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Abstract. We study the boundary control of solutions of the Helmholtz and
Maxwell equations to enforce local non-zero constraints. These constraints
may represent the local absence of nodal or critical points, or that certain
functionals depending on the solutions of the PDE do not vanish locally in-
side the domain. Suitable boundary conditions are classically determined by
using complex geometric optics solutions. This work focuses on an alternative
approach to this issue based on the use of multiple frequencies. Simple bound-
ary conditions and a finite number of frequencies are explicitly constructed
independently of the coefficients of the PDE so that the corresponding solu-
tions satisfy the required constraints. This theory finds applications in several
hybrid imaging modalities: some examples are discussed.

1. Introduction

The boundary control of the partial differential equation

(1)
{
−div(a∇uiω)− (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω,

to enforce local non-zero constraints is the main topic of this work, where Ω ⊆ Rd
is a smooth bounded domain, a ∈ L∞(Ω;Rd×d) is a uniformly elliptic symmetric
tensor and ε, σ ∈ L∞(Ω;R) satisfy ε > 0 and σ ≥ 0. More precisely, we want to
find suitable ϕi’s such that the corresponding solutions to (1) satisfy certain non-
zero constraints in Ω. For example, we may look for d + 1 boundary conditions
ϕ1, . . . , ϕd+1 such that, at least locally

(2)
∣∣u1
ω

∣∣ ≥ C, ∣∣det
[
∇u2

ω · · · ∇ud+1
ω

]∣∣ ≥ C, ∣∣det
[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]∣∣ ≥ C
for some C > 0 or, more generally, for b boundary values ϕ1, . . . , ϕb such that the
corresponding solutions verify r conditions given by
(3)

∣∣ζj(u1
ω, . . . , u

b
ω

)∣∣ ≥ C, j = 1, . . . , r,

where the maps ζj depend on uiω and their derivatives. Determinant constraints
are very common in elasticity theory. As discussed below, our motivation comes
from several hybrid imaging techniques [18].

The problem of constructing such boundary conditions is usually set for a fixed
frequency ω > 0. The classical way to tackle this problem is by means of the so
called complex geometric optics solutions. Introduced by Sylvester and Uhlmann
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[44], CGO solutions are particular highly oscillatory solutions of the Helmholtz
equation (1) in Rd such that for t� 1 (a = 1, d = 2)

u(t)(x) ≈ etx1 (cos(tx2) + i sin(tx2)) in C1(Ω;C),
and can be used to determine suitable illuminations by using the estimates proved
by Bal and Uhlmann [22] (see also [19, 18, 15]). For example, setting ϕ1 ≈ u

(t)
|∂Ω,

ϕ2 ≈ <u(t)
|∂Ω and ϕ3 ≈ =u(t)

|∂Ω gives an open set of boundary conditions whose
solutions satisfy the first two constraints of (2). Thus, CGO solutions represent
a very important theoretical tool, but have several drawbacks. First, the suitable
ϕi’s can only be constructed when the parameters are smooth. Second, since t� 1,
the exponential decay in the first variable gives small lower bounds C and the high
oscillations make this approach hardly implementable. Further, the construction
depends on the coefficients a, ε and σ, that are usually unknown in inverse problems.
Another construction method uses the Runge approximation, which ensures that
locally the solutions behave as in the constant coefficient case [23].

In [1], where the case σ = 0 and the constraints in (2) were considered, we pro-
posed an alternative approach to this issue based on the use of multiple frequencies
in a fixed admissible range A = [Kmin,Kmax] ⊆ R+. The technique relies upon the
assumption that the ϕi’s are chosen in such a way that the required constraints are
satisfied in the case ω = 0, i.e. for the conductivity equation{

−div(a∇ui0) = 0 in Ω,
ui0 = ϕi on ∂Ω,

for which the maximum principle and results on the absence of critical points [12,
20] usually make the problem much easier. Under this assumption, there exist
a finite K ⊆ A and an open cover Ω = ∪ω∈KΩω such that the constraints are
satisfied in each Ωω for uiω. The proof is based on the regularity theory and on the
holomorphicity of the map ω 7→ uiω.

