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1 LCSL, Istituto Italiano di Tecnologia and Massachusetts Institute of Technology

Bldg. 46-5155, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
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Abstract

We investigate the convergence properties of a stochastic primal-dual splitting algorithm
for solving structured monotone inclusions involving the sum of a cocoercive operator and a
composite monotone operator. The proposed method is the stochastic extension to monotone
inclusions of a proximal method studied in [26, 35] for saddle point problems. It consists in a
forward step determined by the stochastic evaluation of the cocoercive operator, a backward
step in the dual variables involving the resolvent of the monotone operator, and an additional
forward step using the stochastic evaluation of the cocoercive introduced in the first step. We
prove weak almost sure convergence of the iterates by showing that the primal-dual sequence
generated by the method is stochastic quasi Fejér-monotone with respect to the set of zeros of the
considered primal and dual inclusions. Additional results on ergodic convergence in expectation
are considered for the special case of saddle point models.
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1 Introduction

This paper is concerned with the algorithmic solution, in a stochastic setting, of structured mono-
tone inclusions defined by the sum of a cocoercive operator and a monotone operator composed
with a linear transformation and its adjoint. This problem arises in many applications, such as
variational inequalities and equilibrium problems [29], signal and image processing [21, 23], game
theory [10], and statistical learning [25, 27, 39, 50, 60]. A necessarily incomplete list of related
works include [8, 9, 11, 12, 15, 14, 22, 24, 43, 55].
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For monotone inclusions with the considered structure, key is the joint solution of the primal
problem and its associated dual form. Indeed, primal-dual schemes have several advantages, since
they do not require the inversion of any of the involved linear functions, and independently activate

each of the monotone operators. The single-valued operators is involved in the forward step, while
the set-valued operator appears in the backward steps and requires the computation of the resolvent
[15, 55].
Recently, stochastic versions of splitting methods for monotone inclusions have been studied. This
is relevant to consider practical situations where operators are known only through measurements
subject to random noise, or when the computation of a stochastic estimate is cheaper than the
evaluation of the operator itself. Among the many approaches, we mention stochastic forward-
backward splitting [19, 51, 7], stochastic Douglas-Rachford [19], and stochastic versions of primal-
dual methods as in [6, 19, 45, 52]. These works found natural applications in stochastic optimization
[19, 51] and machine learning [27, 53].

In this paper we focus on a primal dual splitting method, that generalizes to monotone inclusions
the so called proximal alternating predictor-corrector algorithm (PAPC), proposed independently
in [35] for regularized least squares minimization problems and in [26] for saddle point problems. In
particular, we allow for stochastic errors: the proposed algorithm requires the computation of the
resolvent of the maximal monotone operators at each step, and it uses a stochastic approximation of
the cocoercive operator. The update of the primal variable requires an extra step (called a correction
step in [26]). In this respect, the algorithm resembles the extragradient method proposed in [41],
but differs from it since it does not require extra evaluations of the involved operators. Indeed, the
correction step does not impact the complexity of the method since it requires only matrix/vector
multiplications. The considered algorithm is also related to the general inertial splitting scheme
[52, Algorithm 4.41] for solving multivariate monotone inclusions. In contrast to [52, Algorithm
4.41], we allow for an additional projection step on a set of linear constraints, and consider variable
step-sizes. Our analysis establishes almost sure weak convergence of the iterates generated by the
method, and ergodic convergence under more general conditions on the error when saddle points
problems are considered. The analysis differs from the one in [26, 35], and is based on variable
metric stochastic quasi-Fejer sequences [61].

The paper is organized as follows: in Section 2 we introduce notation and preliminaries. We then
present the problem, the algorithm, and we prove almost sure convergence in Section 3. In Section 4
we focus on minimization problems and their saddle point formulations. For this special case, we
prove ergodic convergence in expectation of the duality gap under more general conditions on the
errors and the step-sizes. Finally, in Section 5, we consider the case of sum of composite inclusions
and we show how to apply the general scheme to this case, using the product space reformulation
[9]. As a corollary, we obtain convergence results for structured minimization problems.

Problem 1.1 Let β ∈ ]0,+∞[, let H and G be real Hilbert spaces, let B : H → H be a β-cocoercive
operator, let V be a closed vector subspace of H, let A : G → 2G be a maximally monotone operator,
and let L : H → G be a bounded linear operator. The normal cone operator to V is denoted by
NV . Denote by P the set of all points x ∈ H such that

0 ∈ Bx+ L∗A(Lx) +NV x, (1.1)

and D the set of all v ∈ G such that

0 ∈ −L(B +NV )
−1(−L∗v) +A−1v, (1.2)
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The problem is to find a point (x, v) in P ×D.

Note that since V is a closed vector subspace,

NV x =

{
V ⊥ if x ∈ V

∅ otherwise .

2 Notation and preliminary results

Throughout, H is a real separable Hilbert space. We denote by 〈· | ·〉 and ‖ · ‖ the scalar product
and the associated norm of H. The symbols ⇀ and → denote weak and strong convergence,
respectively. We denote by ℓ1+(N) the set of summable sequences in [0,+∞[, and by B (H) the
space of linear operators from H into itself. Let U ∈ B (H) be self-adjoint and strongly positive,
i.e.

(∃χ ∈ ]0,+∞[)(∀x ∈ H) 〈Ux | x〉 ≥ χ‖x‖2. (2.1)

We define a scalar product and a norm respectively by

(∀x ∈ H)(∀y ∈ H) 〈x | y〉U = 〈Ux | y〉 and ‖x‖U =
√

〈Ux | x〉.

Let A : H → 2H be a set-valued operator. The domain and the graph of A are defined by

domA =
{
x ∈ H | Ax 6= ∅

}
and graA =

{
(x, u) ∈ H ×H | u ∈ Ax

}
.

The set of zeros of A is zerA =
{
x ∈ H | 0 ∈ Ax

}
and the range of A is ranA = A(H). The inverse

of A is A−1 : H → 2H : u 7→
{
x ∈ H | u ∈ Ax

}
. The resolvent of A is

JA = (Id+A)−1, (2.2)

where Id denotes the identity operator of H. Moreover, A is monotone if

(∀(x, u) ∈ graA)(∀(y, v) ∈ graA) 〈x− y | u− v〉 ≥ 0,

and maximally so, if there exists no monotone operator Ã : H → H such that graA ⊂ gra Ã 6= graA.
If A is monotone, then JA is single-valued and nonexpansive, and, in addition, if A is maximally
monotone, then dom JA = H.

