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Long-range dependence in 
earthquake-moment release 
and implications for earthquake 
occurrence probability
Simone Barani   1, Claudia Mascandola2, Eva Riccomagno   3, Daniele Spallarossa1,  
Dario Albarello4, Gabriele Ferretti   1, Davide Scafidi1, Paolo Augliera2 & Marco Massa2

Since the beginning of the 1980s, when Mandelbrot observed that earthquakes occur on ‘fractal’ self-
similar sets, many studies have investigated the dynamical mechanisms that lead to self-similarities 
in the earthquake process. Interpreting seismicity as a self-similar process is undoubtedly convenient 
to bypass the physical complexities related to the actual process. Self-similar processes are indeed 
invariant under suitable scaling of space and time. In this study, we show that long-range dependence is 
an inherent feature of the seismic process, and is universal. Examination of series of cumulative seismic 
moment both in Italy and worldwide through Hurst’s rescaled range analysis shows that seismicity is a 
memory process with a Hurst exponent H ≈ 0.87. We observe that H is substantially space- and time-
invariant, except in cases of catalog incompleteness. This has implications for earthquake forecasting. 
Hence, we have developed a probability model for earthquake occurrence that allows for long-range 
dependence in the seismic process. Unlike the Poisson model, dependent events are allowed. This 
model can be easily transferred to other disciplines that deal with self-similar processes.

Spatial and temporal correlations, self-similarities, and event interactions are common features of natural phe-
nomena that exhibit self-organized criticality. Since the seminal work of Bak et al.1, many studies have interpreted 
seismicity as the result of a dynamical process exhibiting a self-organized critical behavior2–6. The Earth crust, 
subjected to the driving force from tectonic plate motion, is assumed to be a dissipative dynamic system that nat-
urally self-organizes into a stationary state, which is critical (i.e., metastable). A stationary state can be viewed as 
a critical chain reaction. When an earthquake occurs, stress perturbations propagate through the crust and, simi-
larly to the ‘domino’ effect, upset neighboring and distant zones. These, in turn, release earthquakes when the total 
accumulated stress exceeds the friction force. This chain process is self-organized and can continue indefinitely.

As with many stochastic processes that exhibit self-organized criticality (e.g., avalanches, rainstorms, land-
scape evolution, drainage network dynamics, stock prices, Ethernet traffic, and gene expression dynamics), the 
spatial and temporal scaling of earthquakes obeys power law distributions. One of the fundamental scaling laws 
in seismology is the magnitude-frequency distribution of earthquakes7. This law arises from the self-similarity 
in the fracturing process8–11. Along with the space-time clustering of seismicity12,13 and the mechanics of earth-
quake interaction11,14, this property implies that the process of accumulation and release of seismic strain 
has memory effects15. Periods of high release of seismic deformation will most likely be followed by years of 
higher-than-average seismic strain release. Conversely, seismically quiet periods will tend to be followed by quiet 
years. This behavior mimics that of fluctuating long-term water storage in reservoirs. Tectonic loading and seis-
mic strain release have the roles of the inflow and outflow, respectively. Hence, we expect a certain degree of 
correlation in time series of seismic strain release.

To study fluctuations in stochastic processes, Hurst16 introduced rescaled range (R/S) analysis17,18. R/S analysis 
splits a time series into N adjacent (generally non-overlapping) windows of size n, and inspects the range R of the 
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fluctuations (with respect to an average trend), rescaled by the sample standard deviation S, for different values of 
n (here taken as positive integer). Precisely, for all subseries of length n, the rescaled range analysis calculates the 
mean value of the rescaled range (R/S)n as:
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where R(n)k is the range from maximum to minimum of the cumulative deviations calculated in the k-th 
sub-interval of length n, S(n)k is the sample standard deviation, and R(n)k/S(n)k is the k-th rescaled range. A 
specific mathematical definition of R(n)k and S(n)k is provided in the Method section, while it is important to 
emphasize here the physical meaning of R. Hurst16,19 defined R as the storage capacity that allows the mean dis-
charge of a stream to be maintained over a number of years. Hence, R is representative of the maximum (or crit-
ical) capacity of a reservoir for a period of length n (e.g., n years). With reference to the process of seismic strain 
accumulation and release, R can therefore be interpreted as the maximum seismic capacity, which is defined as 
the greatest amount of elastic energy that can be stored (or released) by a seismogenic source over a certain time 
period. Hence, this can provide a conservative estimate for the maximum earthquake magnitude for the period15. 
Alternatively, it can be viewed as the critical capacity associated with a time interval of size n, above which a max-
imum release of deformation might occur.