The main novelty of this paper lies in the fully constructive proof. The set K is
constructed explicitly as a uniform sampling of the admissible range A and depends
only on the a priori data. Similarly, the constant C in (3) is estimated a priori and
depend on the coefficients only through the a priori bounds. This improvement has
been achieved by using a quantitative version of the unique continuation theorem
for holomorphic functions proved by Momm [37] and a thorough analysis of (1).
We consider here the case σ ≥ 0 and the general constraints (3).

It is natural to study this issue for the full Maxwell’s equations, for which the
Helmholtz equation often acts as an approximation in the context of hybrid imaging.
Maxwell’s equations read

(4)

 curlEiω = iωµHi
ω in Ω,

curlHi
ω = −i(ωε+ iσ)Eiω in Ω,

Eiω × ν = ϕi × ν on ∂Ω.
As before, we look for illuminations ϕi and frequencies ω such that the correspond-
ing solutions verify r conditions given by
(5)

∣∣ζj((E1
ω, H

1
ω), . . . , (Ebω, Hb

ω)
)∣∣ ≥ C > 0, j = 1, . . . , r.

An example of such conditions is given by
∣∣det

[
E1
ω E2

ω E3
ω

]∣∣ ≥ C. CGO solu-
tions for Maxwell’s equations have been studied by Colton and Päivärinta [30]. As
before, they can be used to obtain suitable solutions [29], but have the drawbacks



ENFORCING NON-ZERO CONSTRAINTS IN PDES AND APPLICATIONS 3

discussed before. In [4], the multi frequency approach was generalised to (4). The
contribution of this paper is in the quantitative estimates for the number of needed
frequencies and for the constant C in (5), both determined a priori.

This approach has been recently successfully adapted to the conductivity equa-
tion with complex coefficients in [16] and to the Helmholtz equation with Robin
boundary conditions in [5].

This theory finds applications in several hybrid imaging inverse problems, where
the unknown parameters have to be reconstructed from internal data [34, 18, 6, 9].
Many hybrid problems are governed by the Helmholtz equation (1), e.g. microwave
imaging by ultrasound deformation [46, 14], quantitative thermo-acoustic [21, 15],
transient elastography and magnetic resonance elastography [23]. The internal
measurements are always linear or quadratic functionals of uϕω and of ∇uϕω. For
example, in microwave imaging by ultrasound deformation, that is modelled by (1)
with a scalar-valued a and σ = 0, the internal measurements have the form

a(x) |∇uϕω|
2 (x), ε(x) |uϕω| (x)2, x ∈ Ω,

and in thermo-acoustic, modelled by (1) with a = ε = 1 and σ > 0, we measure

σ(x) |uϕω| (x)2, x ∈ Ω.

In order for these measurements to be meaningful at every x ∈ Ω, they need to
be non-zero: otherwise, we would measure only noise. Moreover, we shall see that
conditions like (2) or, more generally, (3) for some map ζ, are necessary to recon-
struct the unknown parameters a, ε and/or σ or to obtain good stability estimates
[46, 36, 23]. Thus, being able to determine suitable illuminations independently
of the unknown parameters is fundamental, and these can be given by the multi-
frequency approach discussed in this paper. It should be mentioned that stability of
Hölder type has been proved by Alessandrini in the context of microwave imaging
with ultrasounds with a = 1 without requiring any non-zero constraint [11].

Similarly, several problems are modelled by the Maxwell’s equations (4) [32,
24, 29], and the inversion usually requires the availability of solutions satisfying
certain non-zero constraints inside the domain, given by (5), for some maps ζj
depending on the particular problem under consideration. As above, the multi-
frequency approach discussed in this work can be applied to all these situations.

It is worth mentioning that the underlying physical principle was employed by
Renzhiglova et al. in an experimental study on magneto-acousto-eletrical tomogra-
phy, where dual-frequency ultrasounds were used to obtain non-zero internal data
[40].