Let Γ0(H) be the class of proper lower semicontinuous convex functions from H to ]−∞,+∞].
For any self-adjoint strongly positive operator U ∈ B (H) and f ∈ Γ0(H), we define

proxUf : H → H : x 7→ argmin
y∈H

(
f(y) +

1

2
‖x− y‖2U

)
, (2.3)

and

proxf : H → H : x 7→ argmin
y∈H

(
f(y) +

1

2
‖x− y‖2

)
.

It holds proxUf = JU−1∂f , and proxf = J∂f coincides with the classical definition of proximity

operator in [38]. Moreover, let x ∈ H and set p = proxUf x. Then

(∀y ∈ H) f(p)− f(y) ≤ 〈y − p | U(p− x)〉 . (2.4)
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The conjugate function of f is

f∗ : a 7→ sup
x∈H

(
〈a | x〉 − f(x)

)
.

Note that,
(∀f ∈ Γ0(H))(∀(x, y) ∈ H2) y ∈ ∂f(x) ⇔ x ∈ ∂f∗(y),

or equivalently,
(∀f ∈ Γ0(H)) (∂f)−1 = ∂f∗. (2.5)

The strong relative interior of a subset C of H, denoted by sriC, is the set of points x ∈ C such
that the cone generated by −x+C is a closed vector subspace of H. We refer to [3] for an account
of the main results of convex analysis and monotone operator theory.

Let (Ω,F,P) be a probability space. A H-valued random variable is a measurable (strong and
weak measurability coincide since H is separable) function X : Ω → H, where H is endowed with
the Borel σ-algebra. We denote by σ(X) the σ-field generated by X. The expectation of a random
variable X is denoted by E[X]. The conditional expectation of X given a σ-field A ⊂ F is denoted
by E[X|A]. Given a random variable Y : Ω → H, the conditional expectation of X given Y is
denoted by E[X|Y ]. See [34] for more details on probability theory in Hilbert spaces. A H-valued
random process is a sequence (xn)n∈N of H-valued random variables. The abbreviation a.s. stands
for “almost surely”.

Lemma 2.1 [54, Theorem 1] Let (Fn)n∈N be an increasing sequence of sub-σ-algebras of F, let

(zn)n∈N, (ξn)n∈N, (ζn)n∈N and (tn)n∈N be [0,+∞[-valued random sequences such that, for every

n ∈ N, zn, ξn, ζn, and tn are Fn-measurable. Assume moreover that
∑

n∈N tn < +∞,
∑

n∈N ζn <
+∞ a.s., and

(∀n ∈ N) E[zn+1|Fn] ≤ (1 + tn)zn + ζn − ξn a.s.. (2.6)

Then (zn)n∈N converges a.s. and (ξn)n∈N is summable a.s..

The following lemma is a special case of [61, Proposition 2.4].

Lemma 2.2 Let C be a non-empty closed subset of H, let α ∈ ]0,∞[, let W ∈ B (H) and

(Wn)n∈N ⊂ B (H) be self-adjoint and strongly positive operators with constant α, such that Wn → W
pointwise, and let (xn)n∈N be a H-valued random process. Suppose that, for every x ∈ C, there

exist [0,+∞[-valued random sequences (ξn(x))n∈N, (ζn(x))n∈N and (tn(x))n∈N such that, for every

n ∈ N, ξn(x), ζn(x) and tn(x) are Fn-measurable, (ζn(x))n∈N and (tn(x))n∈N are summable a.s.,

and

(∀n ∈ N) E[‖xn+1 − x‖Wn+1
|Fn] ≤ (1 + tn(x))‖xn − x‖Wn + ζn(x)− ξn(x) a.s. (2.7)

Then the following hold.

(i) (xn)n∈N is bounded a.s. and (ξn(x))n∈N is summable a.s.

(ii) There exists Ω̃ ⊂ Ω such that P(Ω̃) = 1 and, for every ω ∈ Ω̃ and x ∈ C, (‖xn(ω) − x‖)n∈N
converges.
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(iii) Suppose that the set of weak cluster points of (xn)n∈N is a subset of C a.s. Then (xn)n∈N
converges weakly a.s. to a C-valued random vector.

Lemma 2.3 [18, Lemma 3.7] Let A : H → 2H be maximally monotone, let U ∈ B (H) be self-

adjoint and strongly positive, and let G be the real Hilbert space obtained by endowing H with the

scalar product (x, y) 7→ 〈x | y〉U−1 . Then, the following hold.

(i) UA : G → 2G is maximally monotone.

(ii) JUA : G → G is firmly nonexpansive.

3 Algorithm and almost sure convergence

In this section we state our main results. We introduce the extension to monotone inclusions of the
primal-dual algorithm in [26, 35], allowing for stochastic errors in the evaluation of the operator B
and we prove almost sure weak convergence of the iterates.

Algorithm 3.1 Let (γn)n∈N and (τn)n∈N be sequences of strictly positive real numbers, let U be a
self adjoint positive definite on G, let (rn)n∈N be a H-valued, square integrable random process, let
x0 be a H-valued, squared integrable random variable and let v0 be a G-valued, squared integrable
random variable. Iterate

(∀n ∈ N)


pn = PV (xn − γn(L

∗vn + rn))
vn+1 = J τn

γn
UA−1

(
vn + τn

γn
ULpn

)

xn+1 = PV (xn − γn(L
∗vn+1 + rn)).

(3.1)

Almost sure convergence. We first establish almost sure convergence of the iterates generated
by Algorithm (3.1) under suitable conditions on the parameters (γn)n∈N and (τn)n∈N as well as on
the stochastic estimates of B.

Theorem 3.2 In the setting of Problem 1.1, suppose that P is non empty and consider algo-

rithm 3.1. Assume that the following conditions are satisfied for Fn = σ((xk, vk)0≤k≤n)

(i) (γn)n∈N is decreasing and (τn)n∈N is increasing

(ii) (∃τ ∈ ]0,+∞[) such that supn∈N τn ≤ τ , and (τU)−1 − LPV L
∗ is positive definite.

(iii) γ0 ∈ ]0, β[ and infn∈N γn > 0.

(iv) (∀n ∈ N) E[rn|Fn] = Bxn.

