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Abstract We propose an adaptive `1-penalized estimator in
the framework of Generalized Linear Models with identity-
link and Poisson data, by taking advantage of a globally
quadratic approximation of the Kullback-Leibler
divergence. We prove that this approximation is asymptot-
ically unbiased and that the proposed estimator has the vari-
able selection consistency property in a deterministic ma-
trix design framework. Moreover, we present a numerically
efficient strategy for the computation of the proposed esti-
mator, making it suitable for the analysis of massive counts
datasets. We show with two numerical experiments that the
method can be applied both to statistical learning and signal
recovery problems.
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1 Introduction

Variable selection for Poisson regression is a common task
in both sparse signal recovery and statistical learning. In the
first case the idea is to find the smallest number of elements
of a suitable basis to represent an unknown signal, as for
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example in astronomy and medical imaging; in the second
case the aim is to identify important covariates for predic-
tion, with applications, by instance, in medicine, engineer-
ing and social sciences. In sparse signal recovery with Pois-
son data a lot of attention has been paid on fast and effi-
cient optimization methods especially when the number of
data is high and therefore a large scale inverse problem has
to be solved. Recent improvements have been focused on
acceleration of the usual proximal gradient methods requir-
ing sophisticated optimization techniques and first order ap-
proximations of the objective function (Gu and Dogandžić
2014; Harmany et al 2010; Figueiredo and Bioucas-Dias
2010; Bonettini et al 2009). On the other hand, in statisti-
cal learning a special effort has been provided in promot-
ing consistent variable selection and estimation. To this aim,
one of the most used methods is Lasso (Tibshirani 1996)
which performs sign consistent selection under the so-called
Irrepresentable Condition (Zhao and Yu 2006). A major step
forward in this direction was the introduction of adaptive
Lasso, which guarantees variable selection consistency in
the case of Generalized Linear Models (GLMs) under less
restrictive statistical assumptions (Zou 2006). The idea of
the adaptive approach is to introduce weights in the stan-
dard `1-penalized Lasso problem for enhancing the sparsity
of the solution and it has been put forward again in different
ways (Bogdan et al 2015; Candès et al 2008). For Poisson
GLMs the use of data-driven adaptive weights has been re-
cently proposed: in Jiang et al (2015) authors adapted Lasso
to work with Poisson data by means of a particular choice
of the adaptive weights, while in Ivanoff et al (2016) authors
proposed a choice based on concentration inequalities for
solving an adaptive problem arising from the Poisson GLM
with the canonical log link.

In this work we propose a data-dependent global
quadratic approximation of the Poisson log likelihood en-
abling us to formulate a simplified adaptive Lasso estimator
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suitable for sparse Poisson regression. The proposed esti-
mator has two main properties: first, despite its simplified
form, it performs consistent variable selection and second,
it can be computed by taking advantages of the fastest avail-
able algorithms, i.e. those developed for `1-penalized least
squares regression (Friedman et al 2007, 2010; Beck and
Teboulle 2009). Indeed, since it is well known that Poisson
GLM solvers can suffer from convergence issues (Silva and
Tenreyro 2011; Marschner and others 2011), the added value
of the proposed method is also in terms of both convergence
speed and stability. In this connection, path following algo-
rithms exploiting the piecewise linear form of the regulariza-
tion path can be adopted for the solution of Poisson sparse
recovery and learning problems, provided that the number
of relevant predictors is relatively small (Efron et al 2004).
Moreover, the proposed estimator is particularly suitable to
the case of large number of samples, as for large scale learn-
ing and inverse problems, making a consistent variable se-
lection for massive counts datasets feasible. In this respect,
we proved the consistency property of the variable selection
as the number of data increases and the number of unknowns
is fixed. Our results are based on some mild assumptions
analogous to those used in Zou and Zhang (2009), which
are suitable for applications with deterministic design ma-
trices. It is worth noticing that the consistency property has
different implications depending on the application: for sig-
nal recovery problems, consistency is computed against the
increasing number of bins/pixels in which the signal is mea-
sured, while for statistical learning it is evaluated against the
increasing number of available examples. For a detailed dis-
cussion on this topic see, for example De Vito et al (2005).
Finally, the proposed approximation is based on the Poisson
GLM with identity link, which is appropriate in the large
majority of signal recovery problems, being physical signal
formation models usually linear or, at least, linearized. How-
ever, the use of the identity link is not a limitation for statis-
tical learning. Indeed, although the use of a Poisson GLM in
real applications can be natural and well-justified, the deter-
mination of the best link function mostly concerns the pre-
dictive capabilities of the model. In the application section,
we will see, with the help of a synthetic example, that using
estimators based on the identity link function is appropriate
for variable selection even when data have been generated
by means of a model based on the log link function.

The paper is organized as follows. In Section 2 we intro-
duce the Poisson variable selection problem with determin-
istic matrix design suitable for the description of many sig-
nal processing and learning applications. In Section 3 we de-
scribe the approximation of the penalized method for Pois-
son data and establish the model selection consistency for
this method. In Section 4 we present a learning application
for showing the consistency of the method with Poisson data
and large scale denoising and deblurring problems for ob-

jects with sparse representation. Conclusions are drawn in
Section 5. Technical details of the proofs are presented in
Section 6.

2 Model description

Let us consider a Poisson random vector Y = (Y1, . . . ,Yn)
T

made of independently distributed components with mean
µ∗ = (µ∗1 , . . . ,µ

∗
n )

T , i.e.

Yi ∼ Poisson(µ∗i ), (1)

∀ i ∈ {1, . . . ,n}. Suppose that the parameter µ∗i can be ex-
pressed as

µ
∗
i = g−1(Xβ

∗)i, (2)

∀ i ∈ {1, . . . ,n}, where g : R→ R is an invertible function,
X := [x1, . . . ,xp] is a n × p matrix with columns
x j = (x1 j, . . . ,xn j)

T with j ∈ {1, . . . , p} and
β ∗ = (β ∗1 , . . . ,β

∗
p )

T is a suitable vector of parameters. In sta-
tistical estimation Y is called the response vector, X is the
predictor (or feature, or design) matrix, g is called the link
function and equation (2) describes the GLMs (McCullagh
and Nelder 1989). On the other hand, in signal recovery Y
represents the vector of noisy measurements of a given ran-
dom signal and X describes a linear signal formation process
depending on the parameters β ∗. In this paper, we assume
that the true unknown vector β ∗ is sparse. More formally,
let us denote with

A ∗ := { j ∈ {1, . . . , p} : β
∗
j 6= 0}

the set of indexes corresponding to relevant variables of the
model, namely the active set, and with |A ∗| its cardinality.
We suppose that

q := |A ∗|< p .