This paper is structured as follows. The main results are stated and commented
in Section 2, and their proofs are detailed in Section 3. Several applications to
hybrid imaging problems are described in Section 4. Some relevant open problems
are discussed in Section 5. Finally, some basic tools are presented in Appendix A.

2. Main results

2.1. The Helmholtz equation. Given a smooth bounded domain Ω ⊆ Rd, d =
2, 3, we consider the Dirichlet boundary value problem

(6)
{
−div(a∇uiω)− (ω2ε+ iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω.
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We assume that a ∈ L∞(Ω;Rd×d) and ε ∈ L∞(Ω;R) and satisfy

a = aT , Λ−1 |ξ|2 ≤ ξ · aξ ≤ Λ |ξ|2 , ξ ∈ Rd,(7a)
Λ−1 ≤ ε ≤ Λ almost everywhere(7b)

for some Λ > 0 and that σ ∈ L∞(Ω;R) and satisfies either
σ = 0, or(8)
Λ−1 ≤ σ ≤ Λ almost everywhere.(9)

In electromagnetics, ε is the electric permittivity, σ is the electric conductivity and
a is the inverse of the magnetic permeability. Take κ ∈ N and α ∈ (0, 1). Suppose
ϕi ∈ Cκ,α(Ω;C) and
(10) a ∈ Cκ−1,α(Ω;Rd×d), ε, σ ∈Wκ−1,∞(Ω;R) if κ ≥ 1.

Let A = [Kmin,Kmax] ⊆ B(0,M) represent the frequencies we have access to,
for some 0 < Kmin < Kmax ≤ M . By standard elliptic theory (Proposition 7),
problem (6) is well-posed for every ω ∈ D, where

(11) D =
{
C \
√

Σ if (8) holds,
{ω ∈ C : |=ω| < η} if (9) holds.

Here Σ = {λl : l ∈ N∗} is the set of the Dirichlet eigenvalues of problem (6)
(
√

Σ = {ω ∈ C : ω2 ∈ Σ}), and η > 0 depends only on Ω and Λ. Figure 1 on
page 11 represents the domain D and the admissible set of frequencies A. Note
that uiω ∈ Cκ(Ω;C) by elliptic regularity theory (Proposition 8).

Definition 1. Given a finite set K ⊆ A and ϕ1, . . . , ϕb ∈ Cκ,α(Ω;C), we say that
K × {ϕ1, . . . , ϕb} is a set of measurements.

We shall study a particular class of sets of measurements, namely those whose
corresponding solutions uiω (i = 1, . . . , b) to (6) and their derivatives up to the κ-th
order satisfy r constraints in Ω. These are described by a map ζ. For b, r ∈ N∗ let

ζ = (ζ1, . . . , ζr) : Cκ(Ω;C)b −→ C(Ω;C)r be holomorphic, such that(12a) ∥∥ζ(u1, . . . , ub)
∥∥
C(Ω;C)r ≤ cζ(1 +

∥∥(u1, . . . , ub)
∥∥s
Cκ(Ω;C)b) and(12b) ∥∥Dζ(u1,...,ub)

∥∥
B(Cκ(Ω;C)b,C(Ω;C)r) ≤ cζ(1 +

∥∥(u1, . . . , ub)
∥∥s
Cκ(Ω;C)b)(12c)

for some cζ > 0 and s ∈ N∗. (For the definition of holomorphic function, see § 3.1.)
We shall use the notation Cζ = (cζ , s, r, κ, α).

Example 1. We consider here the constraints given in (2). Take b = d+ 1, r = 3
and κ = 1 and let ζdet : C1(Ω;C)d+1 −→ C(Ω;C)3 be defined by

ζ1
det(u1, . . . , ud+1) = u1,

ζ2
det(u1, . . . , ud+1) = det

[
∇u2 · · · ∇ud+1] ,

ζ3
det(u1, . . . , ud+1) = det

[
u1 · · · ud+1

∇u1 · · · ∇ud+1

]
.

The map ζdet is holomorphic (Lemma 1). Simple calculations show that (12b) holds
true with sb = d+ 1 and (12c) with sc = d, and so we can set s = d+ 1.