(v)
∑

n∈N E[‖rn −Bxn‖
2|Fn] < +∞ P-a.s.

Then the following hold for some random vector (x, v), P ×D-valued a.s.

(i) (xn)n∈N converges weakly to x and (vn)n∈N converges weakly to v a.s.
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(ii)
∑

n∈N ‖Bxn −Bx‖2 < +∞ a.s.

Proof. Let S be the set of all points (x, v) ∈ H × G such that

− L∗v ∈ Bx+NV x and Lx ∈ A−1v. (3.2)

Then S is non empty and it is a closed convex subset of H × G [9, Proposition 2.8] contained
in P × D. Since A−1 is maximally monotone, it follows from Lemma 2.3 that (τn/γn)UA−1 is
maximally monotone with respect to 〈· | ·〉(γn/τn)U−1 . Hence, J(τn/γn)UA−1 is firmly nonexpansive
with respect to the norm ‖ · ‖(γn/τn)U−1 . Moreover, we also derive from (3.2) that

(∀n ∈ N) v = J τn
γn

UA−1

(
v +

τn
γn

ULx
)
. (3.3)

Therefore,

γn‖vn+1−v‖2(τnU)−1

≤ γn‖vn − v +
τn
γn

UL(pn − x)‖2(τnU)−1 − γn‖vn − vn+1 +
τn
γn

UL(pn − x)‖2(τnU)−1 . (3.4)

We have

γn‖vn−v +
τn
γn

UL(pn − x)‖2(τnU)−1

= γn‖vn − v‖2(τnU)−1 + 2 〈L∗(vn − v) | pn − x〉+
1

γn
‖L(pn − x)‖2(τnU) (3.5)

and

γn‖vn−vn+1 +
τn
γn

UL(pn − x)‖2(τnU)−1

= γn‖vn+1 − vn‖
2
(τnU)−1 + 2 〈L∗(vn − vn+1) | pn − x〉+

1

γn
‖L(pn − x)‖2(τnU). (3.6)

By inserting the last two equalities into (3.4), we obtain

γn‖vn+1 − v‖2(τnU)−1 ≤ γn‖vn − v‖2(τnU)−1 − γn‖vn+1 − vn‖
2
(τnU)−1 + 2 〈L∗(vn+1 − v) | pn − x〉 .

(3.7)

Let us now estimate the last term in (3.7). Since PV is self-adjoint, PV PV = PV , and xn+1−x ∈ V ,
we have

〈L∗(vn+1 − v) | pn − x〉 = 〈L∗(vn+1 − v) | xn+1 − x〉+ 〈L∗(vn+1 − v) | pn − xn+1〉

= 〈L∗(vn+1 − v) | PV (xn+1 − x)〉+ γn 〈L
∗(vn+1 − v) | PV L

∗(vn+1 − vn)〉

= 〈PV L
∗(vn+1 − v) | xn+1 − x〉+ γn 〈PV L

∗(vn+1 − v) | PV L
∗(vn+1 − vn)〉 .

(3.8)

Upon setting M = LPV L
∗, we have

2γn 〈(vn+1 − v) | M(vn+1 − vn)〉 = γn‖vn+1 − v‖2M + γn‖vn+1 − vn‖
2
M − γn‖vn − v‖2M (3.9)
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Set

(∀n ∈ N)

{
χn = 2 〈PV L

∗(vn+1 − v) | xn+1 − x〉 ,

ζn = 2 〈rn −Bxn | xn+1 − x〉 ,
(3.10)

and note that, by (3.7),(3.8), and (3.9)

γn‖vn+1 − v‖2(τnU)−1−M ≤ γn‖vn − v‖2(τnU)−1−M − γn‖vn+1 − vn‖
2
(τnU)−1−M + χn (3.11)

Equation (3.2) yields

PV L
∗vn+1 =

1

γn

(
PV xn − xn+1

)
− PV rn

−PV L
∗v = PV Bx. (3.12)

Using the monotonicity and the cocoercivity of B, and noting that xn+1 − x ∈ V , (3.12) yields

χn + ζn =
2

γn
〈PV xn − xn+1 | xn+1 − x〉 − 2 〈PV rn − rn | xn+1 − x〉 − 2 〈Bxn − PV Bx | xn+1 − x〉

=
2

γn
〈xn − xn+1 | xn+1 − x〉 − 2 〈Bxn −Bx | xn − x〉 − 2 〈Bxn −Bx | xn+1 − xn〉

≤
2

γn
〈xn − xn+1 | xn+1 − x〉+ 2 〈Bxn −Bx | xn − xn+1〉 − 2β‖Bxn −Bx‖2

≤
2

γn
〈xn − xn+1 | xn+1 − x〉 − 2β‖Bxn −Bx‖2 + β‖Bxn −Bx‖2 + β−1‖xn − xn+1‖

2

≤
1

γn

(
‖xn − x‖2 − ‖xn+1 − x‖2

)
−

( 1

γn
−

1

β

)
‖xn − xn+1‖

2 − β‖Bxn −Bx‖2. (3.13)

Set Rn = γ2n
(
(τnU)−1 −M

)
and define

||| · |||2n : H× G ∋ (x, v) 7→ ‖x‖2 + ‖v‖2Rn
and x = (x, v), (∀n ∈ N) xn = (xn, vn). (3.14)

We derive from (3.11), (3.13), and (3.14) that

|||xn+1 − x|||2n ≤ |||xn − x|||2n −
(
1−

γn
β

)
‖xn+1 − xn‖

2 − ‖vn+1 − vn‖
2
Rn

− γnζn − γnβ‖Bxn −Bx‖2.

(3.15)

Let us set 



pn = PV (xn − γn(L
∗vn +Bxn))

vn+1 = J(τn/γn)UA−1(vn + τn
γn
ULpn)

xn+1 = PV (xn − γn(L
∗vn+1 +Bxn)).

(3.16)

It follows from the nonexpansiveness of J(τn/γn)UA−1 with respect to ‖ · ‖(γn/τn)U−1 and the nonex-
pansiveness of PV that

‖xn+1 − xn+1‖ ≤ γn‖L
∗(vn+1 − vn+1) + rn −Bxn‖

≤ γn

(
‖L‖‖vn+1 − vn+1‖+ ‖rn −Bxn‖

)

≤ γn

(
(τn/γn)

1/2‖L‖2‖U‖1/2‖pn − pn‖+ ‖rn −Bxn‖
)

≤ γn

(
(τnγn)

1/2‖U‖1/2‖L‖2‖rn −Bxn‖+ ‖rn −Bxn‖
)
.

