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a suitable small parameter tends to zero. This functional exhibits a gap, that

makes it different from the classical linear elasticity functional. Nevertheless,

a suitable compatibility condition on the force field ensures coincidence of

related minima and minimizers. Here, we show some relevant properties of the

new functional and prove stronger convergence of minimizing sequences for

suitable choices of nonlinear elastic energies.

Keywords Calculus of Variations, Pure Traction problems, Linear Elasticity,
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Asymptotic analysis, nonlinear Neumann problems.

Mathematics Subject Classification (2000) 49J45, 74K30, 74K35,

74R10.

Dedicated to Alexander Ioffe on the occasion of his 80th Birthday

1 Introduction

In the article [1] we studied the variational deduction of pure traction problem

in linear elasticity starting from general theory of finite elasticity and provided

a rigorous deduction of the limit energy functional by a kind of Gamma conver-

gence approach. Quite surprisingly and in contrast with the case of Dirichlet

boundary condition, in the case of pure traction the limit functional deduced

in [1] is different from the classical energy of linear elasticity: however such

new functional achieves the same minimum and has the same set of minimizing

displacements, provided an additional compatibility condition is fulfilled. In
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the present article we show additional structural properties of this new limit

functional in the most general setting, together with more refined convergence

results in the case of Saint Venant–Kirchhoff energy density.

2 Preliminaries

This paper is focused on the properties of the functional

F(v) := min
W∈MN×N

skew

∫
Ω

V0
(
x, IE(v)− 1

2W2
)
dx − L(v) .

Here and in the sequel, we set: N = 2, 3, MN×N
skew denotes the set of

skew-symmetric N×N real matrices, Ω ⊂ IRN is a Lipschitz open set rep-

resenting the reference configuration of an hyperelastic material body under-

going pure traction, V0(x, ·) are uniformly positive definite quadratic forms

on square matrices, the vector field v in H1(Ω, IRN ) denotes a displacement

and IE(v) := 1
2 (∇vT +∇v) denotes the related linearized strain, while L(v)

represents the work done by the load for displacement v,

L(v) :=

∫
∂Ω

f · v dHN−1 +

∫
Ω

g · v dx , f ∈ L2(∂Ω; IRN ), g ∈ L2(Ω) ,

here f and g are, respectively, the prescribed boundary and body force fields,

moreover we assume that the total load is equilibrated, say

L(z) = 0 ∀ z : IE(z) ≡ 0 .

Motivations for studying functional F and its minimization over v inH1(Ω, IRN )

rely on the variational asymptotic analysis developed in [1], where we proved
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that for pure traction problems in elasticity a gap arises between the classical

linearized elasticity functional E ,

E(v) :=

∫
Ω

V0(x, IE(v)) dx− L(v) ,

and the rigorous variational limit of nonlinear elastic energy of a material body

subject to an equilibrated force field. Actually such limit is the functional

F , provided the load fulfils a suitable compatibility condition: see (8) and

Theorem 5.1 below.

The inequality F(v) ≤ E(v) for every v is straightforward. Nevertheless

the two functionals cannot coincide: indeed F(v) = −L(v) < E(v) whenever

v(x) = 1
2W2x with W 6= 0 skew symmetric matrix.

Notwithstanding this gap, in [1] we showed that the two functionals F and E

have the same minimum and same set of minimizers, when the load is equili-

brated and compatible (see Theorem (5.1) below).

In the case N = 2, the gap between the two functionals can be better clarified

as follows (see Remark 2.6 in [1] for more details ):

F(v) = E(v)− 1

4

(∫
Ω

V0(x, I)dx

)−1 [(∫
Ω

DV0(x, I)·IE(v) dx

)−]2
,

where α− = max(−α, 0), thus

F(v) = E(v) if N = 2 and

∫
Ω

DV0(x, I) · IE(v) dx ≥ 0 .
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Even more explicitly, in a particular case, when N = 2 and V0(x,B) =

4µ|B|2 + 2λ|TrB|2 with λ, µ > 0 , we get

F(v) = E(v) − 1

4
|Ω |−1

[(∫
Ω

div v dx

)−]2
,

such evaluation approximately means that for every displacement v such that

the associated deformed configuration (I + v)(Ω) of a 2D homogeneous mate-

rial has greater area than reference configuration Ω, the global energy F(v)

provided by new functional F evaluated at v is the same as the one provided

by classical linearized elasticity, say E(v).

The rigorous derivation of the variational theory of linear elasticity [2] from

the theory of finite elasticity [3,4] was achieved in [5] through arguments based

on De Giorgi theory of Gamma convergence, thus providing a mathematical

justification of the classical elasticity in small deformations regime, at least for

Dirichlet or mixed boundary value problem.

In a more recent paper [1], we have focussed the analysis on the analogous

variational question related to Neumann type condition, say the pure traction

problem in elasticity : the case where the elastic body is subject to a system

of equilibrated forces and no Dirichlet condition is assigned on the boundary.

In the present paper, we prove some relevant properties concerning the

structure of the new functional and improve its variational connection for a

large class of nonlinear energies.

In Section 4, we prove that F is sequentially lower semicontinuous weak re-

spect to the natural but very weak notion of convergence, namely weakL2
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convergence of linearized strains (see Proposition (4.3)), nevertheless F ex-

hibits a kind of ”nonlocal” behavior (see Remark 3.2).