Hurst found that the rescaled range (R/S)n is empirically related to n by a power law with exponent H, known 
as the Hurst exponent:

~R S cn( / ) (2)n
H

The Hurst exponent measures the level of correlation (memory) in time series. It takes values between 0 and 1 and 
indicates a persistent behavior (or super-diffusive process) if H > 0.5, and anti-persistent behavior if H < 0.5 (or 
sub-diffusive process). A value close to 0.5 indicates a random process with no correlation and no dependence 
within the series. Many natural phenomena show persistent behaviors, with Hurst exponent generally fluctuating 
around 0.7320. This holds true also for earthquakes21–28, even though some variability in the H value has been 
documented6,29–31. However, most of these studies focused on specific seismic episodes (e.g., seismic sequences) 
or examined the process taking into account short observation periods. Moreover, some of them analyzed series 
of magnitude, inter-event times, or earthquake frequency rather than of seismic moment or energy. Hence, the 
maximum deviation R loses the physical interpretation originally given by Hurst15.

In the present study, we examine series of seismic moment release through Hurst’s R/S analysis to determine 
whether and how the degree of correlation among earthquakes in the series (expressed by H) varies both spa-
tially and temporally (i.e., as a function of the length of the seismic record). We analyze time series of cumulative 
seismic moment for single sites and extended areas in the Italian Central Apennines, accounting for the entire 
historic record and focusing on specific seismic episodes. The Italian Central Apennines are among the regions 
with the highest seismic hazard in the Mediterranean and central-western Europe32. Strong earthquakes have 
occurred both in the past and in recent years, when the three major seismic crises that are examined in the fol-
lowing shocked the population, between 1997 and 2017. The values of the Hurst exponent in this region are then 
compared with those obtained for all of Italy and worldwide, to reveal the universal value of H. We will show that 
variations in the H value are actually fictitious, as they are caused by the limited extent of earthquake time series 
or by catalog incompleteness, particularly at larger magnitudes.

Following the results of the R/S analysis, which confirm that seismicity is a memory process that is charac-
terized by long-range dependence, we present a new forecasting model that allows for persistency in the release 
of seismic deformation. The scientific literature includes many different kinds of earthquake forecasting models 
that are based on different assumptions and have different scopes33–41. While some models are developed for 
short-term forecasting (i.e., days to weeks), others are more suitable for medium-term forecast (i.e., months to 
a few years), and some others aim at forecasting earthquakes in the long term (i.e., to tens of years). This last 
group includes models that are at the core of probabilistic seismic hazard analysis (PSHA), the primary tool 
for anti-seismic design and emergency-response planning42. Nowadays, time-independent models based on the 
assumption of seismicity as a Poisson process are still widely used worldwide in PSHA. The key to the success 
of the Poisson model for earthquake occurrence in both hazard and risk analyses mostly relies on its simplicity. 
Although various models have been proposed as an alternative to the Poisson model, most of them have limited 
applicability due their extensive parameterization, which is often accompanied by lack of the experimental data 
(e.g., observations of repeated events on individual faults43,44) required to estimate the model parameters.

In the present study, we focus primarily on long-term forecasting. However, this does not imply that the 
model proposed is limited to applications in the long term only. In more detail, the scope is to develop a model 
that consistent with the results of the R/S analysis: (1) incorporates long-range dependence in the seismic process; 
(2) is reliable (i.e., forecasts are compatible with observations); and (3) does not require extensive parameteriza-
tion, thus allowing the widest possible applicability. To accomplish this third item, our model does not assume 
any a-priori statistical distribution of earthquake inter-event times, nor any specific hypothesis on the process 
of accumulation and release of stress on faults. In other words, we leave the catalog data ‘speak’ for themselves.

