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Abstract 105 

Background Although rare in the general population, highly penetrant germline mutations in CDKN2A 106 

are responsible for 5-40% of melanoma cases reported in melanoma-prone families. We sought to 107 

determine whether MELPREDICT was generalizable to a global series of melanoma families and whether 108 

performance improvements can be achieved.  109 

Methods 2,116 familial melanoma cases were ascertained by the international GenoMEL Consortium. 110 

We recapitulated the MELPREDICT model within our data (GenoMELPREDICT) to assess performance 111 

improvements by adding phenotypic risk factors and history of pancreatic cancer. We report areas under 112 

the curve (AUC) with 95% confidence intervals (CI) along with net reclassification indices (NRI) as 113 

performance metrics. 114 

Results MELPREDICT performed well (AUC=0.752; 95%CI: 0.730, 0.775), and GenoMELPREDICT 115 

performance was similar (AUC=0.748; 95% CI: 0.726, 0.771). Adding a reported history of pancreatic 116 

cancer yielded discriminatory improvement (p<0.0001) in GenoMELPREDICT (AUC=0.772; 95%CI: 117 

0.750, 0.793; NRI=0.40). Including phenotypic risk factors did not improve performance. 118 

Conclusion The MELPREDICT model functioned well in a global dataset of familial melanoma cases. 119 

Adding pancreatic cancer history improved model prediction. GenoMELPREDICT is a simple tool for 120 

predicting CDKN2A mutational status among melanoma patients from melanoma-prone families and can 121 

aid in counselling these patients towards genetic testing or cancer risk counselling.  122 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

6 

 

Capsule Summary 123 

• Available prediction tools for CDKN2A status were developed among small, homogeneous 124 

populations and lack generalizability. GenoMELPREDICT is a globally generalizable and simple 125 

clinical tool for predicting CDKN2A mutational status among familial melanoma patients. 126 

• GenoMELPREDICT can aid in appropriate patient management, whether that is genetic testing or 127 

cancer risk counselling.  128 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

7 

 

Introduction 129 

Inherited mutations in the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene are major risk 130 

factors for familial melanoma.[1-3] The frequency of CDKN2A mutations in melanoma-prone families 131 

varies widely (<5% to 40%) with the number of family members diagnosed with melanoma and the 132 

number of primary melanomas diagnosed within an individual.[1, 4-6] The penetrance of CDKN2A 133 

mutations in melanoma-prone families is a function of population incidence rates of melanoma and is 134 

modified by environmental factors, melanoma-associated phenotypes, and MC1R variants.[3, 7] In light 135 

of geographic variability in mutation penetrance, a standard guideline for recommending CDKN2A 136 

genetic testing has not been suitable for heterogeneous populations.[8] GenoMEL, the International 137 

Melanoma Genetics Consortium, supports a qualitative framework to identify candidate individuals for 138 

CDKN2A mutation testing based on population-based melanoma incidence rates, diagnosis of multiple 139 

primary melanomas, and a verified family history of melanoma and/or pancreatic cancer.[8] Rapid 140 

identification of familial melanoma patients with low probability of a germline mutation in CDKN2A 141 

could aid to direct patients toward risk counseling and away from inappropriate genetic testing, especially 142 

since a negative test result is unlikely to influence their risk management, and/or in fostering potential 143 

conversation about genetic testing for mutations in other known, but much rarer, high-penetrance 144 

melanoma genes. 145 

MELPREDICT is a published logistic regression model to predict CDKN2A mutation carrier 146 

status.[9] MELPREDICT performed well (area under the curve (AUC)=0.881) among melanoma patients 147 

(n=116) belonging to melanoma-prone families in Boston, Massachusetts, USA, and similarly 148 

(AUC=0.803) among those from melanoma-prone families in Toronto, Ontario, Canada (n=143).[9] We 149 

sought to determine whether MELPREDICT was generalizable to a large series of melanoma families 150 

from 20 countries participating in GenoMEL. Further, we evaluated whether improvements in model 151 

performance can be achieved by adding personal or family history of pancreatic cancer and/or phenotypic 152 

risk factors for melanoma.  153 
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Methods 154 