In the 2D case, we can prove that F is a convex functional for every choice of

the positive definite quadratic form V0 or, equivalently, for the variational limit

of every nonlinear stored energy density W fulfilling structural assumptions

of general kind in the theory of elasticity: this is shown by making explicit its

first variation and showing that the second variation cannot be negative (see

(23) and Proposition 4.1).

On the other hand, in the 3D case the functional F cannot be convex for

whatever choice of the positive definite quadratic form V0 or, equivalently for

every nonlinear stored energy density W fulfilling the standard structural as-

sumptions: see Proposition 4.2 and the general counterexample to convexity

therein.

The dichotomy above relies on the fact that there exist pairs of skew-symmetric

matrices W1,W2 ∈ M3×3
skew such that W2

1 + W2
2 is not the square of any

skew-symmetric matrix: e.g. see (18); while in the 2D case the matrix W2 is

a nonpositive multiple of the identity for every skew-symmetric matrix W.

Notice that F is not subadditive: indeed even in dimension N = 2 formulæ

(15) and (19) in Section 4 show that functional F cannot be subadditive on

disjoint sets.

In Section 5, for reader’s convenience we summarize and comment preliminary

main results of [1] about the variational convergence of pure traction problems,

namely functional F deduced as a weak Gamma limit of functionals Fh related
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to general nonlinear elastic energies.

Eventually, in Section 6 we refine the convergence properties for minimizing

sequences of the sequence of functionals Fh (e.g F(vh) = inf Fh + o(1)): if W

is the Saint Venant–Kirchhoff energy density (24) then we show by Theorem

6.1 that there exist subsequences of functionals Fh and of related minimiz-

ing sequence vh, such that (without relabeling) vh− IPvh converges weakly

in H1(Ω; IRN ) and strongly in W 1,q(Ω, IRN ) (1 ≤ q < 2) to a minimizer of

F , provided both (7) and (8) hold true; here and in the sequel IP denotes the

orthogonal projection on infinitesimal rigid displacements.

On the other hand, if the strict inequality in compatibility condition (8) is re-

placed by weak inequality, still over the collection of skew symmetric matrices,

then argminF still contains argmin E and minF = min E holds true, but F

may have infinitely many minimizing critical points which are not minimizers

of E .

Therefore, only two cases are allowed: either minF = min E or inf F = −∞;

actually the second case arises in presence of compressive surface load.

We mention several contributions facing issues in elasticity, which are strictly

connected with the context of present paper: [6 – 21].

3 Asymptotic Analysis of Pure Traction Problem

Referring to the open set Ω ⊂ IRN , N = 2, 3, as the reference configuration of

an hyperelastic material body, the stored energy due to a deformation y can
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be expressed as a functional of the deformation gradient ∇y as follows

∫
Ω

W(x,∇y) dx ,

where W : Ω ×MN×N → [0,+∞] is a coercive frame indifferent function,

MN×N is the set of real N × N matrices and W(x,F) < +∞ if and only if

det F > 0.

Then due to frame indifference there exists a function V such that

W(x,F) = V(x, 12 (FTF− I)) , ∀F ∈MN×N , a.e. x ∈ Ω.

We set F = I + hB, where h > 0 is an adimensional small parameter and

Vh(x,B) := h−2W(x, I + hB).

We assume that the reference configuration has zero energy and is stress free,

i.e.

W(x, I) = 0, DW(x, I) = 0 for a.e. x ∈ Ω ,

and that W is regular enough in the second variable, then Taylor’s formula

entails

Vh(x,B) = V0(x, sym B) + o(1) as h→ 0+

where sym B := 1
2 (BT + B) and

V0(x, sym B) :=
1

2
sym BD2V(x,0) sym B.

If the deformation y is close to the identity up to a small displacement, say

y(x) = x+hv(x) with bounded ∇v , then, by setting IE(v) := 1
2 (∇vT +∇v) ,

one easily obtains
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lim
h→0

∫
Ω

Vh(x,∇v) dx =

∫
Ω

V0(x, IE(v)) dx . (1)

Right-hand side in (1) represents the classical linear elastic deformation energy

and such a limit was retained to establish a reasonable justification of linearized

elasticity. Moreover in [5] it is proved by Γ -convergence techniques that, un-

der standard structural conditions on W, actually the linear elastic problem

is achieved in the limit by exploiting the weak convergence of H1(Ω, IRN ), in

case of Dirichlet or mixed boundary condition.

The variational limit is different when no Dirichlet boundary condition is

present, as we outline briefly here.

In [1], we studied the case of Neumann boundary conditions (pure traction

problem in elasticity) assuming that f ∈ L2(∂Ω; IRN ), g ∈ L2(Ω; IRN ) are,

respectively, the prescribed boundary and body force fields, and the whole

system of forces is equilibrated, namely it fulfils the condition of equilibrated

load

L(z) = 0 ∀z : IE(z) ≡ 0 , (2)

which is a standard necessary condition for pure traction in linear elasticity,

where

L(v) :=

∫
∂Ω

f · v dHN−1 +

∫
Ω

g · v dx .