Results
Universality of the Hurst exponent.  We present the results both in terms of maps and diagrams that 
show the temporal variation of H for single sites. The diagrams are obtained by keeping the starting time fixed 
while moving the ending time forward 1 year at a time, and plotting the data points at the end of each time 
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interval. The procedure adopted to determine the time series analyzed through the R/S analysis is described in 
the Method section.

Figure 1a illustrates the geographic distribution of the Hurst index in central Italy. Input time series were 
determined from the Parametric Catalogue of Italian Earthquakes 2015 – CPTI1545 updated to February 2017 
with the data provided by the INGV Centro Nazionale Terremoti (http://cnt.rm.ingv.it/). The map clearly reveals 
little spatial variability in the H value. Indeed, H ranges between 0.86 and 0.88, which indicates a marked persis-
tence in the process of seismic moment release (i.e., H ≫ 0.5). Slightly lower values (around 0.84) that, however, 

Figure 1.  Up-to-date geographic distribution of the Hurst index in central Italy (a) and temporal variations for 
the sites of Norcia (b), L’Aquila (c), and in the Fucino (FC) basin (d). The date of the largest shocks that occurred 
in the area are displayed in Fig. 1a. The shaded areas in Fig. 1b–d indicate the 68% confidence interval. The time 
series of cumulative seismic moment are superimposed in Fig. 1b–d (dashed lines).

http://cnt.rm.ingv.it/
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fall within the uncertainty bounds of H (Fig. 1b–d, shaded areas), can be observed all over a corridor that cuts 
across the Central Apennines through L’Aquila, where R assumes a lower value (Fig. 2). This might be indicative 
of a lower seismic capacity, although it might be affected by the detrending polynomial used in the computation 
of R (see Method section) and by the completeness of the catalog in this area, where the largest events might occur 
with very long recurrence times46. Despite its extent (1000 – February 2017), indeed, the catalog might be too 
short to include some of the largest events that this sector of the Central Apennines can produce. This might affect 
the time series trend and, albeit to a lesser extent, the value of the Hurst exponent.

For the temporal variability of the Hurst exponent (Fig. 1b–d), our analysis reveals that H is substantially 
time invariant, with sharp fluctuations associated only with the largest earthquakes that occurred in the study 
area. These events correspond to the 1703 seismic sequence between Norcia and L’Aquila (with three consecutive 
events, two of which had Mw 6.7 and 6.9), and the 1915 Fucino (FC) earthquake of Mw = 7.1. These spurious 
fluctuations are attributable to catalog incompleteness. Following these major shocks, indeed, the Hurst coeffi-
cient regains the original value and remains insensitive to the subsequent strong events. Only an exceedance of 
the maximum observed value of R will produce a new drop in H. The time invariance of the Hurst exponent is 
confirmed by the analysis of the Italian and worldwide seismicity (Fig. 3), which leads to H values similar to those 
for the Central Apennines. Of particular note, there is the drop produced by the 1960 Valdivia earthquake, Chile, 
with Mw = 9.6 (Fig. 3b), which is again attributable to the limited extent (1900–2013) of the catalog47.

Figure 2.  Comparison of the cumulative deviation functions for N = 1 (see equation (9) in the Method section) 
for Norcia (NRC), L’Aquila (AQ), and a site in the Fucino (FC) basin. The figure shows that RAQ < RNRC < RFC, 
where R indicates the range from maximum to minimum of the cumulative deviations.