≤ γn((τnγn)
1/2‖U‖1/2‖L‖2 + 1)‖rn −Bxn‖. (3.17)
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Hence, upon setting σn = γn((τnγn)
1/2‖U‖1/2‖L‖2 + 1),

(∀n ∈ N) − ζn = −2 〈rn −Bxn | xn+1 − x〉 − 2 〈rn −Bxn | xn+1 − xn+1〉

≤ −2 〈rn −Bxn | xn+1 − x〉+ 2‖rn −Bxn‖‖xn+1 − xn+1‖

≤ −2 〈rn −Bxn | xn+1 − x〉+ σn‖rn −Bxn‖
2, (3.18)

Since (γn)n∈N is decreasing and (τn)n∈N is increasing, we derive from inequality (3.15) that

|||xn+1 − x|||2n+1 ≤ |||xn − x|||2n −
(
1−

γn
β

)
‖xn+1 − xn‖

2 − ‖vn+1 − vn‖
2
Rn

− γnβ‖Bxn −Bx‖2

− 2γn 〈rn −Bxn | xn+1 − x〉+ γnσn‖rn −Bxn‖
2. (3.19)

Since L, B, J(τn/γn)UA−1 , and PV are continuous, and xn is Fn-measurable, xn+1 − x is Fn-
measurable, and by (iii), we obtain

(∀n ∈ N) E[〈rn −Bxn | xn+1 − x〉 |Fn] = 〈E[rn −Bxn|Fn] | xn+1 − x〉 = 0. (3.20)

Therefore, by taking conditional expectation with respect to Fn of both sides of (3.19), we obtain

(∀n ∈ N) E[|||xn+1 − x|||2n+1|Fn] ≤ |||xn − x|||2n − E

[(
1−

γn
β

)
‖xn+1 − xn‖

2 + ‖vn+1 − vn‖
2
Rn

∣∣∣Fn

]

γnσnE[‖rn −Bxn‖
2|Fn]− γnβ‖Bxn −Bx‖2. (3.21)

Since the sequence (γnσnE[‖rn −Bxn‖
2|Fn])n∈N is summable a.s by assumptions (ii),(iii) and (v),

in view of (2.7), (3.21) shows that (xn)n∈N is a stochastic quasi-Fejér monotone sequence with
respect to the target set S. Therefore, it follows from Lemma 2.2 and condition (iii) that





(xn)n∈N is bounded a.s.
∑

n∈N E
[(
1− γn

β

)
‖xn+1 − xn‖

2 + ‖vn+1 − vn‖
2
Rn

∣∣Fn

]
< +∞ a.s.

∑
n∈N ‖Bxn −Bx‖2 < +∞ a.s.

(3.22)

Since L,B,PV and J(τn/γn)UA−1 are continuous, for every n ∈ N, xn+1, vn+1 and pn are Fn-
measurable. Therefore, for every n ∈ N,

‖xn+1 − xn‖
2 + ‖vn+1 − vn‖

2
U−1 = E[‖xn+1 − xn‖

2|Fn] + E[‖vn+1 − vn‖
2
U−1 |Fn]

≤ 2

(
E[‖xn+1 − xn+1‖

2|Fn] + E[‖xn+1 − xn‖
2|Fn]

+ E[‖vn+1 − vn+1‖
2
U−1 |Fn] + E[‖vn+1 − vn‖

2
U−1 |Fn]

)
. (3.23)

Note that, since (τn/γn)A
−1 is maximally monotone, JU(τn/γn)A−1 is firmly nonexpansive with

respect to 〈· | ·〉U−1 by Lemma 2.3. Thus,

E[‖vn+1 − vn+1‖
2
U−1 |Fn] ≤ (τn/γn)E[‖UL(pn − pn)‖

2
U−1 |Fn]

≤ τγ0E[‖ULPV (rn −Bxn)‖
2
U−1 |Fn] → 0, (3.24)
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and hence

E[‖xn+1 − xn+1‖
2|Fn] ≤ 2γ20E[‖PV L

∗(vn+1 − vn+1)‖
2|Fn] + 2γ20E[‖PV (rn −Bxn)‖

2|Fn] → 0.
(3.25)

Now using (3.22), (3.24), and (3.25), we derive from (3.23) that

xn+1 − xn → 0 and vn+1 − vn → 0, and xn+1 − pn → 0 a.s. (3.26)

Moreover, it follows from the third line of (3.22) that

Bxn → Bx a.s., (3.27)

and from (3.16) that

U−1(vn− vn+1) ∈
τn
γn

(
A−1vn+1−Lpn

)
and γ−1

n (xn−xn+1)−Bxn ∈ L∗vn+1+NV xn+1, (3.28)

almost surely. Next, let us prove that every weak cluster point of (xn)n∈N is in S a.s. Let Ω0 be
the set of all ω ∈ Ω such that (xn(ω))n∈N is bounded and (3.26),(3.27) and (3.28) are satisfied. We
have P(Ω0) = 1. Fix ω ∈ Ω0. Let x(ω) = (x(ω), v(ω)) be a weak cluster point of (xn(ω))n∈N. Then
there exists a subsequence (xkn(ω))n∈N that converges weakly to x(ω). By (3.26)

xkn+1(ω)− xkn(ω) → 0 and vkn+1(ω)− vkn(ω) → 0, and xkn+1(ω)− pkn(ω) → 0 (3.29)

and hence by (3.27), and [3, Proposition 20.33(ii)]

(xkn+1(ω), vkn+1(ω), pkn(ω)) ⇀ (x(ω), v(ω), x(ω)) and Bxkn(ω) → Bx = Bx(ω). (3.30)

The operator (x, p, v) ∈ H×H×G 7→ (NV (x), 0, A
−1v) + (L∗v, 0,−Lx) is maximally monotone by

[3, Corollary 24.4(i)], since it is the sum of two maximally monotone operators [3, Proposition 20.23
and Example 20.30]. Hence, its graph is sequentially closed in Hweak ×Hstrong by [3, Proposition
20.33(ii)], and we derive from (3.28) and (3.29) that

−Bx(ω) = L∗v(ω) +NV x(ω) and Lx(ω) ∈ A−1v(ω), (3.31)

which shows that (x(ω), v(ω)) ∈ S by (3.2). Altogether, it follows Lemma 2.2(iii) that xn ⇀ x,
with x which is P ×D-valued a.s.