We considered the sequence of energy functionals

Fh(v) =

∫
Ω

Vh(x,∇v)dx− L(v) , v ∈ H1(Ω, IRN ) , (3)
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and we inquired whether the asymptotic relationship Fh(vh) = inf Fh + o(1)

as h ↓ 0 implies, up to subsequences, some kind of weak convergence of vh to

a minimizer v0 of a suitable limit functional in H1(Ω; IRN ); to this aim, next

example is highly explicative: assume

W(x,F) =



|FTF− I|2, if det F > 0,

+∞, otherwise,

(4)

g ≡ f ≡ 0 , hence inf Fh = 0 for every h > 0, then by choosing a fixed

nontrivial N ×N skew-symmetric matrix W, a real number 0 < 2α < 1 and

setting

zh := h−α W x , (5)

we get Fh(zh) = inf Fh + o(1), though zh has no subsequence weakly con-

verging in H1(Ω; IRN ).

Therefore, in contrast to [5], one cannot expect weak H1(Ω; IRN ) compactness

of minimizing sequences for pure traction problem, not even in the simplest

case of null external forces: we emphasize that in general nonlinear elasticity

setting this difficulty cannot be easily circumvented by standard translations,

since Fh(vh) 6=Fh(vh − IPvh). Nevertheless, we will show in Theorem 6.1 be-

low that, at least for some special W, if Fh(vh) = inf Fh + o(1) then up to

subsequences Fh(vh − IPvh) = inf Fh + o(1).

For this reason, we exploited a much weaker topology: in order to have in

general some kind of precompactness for sequences vh fulfilling Fh(vh) =

inf Fh + o(1), the key idea in our approach consists in working with a very
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weak notion, say weak L2(Ω; IRN ) convergence of linear strains IE(vh). Since

such convergence does not imply an analogous convergence of the skew sym-

metric part of the gradient of displacements, one may expect that the Γ limit

functional is different from the point-wise limit of Fh, as actually is the case.

Under some natural assumptions on W, a careful application of the Rigidity

Lemma of [28] together with a suitable tuning of asymptotic analysis with

Euler-Rodrigues formula for rotations show that, if IE(vh) are bounded in L2,

then up to subsequences
√
h∇vh converges strongly in L2 to a constant skew

symmetric matrix, while the variational limit of the sequence Fh with respect

to the w-L2 convergence of linear strains turns out to be the functional F ,

defined by

F(v) := min
W∈MN×N

skew

∫
Ω

V0
(
x, IE(v)− 1

2W2
)
dx − L(v) . (6)

In [1], we proved that, if loads are equilibrated

L(z) = 0 ∀ z : IE(z) ≡ 0 , (7)

and fulfil the compatibility condition

∫
∂Ω

f ·W2x dHN−1 +

∫
Ω

g ·W2x dx < 0 ∀ skew symmetric matrix W 6=0,

(8)

then the pure traction problem in linear elasticity is rigorously deduced via

Γ -convergence from the corresponding pure traction problem formulated in

nonlinear elasticity, referring to weak L2 convergence of the linear strains;

moreover minimizers of F coincide with the ones of linearized elasticity func-
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tional E

E(v) :=

∫
Ω

V0(x, IE(v)) dx− L(v) , (9)

thus providing a complete variational justification of pure traction problems

in linear elasticity at least if (8) is satisfied. In particular, as it is shown in

Remark 2.8, this is true when g ≡ 0, f = fn with f > 0 and n is the outer unit

normal vector to ∂Ω, that is when we are in presence of tension-like surface

forces.

4 Structural Properties of Functional F

In this section, we develop further the analysis of structural properties of

functional F defined by (6), focussing mainly on convexity and semicontinuity

issues.

All along the paper we assume that the reference configuration of the elastic

body is a

bounded, connected open set Ω ⊂ IRN with Lipschitz boundary, N = 2, 3,

(10)

and set these notations: the generic point x ∈ Ω has components xj referring

to the standard basis vectors ej in IRN ; LN and BN denote respectively the

σ-algebras of Lebesgue measurable and Borel measurable subsets of IRN .

The notation for vectors a, b ∈ IRN and N×N real matrices A, B, F are

as follows:

a · b =
∑
j ajbj ; A · B =

∑
i,j Ai,jBi,j ; [AB]i,j =

∑
k Ai,kBk,j ; |F|2 =
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Tr(FTF) =
∑
i,j F

2
i,j denotes the squared Euclidean norm of F in the space

MN×N of N ×N real matrices; I ∈ MN×N denotes the identity matrix,

SO(N) denotes the group of rotation matrices, MN×N
sym and MN×N

skew denote

respectively the sets of symmetric and skew-symmetric matrices. For every

B ∈MN×N we define sym B := 1
2 (B + BT ) and skew B := 1

2 (B−BT ).

First we recall that the minimum at right-hand side in definition (6) of

F exists for every v in H1(Ω, IRN ), so that F(v) is well defined: precisely

the finite dimensional minimization problem has exactly two solutions, which

differs only by the sign, since strict convexity of the positive definite quadratic

form V0(x, ·) entails

lim
|W|→+∞,W∈MN×N

skew

∫
Ω

V0
(
x, IE(v)− 1

2W2
)
dx = +∞ (11)

and hence the existence of a unique minimizing argument W2.

