 
[17].  

The second block consists on the interface electronics which is in charge of signal conditioning and acquisition 
including the analog to digital conversion. The interface electronics needs a charge amplifier to collect the charge 
generated by the PVDF single taxel when stressed by tactile stimuli. The charge amplifier transfers the charge to a 
reference capacitor and produces an output voltage which is proportional to the charge on the reference capacitor and, 
respectively, to the input charge; hence the circuit acts as a charge-to-voltage converter. The charge amplifier may 
amplify the tactile stimuli in the frequency band of interest, which for our case is in the range from 1Hz to 1 kHz. The 
analog to digital converter scans the 8 × 8 sensor array at the rate of 2 kHz × (OSR) where 2 kHz is the input signal 
Nyquist frequency and OSR is the Over Sampling Ratio factor which must be larger than 2 (OSR has been set to 3 in 
the current setup) [18]. The sample rate at the output of the Interface Electronics block is consequently of 3k matrices 
A(8 × 8) /s with nominal data resolution (set by the Analog to Digital Converter) equals to 16 bits. Tactile sensors 
data have to be processed and structured information needs to be extracted and transmitted.  

The Digital Signal Processing (DSP) block elaborates the tactile sensor signals using an embedded electronic 
system integrated together with sensing materials. Tactile data processing concerns different kinds of information 
which could be divided into two categories: 1) low level information such as contact location, area and duration, 
contact force intensity, direction and distribution, and temperature; 2) high level information for discrimination of the 
touch modality or the classification of attributes of the contacting objects e.g. roughness, textures, patterns, etc. In the 
present setup, the e-skin system deals with DSP block with high level information processing namely input touch 
modality classification. The classification uses Machine Learning based on tensorial kernel approach which has 
recently proven its effectiveness in processing tactile sensors data [19].  

3. Tensorial Kernel Computational Architecture 

Machine Learning (ML) methods have been increasingly used for the data analysis in many domains and have 
emphasized the need to take the structure of the original data into consideration. In [19], a ML based on Tensorial 
Kernel approach has been proposed to interpret touch modality in e-skin systems. The importance of this approach is 
that it preserves the inherent Tensorial structure of the signals provided by the sensing device. In this context, our goal 
is to implement a real time embedded electronic system based on dedicated hardware DSP of Tensorial Kernel 
approach for e-skin systems. 

As shown in the block diagram of the Fig. 1, the input of the Digital Signal Processing block is 3k matrices A(8×8)/s 
which represents a data arrangement in terms of a time stream of arrays i.e. as a third order tensor £(8×8×3000) where 
the first two dimensions are defined by the geometry of the sensor array (8×8), while the time defines the third tensor 
dimension. Gastaldo et. al proposes a method to reduce the high amount of data contained in the tensor £(8×8×3000) 
in order to reduce the complexity of the computation [20]. Applying this method to the input tensor results a reduced 
tensor φ(8×8×20) as described in [17].   

 
 
Fig. 1. General block diagram of the e-skin system. 
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Figure 2 illustrates the different computation steps needed to work out the Tensorial kernel function. The first step 
consists on tensor unfolding i.e. a matrix representation of φ(8×8×20) where all the column (row) vectors are stacked 
one after the other [21]. Three matrices (X1 (8×160), X2 (8×160), X3 (20×64)) are obtained by unfolding applying. 
The SVD blocks compute the singular value decomposition which transforms the unfolded matrices into the product 
of three matrices e.g. X1 = U1S1V1

T where U1 is an orthogonal matrix containing the  Eigen vectors of X1X1
T, and V1 

is an orthogonal matrix containing the Eigen vectors of X1
TX1. The S1 matrix is a diagonal matrix diag(σ0,…….,σn-1), 

where the σi are the singular values of X1 (i.e. the square roots of the Eigenvalues), being arranged in descending 
order.  

The computation of the kernel factor comes into effect after the SVD computation. Kernel factor is computed by 
using the singular vectors (Vi) of the input tensor and the singular vectors of the training tensors for the different 
classes. In order to reduce the online computation, the singular vectors of the training tensors are computed offline 
and memorized in Mem blocks. Finally, the kernel function is obtained by multiplying the resulted kernel factors for 
the three unfolded matrices.  