Figure 3.  Temporal variation of the Hurst exponent for the Italian (a) and worldwide (b) seismicity. The time 
series of cumulative seismic moment are superimposed (dashed lines). The Italian seismicity is from the CPTI15 
catalog45 updated to 2017. Worldwide seismicity is from the ISC-GEM catalog47.
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The foregoing observations suggest the invariance of H both temporally and spatially. However, similarly to the 
Gutenberg and Richter b-value, fictitious changes (i.e., not related to the physical process of strain release) in the 
H value might be observed on short time scales. In this regard, three case studies that correspond to different seis-
mic sequences in the Central Apennines are illustrated (1997–1998 Umbria-Marche; 2009 L’Aquila; 2016–2017 
Amatrice-Norcia). In these examples, only the instrumental seismicity recorded since 1981 is taken into account 
(http://cnt.rm.ingv.it/). Figure 4 shows snapshot maps for each of these, which display the spatial distribution of 
H at different stages; namely, the pre-sequence, foreshock, main shock, and aftershock stages. Since the first stage, 

Figure 4.  Geographic distribution of the Hurst index before (pre-sequence stage) and during (foreshock, main 
shock, and aftershock stages) the 1997–1998 Umbria-Marche, 2009 L’Aquila, and 2016–2017 Amatrice-Norcia 
seismic sequences.

http://cnt.rm.ingv.it/
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the sequences take place in areas generally characterized by lower values of H. With the foreshock occurrence, H 
begins to decrease and the nucleation zone – that is, the area where the main shock will occur and the sequence 
will start evolving – becomes distinguishable. The extent of the nucleation zone depends on both the foreshock 
distribution and energy. It is clearly wider in the case of the Amatrice-Norcia sequence, which was characterized 
by two strong foreshocks of Mw between 5.9 and 6. The H coefficient reaches the minimum value following the 
main shock occurrence and regains the base value during the subsequent months or years. According to previous 
findings, the variations of the H value discussed in these three case studies are undoubtedly due to the short time 
period covered by the earthquake catalog, which is evidently incomplete for larger magnitudes.

Figure 5 illustrates the sensitivity of H to moment release as a function of catalog completeness for the site 
of Norcia. Specifically, it shows the temporal variation of H before and during the 2016–2017 Amatrice-Norcia 
sequence for different earthquake catalogs with different temporal extents and minimum magnitude threshold, 
mmin. Besides the catalogs adopted for the examples displayed in Figs 1 and 4 (with mmin = 3.5, and mmin = 0, 
respectively), we analyzed an instrumental dataset that collects the earthquakes recorded in the area shocked by 
the sequence since January 2015 with magnitudes as low as mmin = −1.7. The number and amplitude of the drops 
marked on each line and the extent of the restoration stages measure the sensitivity of H to moment release. As 
expected, the sensitivity of H is inversely proportional to catalog completeness. The longer the seismic history 
(i.e., greater completeness for larger magnitudes), the higher the stability of H. Drops in the H value become 
sharper and the restoration stages shorter as the record length reduces. The two-year instrumental data set (Fig. 5, 
red line) allows clear identification of two fully restored drops, which correspond to the August 24 Mw = 6 fore-
shock and the October 30 Mw = 6.5 main shock. A small indentation is also discernible in the second drop, which 
corresponds to the October 26 Mw = 5.9 foreshock. The H variations become increasingly less evident as the 
catalog completeness increases, and they disappear when the entire historic record is considered. If this latter is 
constrained back to 1704, thus removing part of the seismic history and the contribution of the 1703 event, then 
the effect of the 2016 Amatrice-Norcia sequence appears, with a mild reduction of the Hurst exponent.

Incorporating long-range dependence into forecasting models.  Hurst index values such as those 
discussed above allow us to confirm that seismicity is a memory process with long-range dependence. This inval-
idates the assumption of seismicity as a Poisson process, which is widely used in conventional PSHA, and moti-
vates the development of a probability model for earthquake occurrence that allows for persistency in the release 
of seismic energy.