We also highlight a straightforward consequence of (6), which proves useful in

the sequel:

F(v) = −L(v) for every v(x) = W2x , with W ∈MN×N
skew . (12)

Proposition 4.1 If N = 2, then functional F is convex for every choice of

the positive definite quadratic form V0.

Proof For every ε > 0 we define ϕε ∈ C2(IR) as

ϕε(t) =



t2 − εt+ ε2

3 , if t ≤ 0 ,

(3ε)−1(ε− t)3 , if 0 ≤ t ≤ ε ,

0 , otherwise,

(13)
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and introduce the C2 functionals Fε by setting

Fε(v) = E(v)− 1

4

(∫
Ω

V0(x, I)dx

)−1
ϕε

(∫
Ω

DV0(x, I)·IE(v) dx

)
∀v ∈ H1(Ω, IRN ) .

(14)

Then, by (13), (14) and representation

F(v) = E(v)− 1

4

(∫
Ω

V0(x, I)dx

)−1 [(∫
Ω

DV0(x, I)·IE(v) dx

)−]2
, (15)

we get ϕε(t) ≥ (t−)2, hence

Fε ≤ F , F = sup
ε>0
Fε .

Moreover, we claim that Fε is convex for every ε > 0 and this property entails

the convexity of F since F is the supremum of a family of convex functions.

Indeed Fε is a C2 functional on the whole space H1(Ω, IRN ); therefore, its

second variation, for every u,v ∈ H1(Ω, IRN ), is

vT δ2Fε(u)v = vT δ2E(u)v

−1

4

(∫
Ω

V0(x, I)dx

)−1
ϕ′′ε

(∫
Ω

DV0(x, I)·IE(u) dx

)(∫
Ω

DV0(x, I)·IE(v) dx

)2

=

= 2

∫
Ω

V0(x, IE(v)) dx−

−1

4

(∫
Ω

V0(x, I)dx

)−1
ϕ′′ε

(∫
Ω

DV0(x, I)·IE(u) dx

)(∫
Ω

DV0(x, I)·IE(v) dx

)2

.

(16)

By taking into account that 0 ≤ ϕ′′ε ≤ 2 , we get

vT δ2Fε(u)v ≥ 2

∫
Ω

V0(x, IE(v)) dx−1

2

(∫
Ω

V0(x, I)dx

)−1(∫
Ω

DV0(x, I)·IE(v) dx

)2

.

(17)
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Then, since V0 is a positive definite quadratic form, by representation (15) we

obtain that the right hand side of (17) is equal to 2
(
F(v) + L(v)

)
if

∫
Ω

DV0(x, I)·IE(v) dx ≥ 0 ;

else it is equal to F(−v) + L(−v) .

In both cases (6) entails vT δ2Fε(u)v ≥ 0 for every u, v ∈ H1(Ω, IRN ).

Therefore Fε is convex and claim is proved.

Proposition 4.2 If N = 3, then functional F is nonconvex for every choice

of the positive definite quadratic form V0.

Proof Set

W1 = e1 ⊗ e2 − e2 ⊗ e1, W2 = e2 ⊗ e3 − e3 ⊗ e2. (18)

Then

1

2
(W2

1 + W2
2) = −1

2
(e1 ⊗ e1 + e3 ⊗ e3)− e2 ⊗ e2 := A

and by choosing v(x) := Ax we get IE(v) = A 6∈ {W2 : W ∈MN×N
skew }.

Hence, F(v) > −L(v) for every possible choice of the positive definite quadratic

form V0. Whereas, by setting

v1(x) := W2
1x , v2(x) := W2

2x ,

due to (12), we get F(v1) = −L(v1), F(v2) = −L(v2) . Hence

F( 1
2 (v1 + v2)) = F(v) > −L(v) = − 1

2 (L(v1) + L(v2)) = 1
2 (F(v1) + F(v2))

(19)

thus proving that F is not convex in the 3D case for every choice of V0.
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Although existence of minimizers of F is already a direct consequence of

convergence results in [23], in the next Proposition we provide a direct proof

of sequential lower semicontinuity of F with respect to the natural, very weak

convergence, for both cases of dimension 2 and 3.

Proposition 4.3 Assume that the standard structural conditions and (7)

holds true.

Then, for every vn,v ∈ H1(Ω; IRN ) such that IE(vn) ⇀ IE(v) in L2(Ω;MN×N )

we have

lim inf
n→+∞

F(vn) ≥ F(v)

Proof Let vn,v belong toH1(Ω; IRN ) and fulfil IE(vn)⇀ IE(v) in L2(Ω;MN×N ).

Then IE(vn) is bounded in L2(Ω;MN×N ). If lim infn→+∞ F(vn) = +∞, then

the claim is trivial, so we may also assume without restriction that F(vn) ≤ C.