A direct corollary of the above theorem is the exact case, where no stochastic errors occur.

Corollary 3.3 Suppose that P is non empty. Let (γn)n∈N be a decreasing sequence of strictly

positive real numbers such that γ0 < β, let (τn)n∈N be an increasing sequence of strictly positive

real numbers such that τ = supn∈N τn < +∞, let U be a self adjoint positive definite on G such that

(τU)−1 − LPV L
∗ is positive definite, let x0 ∈ H and v0 ∈ G. Iterate

(∀n ∈ N)


pn = PV (xn − γn(L

∗vn +Bxn))
vn+1 = J(τn/γn)UA−1(vn + τn

γn
ULpn)

xn+1 = PV (xn − γn(L
∗vn+1 +Bxn)).

(3.32)

Then the following hold for some (x, v) ∈ P ×D-valued.
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(i) (xn)n∈N converges weakly x and (vn)n∈N converges weakly to v.

(ii)
∑

n∈N ‖Bxn −Bx‖2 < +∞.

In the following remark we comment on the features of the proposed algorithm and we discuss
relations with existing work.

Remark 3.4

• Specific instances of the algorithm considered here has been studied in the deterministic case
in two papers independently: in [26] to solve a saddle point problem, and in [35] to minimize
a regularized least squares problem.

• The proposed algorithm extends the algorithm in [26, 35] in several directions. First, we
consider monotone inclusions instead of saddle point problems, and, second, we allow for
stochastic evaluations of the single valued cocoercive operator. Moreover, the analysis en-
compasses a variable step-size, in contrast to the fixed one considered in [26, 35]. Note that
our algorithm gives the possibility to treat linear constraints differently from what has been
proposed in [26, Section 4.2], thanks to the presence of the projection step. Concerning the
results, it is worth noting that the proof of weak convergence relies on different tools than
the ones in [26, 35], which are specialized to the variational case.

• As in the deterministic setting, each iteration of the algorithm consists of three steps. Note
that, differently from the extra-gradient methods [33, 41], the third step does not require an
additional evaluation of the operator B. When V = H, and the step-sizes are constant, the
algorithm is a specific instance of the one considered in [52]. Due to the variable step-size,
we need to use the concept of variable metric stochastic Fejér monotonicity [18, 61].

4 Saddle point problems

We next prove some results on ergodic convergence of the duality gap for the case of minimization
or saddle point problems.

Problem 4.1 Let h : H → R be a convex differentiable function with a β−1-Lipschitz continuous
gradient, for some β ∈ ]0,+∞[, let g ∈ Γ0(G) and L ∈ B(H,G), let V be a closed vector subspace
of H. The primal problem is to

minimize
x∈V

h(x) + g(Lx), (4.1)

and the dual problem is to
minimize

v∈G
(h+ ιV )

∗(−L∗v) + g∗(v), (4.2)

Denote by PV and DV the set of solutions to (4.1) and (4.2), respectively.

We consider the convex-concave saddle point formulation of the above problem by setting

K : H× G → R ∪ {−∞,+∞}

(x, v) 7→ h(x) + ιV (x) + 〈Lx | v〉 − g∗(v). (4.3)
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We are interested in finding (x, v) ∈ PV × DV , or equivalently (under suitable qualification condi-
tions, see [3, Theorem 15.23 and Proposition 19.18]), a saddle point of (4.3). We will consider the
following notion of approximated saddle points, extending to the stochastic case the one given in
[42]. Let ε > 0. A H× G valued random variable is an ε- saddle point of K in expectation if

sup
(x,v)∈PV ×DV

E [K(z, v)−K(x, u)] ≤ ǫ (4.4)

Algorithm 4.2 Let (γn)n∈N be a decreasing sequence of strictly positive real numbers, let (τn)n∈N
be an increasing sequence of strictly positive real numbers, let U be a self adjoint positive definite
linear operator on G, let (rn)n∈N be a H-valued, square integrable random process, let x0 be a
V -valued, squared integrable random variable and let v0 be a G-valued, squared integrable random
variable. Iterate

(∀N ∈ N)



For n = 0, . . . , N
pn = PV (xn − γn(L

∗vn + rn))

vn+1 = proxU
−1

(τn/γn)g∗
(vn + τn

γn
ULpn)

xn+1 = PV (xn − γn(L
∗vn+1 + rn))

x̃N =
(∑N

n=0 γn

)−1∑N
n=0 γnxn+1

ṽN =
(∑N

n=0 γn

)−1∑N
n=0 γnvn+1.

(4.5)

Theorem 4.3 In the setting of Problem 4.1, suppose that PV is non empty. Moreover, assume

that the following conditions are satisfied for Algorithm 4.2, with Fn = σ((xk, vk)0≤k≤n)

(i) γ0 ∈ ]0, β[.

(ii) there exists τ ∈ ]0,+∞[ such that supn∈N τn ≤ τ and (τU)−1−LPV L
∗ is positive semidefinite.

(iii) (∀n ∈ N) E[rn|Fn] = ∇h(xn).

(iv) c0 =
∑

n∈N γ2nE[‖rn −∇h(xn)‖
2] < ∞.

Let x ∈ V and let v ∈ dom g∗. Set

c(x, v) = E[‖x0 − x‖2 + γ20‖v0 − v‖2(τ0U)−1−LPV L∗ ] + 2((τγ0‖U‖)1/2‖L‖2 + 1)c0.