In applications we consider q as being a substantially
smaller fraction of p. Such assumption leads to the variable
selection and estimation problem, i.e. to compute a model
with a small number of relevant variables with good predic-
tion capabilities (Friedman et al 2001). The standard choice
for g in the statistical learning framework is the so-called
canonical link function of the GLM theory, i.e. the logarithm
function
g(z) := ln(z). In this way, Poisson means are equal to the
exponents of linear predictors, i.e. µ = exp(Xβ ∗), taking
positive values only. In the case of Poisson regression with
canonical link, an usual variable selection method comes
from extending the Adaptive Lasso to the GLMs, suggest-
ing the following estimator

β̂
(n)(log link) := argmin

β
∑

n
i=1 exp(Xβ )i−Yi(Xβ )i (3)

+λ ∑
p
j=1 w j|β j|,
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where β ∈ Rp, λ is the positive regularization parameter,
w = (w j) j=1,...,p is the weights vector, which has the role of
weighting the contribution of the coefficients β j.

Another possible choice for g is the identity link, i.e.
g(z) := id(z) under the non-negativity constraint zi > 0 , ∀i∈
{1, . . . ,n}. This choice is natural in a large variety of ap-
plications, e.g. in emission tomography and in astronom-
ical image reconstruction and deblurring, since the matrix
X is able to describe a linear transformation which approx-
imates the physical signal formation process (Prince and
Links 2006; Starck and Murtagh 2007). In the unconven-
tional case of Poisson GLM with identity-link the adaptive
Lasso estimator can be found by minimizing the
`1-penalized Kullback-Leibler divergence as follows

β̂
(n)(id link) := arg min

β∈C

n

∑
i=1

D((Xβ )i,Yi)+λ

p

∑
j=1

w j|β j|, (4)

where

C = {β ∈ Rp : (Xβ )i > 0 ∀ i ∈ {1, . . . ,n}} (5)

is the subset of feasible β solutions and D is the Kullback-
Leibler divergence, which is defined as

D(z,y) := y log
y
z
+ z− y, (6)

with z,y > 0 and D(z,0) := 0. The presence of such addi-
tional constraint (Xβ )i > 0, ∀ i ∈ {1, . . . ,n} can be a dis-
advantage of using the identity link. Indeed, this can result
in the need for much more computationally expensive op-
timization methods. However, in applications the vector β ∗

often contains an offset parameter associated with a constant
value predictor, which usually makes the quantity Xβ sub-
stantially larger than zero. As a consequence the solution of
the problem is an interior point of the feasible solution set
(5). This offset is called ‘the intercept’ in the statistical lan-
guage and ‘the background’ in signal recovery.

In Zou (2006) it has been proven that, by choosing the
weights in an appropriate manner, both the estimators
β̂ (n)(log link) and β̂ (n)(id link) perform consistent variable
selection and estimation, under some mild regularity condi-
tions where both X and Y are thought of as random vari-
ables. Now we introduce an approximation of the functional
(4) which allows us to define an adaptive penalized
reweighted least squares method with the property to iden-
tify the exact relevant explanatory variables when the num-
ber of observations diverges in a deterministic matrix design
framework. At the same time, such an approximation over-
comes the need for expensive optimization methods such as
the Iterative Reweighted Least Squares (IRLS) commonly
applied in the case of GLMs (Dobson and Barnett 2008).

3 Adaptive Poisson Reweighted Lasso

In this section we first present the theoretical properties of
the proposed estimator and after a numerically efficient ap-
proach to compute it.

3.1 Theory

We now show a global quadratic approximation of the KL
divergence and we prove that such an approximation is an
asymptotically unbiased estimator of the KL divergence.
Formally, we have the following

Theorem 1 Let y be a Poisson random variable with mean
θ . For any z > 0 such that |z− θ | ≤ c

√
θ with c > 0 such

that θ − c
√

θ > 0, we have

E
(

D(z,y)− 1
2
(y− z)2

y+1

)
= O

(
1√
θ

)
, (7)

as θ → ∞.

The proof of Theorem 1 is given in the Appendix. Theorem
1 implies that for all i ∈ {1, . . . ,n}, in a neighborhood of
the exact values (Xβ ∗)i, such an approximation is more and
more accurate with (Xβ ∗)i → ∞. This approximation calls
up to the Anscombe transform (Anscombe 1948). Nonethe-
less, the substantial difference is that the proposed approxi-
mation (7) is globally quadratic making its numerical treat-
ment extremely easier. In view of this term by term approx-
imation, we can introduce a novel estimator on the basis of
a positive weight vector w = {w j} j∈{1,...,p}, as follows

β̂
(n)
(w,λ )

:= arg min
β∈C

1
2

n

∑
i=1

(Yi− (Xβ )i)
2

Yi +1
+λ

p

∑
j=1

w j|β j|, (8)

where λ is the regularization parameter. Therefore, func-
tional in the r.h.s. of equation (8) is an asymptotically unbi-
ased estimator of the functional in the r.h.s. of equation (4).
In the case weights are all equal to 1, i.e. w j = 1 for any j, the
estimator is the minimizer of a functional that we call ‘Pois-
son Reweighted Lasso’ (PRiL). We denote it by β̂ (n)(PRiL)
and we notice that it depends on a regularization parameter
that we call λ1. We prove in the following that this choice
of the weights makes β̂ (n)(PRiL) a

√
n-consistent estima-

tor, provided an appropriate asymptotics of the regulariza-
tion parameter λ1 is given. Data-dependent choices of the
weights w j in the case of Poisson problems have been re-
cently proposed in Jiang et al (2015); Hansen et al (2015)
and are based on Poisson concentration inequalities. In all
cases the idea is to choose such weights in order to provide
the method with the asymptotic model selection consistency
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property. Inspired by the choice in Zou and Zhang (2009) for
the adaptive elastic net, we introduce the following weights

ŵ j =
1(

|β̂ (n)(PRiL) j|+
( 1

n

) 1
γ
+δ

)γ , (9)

where γ and δ are strictly positive constants. The estima-
tor (8) when provided with such weights is called ‘APRiL’
for Adaptive Poisson Reweighted Lasso and we denote it
by β̂ (n)(APRiL). Now, the main goal is to prove that the
β̂ (n)(APRiL) estimator has the model selection consistency
property in the case of Poisson data and under some assump-
tions on the matrix X. In particular, let Λ be the following
n×n diagonal matrix

Λ = diag

(
1√

Y1 +1
, . . . ,

1√
Yn +1

)
. (10)

We assume that:

(H1) the matrix XT
Λ 2X is positive definite, and

E

((
1

τmin(XT
Λ 2X)

)4
)
≤ 1

(bn)4 and

τmax(XT X)≤ Bn

where τmin(A) and τmax(A) are the minimum and max-
imum eigenvalues of the matrix A respectively, b and B
are two strictly positive constants

(H2) limn→+∞
λ1√

n = 0

(H3) a) limn→+∞ λn
γ

2−1 = ∞, b) limn→+∞ λnδγ = ∞,
c) limn→+∞ λnδγ− 1

2 = 0
(H4) there exists an L > 0 such that

max
j∈{1,...,p}

‖x j‖2 ≤ L.