Assumption (7) of equilibrated load entails F(vn) = F(vn − IPvn), so may

suppose that IPvn ≡ 0. We choose

Wn ∈ argmin

{∫
Ω

V0
(
x, IE(vn)− 1

2W2
)
dx : W ∈MN×N

skew

}
. (20)

Hence, if CK the Korn-Poincaré inequality in Ω and α > 0 is the uniform

coercivity constant of V0, say V0(x,M) ≥ α|M|2, we get

α

∫
Ω

|IE(vn)− 1
2W2

n|2 dx ≤ C + L(vn) = C + L(vn − IPvn) ≤

≤ C + CK(‖f‖L2(∂Ω) + ‖g‖L2(Ω))‖IE(v)‖L2(Ω;MN×N ) ,

(21)

Therefore |W2
n| is bounded and since Wn is real skew-symmetric we obtain

that |Wn| is bounded too. So we may suppose that, up to subsequences,
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Wn → W in MN×N
skew . By taking into account that IPvn ≡ 0 we get vn ⇀ v

in H1(Ω, IRN ) hence by recalling that V0(x, ·) is a convex quadratic form

lim inf
n→+∞

F(vn)= lim infn→+∞
∫
Ω
V0
(
x, IE(vn)− 1

2W2
n

)
dx− L(vn) ≥

≥
∫
Ω

V0
(
x, IE(v)− 1

2W2
)
dx− L(v) ≥ F(v),

(22)

which proves the claimed lower semicontinuity inequality.

Remark 3.1 The first variation of F can be explicitly evaluated in the 2D

case, thanks to representation (15), as follows

δF(v)[ϕ] =

∫
Ω

DV0
(
x, IE(v)

)
· IE(ϕ) dx − L(ϕ)

+
1

2

(∫
Ω

V0(I)dx

)−1(∫
Ω

DV0(x, I)·IE(v) dx

)−∫
Ω

DV0(x, I)·IE(ϕ) dx =

= δE(v)[ϕ] +
1

2

(∫
Ω

V0(I)dx

)−1(∫
Ω

DV0(x, I)·IE(v) dx

)−∫
Ω

DV0(x, I)·IE(ϕ) dx

(23)

for every v, ϕ ∈ H1(Ω; IRN ).

Remark 3.2 Functional F exhibits a nonlocal behavior: precisely in 2D,

due to the representations (15) and (23) respectively of the functional and its

first variation, F(v) is the sum of a contribution E(v) due to local functional

E related to linear elasticity plus a possibly vanishing correction with global

dependance on v explicitly evaluated by

−1

4

(∫
Ω

V0(x, I)dx

)−1 [(∫
Ω

DV0(x, I)·IE(v) ; dx

)−]2
.

In the case of Saint Venant–Kirchhoff energy density

W(x,F) =


µ|FTF− I|2 + λ

2 | Tr (FTF− I)|2, if det F > 0,

+∞, otherwise,

(24)
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corresponding to the limit quadratic form V0(x,B) = 4µ|B|2 +2λ|TrB|2 with

λ, µ > 0 , the correction simplifies as follows:

− 1

4 |Ω|

(∫
Ω

div v dx

)−
.

Moreover, the nonlocal coefficient
(∫
Ω
DV0(x, I)·IE(v) dx

)−
appears in Euler

equations too.

5 Variational Convergence Results

In this section, we recall the main results of [1] about the variational conver-

gence of pure traction problems. To this aim, basic notation and assumptions

for general nonlinear energies is introduced first.

Still we assume that the reference configuration of the elastic body is a

bounded, connected open set Ω ⊂ IRN with Lipschitz boundary, N = 2, 3,

(25)

and set these notations: the generic point x ∈ Ω has components xj referring

to the standard basis vectors ej in IRN ; LN and BN denote respectively the

σ-algebras of Lebesgue measurable and Borel measurable subsets of IRN .

For every U : Ω ×MN×N → IR, with U(x, ·) ∈ C2 a.e. x ∈ Ω, we denote the

gradient and the hessian of g with respect to the second variable by DU(x, ·)

and D2U(x, ·) respectively.

For every displacements field v ∈ H1(Ω; IRN ), IE(v) := sym∇v denotes the

infinitesimal strain tensor field, R := {v ∈ H1(Ω; IRN ) : IE(v) = 0} the set
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of infinitesimal rigid displacements and IPv is the orthogonal projection of v

onto R.

We consider a body made of an hyperelastic material, say there exists a

LN×BN2

measurable W : Ω ×MN×N → [0,+∞] such that, for a.e. x ∈ Ω,

W(x,∇y(x)) represents the stored energy density, when y(x) is the deforma-

tion and ∇y(x) is the deformation gradient.

Moreover we assume that for a.e. x ∈ Ω

W(x,F) = +∞ if det F ≤ 0 (orientation preserving condition) , (26)

W(x,RF) =W(x,F) ∀R∈SO(N) ∀F ∈MN×N (frame indifference) ,

(27)

∃ a neighborhood A of SO(N) s.t. W(x, ·) ∈ C2(A) , (28)

∃C>0 independent of x : W(x,F) ≥ C dist2
(
F, SO(N)

)
(29)

∀F∈MN×N (coerciveness),

W(x, I) = 0 , DW(x, I) = 0 , for a.e. x ∈ Ω , (30)

that is the reference configuration has zero energy and is stress free, so by (27)

we get also

W(x,R)=0, DW(x,R)=0 ∀R ∈ SO(N) .