Then

E[K(x̃N , v)−K(x, ṽN )] ≤
c(x, v)

2

( N∑

n=0

γn

)−1
. (4.6)

Proof. The Lipschitz continuity of ∇h and the convexity of h imply that

(∀u ∈ dom g∗)(∀(t, y, z) ∈ V 3) K(t, u) ≤ K(y, u) + 〈∇xK(z, u) | t− y〉+
1

2β
‖t− z‖2. (4.7)

11



Inequality (4.7), with u = vn+1, t = xn+1, y = x and z = xn, yields

K(xn+1, vn+1) ≤ K(x, vn+1) + 〈∇xK(xn, vn+1) | xn+1 − x〉+
1

2β
‖xn+1 − xn‖

2

= K(x, vn+1) + 〈∇h(xn) + L∗vn+1 | xn+1 − x〉+
1

2β
‖xn+1 − xn‖

2

= K(x, vn+1) + 〈PV (rn + L∗vn+1) | xn+1 − x〉+
1

2β
‖xn+1 − xn‖

2 − ζn(x), (4.8)

where, for every n ∈ N, ζn(x) = 〈PV (rn + L∗vn+1) | xn+1 − x〉 − 〈∇h(xn) + L∗vn+1 | xn+1 − x〉.
Let us set 




pn = PV (xn − γn(L
∗vn +∇h(xn)))

vn+1 = proxU
−1

(τn/γn)g∗
(vn + τn

γn
ULpn)

xn+1 = PV (xn − γn(L
∗vn+1 +∇h(xn))).

(4.9)

Since xn+1 − x ∈ V , proceeding as in (3.17)-(3.18), we get

(∀n ∈ N) − ζn(x) = −〈PV (rn −∇h(xn)) | xn+1 − x〉 − 〈PV (rn −∇h(xn)) | xn+1 − xn+1〉

≤ − 〈rn −∇h(xn) | xn+1 − x〉+ σn‖rn −∇h(xn)‖
2, (4.10)

where σn = γn((τnγn‖U‖)1/2‖L‖2 + 1). Using (4.5), we get PV (rn + L∗vn+1) = γ−1
n (xn − xn+1),

and hence

K(xn+1,vn+1)−K(x, vn+1) ≤ γ−1
n 〈xn − xn+1 | xn+1 − x〉+

1

2β
‖xn+1 − xn‖

2 − ζn(x)

≤
1

2γn

(
‖xn − x‖2 − ‖xn+1 − x‖2

)
−

1

2

( 1

γn
−

1

β

)
‖xn+1 − xn‖

2

− 〈rn −∇h(xn) | xn+1 − x〉+ σn‖rn −∇h(xn)‖
2

≤
1

2γn

(
‖xn − x‖2 − ‖xn+1 − x‖2

)
− 〈rn −∇h(xn) | xn+1 − x〉+ σn‖rn −∇h(xn)‖

2.

(4.11)

Therefore,

γn (K(xn+1, vn+1)−K(x, vn+1)) ≤
1

2

(
‖xn − x‖2 − ‖xn+1 − x‖2

)

− γn 〈rn −∇h(xn) | xn+1 − x〉+ σnγn‖rn −∇h(xn)‖
2 (4.12)

Since
vn+1 = proxU

−1

(τn/γn)g∗

(
vn +

τn
γn

ULpn

)
= proxU

−1

−(τn/γn)K(pn,·)
(vn), (4.13)

inequality (2.4) yields

K(pn, v) −K(pn, vn+1) ≤
γn
τn

〈
v − vn+1 | U

−1(vn+1 − vn)
〉
. (4.14)

Now, simple calculation shows that

K(xn+1, v) −K(xn+1, vn+1) +K(pn, vn+1)−K(pn, v) = 〈xn+1 − pn | L∗(v − vn+1)〉 . (4.15)
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Therefore, using (4.14) and setting, for every n ∈ N, Rn = (τnU)−1 − LPV L
∗ we obtain

γnK(xn+1, v)−γnK(xn+1, vn+1) = γn 〈xn+1 − pn | L∗(v − vn+1)〉+ γn(K(pn, v) −K(pn, vn+1))

= γ2n 〈vn − vn+1 | LPV L
∗(v − vn+1)〉+ γn(K(pn, v)−K(pn, vn+1))

≤ γ2n 〈vn − vn+1 | LPV L
∗(v − vn+1)〉+

γ2n
τn

〈
v − vn+1 | U

−1(vn+1 − vn)
〉

= γ2n
〈
vn+1 − vn |

(
(τnU)−1 − LPV L

∗
)
(v − vn+1)

〉

= γ2n

(1
2
‖vn − v‖2Rn

−
1

2
‖vn+1 − v‖2Rn

−
1

2
‖vn+1 − vn‖

2
Rn

)

(4.16)

Now, by adding (4.16) and (4.11), and taking into account that (γn)n∈N is decreasing and (τn)n∈N
is increasing, we get

γn
(
K(xn+1, v)−K(x, vn+1)

)
≤

1

2

(
‖xn − x‖2−‖xn+1 − x‖2

)
+

γ2n
2
‖vn − v‖2Rn

−
γ2n+1

2
‖vn+1 − v‖2Rn+1

− γn 〈rn −∇h(xn) | xn+1 − x〉+ γnσn‖rn −∇h(xn)‖
2. (4.17)

Since K(·, ·) is convex-concave, we have

K(x̃N , v)−K(x, ṽN ) ≤
( N∑

n=0

γn

)−1
N∑

n=0

γn(K(xn+1, v)−K(x, vn+1))

≤
1

2

( N∑

n=0

γn

)−1(
‖x0 − x‖2 + γ20‖v0 − v‖2G0

+

N∑

n=0

(
γnσn‖rn −∇h(xn)‖

2 − γn 〈rn −∇h(xn) | xn+1 − x〉
))

. (4.18)

Since for every n ∈ N, xn+1 is Fn-measurable, we have

(∀n ∈ N) E[〈rn −∇h(xn) | xn+1 − x〉] = E[E[〈rn −∇h(xn) | xn+1 − x〉 |Fn]]

= E[〈E[rn −∇h(xn)|Fn] | xn+1 − x〉]

= 0. (4.19)

Therefore, by taking the expectation of both sides of (4.18), we obtain

E[K(x̃N , v)−K(x, ṽN )]

≤
1

2

( N∑

n=0

γn

)−1(
E[‖x0 − x‖2 + γ20‖v0 − v‖2G0

] +

N∑

n=0

(
γnσnE[‖rn −∇h(xn)‖

2])
)

≤
1

2

( N∑

n=0

γn

)−1(
E[‖x0 − x‖2 + γ20‖v0 − v‖2G0

] + 2((γ0τ‖U‖)1/2‖L‖2 + 1)c0

)
, (4.20)

which proves (4.6).
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Corollary 4.4 Under the assumptions of Theorem 4.3, suppose that
∑

n∈N γn = +∞, and that PV

and DV are bounded. Let α = sup(x,v)∈PV ×DV
E[‖x0−x‖2+γ20‖v0−v‖2G0

]+2((γ0τ‖U‖)1/2‖L‖2+1)c0.