Assumptions in (H1) involve the matrix X and the random
variable Y. The hypothesis concerning τmin implies that

E
(

τmin

(
XT

Λ 2X
n

))
≥ b (11)

which calls up to the assumption used by Zou and Zhang
(2009). Assumption (H2) involves the convergence rate of
the regularization parameter λ1 whereas assumptions
described in (H3) involve the convergence rate of regular-
ization parameter λ . We remark that, by choosing γ > 2 and
δ < 1

2γ
assumptions in (H3) let the asymptotic behavior of

the regularization parameter λ be zero, constant or infinity.
Assumption (H4) is necessary for consistent model selection
and it is automatically verified after the feature standardiza-
tion/normalization procedure. In the following theorem we
give a general bound of the expected error for the estimator
(8).

Theorem 2 Assuming hypothesis (H1), then it exists a con-
stant G <+∞, such that

E(‖β̂ (n)
(w,λ )
−β

∗‖2
2)≤

4λ 2

√
E
((

∑
p
j=1 w2

j

)2
)
+ pGBn

(bn)2 .

(12)

The proof of Theorem 2 is given in the Appendix. Such a
bound takes into account that weights can be random vari-
ables. In the case weights are constants all equal to 1, the
previous result boils down to the following

Corollary 1 Assuming hypothesis (H1) then

E(‖β̂ (n)(PRiL)−β
∗‖2)≤

2λ1
√

p+
√

pGBn
bn

. (13)

It is worth observing that under assumption (H2)
Corollary 1 implies that β̂ (n)(PRiL) is a

√
n-consistent es-

timator. Finally, we introduce the estimated active index set

ˆA (n) = { j ∈ {1, . . . , p} : β̂
(n)(APRiL) j 6= 0} (14)

of the estimator β̂ (n)(APRiL). The model selection consis-
tency property reads

lim
n→+∞

P( ˆA (n) = A ∗) = 1 . (15)

Theorem 3 Under assumptions (H1), (H2), (H3),
(H4) the APRiL estimator has the model selection consis-
tency property.

The proof of the Theorem (given in the Appendix) is sub-
stantially based on the

√
n-consistency property of the esti-

mator β̂ (n)(PRiL). This property underpins the choice of the
weights defined in equation (9).

3.2 Computations

The computation of the APRiL estimator can be performed
by means of the same numerically efficient algorithms de-
veloped for the solution of the Lasso problem. We propose
a numerical strategy which consists of two steps. First we
reweight the columns of the matrix X and the vector Y by
left-multiplying by Λ defined in equation (10). Second, fol-
lowing the approach proposed by Zou (2006), we reweight
the predictor matrix X for computing the adaptive solution.
These two steps need the computation of the solution of two
Lasso problems. In Algorithm 1 we outline the scheme of
the procedure.

In many applications the presence of an offset - be it a
regression intercept or a constant background signal - makes
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Algorithm 1 APRiL estimator computation
1: Input: X, Y
2: Data driven reweighting. Define

X̃ := ΛX Ỹ := ΛY

where Λ is defined in equation (10).
3: Compute the regularization path

β̂λ1 = arg min
β∈C

1
2
‖Ỹ− X̃β‖2

2 +λ1

p

∑
j=1
|β j|

and select β̂λ1 (PRiL) with λ1 according to a cross validation pro-
cess.

4: Compute the adaptive weights ŵ as in formula (9).
5: Adaptive reweighting. Define ˜̃X so that

˜̃x j = x̃ j/ŵ j, ∀ j ∈ {1, . . . , p}.

6: Compute the regularization path

˜̂
βλ = arg min

β∈C

1
2
‖Ỹ− ˜̃Xβ‖2

2 +λ

p

∑
j=1
|β j|

and select ˜̂
βλ with λ according to a cross validation process.

7: Output: β̂λ (APRiL) is such that

β̂λ (APRiL) j = (
˜̂
βλ ) j/ŵ j ∀ j ∈ {1, . . . , p}.

the vector Xβ̂λ an interior point of the feasible set C , i.e all
its components are positive. Moreover, we notice that, un-
like the functional in equation (4) which is based on the KL
divergence, the proposed functional in equation (8) is mean-
ingful for each β , even when Xβ has negative components.
In such cases, the constraint C can be neglected during the
optimization process and standard algorithms can be used
in place of sophisticated constrained techniques. Therefore,
steps 3 and 6 of the Algorithm 1 can be performed by solv-
ing the unconstrained Lasso problem. In this way, APRiL
method can take advantage of numerically efficient solvers
and of the piece-wise linear form of the regularization path
(Efron et al 2004).

4 Simulation studies

In this section we show two applications of the proposed
adaptive method. In the first one, we apply it to some statis-
tical learning test problems and in the second one, we show
that it can be successfully applied to wavelet-based Poisson
denoising and deblurring. One of the main difference be-
tween these applications is that in the first case the model (or
the link function) is not known while in the second case it is
a linear operator representing the signal formation process.
This leads us to make a performance comparison between
our method and the adaptive technique for GLMs with Pois-

son data in the statistical learning application, and to check
the performance of the proposed method in the sparse signal
recovery one.

4.1 Statistical learning application

We present a synthetic variable selection problem in order
to compare the proposed method with the adaptive GLM
for Poisson data (Zou 2006). The main goal of this syn-
thetic experiment is to assess the variable selection perfor-
mance of the proposed method as the number of samples in-
creases and its computational advantages when the number
of samples reaches the order of million. It is worth observ-
ing that in statistical learning regression methods are based
on a given data model (equation (2)), i.e. on a particular
choice of the link function. The standard method based on
GLM theory uses the log-link function, which is the canon-
ical choice for Poisson data, while the proposed method is
based on the identity-link. Therefore, in order to perform
a comprehensive comparison of the two methods, we con-
sider two sets of data generated according to the log-link
and the identity-link function based model, respectively. We
are interested in evaluating the performance of the APRiL
method and the Adaptive GLM (AGLM) by applying them
to both datasets. In particular, these two datasets are gener-
ated according to the following assumptions. We fix p = 15
and q = |A ∗| = 5. We construct the n× p predictor ma-
trix X for n = 125,250,500, so that each of its columns is
extracted by a p-dimensional normal multivariate distribu-
tion with zero mean and covariance Σ with Σ jr = ρ | j−r|, for
j,r ∈ {1, . . . , p}. We assume ρ = 0.5 and ρ = 0.75. We con-
sider the following two cases:

1. Log-link dataset. We generate the data Y by using log-
link function as follows

Yi = Poisson(β ∗0 exp((Xβ
∗)i)), ∀ i ∈ {1, . . . ,n}, (16)

where β ∗ = (0.7,−0.5,0.3,−0.4,0.6,0p−5)
T is the true

coefficient vector and β ∗0 is a suitable constant intercept.
2. Identity-link dataset. We generate Y by using the

identity-link function as follows

Yi = Poisson((Xβ
∗∗)i +β

∗∗
0 ), ∀ i ∈ {1, . . . ,n}, (17)

where β ∗∗ = (e0.7,e−0.5,e0.3,e−0.4,e0.6,0p−5)
T is the

true coefficient vector and β ∗∗0 is a suitable constant in-
tercept.