Study population 155 

The GenoMEL consortium comprises 29 study centers from Australia, Europe, the Middle East, 156 

and North and South America. GenoMEL used a common protocol to obtain research data as previously 157 

described.[10] Written informed consent was obtained from each participant, and individual GenoMEL 158 

centers received study approval from their respective institutional review boards. Consenting participants 159 

completed a self-administered questionnaire that solicited information on phenotypic characteristics, and 160 

personal and family history of melanoma and other cancers.[10, 11] 161 

Study sample 162 

Our study sample reflects 2,116 melanoma patients with CDKN2A genotype. These participants 163 

were from 900 melanoma-prone families defined by the presence of three or more verified melanoma 164 

cases among blood relatives (individuals who share a common ancestor and are not related by marriage) 165 

or two verified melanoma cases in first-degree blood relatives recruited at 20 GenoMEL centers (Table 166 

1). There were 359 reports in 122 families of a personal or family history of pancreatic cancer, and 167 

pathologic verification was available for 79 (22%) of these reports; the remainder were self-reported. 168 

CDKN2A genotyping 169 

Germline DNA was screened for mutations in CDKN2A (including exons 1α, 1β, 2 and 3), and 170 

mutations were classified as pathogenic (i.e. positive) or non-pathogenic (i.e. negative) as previously 171 

described.[10, 11] Eleven families had at least one member who was known to carry a mutation in 172 

another melanoma high-penetrance gene; these families were included in our analyses. 173 

Statistical analysis 174 

Using the MELPREDICT logistic regression model for which the probability of CDKN2A 175 

mutation carriage is defined as 
�
�

��	��
 with L = 1.99 + [(0.92 × number of primary melanoma diagnoses) + 176 

(0.74 × number of additional family members diagnosed with melanoma) – (2.11 × ln(age at first 177 

melanoma diagnosis))], we estimated the predictive probability of CDKN2A mutation carriage among 178 
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study participants, and the AUC was derived from the set of predictive probabilities.[9, 12] Using data 179 

from GenoMEL, we modeled the probability of CDKN2A mutation carriage as a function of these three 180 

variables and considered this our baseline model (GenoMELPREDICT). We used a generalized 181 

estimating equation with a logit link function and independence covariance structure with robust standard 182 

errors to account for familial clustering. We evaluated changes in baseline model performance associated 183 

with the addition of reported personal or family history of pancreatic cancer (yes, no), facial freckling 184 

(none, very few, few, some many, very many), proclivity to burn (tan with no burning, mild sun burning, 185 

sun burning with peeling, severe sun burning with blistering), proclivity to tan (very tanned, moderate 186 

tanning, mild tanning, no tanning), eye color (brown or black, blue, other), hair color (black, brown, 187 

blonde or fair, red), and skin type (very fair, fair, olive or brown or black), including all pairwise and 188 

triplet combinations of these phenotypic variables. 189 

We used the empirical method of DeLong[13] to estimate and compare (via a Wald test) paired 190 

AUCs of receiver operating characteristic (ROC) curves. For each model, AUCs and 95% confidence 191 

intervals (CI) were calculated by ten-fold cross validation to evaluate discrimination between CDKN2A 192 

mutation carriers and non-carriers, and we used one-stage cluster sampling to randomly assign all 193 

members of a family to the same fold. Optimal discrimination was determined by maximizing sensitivity 194 

and specificity. Improvement in model performance was assessed by measuring the difference between 195 

paired model AUCs and by event and non-event net classification indices (NRI).[13-15] Models 196 

incorporating phenotypic factors were performed on sample sizes that varied according to factor 197 

missingness; for each augmented model, we reran our baseline model on the corresponding reduced 198 

sample size. Multiple imputation by the fully conditional specification method was used to restore 199 

missing values.[16] All analyses were performed using SAS v.9.4 (SAS Institute, Cary, NC) and R (R 200 