The simplest way to incorporate the previous findings into probability models for earthquake occurrence is to 
derive an empirical predictive relation for R, as is representative of the seismic source potential. We recall from 
the Introduction that R estimates the critical seismic moment, M c

0  (where M0 indicates conventionally the scalar 
moment and the superscript c stands for critical), corresponding to a time period of length n. Fig. 6 shows the 
scatter plot of logR(n)k versus logn for the Italian and worldwide data sets. The increasing trend in Fig. 6 can be 
estimated by least-squares regression, and yields the definition of R(n) as the predicted value of R at n; namely:

~R n dn( ) (3)K

where K and d are region dependent (see Fig. 6 and Table S1 in the Supplementary Note).
Replacing R(n) with M n( )c

0  and R(n)k with M n( )c
k0 , equation (3) can be written as:

M n q K nlog ( ) log (4)
c

k M n0 log ( )c
k0

ξ= + +

where =q dlog , and M nlog ( )c
k0

ξ  is the Gaussian residual with zero mean and standard deviation σ M nlog ( )c
0

.

Figure 5.  Temporal variation of the Hurst exponent before and during the 2016–2017 Amatrice-Norcia 
sequence for different earthquake catalogs with different extents and levels of completeness. Yearly variations 
are examined in the case of historical seismicity (dashed lines) while daily variations are considered in the 
analysis of the recent seismicity.
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Equation 4 is a predictive model for M nlog ( )c
k0 , where +q K nlog  represents the theoretical mean of the log-

arithm of the random variable M n( )c
0 . It can be shown that the previous relation incorporates long-range depend-

ence in the process of seismic strain release. Indeed, as shown in the Supplementary Note, the value of K can be 
recovered from H as:

K H S n p q
n

log ( )
log (5)

≈ +





+ − 




where p clog=  (see equation (2) for the meaning of c), and logS(n) can be determined via linear regression; 
namely, by assuming that S(n) also follows a power law.

We can compute the probability of exceedance of a specified moment value ⁎M0  in a given time period Δt = n 
(e.g., n years) as:

P M n M t F M( ( ) ) 1 ( ) (6)
c

M n0 0 ( ) 0c
0

⁎ ⁎> |Δ = −

where FM n( )c
0

 is the cumulative distribution function (CDF) of M n( )c
0 .

To compute the probability of exceeding a target M0
⁎ value, the probability distribution of M n( )c

0  has to be 
specified. To this end, we performed a Kolmogorov-Smirnov test on a number of empirical CDFs of M n( )c

0  that 
were obtained from the Italian and worldwide cumulative moment series, as well as from some local series in the 
Italian Central Apennines. We assumed the null hypothesis that M n( )c

0  is lognormally distributed, and a conven-
tional 5% significance level. The results (not shown here for the sake of brevity) showed that the data are drawn 
from the expected lognormal distribution, which is therefore assumed in the probability computations presented 
in the example below. However, other heavy-tailed distributions can be adopted. Note, indeed, that heavy-tailed 
distributions are commonly used to model fractal phenomena8.

Given the Hanks and Kanomori48 relation between Mw and M0, the probability of exceeding a target M0
⁎ value 

in Δt years translates into the probability of exceeding the magnitude value corresponding to ⁎M0 . Alternatively, 

Figure 6.  Scatter plot of logR(n)k versus logn obtained from the Italian (a) and worldwide (b) time series shown 
in Fig. 3. For each value of the time length n, the logarithmic range is plotted for the available sub-intervals 
indexed by k. The slope of the regression lines is the estimated K exponent (equation (3)).
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the probability of exceedance of a target magnitude value m can be obtained as the probability of exceeding the 
corresponding M0

⁎ value; namely:

P M m P M n t F( ) ( ( ) 10 ) 1 (10 ) (7)
c m

M n
m

w 0
1 5 9 1

( )
1 5 9 1

c
0

> = > |Δ = −. + . . + .

Therefore, equation (4) and equation (7) can be conservatively used to determine the probability of at least one 
exceedance of a particular earthquake magnitude in a specified time interval. The word conservatively is used 
because R is representative of the critical (or maximum) seismic capacity. However, a single maximum earthquake 
that releases the total accumulated energy might never occur. On the other hand, the maximum stored energy 
might be released by a main shock with its foreshocks, and aftershocks.