In the second case we select the intercept in order to
make each component of the vector (Xβ ∗∗)i +β ∗∗0 positive.
In the first case we tune the intercept value so that data gen-
erated in the first case has about the same signal to noise
ratio of the data generated in the second case. Moreover, for
each problem, we generate 100 realizations of Poisson data
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Table 1 Mean Square Error values obtained by averaging over 100 replicates the results provided by AGLM and APRiL method for each problem.

log-link dataset identity-link dataset

n 125 250 500 125 250 500

ρ = 0.5

AGLM 4.1(±2.1) 10−4 2.1(±1.2) 10−4 8(±5) 10−5 6.2(±0.1) 10−1 6.2(±0.1) 10−1 6.2(±0.1) 10−1

APRiL 1.5(±0.6) 1.8(±0.6) 4.4(±0.5) 2.4(±0.5) 10−1 2.1(±0.4) 10−1 1.9(±0.2) 10−1

ρ = 0.75

AGLM 7.3(±4.5) 10−4 4.1(±2.2) 10−4 1.4(±0.7) 10−4 6.3(±0.1) 10−1 6.3(±0.1) 10−1 6.3(±0.03) 10−1

APRiL 2.7(±1.2) 5.6(±1) 8.3(±1.2) 2.7(±0.7) 10−1 2.2(±0.5) 10−1 2.1(±0.4) 10−1

and therefore we obtained 600 estimation problems (#n = 3
and #ρ = 2). For each one of these problems we perform
regression by means of the APRiL and the AGLM methods.

(a) case ρ = 0.5

(b) case ρ = 0.75

Fig. 1 Comparing distributions of TSS, fixing number of samples
equal to n = 125.

The APRiL weights are parametrized according
with the assumptions in Theorem 3. In particular we use ŵ j
as defined in equation (9), and we fix constants γ = 3 and

(a) case ρ = 0.5

(b) case ρ = 0.75

Fig. 2 Comparing distributions of TSS, fixing number of samples
equal to n = 250.

δ = 1
8 . For what concerns AGLM defined in equation (3) we

fix the weights as

ŵ j =
1

|β̂ (MLE) j|γ̄
∀ j ∈ {1, . . . , p} , (18)

where β̂ (MLE) is the maximum likelihood estimate in Pois-
son log-linear regression model and γ̄ is a positive constant
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(a) case ρ = 0.5

(b) case ρ = 0.75

Fig. 3 Comparing distributions of TSS, fixing number of samples
equal to n = 500.

(Zou 2006). For computing the solution of these optimiza-
tion problems we use the glmnet MATLAB package Fried-
man et al (2010). Moreover we select the regularization pa-
rameter by means of the 10-fold Cross Validation (CV) im-
plemented in the same package. We use the mean squared
error (MSE) for measuring the estimation accuracy of each
10-fold cross-validated APRiL and AGLM solution. In Ta-
ble 1 we show MSE values for both algorithms. It is evident
that the algorithm based on the same model by which data
have been generated achieves a lower MSE. In other words,
the AGLM method performs better when applied to the log-
link dataset and the APRiL when applied to the identity-link
dataset.

Moreover, we compare the variable selection
performance of the AGLM and APRiL methods by comput-
ing the confusion matrix which represents matches and mis-
matches between predicted active variables and exact ones.
On the basis of the components of the confusion matrix, i.e.
false positives (FP), false negatives (FN), true positives (TP),

and true negatives (TN), we compute the True Skill Score
(TSS) which is defined as the balance between the true pos-
itive rate and the false alarm rate, i.e.

TSS =
TP

TP+FN
− FP

FP+TN
, (19)

and ranges from −1 to 1. The optimal variable selection is
obtained when the TSS is 1 and a direct consequence of The-
orem 3 is that the TSS value provided by the APRiL esti-
mator converges to one in probability as n goes to infinity.
For having a broader picture, for each method, in addition
to the 10-fold cross-validated solution, we compute the so-
lution which maximizes the TSS value along the regulariza-
tion path, and we refer to it as the oracle solution. Oracle
solutions allow us to make a performance assessment of the
algorithms independently of the choice of the regularization
parameter. Each box-plot in Figures 1, 2 and 3 shows the
TSS distribution obtained by applying the algorithm written
in the x-axis label to one hundred replicates of Y. In each fig-
ure, from left to right the odd box-plots show the TSS value
provided by the oracle solution while the even ones show the
TSS value provided by the cross validated solution. The first
four box-plots refer to the AGLM and APRiL algorithms
applied to the log-link dataset (equation (16)), whereas the
second four box-plots refer to the algorithms applied to the
identity-link dataset (equation (17)).

Some comments about variable selection results:

1. The TSS provided by oracle AGLM solutions is
larger than the one provided by the oracle APRiL so-
lutions in all the experiments we performed. This can
be explained by the fact that AGLM method is based on
the maximization of the Poisson likelihood, which is the
actual distribution used for generating data. Oracle solu-
tions provided by the APRiL method, which is based on
an approximation of the Poisson log-likelihood, do not
achieve the same performance.

2. The use of CV procedure for finding the regularization
parameter reduces the performance of the variable selec-
tion so that it does not seem to be an efficient method in
the case of small and moderately sized samples. How-
ever, for large scale problems the regularization path is
more stable and the CV selects a solution closer to the
oracle one (Martinez et al 2011). In general, TSS dis-
tributions corresponding to cross validated solutions are
over-dispersed and for each problem among the 100
replicates we can find a variable selection with a very
low TSS value. Moreover CV behaves differently across
algorithms. The striking fact is that the cross validated
APRiL solution tends to produce a better variable selec-
tion than the cross validated AGLM one, overall in the
case of smaller sized samples and log-link dataset.

Obtained results have been proven to be robust by vary-
ing the number of folds in the cross validation analysis and
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Table 2 Computation mean time in seconds.