Core Team; http://www.R-project.org/).  201 
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Results 202 

CDKN2A genotype was available for 711 (33.6%) mutation carriers and 1,405 (66.4%) non-203 

carriers belonging to 900 melanoma-prone families. CDKN2A mutations identified in GenoMEL families 204 

have been previously published.[10, 17] Results of multivariable analyses for our 3-variable baseline and 205 

4-variable GenoMELPREDICT model that included pancreatic cancer are presented in Table 2. Age at 206 

first melanoma diagnosis, higher numbers of primary melanomas, higher numbers of family members 207 

with a melanoma diagnosis, and a personal or family history of pancreatic cancer were independently 208 

associated (p<0.0001) with CDKN2A mutation carriage. 209 

Using the published MELPREDICT model parameter coefficients to predict CDKN2A mutation 210 

carriage in the GenoMEL sample set resulted in an AUC = 0.752 (95% CI: 0.730, 0.775); the mean 211 

estimated probability of CDKN2A mutation carriage was 42.7% for mutation carriers, and 13.0% for non-212 

carriers. De novo modeling, i.e. GenoMELPREDICT, of age at first melanoma diagnosis, number of 213 

primary melanoma diagnoses, and number of additional family members diagnosed with melanoma 214 

resulted in an AUC = 0.748 (95% CI: 0.726, 0.771).  For this model, the mean estimated probability of 215 

CDKN2A mutation carriage was 46.4% for mutation carriers, and 27.2% for non-carriers.  The difference 216 

in AUC values between models was not statistically significant (p = 0.21) (Figure 1a). 217 

Adding phenotypic risk factors did not result in performance improvements of the 3-variable 218 

baseline GenoMELPREDICT model (data not tabulated and available upon request). However, including 219 

personal or family history of pancreatic cancer to the 3-variable baseline model significantly (p < 0.0001) 220 

augmented its discriminatory performance, yielding an AUC=0.772 (95%CI: 0.750, 0.793) (Figure 1b). 221 

The mean estimated probability of CDKN2A mutation carriage was 48.4% for mutation carriers and 222 

26.2% for non-carriers. The NRI was 0.404, with noted improvement (79.6%) for reclassification of non-223 

carriers, but at the expense of reclassification of carriers (-39.2%). Adding phenotypic variables to the 4-224 

predictor model that included personal or family history of pancreatic cancer did not result in further 225 

model improvement (data not tabulated and available upon request). Selecting a predicted probability 226 

cutoff of 35% for this four variable model, which was similar to the theoretical best cutoff based on 227 
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Youden’s index (34.4%), resulted in a sensitivity of 61%, specificity of 79%, positive predictive value of 228 

60%, and a negative predictive value of 80%. A range of model metrics for the baseline and 4-predictor 229 

GenoMELPREDICT models is available upon request. Consistent with results using observed phenotypic 230 

data, adding imputed phenotypic variables did not result in performance improvement of either the 231 

baseline or 4-predictor GenoMELPREDICT models (data not tabulated and available upon request). 232 

In subgroup analyses, the AUCs for the 3- and 4-predictor GenoMELPREDICT models were 233 

somewhat higher among Australian participants [0.809 (0.773, 0.844) for both], and similar or slightly 234 

higher among participants living in Northern European countries [0.760 (0.718, 0.803) and 0.775 (0.734, 235 

0.816), respectively]. Model performance was lower among participants from Southern European and 236 

South American countries [0.625 (0.535, 0.714) and 0.635 (0.548, 0.722), respectively].  237 

Models that excluded families with individuals who carried a mutation in other known melanoma 238 

high penetrance genes, or excluded families without a verified report of personal or family history of 239 

pancreatic cancer were consistent with our main results.  In models excluding melanoma-prone families 240 

from Sydney, which comprised one-third of all data used in our analysis, AUCs for the baseline (0.772; 241 