Let ε > 0, and let Nε ∈ N be such that
∑Nε

n=1 γn ≤ 2/(αε). Then (x̃Nε , ṽNε) is an ε-saddle point in

expectation.

Proof. The conclusion directly follows from (4.6), noting that sup(x,v)∈PV ×DV
c(x, v) ≤ α.

5 Application to sum of composite inclusions

Based on the standard product space reformulation technique, one can apply the proposed frame-
work to more general composite inclusions. As an illustration, we present below an application to
the sum of composite operators and a cocoercive operator [18, 55, 56].

Problem 5.1 Let H be a real Hilbert space, let m be a strictly positive integer and let (ωi)1≤i≤m ∈
[0, 1]m be such that

∑m
i=1 ωi = 1, let C : H → H be µ-cocoercive for some µ ∈ ]0,+∞[. For every

i ∈ {1, . . . ,m}, let Gi be a real Hilbert space, let Ai : Gi → 2Gi be maximally monotone, and suppose
that Li : H → Gi is a nonzero bounded linear operator. The problem is to solve the primal inclusion

find x ∈ H such that 0 ∈

m∑

i=1

ωiL
∗
iAi(Lix) + Cx, (5.1)

together with the dual inclusion

find v1 ∈ G1, . . . , vm ∈ Gm such that

(∃x ∈ H) − Cx =
m∑

i=1

ωiL
∗
i vi and (∀i ∈ {1, . . . ,m}) vi ∈ Ai(Lix). (5.2)

We denote by P1 and D1 the sets of solutions to (5.1) and (5.2), respectively.

Let us recall the following facts that show that Problem 5.1 is a special case of Problem 1.1 (see
also [9, Theorem 3.8] for the case where C is zero).

Lemma 5.2 Define H = Hm and G = G1 ⊕ · · · ⊕ Gm, endowed with the scalar product

(∀(v,w) ∈ G
2) 〈v | w〉G =

m∑

i=1

ωi 〈vi | wi〉 (5.3)

and 



V =
{
x ∈ H | x1 = . . . = xm

}

A =×m
k=1Ai

C : H → H : x 7→ (Cx1, . . . , Cxm)

L : H → G : x 7→ (L1x1, . . . , Lmxm).

Then the following hold.
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(i) C is µ-cocoercive.

(ii) x solves (5.1) if and only if (x, . . . , x) ∈ zer(C +L∗AL+NV ).

Proof. (i): Since C is µ-cocoercive, we have

(∀x ∈ Hm)(∀y ∈ Hm) 〈Cx−Cy | x− y〉 =
m∑

i=1

ωi 〈Cxi − Cyi | xi − yi〉

≥ µ

m∑

i=1

ωi‖Cxi − Cyi‖
2

= µ‖Cx−Cy‖2, (5.4)

which shows that C is µ-cocoercive on H.

(ii): We have L∗ : (v1, . . . , vm) 7→ (L∗
1v1, . . . , L

∗
mvm). Moreover, in view of (5.3), V ⊥ ={

x ∈ H |
∑m

i=1 ωixi = 0
}
. We have

x solves (5.1) ⇔ 0 ∈

m∑

i=1

ωiL
∗
iAi(Lix) + Cx

⇔ (∃
(
yi)1≤i≤m ∈×m

i=1L
∗
iAiLix

)
0 =

m∑

i=1

ωi(yi) + Cx)

⇔ (∃y ∈×m
i=1L

∗
iAiLix

)
− y − (Cx, . . . , Cx) ∈ V ⊥ = NV (x, . . . , x)

⇔ (∃y ∈×m
i=1L

∗
iAiLix

)
0 ∈ y + (Cx, . . . , Cx) +NV (x, . . . , x)

⇔ 0 ∈ L∗AL(x, . . . , x) +C(x, . . . , x) +NV (x, . . . , x)

(5.5)

which proves (ii).

Corollary 5.3 Let (γn)n∈N be a decreasing sequence of strictly positive real numbers and let (τn)n∈N
be an increasing sequence of strictly positive real numbers such that supn∈N τn = τ < +∞ For every

i ∈ {1, . . . ,m} let Ui be a self adjoint positive definite linear operator on Gi, let (rn)n∈N be a H-

valued, squared integrable random process, let x0 be a H-valued, squared integrable random variable

and let vi,0 be a Gi-valued, squared integrable random variable. Iterate

(∀n ∈ N)



pn = xn − γn
∑m

i=1 ωi(L
∗
i vi,n + rn)

For i = 1, . . . ,m⌊
vi,n+1 = J(τn/γn)UiA

−1

i
(vi,n + τn

γn
UiLipn)

xn+1 = xn − γn
∑m

i=1 ωi(L
∗
i vi,n+1 + rn)

(5.6)

Suppose that P1 is non empty and that the following conditions are satisfied for

Fn = σ((xk, (vi,k)1≤i≤m)0≤k≤n)

(i) (∀i ∈ {1, . . . ,m}) (τUi)
−1 − LiL

∗
i is positive definite.
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(ii) γ ∈ ]0, µ[.

(iii) E[rn|Fn] = Cxn.

(iv)
∑

n∈N E[‖rn − Cxn‖
2|Fn] < +∞ P-a.s.

Then the following hold for some random vectors x ∈ P1 a.s. and (v1, . . . , vm) ∈ D1 a.s.

(i) (xn)n∈N converges weakly to x almost surely.

(ii) For every i ∈ {1, . . . ,m}, (vi,n)n∈N converges weakly to vi a.s.

(iii)
∑

n∈N ‖Cxn − Cx‖2 < +∞ a.s.