We introduce the particular class of sets of measurements we are interested in.
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Definition 2. Take Ω′ ⊆ Ω. Let b, r ∈ N∗ be two positive integers, C > 0 and let
ζ be as in (12). A set of measurements K ×{ϕ1, . . . , ϕb} is (ζ, C)-complete in Ω′ if
there exists an open cover of Ω′

Ω′ =
⋃

ω∈K∩D
Ω′ω,

such that for any ω ∈ K ∩D
(13)

∣∣ζj(u1
ω, . . . , u

b
ω

)
(x)
∣∣ ≥ C, j = 1, . . . , r, x ∈ Ω′ω.

Namely, a (ζ, C)-complete set gives a cover of Ω′ into #(K ∩ D) subdomains,
such that the constraints given in (13) are satisfied in each subdomain for different
frequencies.

We now describe how to choose the frequencies in the admissible set A. Let K(n)

be the uniform partition of A into n− 1 intervals so that #K(n) = n, namely

(14) K(n) = {ω(n)
1 , . . . , ω(n)

n }, ω
(n)
i = Kmin + (i− 1)

(n− 1)(Kmax −Kmin).

Set |A| = Kmax − Kmin. The main result of this paper regarding the Helmholtz
equation reads as follows.

Theorem 1. Assume that (7), (10) and either (8) or (9) hold. Let ζ be as in (12)
and assume that there exist ϕ1, . . . , ϕb ∈ Cκ,α(Ω;C) and C0 > 0 such that

(15)
∣∣ζj(u1

0, . . . , u
b
0
)
(x)
∣∣ ≥ C0, j = 1, . . . , r, x ∈ Ω′.

Then there exist C > 0 and n ∈ N depending on Ω, Λ, |A|,M , Cζ , ‖a‖Cκ−1,α(Ω;Rd×d),
‖(ε, σ)‖Wκ−1,∞(Ω;R)2 , ‖ϕi‖Cκ,α(Ω;C) and C0 such that

K(n) × {ϕ1, . . . , ϕb}
is a (ζ, C)-complete set of measurements in Ω′.

We now discuss assumption (15), the dependence of C on |A| and M and the
regularity assumption on the coefficients.

Remark 1. This result allows an a priori construction of (ζ, C)-complete sets, since
C and n depend only on a priori data, provided that ϕ1, . . . , ϕb are chosen in such
a way that (15) holds true. It is in general easier to satisfy (15) than (13), as ω = 0
makes problem (6) simpler. More precisely, there exist many results regarding the
conductivity equation [12, 28, 47, 20, 19] (see also the proof of Corollary 1). It is
worth noting that, especially in 3D, satisfying (15) may still be highly non trivial,
and the strategy used for the case ω = 0 may be applicable for higher frequencies
as well.

Note that (6) with ω = 0 does not depend on ε and σ, so that the construction
of ϕ1, . . . , ϕb is always independent of ε and σ but may depend on a.

There exist occulting illuminations, i.e. boundary conditions for which a finite
number of frequencies are not sufficient, and so assumption (15) cannot be com-
pletely removed [1]. Yet, this assumption can be weakened (see Remark 6).

Remark 2. The proof of this result is based on Lemma 3. Thus, the constant
C goes to zero as |A| → 0, M → ∞ or C0 → 0 (see Remark 9 for the precise
dependence). In particular, this approach gives good estimates for frequencies
in a moderate regime (e.g. with microwaves), but these estimates get worse for
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very high frequencies. This should be taken into account in the presence of noisy
measurements.

Remark 3. The regularity of the coefficients required for this approach is lower than
the regularity required if CGO solutions are used. Indeed, consider for simplicity
the constraints given by the map ζdet and suppose a = 1 and σ = 0. The CGO
approach requires ε ∈ C1 [22], while with this method we only assume ε ∈ L∞.

Similarly, the approach based on the Runge approximation property requires a
to be Lipschitz continuous, in addition to (10) [23]. Therefore, higher regularity
assumptions are needed in the cases when κ = 0, 1.