By frame indifference there exists a LN×BN -measurable function

V : Ω ×MN×N → [0,+∞] such that for every F ∈MN×N

W(x,F) = V(x, 12 (FTF− I)) (31)
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and by (28)

∃ a neighborhood O of 0 such that V(x, ·) ∈ C2(O), a.e. x ∈ Ω . (32)

In addition we assume that there exists γ > 0 independent of x such that

∣∣BT D2V(x,D) B
∣∣ ≤ 2 γ |B|2 ∀D∈O, ∀B∈MN×N . (33)

By (30) and Taylor expansion with Lagrange reminder we get, for a.e.

x ∈ Ω and suitable t ∈ (0, 1) depending on x and on B:

V(x,B) =
1

2
BTD2V(x, tB) B . (34)

Hence by (33)

V(x,B) ≤ γ |B|2 ∀ B ∈MN×N ∩ O . (35)

According to (31) for a.e. x∈Ω, h>0 and every B ∈MN×N we set

Vh(x,B) :=
1

h2
W(x, I + hB) =

1

h2
V(x, h sym B + 1

2h
2BTB) . (36)

Taylor’s formula with (30),(36) entails

Vh(x,B) =
1

2
(sym B)D2V(x,0) (sym B) + o(1),

so

Vh(x,B) → V0(x, sym B) as h→ 0+ , (37)

where the point-wise limit of integrands is the quadratic form V0 defined by

V0(x,B) :=
1

2
BTD2V(x,0) B a.e. x ∈ Ω, B ∈MN×N . (38)
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The symmetric fourth order tensor D2V(x,0) in (38) plays the role of the

classical elasticity tensor.

By (29) we get

Vh(x,B) =
1

h2
W(x, I + hB) ≥ C | 2 symB + hBTB |2 (39)

so that (38) and (39) imply the ellipticity of V0 :

V0(x, sym B) ≥ 4C |sym B|2 a.e. x ∈ Ω, B ∈MN×N . (40)

For a suitable choice of the adimensional parameter h > 0, the functional

representing the total energy is labeled by Fh : H1(Ω; IRN )→ IR∪{+∞} and

defined as follows

Fh(v) :=

∫
Ω

Vh(x,∇v) dx − L(v) , (41)

where L is defined by (2).

In order to describe the asymptotic behavior as h ↓ 0 of functionals Fh, we

refer to the limit energy functional F : H1(Ω; IRN )→ IR defined by (6).

In this section, we assume (25) together with the standard structural condi-

tions (26)-(30),(33) as usual in scientific literature concerning elasticity theory

and we refer to the notations (31),(36),(38),(41).

Definition 5.1 Given an infinitesimal sequence hj of positive real numbers,

we say that vj ∈ H1(Ω; IRN ) is a minimizing sequence of the sequence of

functionals Fhj
if

(Fhj (vj)− inf Fhj )→ 0 as hj ↓ 0 .
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We proved that for every given infinitesimal sequence hj actually the mini-

mizing sequences of the sequence of functionals Fhj
exists. For reader’s con-

venience we recall here the main results of [1]: see Lemma 3.1, Theorem 2.2,

Remark 2.5, Theorem 4.1 and Corollary 4.2 therein.

Lemma 5.1 Assume the standard structural conditions together with (7) and

(8).

Then, there is a constant K, dependent only on Ω and the coercivity constant

of of the stored energy density appearing in (29), such that

inf
h>0

inf
v∈H1

Fh(v) ≥ −K
(
‖f‖2L2 + ‖g‖2L2

)
. (42)

Theorem 5.1 Assume that the standard structural conditions and (7),(8)

hold true. Then:

min
v∈H1(Ω;IRN )

F(v) = min
w∈H1(Ω;IRN )

E(w) ; (43)

argminv∈H1(Ω;IRN ) F = argminv∈H1(Ω;IRN ) E ; (44)

for every sequence of strictly positive real numbers hj ↓ 0 there are minimizing

sequences of the sequence of functionals Fhj
;

for every minimizing sequence vj ∈ H1(Ω; IRN ) of Fhj there exist a subse-

quence and a displacement v0 ∈ H1(Ω; IRN ) such that, without relabeling,

IE(vj) ⇀ IE(v0) weakly in L2(Ω;MN×N ) , (45)

√
hj ∇vj → 0 strongly in L2(Ω;MN×N ) , (46)

lim
j→+∞

Fhj
(vj) = min

v∈H1(Ω;IRN )
F(v) = F(v0) = E(v0) . (47)
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If strong inequality in the compatibility condition (8) is replaced by a weak

inequality, then the uniform estimate (42) still hold true and also minimiz-

ing sequences of the sequence of functionals Fhj
exist for every infinitesimal

sequence hj , but the minimizers coincidence (44) for F and E cannot hold

anymore. Nevertheless the following general result holds true.

Proposition 5.1 If the structural assumptions together with (7) are fulfilled,

but (8) is replaced by

L(W2x) ≤ 0 ∀W ∈MN×N
skew (48)

then argminF is still nonempty and

minF = min E , (49)

but the coincidence of minimizers sets is replaced by the inclusion

argmin E ⊂ argminF . (50)

If (48) holds true and there exists U ∈MN×N
skew , U 6= 0 such that L(U2x) = 0,

then F admits infinitely many minimizers which are not minimizers of E,

precisely

argmin E ⊂
6=

argmin E +
{

U2x : U ∈MN×N
skew , L(U2x) = 0

}
⊂ argminF ,

(51)

where the last inclusion is an equality in 2D:

argmin E ⊂
6=

argmin E + {− tx : t ≥ 0} = argminF , if N = 2 . (52)
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Remark 4.1 The compatibility condition (8) cannot be dropped in Theo-

rem 5.1 even if the (necessary) condition (7) holds true. Moreover, plain sub-

stitution of strong inequality in (8) with weak inequality leads to a lack of

compactness for minimizing sequences.