As an example, Fig. 7a presents a retrospective forecast map for the 1987–2016 period that is based on the 
data until December 1986. Precisely, it shows the geographic distribution of the 30-year probability of exceeding 
a magnitude 5.5 earthquake (within cells of 0.04° × 0.04°) in the Central Apennines since January 1987. Beyond 
the geographic distribution of probabilities, which are higher between Norcia and L’Aquila, where there have been 
two of the three largest seismic sequences of the last 30 years, the map is presented as a sort of simple retrospective 
test of our model for long-term forecasting. The period of 30 years is chosen as it represents the typical home-
owner mortgage. Moreover, it is roughly the length of the instrumental catalog (the same as used in the examples 
shown in Fig. 4) that is used to examine the reliability of our predictions. Compatibly with the model, the bench-
mark catalog includes both foreshocks and aftershocks. To test the model, we compare the expected number of 
earthquakes estimated from the map with the observed ones. The average number of expected events is expressed 
by the equivalent 30-year Poisson rate; namely44,49:

∑

∑

λ = − − > . |Δ =

= − − > . + | =

=

=

P M t yrs

P M n n yrs

ln(1 ( 5 5 30 ) )

ln(1 ( ( ) 2 24E 17 30 ) )
(8)

h

N

h

h

N
c

h

1
w

1
0

c

c

where Nc indicates the number of cells of the grid used in the calculations.
Comparing the equivalent 30-year rate with the observed number of earthquakes shows good agreement 

(7.4 expected events vs. 8 actual). Note that the equivalent rate must not be confused with the actual Poisson rate 
obtained through catalog declustering. Removing dependent events significantly underestimates the observed 
rate (3 expected events vs. 8), thus affecting the seismic hazard.

Figure 7b,c finally shows the variation of the 30-year probability of exceeding a magnitude 5.5 earthquake for 
the sites of Norcia and L’Aquila. The probability of exceedance is obtained by increasing the ‘learning time’ since 
the beginning of the catalog (as with Fig. 1b,d, we kept the starting time fixed and moved the ending time forward 
1 year at a time). Examining Fig. 7b,c shows that probabilities (black lines) jump following the 1703 and 1915 

Figure 7.  Map of the probability of occurrence of one or more events with magnitude above 5.5 per cell of 
0.04° × 0.04° during the 1987–2016 period (the relevant seismicity is superimposed) (a) and variation in time of 
the 30-year probability of exceeding an Mw = 5.5 earthquake (black line) for the sites of Norcia (b) and L’Aquila 
(c). The temporal variation of the K exponent (gray line) is superimposed in Fig. 7b,c.
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events, and subsequently tend to decrease at a slow rate that reflects closely the trend of K (gray lines), which, 
unlike the Hurst exponent, exhibits fluctuations with time.

Discussion
It appears from the previous considerations that long-range dependence is an inherent feature of the seismic pro-
cess. We have observed that the Hurst index is substantially space- and time-invariant, as it assumes a universal 
value of around 0.87, which is indicative of a memory process with marked long-range dependence. We have 
shown that variations in the H value are fictitious, and only occur if the seismic catalog is incomplete. It follows 
that one can observe such fictitious changes only if the observations are limited to a specific seismic episode (e.g., 
seismic sequence), or if they cover a short time interval within the entire historic record. In these cases, we have 
shown that H falls when the stress drops – that is, with the release of the seismic energy (foreshock, main shock, 
and aftershock stages) – and then climbs, to regain the basal level in the subsequent years (post-seismic stage).

Previous considerations motivated the development of a forecasting model that allows for persistency in the 
seismic process. As with many existing earthquake occurrence models, the model presented here has the advan-
tage that it overcomes the assumption of seismicity as a Poisson process, which is commonly adopted in long-term 
forecasting. Hence, it allows for dependent events, such as foreshocks and aftershocks, thus avoiding the tricky 
phase of catalog declustering. In addition, its simple, yet effective, parameterization makes our model suitable 
for large-scale applications. In this study, the model is coupled with a smoothed gridded seismicity approach, 
which is used to determine the time series used in input (see Method section). This approach appears appropriate 
in areas that are characterized by frequent and diffuse seismicity, while the use of area sources (i.e., seismogenic 
zonations) might be preferable in regions where earthquakes are sparse and infrequent. Regionalization of seis-
micity into areas that are homogeneous with regard to seismic behavior and stress field is also advisable with 
smoothed seismicity, to thus account for the tectonic and geologic heterogeneities that can potentially influence 
the spatio-temporal distribution of earthquakes50,51 (i.e., the value of the q and K coefficients). Obviously, our 
model can also be adapted and used with fault sources.