95% CI: 0.747, 0.797) and 4-variable (0.784; 95% CI: 0.760, 0.808) GenoMELPREDICT models were 242 

slightly higher compared to models using all available GenoMEL data. After excluding participants from 243 

the Bethesda and Queensland centers, both of which contributed higher numbers of affected members 244 

with CDKN2A genotype data per family (4.3 and 4.6 respectively), model AUCs were slightly lower than 245 

those calculated from all available GenoMEL data (0.708; 95% CI: 0.681, 0.734 for baseline; and 0.740; 246 

95% CI: 0.714, 0.765 for the 4-variable model).  247 
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Discussion 248 

We show that the published MELPREDICT model used to predict CDKN2A mutational status is 249 

generalizable to the global community of melanoma-prone families represented in GenoMEL. We also 250 

provide evidence that adding personal and family history of pancreatic cancer to the model, a variable that 251 

can be collected with very little additional associated cost, leads to some improvement in the ability to 252 

predict CDKN2A mutational status, and we call this augmented model GenoMELPREDICT. Predictive 253 

performance of GenoMELPREDICT is comparable to other clinical tools used to predict BRCA1 and 254 

BRCA2 mutational status among breast cancer patients.[18-20] 255 

The diverse global sample of familial melanoma cases recruited by GenoMEL allowed us to 256 

detect a broader spectrum of CDKN2A mutations compared to the limited number (18 variants) reported 257 

by the original MELPREDICT developers.[9] A total of 85 unique, putatively pathogenic mutations were 258 

identified among GenoMEL cases, allowing for a more representative appraisal of GenoMELPREDICT’s 259 

performance. 260 

MelaPRO[21] and CM-Score[22] are two other published algorithms for CDKN2A mutation 261 

prediction among melanoma prone families. MelaPRO incorporates melanoma risk among unaffected 262 

family members, uses a Bayesian approach to predict carrier status, and incorporated penetrance estimates 263 

for areas of high and low baseline incidence, and one derived from the population-based Genes, 264 

Environment, and Melanoma Study.[23] MelaPRO was tested on a patient sample drawn from the same 265 

ascertainment center used by Niendorf et al. to test the MELPREDICT algorithm, and it outperformed 266 

(n=195; AUC=0.86) MELPREDICT on prediction of carrier status among the same homogeneous 267 

familial cohort. The CM-Score algorithm is a multivariate logistic regression model developed among a 268 

training cohort of 1,227 Dutch melanoma-prone families and incorporates five clinical features (number 269 

of family members with melanoma and with multiple primary melanomas, median age at diagnosis, and 270 

presence of pancreatic cancer or upper airway cancer in a family member) to predict germline CDKN2A 271 

mutational status. CM-Score was validated in a combined Swedish and Dutch cohort of 421 melanoma-272 

prone families. CM-Score demonstrated excellent performance characteristics among a homogeneous 273 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

13 

 

group of Northern Europeans (AUC=0.94; 95%CI: 0.90, 0.98), possibly due to the high incidence of 274 

specific founder mutations in this population.[22] 275 

We opted to assess MELPREDICT rather than MelaPRO or CM-Score. CM-Score was developed 276 

among a cohort of Swedish and Dutch melanoma-prone families with a high incidence of specific founder 277 

mutations, reducing generalizability. Due to the increased incidence of upper airway cancers observed 278 

among carriers of these Swedish and Dutch founder mutations, the CM-Score algorithm incorporates any 279 

history of such cancers and may be inappropriate for a heterogeneous population of familial melanoma 280 

kindreds.[22] In our dataset, there were 295 reports of a personal or family history of laryngeal, 281 

pharyngeal, and oral cavity cancers within 97 families; pathologic verification was available for 30 (10%) 282 

of these reports. MelaPRO requires users to specify CDKN2A penetrance associated with the population 283 

under study, which involves more complex assessments of the source populations from which individual 284 

cases arise; this aspect may potentially limit MelaPRO’s utility in clinical practice. Because the 285 