Link Method n = 104 n = 5 104 n = 105 n = 5 105 n = 106

time in s

log AGLM 1.6 10−2 7.5 10−2 1.5 10−1 8.3 10−1 2.0
APRiL 9.6 10−4 5.0 10−3 1.0 10−2 6.1 10−2 1.3 10−1

identity AGLM 1.4 10−2 6.5 10−2 1.3 10−1 7.3 10−1 1.8
APRiL 9.7 10−4 5.1 10−3 1.1 10−2 6.2 10−2 1.3 10−1

the definition of the adaptive weights. In this regard, we
replicated the experiments introduced above by using the 5-
fold cross validation and by choosing the adaptive weights
of the AGLM method in a way analogous to the one de-
scribed in equation (9) obtaining similar outcomes.

Finally, we check the numerical efficiency of the two
algorithms. Following the above described setup, for each
method we estimate the required CPU time for computing a
solution of the problem having fixed the regularization pa-
rameter λ , for ρ = 0.5 and n = 104, 5 104, 105, 5 105, 106.
In Table 2 we show the computational time by reporting the
mean time in seconds to compute a solution of the regular-
ization path. From Table 2 the benefit in terms of computa-
tional efficiency provided by the use of the APRiL method
with respect to the AGLM method is evident. Indeed, in each
case the computational cost is shrunk by a factor of about
15. In addition, another advantage of the proposed method
is that it does not suffer of convergence issues which are
instead well-known in the case of the Poisson regression
(Marschner and others 2011; Silva and Tenreyro 2011).

4.2 Sparse signal recovery application

We present two simulated experiments in sparse signal re-
covery: the first is an example of image denoising and the
second is an example of image deblurring. Formally, these
problems are described by equation (17) where X := ΩΨ

where Ω represents the convolution with a given
point-spread-function and Ψ is the standard synthesis op-
erator which decomposes a given image f on an orthogonal
wavelet basis {ψ j} j∈{1,...,p}. The image to recover is char-
acterized by coefficients denoted by (β ∗j ) j∈{1,...,p}, i.e.

f ∗ =
p

∑
j=1

β
∗
j ψ j. (20)

In both cases we consider 256× 256 images leading to
large scale inverse problems with size n= 65536. For the de-
noising application we generate a compressed version of the
‘lena’ image by thresholding its coefficients in the wavelet
basis and we use the resulting image as the ‘true’ image to
recover. The true image is then represented by 17368 non-
zero coefficients in the wavelet basis (about 74% of spar-
sity) with a Relative Square Error (RSE) of about 0.001%

with respect to the original image. In this case the operator
Ω is the identity. For the deblurring application we used a
medical image and we performed the above described pro-
cedure for obtaining a ‘true’ image represented by 10005
non-zero coefficients (about 85% of sparsity) corresponding
to a RSE value of about 0.003% with respect to its original
version. The convolution kernel of the operator Ω is a Gaus-
sian function with σ = 1.5. We apply APRiL method to both
problems. Thanks to its particular form, we can solve opti-
mization problems by using an iterative forward-backward
splitting algorithm: we perform a gradient step with step-
size τ = 1.5 and then we apply the soft thresholding opera-
tor in the wavelet domain. Iteration stops when convergence
is reached. The numerical optimization has been performed
by using the MATLAB Numerical Tours Peyré (2011).

(a) Lena (b) Noisy

(c) Recovered
λ

0 0.2 0.4 0.6 0.8 1 1.2 1.4

17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

22

SNR in dB

(d) SNR

Fig. 4 Image denoising application: (a) true object, (b) noisy image,
(c) recovered image with APRiL method, (d) SNR as a function of λ .

In both examples we select the regularization parame-
ter in order to maximize the Signal-to-Noise Ratio (SNR).
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Table 3 Recovery performance results for image denoising and deblurring applications, respectively.

Example RSE SNR in dB PSNR in dB confusion matrix

denoising 0.05 % 21.99 28.52 TP = 5668 FN = 11700
FP = 2257 TN = 45911

deblurring 0.08 % 19.67 31.66 TP = 5420 FN = 4585
FP = 2684 TN = 52847

Figure 4 and Figure 5 show the results in the case of denois-
ing and deblurring problems, respectively: for each example
we show the true image, the noisy image, the best recovered
image with APRiL method and the SNR of the recovered
images as a function of the regularization parameter. In Ta-
ble 3 we show the following performance values: the RSE,
the SNR and the Peak SNR. In addition, in such Table we
provide for each problem the confusion matrix showing how
many wavelet coefficients have been correctly recovered.

In both imaging applications we can notice a high num-
ber of TN, whereas a relatively small number of FP and a
quite large number of FN.

(a) MRI (b) Blurred and noisy

(c) Recovered
λ

0 0.02 0.04 0.06 0.08 0.1

18.6

18.8

19

19.2

19.4

19.6

19.8

SNR in dB

(d) SNR

Fig. 5 Image deblurring application: (a) true object, (b) blurred and
noisy image, (c) recovered image with APRiL method, (d) SNR as a
function λ .

However most of such incorrectly estimated coefficients
have very small absolute value: indeed they do not signifi-
cantly contribute to the signal formation.

5 Conclusions

In this paper we proposed to use a globally quadratic approx-
imation of the Kullback-Leibler divergence for performing
adaptive `1-penalized Poisson regression.
The gain of this approach, called APRiL, is to perform con-
sistent model selection alongside a reduced computational
cost deriving from the quadratic approximation. Indeed,
APRiL enjoys the computational advantages of standard
Lasso by means of a simple reweighting of the input matrix
and data. On the other hand, we proved that the method pro-
vides consistent model selection under some unrestrictive
assumptions on the regularization parameter λ as a func-
tion of the number of samples n. Although we proved that
the model selection is ensured in a wide asymptotic range
(λ (n) can have infinite or finite limit value, even zero), we
showed in simulations that the selection of λ by Cross Val-
idation is not effective in the case of small sized samples.
We also showed that this method is efficient in the case of
very large sized dataset, as in the case of signal processing.
A data-dependent choice of the regularization parameter in
according with Theorem 3 is an intriguing problem and will
be object of future work.

6 Appendix: proofs

In order to prove Theorem 1, we start by proving the follow-
ing

Lemma 1 Let y be a Poisson random variable with mean θ .
Let z > 0 be such that |z−θ | ≤ c

√
θ , where c is a positive

constant smaller than
√

θ . Then

E
(

D(z,y)− 1
2
(y− z)2

z

)
= O

(
1
θ

)
, as θ → ∞. (21)

Proof Following Zanella et al (2013) we obtain

D(z,k) =
1
2
(k− z)2

z
− 1

6
(k− z)3

z2 +
1
3
(k− z)4

z3

+ kR3

(
k− z

z

)
,

where k ∈ N and R3 is defined as follows

R3(ξ ) =
∫

ξ

0

(t−ξ )3

(1+ t)4 dt,
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where ξ ≥ −1. By computing the moments of the Poisson
random variable y centered in z we obtain

E
(

D(z,y)− 1
2
(y− z)2

z

)
=−1

6
θ −3θr− r3

z2 (22)

+
1
3

3θ 2 +6θr2−4θr+θ + r4

z3 +E (θ),

where r := z−θ and

E (θ) = E
(

yR3

(
y− z

z

))
=

∞

∑
k=1

e−θ θ k

k!
kR3

(
k− z

z

)
.