As with all new methods, our forecasting model clearly deserves further testing, but the premise looks intrigu-
ing and the model promising, at the least for long-term (tens of years) probabilistic seismic hazard assessment. 
Encouraging results (see Supplementary Fig. S1) were also obtained for medium-term forecasting. Application of 
our model to forecast seismicity in the Italian Central Apennines in a 10-year time window (2010–2019) yielded 
results that are in perfect agreement with those obtained by Marzocchi et al.52 by averaging the results of four 
alternative skilled models. Furthermore, its applicability is not only limited to earthquake forecasting. Indeed, it 
can be extended to other disciplines that deal with self-similar processes, and particularly to other geohazards 
such as rainstorms, floods, landslides, avalanches, and tsunamis.

Method
Gridded series of cumulated seismic moment were determined by application of the smoothed seismicity 
approach of Barani et al.51. Series were computed for each cell of a homogeneous grid of 0.04° spacing in lati-
tude and longitude using the same parameterization adopted in Barani et al.53. Earthquake scalar moments were 
cumulated and smoothed iteratively by adding the contribution of 1 year (month or day, in the case of instrumen-
tal seismicity) at a time from the beginning of the catalog. An adaptive elliptical kernel was used when analyzing 
the instrumental seismicity, to avoid over-smoothing. In that case, the Kernel dimensions were estimated by 
applying the Wells and Coppersmith54 relations for rupture length (equal to the maximum semi-axis of the ellipse 
of smoothing) and width (equal to the minimum semi-axis). The Kernel dimensions were computed at each iter-
ation as a function of the maximum earthquake magnitude observed until that time. No smoothing was applied 
on the Italian and worldwide series (Fig. 3).

Equation (1) and (2) were applied to each time series to compute the Hurst exponent. Specifically, each 
series was divided into an increasing number of (non-overlapping) intervals following a power-of-two scheme 
(i.e., N = 20, 21, 22…, 2 h) and the rescaled ranges (R/S)n were computed. In more detail, the range R(n)k in k-th 
sub-interval of length n is defined as:

= −( ) ( )R n D D( ) max min (9)k j k j k, ,

where = ∑ −=D X E( )j k i
j

i k i k, 1 , ,  for j = 1, …, n indicates the cumulative deviation of the i-th observation in the 
k-th window, Xi,k, from the local trend (or profile), Ei,k, here defined via polynomial regression. The average of the 
deviations from the local trend, S(n)k, is assessed here in terms of root-mean-square deviation, as:

S n
n

X E( ) 1 ( )
(10)

k
i

n

i k i k
1

, ,
2∑= −

=

For each interval, the degree of the detrending polynomial was automatically selected (in the range 1–5) by 
maximization of the coefficient of multiple determination, R2. According to Ośęwięcimka et al.55, polynomials of 
higher order were found to remove part of the fluctuation, leading to a slight reduction in H. On the other hand, 
constraining the polynomial degree to lower values was shown not to completely remove the trend56. However, 
we found that the choice of the profile has a minor impact on the results (less than 5%). Following different stud-
ies17,57,58, all analyses were made using a minimum number of 25 intervals. For yearly historical time series, the 
maximum number of intervals was constrained to 26 or 27 to avoid windows with less than 10 observations. As 
the length of the series cannot be a multiple of N, the tail of the series can be left out of the analysis. In order not 
to disregard this part of the series, the procedure was repeated back and forth. Finally, to avoid overestimation of 
H due to small samples, the adjustment proposed by Peters (1994) was applied.
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Data availability.  The authors declare that the materials and data used to produce the results presented in 
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