GenoMEL consortium includes melanoma-prone families from around the world and simultaneous 286 

modeling of multiple CDKN2A penetrances was not feasible, our preference was to evaluate 287 

generalizability and enhancement of MELPREDICT. 288 

The 3- and 4-predictor GenoMELPREDICT models perform best among participants living in 289 

Australia. This likely reflects the large influence of these individuals, who comprise nearly 40% of our 290 

analytic sample, on overall model estimates. Conversely, 3- and 4-predictor GenoMELPREDICT models 291 

perform poorest among participants living in Southern European and South American sites. This likely 292 

reflects our working definition of a “melanoma-prone family,” which minimally is two verified melanoma 293 

cases in a first-degree blood relation. This definition may be too strict for populations that experience 294 

lower incidence of melanoma for which a definition of two or more verified melanoma cases among 295 

blood relatives may be better suited. Of the 900 families who had at least one member who contributed to 296 

GenoMELPREDICT modeling, the Southern European and South American sites had, as expected, a 297 

lower mean number of affected members per family (2.1) compared to that for the Northern European 298 

(3.3) or Australian (3.6) sites. 299 
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We have reported on limitations of the GenoMEL study that include differences in amount of 300 

data collected across centers, possible misclassification of CDKN2A mutations, lack of centralized 301 

pathology review for reported cases of melanoma, and non-population-based ascertainment and sampling 302 

of families at some centers based on known mutation status or number of familial melanoma cases.[10, 303 

17] Although pathological verification of reported personal or familial cases of pancreatic cancer was low 304 

(22%) in GenoMEL, the positive predictive value and sensitivity of self-report of family history for this 305 

cancer are both reported to surpass 70%.[24]   306 

GenoMELPREDICT is an effective predictor of CDKN2A mutational status, and statistical 307 

performance improvement was made by adding any reported personal or family history of pancreatic 308 

cancer. However only 5% to 10% of melanomas can be attributed to high penetrance germline genetics, 309 

and thus only a small proportion of patients diagnosed with melanoma will benefit from genetic testing 310 

for CDKN2A.[25] Despite controversy regarding the genetic testing of individuals in melanoma-prone 311 

families,[26] there is burgeoning commercial availability of such tests. We have previously published in 312 

this journal the challenges in developing a single encompassing worldwide recommendation to best guide 313 

health professionals with respect to which patients should be considered for CDKN2A genetic testing.[8] 314 

In Table 3, we republish our candidacy criteria for consideration of genetic testing.[8] Complementing 315 

these criteria, GenoMELPREDICT may serve as a quick and robust tool, applicable worldwide, for 316 

directing patients away from unnecessary genetic testing, especially in the event of a low carrier 317 

probability estimate. Moreover, guidance considering the management of patients belonging to 318 

melanoma-prone families in the context of genetic testing is available in a Continuing Medical Education 319 

article published in this journal.[26] A user-friendly web-based interface to calculate the probability of 320 

carriage of a CDKN2A mutation is available at www.genomel.org.321 
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Table 1: Number of participants and families by ascertainment center 
 