To conclude we now prove that E (θ) = O( 1
θ
). Following

the idea of the proof given in Zanella et al (2013), we split
the series into two parts: in the first ranging k between 0 and
[ z

2 ] and in the second one k > [ z
2 ]+1, where [χ] denotes the

integer part of χ . We observe that for k from 1 to [ z
2 ], or

equivalently ξ ∈ (−1,− 1
2 ], then

(1+ξ )|R3(ξ )| ≤
1
e
. (23)

Since θ s

s! = θ s

Γ (s+1) is monotonically increasing for 0 ≤ s ≤

[ θ+c
√

θ

2 ], using equation (23) and the Stirling formula we
obtain

∣∣∣∣∣
[ z

2 ]

∑
k=1

e−θ θ k

k!
kR3

(
k− z

z

)∣∣∣∣∣≤ 1
e

[ z
2 ]

∑
k=1

ze−θ θ k

k!

≤ 1
e

[ θ+c
√

θ

2 ]

∑
k=1

ze−θ θ k

k!
≤ 1

e

[
θ + c

√
θ

2

]
e−θ θ [ θ+c

√
θ

2 ]

[ θ+c
√

θ

2 ]!
z

≤ e−θ−1+[ θ+c
√

θ

2 ]

√
2π

(
θ

[ θ+c
√

θ

2 ]

)[ θ+c
√

θ

2 ][
θ + c

√
θ

2

] 1
2

z

≤ e
− 1

2 θ

(
1−cθ

− 1
2−v

(
log
(

2
v−2θ−1

)))
(θ + c

√
θ)

3
2

2
√

π

=: M(θ), (24)

where v := 1+cθ−
1
2 . Then M(θ)→ 0 exponentially as θ →

∞. Now we consider k ≤ [ z
2 ] + 1, or equivalently ξ > − 1

2 .
Since

|R3(ξ )| ≤ 4ξ
4, (25)

we obtain∣∣∣∣∣∣
∞

∑
k=[ z

2 ]+1

e−θ θ k

k!
kR3

(
k− z

z

)∣∣∣∣∣∣
≤ 4

∞

∑
k=0

e−θ θ k

k!
k
(

k− z
z

)4

= 4
3θ 3 +6θ 2r2−16θ 2r+11θ 2 +(r−1)4

z4

≤ (3+6c2)θ 3 +16cθ 2
√

θ +11θ 2 +(c
√

θ +1)4

(θ − c
√

θ)4

= O
(

1
θ

)
.

Proof (Proof of Theorem 1) By the triangular inequality we
have∣∣∣∣E(D(z,y)− 1

2
(y− z)2

y+1

)∣∣∣∣ (26)

≤
∣∣∣∣E(D(z,y)− 1

2
(y− z)2

z

)∣∣∣∣
+

∣∣∣∣E(1
2
(y− z)2

z
− 1

2
(y− z)2

y+1

)∣∣∣∣ .
Then, to get the thesis, thanks to Lemma 1, it is sufficient to
prove that

E
(
(y− z)2

z
− (y− z)2

y+1

)
= O

(
1√
θ

)
, as θ → ∞. (27)

By straightforward computations and using that |z− θ | ≤
c
√

θ we get the following∣∣∣∣E( (y− z)2

z
− (y− z)2

y+1

)∣∣∣∣
≤ e−θ

∣∣∣∣ (z+1)2

θ

∣∣∣∣+ ∣∣∣∣ (θ − z)3

zθ

∣∣∣∣
+

∣∣∣∣ (θ − z)2

zθ

∣∣∣∣+ ∣∣∣∣3(θ − z)
θ

− 1
θ

∣∣∣∣
≤ e−θ (θ + c

√
θ +1)2

θ
+

c3
√

θ − c

+
c2

θ − c
√

θ
+

3c√
θ
+

1
θ
= O

(
1√
θ

)
.

To prove Theorem 2 we need some preliminary results.
We start by defining

ε := Y−Xβ
∗. (28)

We observe that the components εi are independent random
variables with zero mean and Var(εi) = (Xβ ∗)i, for all i ∈
{1, . . . ,n}. Hereafter, for easy of notation we suppress the
superscript (n) from the estimators.
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Lemma 2 There exists a constant G <+∞ such that

E
(
‖XT

Λ
2
ε‖4

2
)
≤ p2G2(τmax(XT X))2. (29)

Proof (Proof of Lemma 2) We compute the term in the l.h.s.
in equation (29). We have

E
(
‖XT

Λ
2
ε‖4

2
)
= E((DT XXT D)2) (30)

with D := Λ 2ε . For the Singular Value Decomposition we
can write

XXT = UT
ΣU ,

where U is an orthogonal matrix and Σ a diagonal matrix
containing the eigenvalues of XT X. We define We define
H := UD = UΛ 2ε . The i-th component of H is given by

Hi =
n

∑
l=1

uil
εl

Yl +1
,

where uil represents the (i, l)-entry of the matrix U. Since
εl

Yl+1 takes values between−(Xβ ∗)l and 1, we have that each
component Hi takes values in a compact subset [R,S]. There-
fore, as H ∈ [R,S]n, the quadratic form (HT

ΣH)2 admits a
maximum, i.e. there exists an H∗ such that (HT

Σ 2H)2 ≤
((H∗)T Σ 2H∗)2. Then

E
(
‖XT

Λ
2
ε‖4

2
)
= E((HT

ΣH)2)≤ ((H∗)T
Σ

2H∗)2 (31)

≤ p2G2(τmax(XT X))2,

with

G := max
i∈{1,...,n}:

Σii 6=0

(H∗i )
2. (32)

Corollary 2 Under assumption (H1) there exists a constant
G <+∞ such that we have the following bound

E(‖β̂ (PRLS)−β
∗‖2

2)≤
pGBn
(bn)2 , (33)

where β̂ (PRLS) is the reweighted least square estimator de-
fined as follows

β̂ (PRLS) = argmin
β

1
2
‖Λ(Y−Xβ )‖2

2 . (34)

Proof (Proof of Corollary 2) By using optimality conditions
of problem in equation (34) and the definition of ε we have

β̂ (PRLS)−β
∗ = (XT

Λ
2X)−1(XT

Λ
2
ε) . (35)

Then, by using the Cauchy-Schwartz inequality we obtain

E(‖β̂ (PRLS)−β
∗‖2

2) (36)

≤
√
E(‖(XT

Λ 2X)−1‖4
2)E(‖X

T
Λ 2ε‖4

2),

where

‖(XT
Λ

2X)−1‖4
2 =

1
(τmin(XT

Λ 2X))4
. (37)

By assumption (H1) and Lemma 2 we have the thesis.