3.1 Computational Load Analysis 

Besides the huge amount of tactile data to be processed in real time, the computation complexity poses a tough 
challenge in the development of the embedded electronic system. Computational requirements depend on the overall 
number operations (mainly arithmetic) that the Tensorial kernel approach must perform and on the real-time operation.  

In order to assess the computational load, a case study [17] has been considered: the given task is to classify a touch 
interaction among Nc=3 touch modalities (i.e. paintbrush brushing; finger sliding; washer rolling) in 1 second; here 
Nc is the number of classification classes and the number Nt of training data is set to 100. 

As described in the Fig. 2 the approach consists first on computing the singular value decomposition (SVD) [22] 
of the unfolded matrix. The analysis of the computational requirements for the SVD is based on the One sided Jacobi 
algorithm which provides high accuracy and convergence in about K = 5:10 iterations. Following step is the 
computation of the kernel factor for a couple of SVDs, the first corresponding to the tensor input and the second to 

 

 
 
Fig. 2. Indicative block diagram for a single Tensorial kernel implementation. 
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the tensor representing a predefined class extracted from the training data. Table 1 shows the number of operations 
and flops per second needed to implement the Tensorial Kernel approach. The power consumption of the resulted 
total FLOPS number has been estimated according to [23]. 

Following estimations presented in Table 1, about 31 GFLOPS (Giga Floating Point Operations per Second) are 
needed for real-time single touch classification. These requirements for the data processing unit are very challenging: 
an appropriate data processing unit need to be carefully selected in order to meet the target requirements.  

Embedded DSP microprocessors for instance, perform their arithmetic operations via software; this can give the 
flexibility in design, allowing late design changes. For example, let us consider the very well-known ARM Cortex 
processor family [24]: Cortex-R7 can achieve 6 GFLOPS, which are lower than the target requirements highlighted 
by Table 1. Moreover, power consumption is not compatible with the target application requirements.  

A possible approach to tackle this issue could be to design dedicated application specific integrated circuit (ASIC) 
on a standard cell technology; To this end, our approach is to use the field programmable gate array (FPGA) which 
represents an efficient solution combining the strengths of hardware and software. Moreover, prototyping ASIC 
designs in FPGAs is an effective and economical method of verification. 

3.2 Dedicated Hardware Implementation Results 

The computational load study results the SVD as the most computational expensive algorithm of the Tensorial 
kernel approach: it represents about 70% of the computational complexity of the overall approach [17]. For this reason, 
methods and architectures for the hardware implementation of the SVD have to be well studied and assessed in order 
to select an appropriate architecture suitable for the targeted application. In this perspective, three different hardware 
implementations for the SVD have been presented and assessed in [25], and an implementation suitable for embedded 
real time processing has been selected. The SVD computation results based on the selected hardware implementation 
using a Virtex-5 XC5VLX330T FPGA device are shown in Table 2.  

The computation of the kernel function presented here has been pursued using the selected SVD implementation.   
Table 3 shows the implementation results of the kernel function using a Virtex-5 XC5VLX330T FPGA device. These 
results correspond to one kernel function computed for an input tensor compared with an only one training tensor 
belongs to one class.  

TABLE 1: FLOATING POINT OPERATIONS PER SECOND (FLOPS) 

 Number of operations 
Addition/Subtraction  
Multiplication  
Division  
Square root  
Total FLOPS  
Power Consumption [W] [23]  

 

TABLE 2. SVD IMPLEMENTATION RESULTS FOR VIRTEX 5 XC5VLX330T 

Matrix size 160×8 
Time Latency (ms) 0.42 

Percentage Occupied Area (%) 18 
Nb. of Slice Registers 28101 
Nb. of Slice LUT’s 22076 

Dynamic Power Consumption (W) 0.948 
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4. Classification Study based on Hardware Implementation  

Two well-established learning paradigms in the class of regularized kernel methods, namely, Support Vector 
Machines (SVMs) and kernel-based Extreme Learning Machines (K-ELMs) have been computed for the Tensorial 
kernel approach assessment in [19]. In order to compute the classification function, it is needed first to compute the 
kernel function corresponding to the input tensor with respect to the memorized training tensors. The number training 
data for the Tensorial kernel approach varies roughly between a minimum of Nt = 100 and a maximum of Nt = 1000 
training tensors [17]. According to the dedicated hardware implementation results, two cases study have been 
assessed: 1) Classification of three input touch modalities with a number minimum of training data (Nc = 3 and Nt = 
100) which represents the study case presented in section 3.1; and 2) Classification of five input touch modalities with 
an average number of training data (Nc = 5 and Nt = 500).  