Indeed, if n denotes the outer unit normal vector to ∂Ω and we choose

f = fn with f < 0, g ≡ 0, then

∫
∂Ω

f ·W2 x dHN−1 = 2f(Tr W2)|Ω| > 0 (53)

and the strict inequality in (8) is reversed in a strong sense by any W ∈

MN×N
skew \ {0};

fix a sequence of positive real numbers such that hj ↓0, W∈MN×N
skew , W 6≡ 0,

and set vj = hj
−1( 1

2W2 +
√
3
2 W) x ; then I +

(
1
2W2 +

√
3
2 W

)
∈ SO(N) and

Fhj (vj) = − f

2hj

∫
∂Ω

W2x · n dHn−1 = − f

2hj
(Tr W2)|Ω| → −∞ . (54)

On the other hand, assume (25), W as in (4) and f = g ≡ 0, so that the

compatibility inequality is susbstituted by the weak inequality; if vj are defined

as above then, hence by frame indifference,

Fhj
(vj) = 0 = inf Fhj

(55)

but IE(vj) has no weakly convergent subsequences in L2(Ω;MN×N ).

Remark 4.2 It is worth noticing that the compatibility condition (8) holds

true when g ≡ 0, f = fn with f > 0 and n the outer unit normal vector to

∂Ω.

Indeed let W ∈ MN×N
skew ,W 6≡ 0: hence by (7) and the Divergence Theorem
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we get ∫
∂Ω

f ·W2 x dHN−1 = 2f(Tr W2)|Ω| < 0 , (56)

thus proving (8) in this case. This means that in presence of tension-like sur-

face forces and of null body forces the compatibility condition holds true.

It is quite natural to ask whether condition (8), which was essential in the

proof of Theorem 5.1, may be dropped in order to obtain at least existence of

minF : the answer is negative.

Indeed the next remark shows that, when compatibility inequality in (8) is

reversed for at least one choice of the skew-symmetric matrix W, then F is

unbounded from below.

Remark 4.3 If

∃W∗ ∈MN×N
skew : L(zW∗) > 0 , where zW∗ =

1

2
W2
∗x , (57)

then

inf
v∈H1(Ω;IRN )

F(v) = −∞. (58)

Indeed we get

inf
H1(Ω;IRN )

F = min
H1(Ω;IRN )

E − sup
W∈MN×N

skew

L(zW) where zW =
1

2
W2x .

(59)

Hence

inf
H1(Ω;IRN )

F ≤ min
H1(Ω;IRN )

E − τL( zW∗) ∀ τ > 0,
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which entails (58).

Next example shows that, in case of uniform compression on the whole bound-

ary, the functional F is unbounded from below, regardless of convexity or non-

convexity of Ω and F .

Example 4.1 Assume Ω ⊂ IRN is a Lipschitz, connected open set, N =

2, 3, g ≡ 0, f = −n, where n denotes the outer unit normal vector to ∂Ω.

(examples of 2D domains under equilibrated, but not compatible, compressive

load are shown in Fig.1).

Fig. 1 Equilibrated but not compatible compressive load (Example 4.1).

Then (57) holds true hence, by Remark 4.3, infv∈H1(Ω;IRN ) F(v) = −∞.

Indeed, for every W ∈MN×N
skew such that |W|2 = 2 we obtain

∫
∂Ω

f ·W2x dHN−1 = −
∫
∂Ω

n ·W2x dHN−1 = −
∫
Ω

div(W2x) dx =

= − |Ω|Tr W2 = 2 |Ω| > 0 .

Summarizing, only two cases are allowed: either minF = min E or inf F =

−∞: the second case actually arises in presence of compressive surface load.



A New Variational Approach to Linearization of Traction Problems in Elasticity 27

The new functional F somehow preserves memory of instabilities which are

typical of finite elasticity, while they disappear in the linearized model de-

scribed by E . In the light of Theorem 5.1, as far as pure traction problems

are considered, it seems reasonable that the range of validity of linear elas-

ticity should be restricted to a certain class of external loads, explicitly those

verifying (8): a remarkable example in such class is a uniform normal tension

load at the boundary as in Remark 4.2 while in the other cases equilibria of

a linearly elastic body could be better described through critical points of F ,

whose existence in general seems to be an interesting and open problem.

6 Strong Convergence of Minimizing Sequences of Fh

In this section, we prove that for the special class of Saint Venant–Kirchhoff

energy density it is possible to choose a subsequence of functionals Fh defined

by (41) and a corresponding minimizing sequence, according to Definition 5.1,

which is weakly converging in H1(Ω; IRN ) to a minimizer of functional F de-

fined by (6). Moreover, thanks to a result of [5], this convergence entails strong

convergence in W 1,q(Ω; IRN ) for 1 ≤ q < 2.

Before stating the main result of this section we notice that, by frame indif-

ference (27) and equilibrated load condition (7), without loss of of generality

we can assume

∫
Ω

xi dx = 0 ∀ i = 1 . . . N ,

∫
Ω

xi xj dx = 0 ∀ i, j = 1 . . . N, i 6= j.