Proof (Proof of Theorem 2) We want to prove the
bound in equation (12). From Corollary 2, since

E(‖β̂(w,λ )−β
∗‖2

2)≤ E(‖β̂(w,λ )− β̂ (PRLS)‖2
2) (38)

+E(‖β̂ (PRLS)−β
∗‖2

2),

we have to establish a bound for the first term of the r.h.s.
of (38). In order to do so, we follow similar arguments as
in the proof of Theorem 3.1 by Zou and Zhang (2009). By
definition of β̂(w,λ ), the following inequality applies

1
2
‖Λ(Y−Xβ̂(w,λ ))‖2

2−
1
2
‖Λ(Y−Xβ̂ (PRLS))‖2

2 (39)

≤ λ

p

∑
j=1

w j(|β̂ (PRLS) j|− |(β̂(w,λ )) j|).

From the optimality conditions of the optimization
problem in equation (34), we have

1
2
‖Λ(Y−Xβ̂(w,λ ))‖2

2−
1
2
‖Λ(Y−Xβ̂ (PRLS))‖2

2 (40)

=
1
2
(β̂(w,λ )− β̂ (PRLS))T XT

Λ
2X(β̂(w,λ )− β̂ (PRLS)),

and we notice that

τmin(XT
Λ

2X)‖β̂(w,λ )− β̂ (PRLS)‖2
2 (41)

≤ (β̂(w,λ )− β̂ (PRLS))T XT
Λ

2X(β̂(w,λ )− β̂ (PRLS))

and
p

∑
j=1

w j(|β̂ (PRLS) j|− |(β̂(w,λ )) j|) (42)

≤

√√√√ p

∑
j=1

w2
j‖β̂ (PRLS)− β̂(w,λ )‖2.

Using (39), (40), (41) and (42) we obtain

‖β̂(w,λ )− β̂ (PRLS)‖2 ≤
2λ

√
∑

p
j=1 w2

j

τmin(XT
Λ 2X)

, (43)

and finally, the Cauchy Schwartz inequality and assumption
(H1) lead to

E(‖β̂(w,λ )− β̂ (PRLS)‖2
2)≤

4λ 2

√
E
((

∑
p
j=1 w2

j

)2
)

(bn)2 . (44)

The thesis follows from equations (38), (44) and Corollary
2.

Proof (Proof of Theorem 3) For brevity we denote the
APRiL estimator by β̂ . To prove the model selection con-
sistency we prove that for n→+∞

P(∀ j ∈ (A ∗)C, β̂ j = 0)−→ 1 (45)
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and

P(∀ j ∈A ∗, |β̂ j|> 0)−→ 1 . (46)

We now prove equation (45). The functional defined in equa-
tion (8) is convex and not differentiable and C is convex set.
Then the solution β̂ satisfies the (KKT) optimality condi-
tions:

– (Xβ̂ )i ≥ 0 ∀ i ∈ {1, . . . ,n};

– νi ≥ 0 ∀ i ∈ {1, . . . ,n};

– νi(Xβ̂ )i = 0 ∀ i ∈ {1, . . . ,n};

– if β̂ j 6= 0

−xT
j Λ

2(Y−Xβ̂ )+λw jsgn(β̂ j)−xT
j ν = 0; (47)

– if β̂ j = 0

−xT
j Λ

2(Y−Xβ̂ )+λw js j−xT
j ν = 0, (48)

with s j ∈ [−1,1].

ν is the n-dimensional vector whose components are the La-
grangian multipliers. From equation (47), the event{
∀ j ∈ (A ∗)C, β̂ j = 0

}
is the same of{
|xT

j (Λ
2(Y−XA ∗ β̂A ∗)+ν)| ≤ λ ŵ j,∀ j ∈ (A ∗)C

}
, (49)

where XA ∗ is the matrix constituted by the columns x j with
j∈A ∗, and β̂A ∗ is the vector constituted by the components
β̂ j with j ∈ A ∗. Equation (45) is equivalent to

P
(
∃ j ∈ (A ∗)C,

∣∣∣xT
j (Λ

2(Y−XA ∗ β̂A ∗)+ν)
∣∣∣> λ ŵ j

)
→ 0

for n→+∞. We set

Ŝ j := |β̂ (PRiL) j|+
(

1
n

) 1
γ
+δ

,

η̂ := min
j∈A ∗

Ŝ j,

η := min
j∈A ∗
|β ∗j |+

(
1
n

) 1
γ
+δ

,

and

Ê j :=
∣∣∣xT

j (Λ
2(Y−XA ∗ β̂A ∗)+ν)

∣∣∣ .
Then

P
(
∃ j ∈ (A ∗)CÊ j > λ ŵ j

)
(50)

≤ ∑ j∈(A ∗)C P
(

Ê j > λ ŵ j, η̂ > η

2 , Ŝ j ≤
(

λ

n

) 1
γ

)
+∑ j∈(A ∗)C P

(
Ŝ j >

(
λ

n

) 1
γ

)
+P

(
η̂ ≤ η

2

)
.

The idea is to determine three bounds M1, M2 and M3 de-
pending on n, such that

P
(

η̂ ≤ η

2

)
≤M1, (51)

∑
j∈(A ∗)C

P

(
Ŝ j >

(
λ

n

) 1
γ

)
≤M2, (52)

∑
j∈(A ∗)C

P

(
Ê j > λ ŵ j, η̂ >

η

2
, Ŝ j ≤

(
λ

n

) 1
γ

)
≤M3. (53)

and M1, M2 and M3 go to 0 for n→ +∞. Let us start with
the determination of bound M1. Using Corollary 1, it follows
that

P
(

η̂ ≤ η

2

)
≤ P

(
‖β̂ (PRiL)−β

∗‖2 ≥
η

2

)
≤ 2

η

(
2λ1
√

p+
√

pGBn
bn

)
=: M1.

For the determination of bound M2, we use again Corollary
1. We have that

∑
j∈(A ∗)C

P

(
Ŝ j >

(
λ

n

) 1
γ

)

≤
E
(
‖β̂ (PRiL)−β ∗‖2

)
+ p

( 1
n

) 1
γ
+δ

(
λ

n

) 1
γ

≤ 1

(λ

n )
1
γ

(
2λ1
√

p+
√

pGBn
bn

+
p

n
1
γ
+δ

)
=: M2.