 Case 1: Nc = 3 and Nt = 100 

Let us define the real time functionality as a time latency less than 1 second so that the system should figure out 
one classification per second. This case deals with a total of 300 training tensors, so 300 kernel functions must be 
computed with a time latency less than 1 second. However, the SVD for the input tensor is computed only for the first 
kernel function, then memorized and used for the remaining kernel function computations the fact which reduces the 
time latency of the overall system. According to Tables 2, and 3 these computations are done in a time latency equals 
to  1.59 + (1.59-0.42)×299=351 ms < 1 s. So, using the computational architecture presented in Figure 3 assure the 
real time functionality for 3 input touch modalities with the minimum number of training tensors. Moreover, hardware 
complexity and power consumption remain unchanged. Thus, the hardware complexity and the power consumption 
presented in Table 3 are needed to classify 3 different input touch modalities with 100 training tensors.  

 Case 2: Nc = 5 and Nt = 500 

A total of 2500 kernel functions need to be computed in this case. The corresponding time latency is equals to 1.59 
+ (1.59 - 0.42) × 2499 = 2900 ms > 1 s. So, the computational requirements presented in this case don’t satisfy the 
real time functionality. Time latency should be three times reduced to be less than 1 s. This issue can be tackled by 
implementing a parallel hardware architecture providing 3 parallelism levels. Fig. 3 shows the hardware architecture 
of the kernel function computation providing 3 parallelism levels of the computational steps presented by Fig. 2. Using 
this architecture the time latency will be given by 1.59 + (1.59 - 0.42) × 2499/3 = 976 ms < 1 s, and so the real time 
functionality is assured. However, although the parallel architecture assure the real time classification, it increases the 
hardware complexity and the power consumption. Table 4 show the requirements for input touch modalities 
classification for the two studied cases.  
 
 

TABLE 3. KERNEL FUNCTION IMPLEMENTATION RESULTS FOR VIRTEX 5 XC5VLX330T 

Matrix size 160×8 
Time Latency (ms) 1.59 

Percentage Occupied Area (%) 74 
Nb. of Slice Registers 97761 
Nb. of Slice LUT’s 70529 

Dynamic Power Consumption (W) 2.709 

 



49 Ali Ibrahim et al.  /  Procedia Technology   26  ( 2016 )  43 – 50 

5. Conclusion and Future Perspectives 

When processing tactile sensors data, the electronic system embedded into e-skin has to comply with severe 
constraints imposed by the application, e.g. real time response, low power consumption and small size. In this paper 
we presented an embedded electronic system based on dedicated hardware implementation for electronic skin systems. 
It provided a Tensorial kernel function implementation for machine learning based on Tensorial kernel approach. 
Time latency, power consumption, and hardware complexity for real time functionality have been assessed. The 
implementation results highlight the hardware complexity and the high amount of power consumption needed which 
represent the main issues for the system development.  

The requirements related to the development of embedded data processing unit for e-skin are still far from being 
achieved with the current methods. Methods and techniques to reduce hardware complexity and power consumption 
of the embedded electronic system should be investigated. Approximate computing has recently emerged as a 
promising approach to energy efficient design of digital systems. Using such method could provide a solution to 
reduce the hardware complexity and the power consumption of the desired embedded electronic system. Another 
possible solution could be by designing the embedded electronic system with reconfigurability feature i.e. making it 
possible to modify the system components at run-time which could be used to reduce the power consumption of the 
overall system.  

 

 
 
Fig. 3. Parallel architecture for the Tensorial kernel function hardware implementation for Nc = 5 and Nt = 500.  

TABLE 4. REQUIREMENTS FOR INPUT TOUCH MODALITIES CLASSIFICATION 

 Nc = 3 and Nt = 100 Nc = 5 and Nt = 500 

Time Latency (s) 0.35 0.97 

Dynamic Power Consumption (W) 2.7 6.2 
Nb. of Slice Registers 97761 150604 (estimated) 
Nb. of Slice LUT’s 70529 108652 (estimated) 
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