(60)
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Therefore, if Ik denotes the moment of inertia of Ω with respect to the k-th

axis, by (60) we get

IP u(x) = a× x, ak = I−1k

∫
Ω

(x× v)k dx (61)

so

(∇ IP u(x))k = a× ek. (62)

Theorem 6.1 Let µ > 0, λ > 0 be the Lamé constants and

W(x,F) = W(F) :=


µ|FTF− I|2 + λ

2 | Tr (FTF− I)|2 , if det F > 0,

+∞ , else,

(63)

the stored energy density, assume (7), (8) and let let hj be a sequence of strictly

positive real numbers with hj → 0.

Then, there exists a (not relabeled) subsequence of functionals Fhj
and a min-

imizing sequence wj weakly converging in H1(Ω; IRN ) and strongly converging

in W 1,q(Ω, IRN ) to w0 in argmin E, for 1 ≤ q < 2.

Proof First of all we notice that (63) entails (29), hence Theorem 5.1 applies

to the present situation. By recalling Proposition 5.3 of [5] it will be enough

to show that there exists a minimizing sequence wj for functionals Fhj (say

Fhj
(wj) = inf Fhj

+o(1)) weakly converging in H1(Ω; IRN ) to w0 ∈ argminF

and

lim
hj→0

Fhj
(vj) =

∫
Ω

V0
(
IE(v0)

)
dx− L(v0) = E(v0). (64)
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It is worth noticing that according to (63)

V0(x,B) ≡ V0(B) = 4µ|B|2 + 2λ| Tr B|2. (65)

To this aim let vj be a minimizing sequence for functionals Fhj
: by Theo-

rem 5.1 there exist a (not relabeled) subsequence hj and vj , v0 ∈ H1(Ω; IRN )

such that

IE(vj) ⇀ IE(v0) in L2(Ω;MN×N ), (66)

F(v0) = min
v∈H1(Ω;IRN )

F(v) = lim
hj→0

Fhj (vj) = E(v0) = min
v∈H1(Ω;IRN )

E(v) ,

(67)√
hj ∇vj → 0 in L2(Ω;MN×N ) (68)

and by (67), (68) and convexity of V0

E(v0) = F(v0) = lim
hj→0

Fhj
(vj) =

lim
hj→0

∫
Ω

V0
(
IE(vj) + 1

2hj∇vTj ∇vj
)
dx− L(vj) ≥

∫
Ω

V0
(
IE(v0)

)
dx− L(v0) = E(v0) .

(69)

Thanks to (60), (61) and (62) we get∫
Ω

(x× vhj
) dx =

∫
Ω

x× (vhj
− |Ω|−1

∫
Ω

vhj
dx) dx

which, thanks to (68), implies

√
hj ∇(IPvj)→ 0 (70)

so that

Bj :=
h

2

{
∇(IPvj)

T∇(IPvj) +∇vTj ∇(IPvj)−∇(IPvj)
T∇vj

}
→ 0 (71)
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strongly in L2(Ω;MN×N ).

Since vj is a minimizing sequence, (63) and Poincaré-Korn inequality yield

∫
Ω

|IE(vj) + 1
2hj∇vTj ∇vj |2 dx ≤ C + L(vj) =

C + L(vj − IPvj) ≤ C + C ′
(∫

Ω

|IE(vj)|2 dx
) 1

2

,

(72)

hence Dj := IE(vj) + 1
2hj∇vTj ∇vj are equibounded in L2(Ω;MN×N ) and by

setting wj := vj − IPvj , by recalling that B→ V0(B) is convex we have

Fhj (vj)−Fhj (wj) ≥
∫
Ω

Bhj · V ′0(Dj + Bj) dx. (73)

Since |V ′0(B)| ≤ C|B| for some C > 0, by (71) and (72) we get

∣∣∣∣∫
Ω

Bj · V ′0(Dj + Bj) dx

∣∣∣∣ ≤ C ∫
Ω

(
|Bj |2 +

∣∣Bhj

∣∣ |Dj |
)
dx→ 0 (74)

that is

Fhj (vj) ≥ Fhj (wj) + o(1) (75)

which proves that wj is a minimizing sequence too. It is now readily seen that

wj are equibounded in H1(Ω; IRN ) and (64) follows from (69) so the claim is

proven.

Remark 5.1 By inspection of the proof, Theorem 6.1 holds true also for more

general energies: e.g., if W is a convex function of FTF − I with quadratic

growth and if W is finite if and only if det F > 0.
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7 Conclusions

The validation analysis of linearized elasticity performed in [1] concerning pure

traction problems through Γ -convergence, quite surprisingly highlighted a new

kind of limit energy functional F .

Properties of this new functional and its relationship with the classical energy

of linear elasticity have been investigated in the present paper, delivering fine

differences among the dimensions N = 2 and N = 3.

The appearance, under suitable condition on the load, of infinitely many min-

imizers of the functional F , which are not minimizers of the classical elasticity

energy, requires further analysis and suggests that F could be more appro-

priate approximate energy, keeping memory of large instabilities affecting the

nonlinear theory.

Indeed, due to our analysis, the classical linearized model of elasticity proves

inadequate for a body uniformly compressed along its whole boundary in the

direction of inward normal.
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