Finally, for the determination of bound M3, we write

∑ j∈(A ∗)C P
(

Ê j > λ ŵ j, η̂ > η

2 , Ŝ j ≤
(

λ

n

) 1
γ

)

≤ 2
E

∑ j∈(A ∗)C Ê j1{
η̂ > η

2

}


n .

By definition of ε , we have

∑ j∈(A ∗)C Ê j (54)

= ∑ j∈(A ∗)C
∣∣∣xT

j Λ 2XA ∗(β
∗
A ∗ − β̂A ∗)+xT

j Λ 2ε +xT
j ν

∣∣∣
≤ ∑ j∈(A ∗)C ‖xT

j Λ‖2

√
τmax(XT

Λ 2X)‖β ∗A ∗ − β̂A ∗‖2

+∑ j∈(A ∗)C
∣∣∣xT

j ν

∣∣∣+∑ j∈(A ∗)C ‖xT
j Λ‖2‖Λε‖2.

By using assumption (H4), we get

∑
j∈(A ∗)C

‖xT
j Λ‖2 ≤ p max

j=1,...,p
‖x j‖2 ≤ pL, (55)
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and

E(‖Λε‖2) = E

(√
n

∑
i=1

(
εi√

Yi +1

)2
)
≤
√

2n (56)

where we used that E
(

ε2
i

Yi+1

)
≤ 2 for all i ∈ {1, . . . ,n}. Fol-

lowing the idea of the proof of Lemma 2, in particular the
calculus which leads (33), we have

‖β̂A ∗ − β̂ (PRLS)A ∗‖2 ≤
2λ
√

p 1
η̂γ

τmin(XT
A ∗Λ

2XA ∗)
. (57)

Thanks to the Cauchy-Schwartz inequality, equations (54),
(55), (56), (57) and hypothesis (H1) we obtain the following
bound

E
(

∑ j∈(A ∗)C Ê j1{
η̂ > η

2

})
≤ pL

√
E
(
τmax(XT

Λ 2X)
)
E
(
‖β ∗A ∗ − β̂A ∗‖2

21{
η̂ > η

2

})
+E
(

∑ j∈(A ∗)C
∣∣∣xT

j ν

∣∣∣1{
η̂ > η

2

})+ pLE(‖Λε‖2)

≤ pL
√

Bn
(

2λ
√

p( η

2 )
−γ

+
√

pGBn
bn

)
(58)

+E
(

∑ j∈(A ∗)C
∣∣∣xT

j ν

∣∣∣1{
η̂ > η

2

})+ pL
√

2n.

From optimality conditions in equations (48) and (47) it fol-
lows that

|xT
j ν | ≤ |xT

j Λ
2(Y−Xβ̂ )|+λw j,

so we have

E
(

∑ j∈(A ∗)C
∣∣∣xT

j ν

∣∣∣1{
η̂ > η

2

})
≤ E

(
∑ j∈A ∗ |xT

j Λ 2ε|
)

+E
(

∑ j∈A ∗ |xT
j Λ 2X(β ∗− β̂ )|1{

η̂ > η

2

})
+λE

(
∑ j∈A ∗ ŵ j1{

η̂ > η

2

})
≤ pL

√
2n+ pL

√
Bn
(

2λ
√

pn1+γδ+
√

pGBn
bn

)
+λ p

(
2
η

)γ

where we have used the following bound

E
((

∑
p
j=1 ŵ2

j

)2
)

= E


∑

p
j=1

1(
|β̂ (PRiL) j |+( 1

n )
1
γ +δ

)2γ


2

≤ p2n4(1+δγ). (59)

Then, we obtain

∑ j∈(A ∗)C P
(

Ê j > λ ŵ j, η̂ > η

2 , Ŝ j ≤
(

λ

n

) 1
γ

)
≤ 4pL

n

(
√

2n+B
√

pG+
√

Bnp
λ

(
2
η

)γ

+λn1+δγ

bn +λ
2γ−1

ηγ L

)
=: M3.

Now we prove that M1, M2 and M3 go to 0 for n→+∞.

M3→ 0

because
√

nλ

(
2
η

)γ

n2 −→ 0,
√

nλn1+δγ

n2 −→ 0 and
λ

n

(
2
η

)γ

−→ 0 for n→ +∞, for the assumption (H3 c) and
for the positivity of constants γ and δ ;

M2 =
1

(λ

n )
1
γ

(
2λ1
√

p+
√

pGBn
bn

+
p

n
1
γ
+δ

)
→ 0

because λ1

( λ
n )

1
γ n
−→ 0 for n→+∞ for assumptions (H2) and

(H3 a),
√

n

n( λ
n )

1
γ

= 1(
λn

γ

2−1
) 1

γ

−→ 0 for n→ +∞ for the as-

sumption (H3 a), and at last
1

( λ
n )

1
γ n

1
γ +δ
−→ 0 for n→+∞ for the assumption (H3 b);

M1 =
2
η

(
2λ1
√

p+
√

pGBn
bn

)
→ 0

because λ1
nη
−→ 0 for n→+∞, for the assumption (H2) and

the definition of η , and
√

n
nη

= O( 1√
n ) for n→+∞.

Now we prove equation (46). It is sufficient to show that

P
(

min
j∈A ∗
|β̂ j|> 0

)
−→ 1, n→+∞.

By equation (57) we have

min
j∈A ∗
|β̂ j|> min

j∈A ∗
|β̂ (PRLS) j|−

2λ
√

pη̂−γ

τmin(XT
Λ 2X)

, (60)

where

min
j∈A ∗
|β̂ (PRLS) j| ≥ min

j∈A ∗
|β ∗j |−‖β ∗A ∗ − β̂ (PRLS)A ∗‖2 .

(61)

Since min j∈A ∗ |β ∗j | > 0, to conclude we show that

‖β ∗A ∗ − β̂ (PRLS)A ∗‖2 and 2λ
√

pη̂−γ

τmin(XT Λ 2X)
go to 0 in probabil-

ity. Equation (33) implies that the second term in the r.h.s of
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(61) goes to zero. Moreover, for the second term in equation
(60) we have that, given M > 0

P
(

λ

η̂γ τmin(XT Λ 2X)
> M

)
(62)

≤ P
(

λ

η̂γ τmin(XT Λ 2X)
> M,{η̂ > η

2 }
)
+P

(
η̂ ≤ η

2

)
≤ λ

M

√
E
((

1
τmin(XT Λ 2X)

)2
)
E
(

1
η̂2γ 1{η̂> η

2 }

)
+M1

≤ λ

bnM

(
2
η

)γ

+M1 −→ 0 for n→+∞

as M1→ 0 for n→+∞ and λ

n

(
2
η

)γ

→ 0 for n→+∞ thanks
to assumption (H3 c). This proves equation (46) and con-
cludes the proof.
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