GenoMEL Center Participants* Families† 

Average number of 
participants 
per family‡ 

Average number 
of affected 

members per 
family¶ 

Barcelona, ES 44 25 1.8 2.1 

Bethesda, US 199 46 4.3 4.8 

Cesena, IT 50 24 2.1 2.1 

Copenhagen, DK 47 34 1.4 2.5 

Genoa, IT 34 16 2.1 2.3 

Leeds, GB 158 77 2.1 2.8 

Leiden, NL 210 60 3.5 4.6 

Ljubljana, SI 9 4 2.3 2.3 

Lund, SE 20 7 2.9 4.4 

Montevideo, UY 8 4 2.0 2.0 

Paris, FR 341 176 1.9 2.5 

Philadelphia, US 78 36 2.2 2.4 

Porto Allegre, BR 9 5 1.8 2.2 

Queensland, AU 96 21 4.6 6.2 

Riga, LV 5 5 1.0 2.6 

Santiago, CL 3 2 1.5 2.0 

São Paulo, BR 13 8 1.6 2.1 

Stockholm, SE 39 21 1.9 2.8 

Sydney, AU 722 305 2.4 3.4 

Tel Aviv, IL 21 18 1.2 2.0 

Valencia, ES 10 6 1.7 2.2 

Total 2116 900 2.2 3.1 
 
* Verification of melanoma was available for >99% of participants by: pathology report (74%), 
physician letter or clinical document verifying melanoma diagnosis (23%), cancer registry data (2%), 
or death certificate (<1%). Excludes affected individuals with a diagnosis of non-cutaneous melanoma 
or who are members of melanoma families by marriage and not ancestry.   
† Family members with a melanoma of the uveal tract or conjunctiva did not contribute to defining a 
melanoma family.  

‡ Includes only participants who contribute to prediction modeling. 

¶ Includes family members who may not contribute to prediction modeling because of missing data. 
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 322 

Table 2. Distribution of pathogenic CDKN2A mutations among GenoMEL cases and model estimates for the baseline 
and 4-predictor GenoMELPREDICT models. 

 
GenoMELPREDICT 

Variable 
No. (%) with 

mutation OR (95% CI) * P OR (95% CI)* P 
Ln(age at diagnosis) 

 
0.29 (0.22, 0.39) <0.0001 0.28 (0.22, 0.37) <0.0001 

Number of primary 
melanomas 

 1 378/1426 (26.5%) 
1.20 (1.10, 1.31) <0.0001 1.20 (1.10, 1.32) <0.0001 2 153/380 (40.3%) 

≥3 180/310 (58.1%) 

Number of other family  
members with melanoma  

 1 132/669 (19.7%) 

1.29 (1.20, 1.38) <0.0001 1.26 (1.17, 1.32) <0.0001 
2 146/560 (26.0%) 

3 91/218 (28.6%) 

≥4 342/569 (60.1%) 

Personal or family history 
of pancreatic cancer  

 No 495/1757 (28.2%) 
 Yes 216/359 (60.2%)     3.05 (1.97, 4.74) <0.0001 

 
* Odds ratios and 95% confidence intervals were estimated from a generalized estimating equation (GEE) model using 
a logit link function and with adjustment for familial clustering. For reference, age at first cutaneous melanoma 
diagnosis is modeled as ln(age at first diagnosis) with range 2.30 (10 years old) to 4.55 (95 years old). A ln(age) of 3.0 
corresponds to a 20 year old, a ln(age) of 3.5 to a 33 year old, and a ln(age) of 4.0 to a 55 year old. 
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Table 3.  Candidacy for consideration of genetic testing 
 

Low melanoma 
incidence area/population 

Moderate to high melanoma 
incidence area/population 

• Two (synchronous or metachronous) primary 
melanomas in an individual and/or 

• Three (synchronous or metachronous) primary 
melanomas in an individual and/or 

• Families with at least one invasive melanoma 
and one or more other diagnoses of melanoma 
and/or pancreatic cancers among first- or 
second-degree relatives on the same side of the 
family 

• Families with at least one invasive melanoma and 
two or more other diagnoses of invasive 
melanoma and/or pancreatic cancer among first- 
or second-degree relatives on the same side of the 
family 

 
This table refers to pathologically confirmed invasive melanoma.  Table reprinted from Leachman et al., J 
Am Acad Dermatol 2009. 
  323 
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Figure legend. 324 

Figure 1.  Receiver operator characteristic (ROC) curves for GenoMELPREDICT models.  325 

Comparison of the ROC curves derived from the (Figure 1a) 3-variable baseline GenoMELPREDICT 326 

model and MELPREDICT as reported by Niendorf et al., 2006; and (Figure 1b) 3-variable baseline 327 

GenoMELPREDICT model and the 4-variable GenoMELPREDICT model including any reported 328 

personal or family history of pancreatic cancer. Legend results are cross-validated areas under the curve 329 

(AUC) and 95% confidence intervals (CI) for GenoMELPREDICT models and AUC and 95% CI for 330 

MELPREDICT.  331 
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