Proof. Let us define
U : G → G : (v1, . . . , vm) 7→ (U1v1, . . . , Umvm). (5.7)

Then U is self adjoint, positive definite on G. Moreover, for every n ∈ N,

(∀v = (v1, . . . , vm) ∈ G) J(τn/γn)UA
−1v = (J(τn/γn)UiA

−1

i
vi)1≤i≤m. (5.8)

We recall that

(∀x ∈ H) PV x =
( m∑

i=1

ωixi

)
1≤k≤m

. (5.9)

Therefore, upon setting 



rn = (rn, . . . , rn) ∈ V

xn = (xn, . . . , xn) ∈ V

vn = (v1,n, . . . , vm,n)

pn = (pn, . . . , pn) ∈ V ,

(5.10)

we can rewrite (5.6) as

(∀n ∈ N)


pn = PV (xn − γn(L

∗vn + rn))
vn+1 = J(τn/γn)UA

−1(vn + τn
γn
ULpn)

xn+1 = PV (xn − γn(L
∗vn+1 + rn)),

(5.11)

which is a special case of (3.1). By Lemma 5.2, Problem 5.1 is a special case of Problem 1.1
Moreover, every specific condition in Theorem 3.2 is satisfied. Therefore, the first and the third
conclusions follow from Theorem 3.2. We prove the second one. By Theorem 3.2, (vn)n∈N converge
weakly to v a.s., such that

0 ∈ −L(NV +C)−1(−L∗v) +A−1v. (5.12)

We now prove that v ∈ D1. We have

(5.12) ⇒ (∃x ∈ V ) −L∗v ∈ NV x+Cx and v ∈ ALx.

⇔ (∃x ∈ V ) −L∗v −Cx ∈ V ⊥ and (∀i ∈ {1, . . . ,m}) vi ∈ AiLix.

⇔ (∃x ∈ H) −
m∑

i=1

ωiLivi = Cx and (∀i ∈ {1, . . . ,m}) vi ∈ AiLix.

⇔ v = (vi)1≤i≤m ∈ D1. (5.13)
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5.1 Structured minimization problems

We next show how the previous result can be specialized to the case of minimization problems
involving the sum of composite functions [15, 18].

Problem 5.4 Let H be a real Hilbert space, let m be a strictly positive integer and let (ωi)1≤i≤m ∈
[0, 1]m be such that

∑m
i=1 ωi = 1, let h ∈ Γ0(H) be differentiable, with 1/µ-Lipschitz continuous

gradient for some µ ∈ ]0,+∞[. For every i ∈ {1, . . . ,m}, let Gi be a real Hilbert space, let
gi ∈ Γ0(Gi) be maximally monotone, and suppose that Li : H → Gi is a nonzero bounded linear
operator. The problem is to

minimize
x∈H

m∑

i=1

ωigi(Lix) + h(x) (5.14)

together with the dual

minimize
v1∈G1,...,vm∈Gm

m∑

i=1

ωig
∗
i (vi) + h∗

(
−

m∑

i=1

ωiL
∗
i vi

)
. (5.15)

under the assumption that problem (5.14) has at least a solution.

As in Section 4 we will also consider the saddle point formulation of Problem 5.4.

H(x, v1, . . . , vm) = h(x) +

m∑

i=1

ωi 〈L
∗
i vi | x〉 −

m∑

i=1

ωig
∗
i (vi) (5.16)

The following algorithm is a special case of Algorithm 3.1.

Algorithm 5.5 Let (γn)n∈N be a decreasing sequence of strictly positive real numbers, let (τn)n∈N
be an increasing sequence of strictly positive real numbers, let U be a self adjoint positive definite
linear operator on G, let (rn)n∈N be a H-valued, square integrable random process, let x0 be a
H-valued, squared integrable random variable and let v0 be a G-valued, squared integrable random
variable. Iterate

(∀n ∈ N)



pn = xn − γn
∑m

i=1 ωi(L
∗
i vi,n + rn)

For i = 1, . . . ,m⌊
vi,n+1 = prox

(τn/γn)U
−1

i

g∗i
(vi,n + τn

γn
UiLipn)

xn+1 = xn − γn
∑m

i=1 ωi(L
∗
i vi,n+1 + rn)

(5.17)

The following result is a direct consequence of Corollary 5.3.

Corollary 5.6 In the setting of Problem 5.4, suppose that

0 ∈ zer
(
∇h+

m∑

i=1

ωiL
∗
i ∂gi(Li·)

)
(5.18)

Let (xn, vn)n∈N be the sequence generated by Algorithm 5.5. Suppose that the following conditions

are satisfied for Fn = σ((xk, (vi,k)1≤i≤m)0≤k≤n)

17



(i) there exists τ ∈ ]0,+∞[ such that supn∈N τn ≤ τ and (∀i ∈ {1, . . . ,m}) (τUi)
−1 − LiL

∗
i is

positive definite.

(ii) γ0 ∈ ]0, µ[ and inf γn > 0.

(iii) E[rn|Fn] = ∇h(xn).

(iv)
∑

n∈N E[‖rn −∇h(xn)‖
2|Fn] < +∞ P-a.s.

Then the following hold for some random vector x solving (5.14) and some random vector

(v1, . . . , vm) solving (5.15) a.s.

(i) (xn)n∈N converges weakly to x almost surely.

(ii) For every i ∈ {1, . . . ,m} (vi,n)n∈N converges weakly to vi a.s.

(iii)
∑

n∈N ‖∇h(xn)−∇h(x)‖2 < +∞ a.s.

Corollary 5.7 In the setting of Problem 5.4, let (xn, vn)n∈N be the sequence generated by Algo-

rithm 5.5. For every N ∈ N, define

x̃N =
( N∑

n=0

γn

)−1
N∑

n=0

γnxn+1

(∀i ∈ {1, . . . ,m}) ṽi,N =
( N∑

n=0

γn

)−1
N∑

n=0

γnvn+1.

Suppose that the following conditions are satisfied for Fn = σ((xk, vk)0≤k≤n)

(i) γ0 ∈ ]0, µ[.

(ii) there exists τ ∈ ]0,+∞[ such that supn∈N τn ≤ τ and, for every i ∈ {1, . . . ,m}, the operator

(τUi)
−1 − LPV L

∗ is positive semidefinite.

(iii) (∀n ∈ N) E[rn|Fn] = ∇h(xn).

(iv) c0 =
∑

n∈N γ2nE[‖rn −∇h(xn)‖
2] < ∞.

Let x ∈ H and let v = (vi)1≤i≤m ∈ ×m
i=1 dom g∗i . Set c(x,v) = E[‖x0 − x‖2 + γ20

∑m
i=1 ωi‖vi,0 −

vi‖
2
(τ0U

−1

i −LPV L∗)
] + 2((γ0τ‖U‖)1/2‖L‖2 + 1)c0. Then

E[H(x̃N , (v1, . . . , vm))−H(x, (ṽ1,N , . . . , ṽm,N ))] ≤
c(x,v)

2

( N∑

n=0

γn

)−1
. (5.19)
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