We now apply Theorem 1 to the case ζ = ζdet. The construction of (ζdet, C)-
complete sets of measurements depends on the dimension, since the validity of (15)
for ζ2

det and ζ3
det depends on the dimension.

Corollary 1. Assume that (7), (10) and either (8) or (9) hold for κ = 1.
If d = 2, Ω is convex and Ω′ b Ω then there exist C > 0 and n ∈ N depending

on Ω, Ω′, Λ, α, |A|, M and ‖a‖C0,α(Ω;R2×2) such that

K(n) × {1, x1, x2}

is a (ζdet, C)-complete set of measurements in Ω′.
If d = 3 and â ∈ R3×3 is a constant tensor satisfying (7a) then there exist

δ, C > 0 and n ∈ N depending on Ω, Λ, α, |A|, M and ‖a‖C0,α(Ω;R3×3) such that if
‖a− â‖C0,α(Ω;R3×3) ≤ δ then

K(n) × {1, x1, x2, x3}

is a (ζdet, C)-complete set of measurements in Ω.

Remark 4. In 2D, it is possible to consider non-convex domains, provided that the
boundary conditions are chosen in accordance to Lemma 10 [25, 1].

Remark 5. In order to satisfy the constraints corresponding to ζ1
det, by the strong

maximum principle it is enough to choose ϕ1 ≥ C0 > 0. As far as (15) for ζ3
det is

concerned, it is sufficient to set ϕ2 = x1ϕ1 and ϕ3 = x2ϕ1 [1].

Remark 6. The difference between the two and three dimensional case is due to the
presence of critical points in the case ω = 0 in 3D [26, 17, 27]. In order to satisfy
(15) in 3D we assume that a is close to a constant matrix. This assumption can
be removed in some situations by using a different approach in ω = 0 [20] or by
choosing generic boundary conditions [3]: in these cases, the a priori estimates on
C and n are lost. If the constraints do not involve gradient fields, e.g. ζ = ζ1

det,
then there is no need for this assumption.

2.2. Maxwell’s equations. Given a smooth bounded domain Ω ⊆ R3 with a
simply connected boundary ∂Ω, in this subsection we consider Maxwell’s equations

(16)

 curlEiω = iωµHi
ω in Ω,

curlHi
ω = −i(ωε+ iσ)Eiω in Ω,

Eiω × ν = ϕi × ν on ∂Ω,
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with µ, ε, σ ∈ L∞(Ω;R3×3) and ϕi satisfying

Λ−1 |ξ|2 ≤ ξ · µξ, Λ−1 |ξ|2 ≤ ξ · εξ, Λ−1 |ξ|2 ≤ ξ · σξ, ξ ∈ R3,(17a)
‖(µ, ε, σ)‖L∞(Ω;R3×3)3 ≤ Λ, µ = µT , ε = εT , σ = σT , µ, ε, σ ∈Wκ+1,p(Ω),(17b)

curlϕi · ν = 0 on ∂Ω and ϕi ∈Wκ+1,p(Ω;C3)(17c)

for some Λ > 0, κ ∈ N and p > 3. The electromagnetic fields Eiω and Hi
ω satisfy

Eiω ∈ H(curl,Ω) := {u ∈ L2(Ω;C3) : curlu ∈ L2(Ω;C3)},
Hi
ω ∈ Hµ(curl,Ω) := {v ∈ H(curl,Ω) : div(µv) = 0 in Ω, µv · ν = 0 on ∂Ω}.

The matrix ε represents the electric permittivity, σ is the electric conductivity
and µ stands for the magnetic permeability. Note that (Eiω, Hi

ω) ∈ Cκ(Ω;C6) by
Proposition 10.

Definition 3. Given a finite set K ⊆ A and ϕ1, . . . , ϕb ∈Wκ+1,p(Ω;C3) satisfying
(17c), we say that K × {ϕ1, . . . , ϕb} is a set of measurements.

As before, we are interested in a particular class of sets of measurements, namely
those whose corresponding solutions (Eiω, Hi

ω) to (16) and their derivatives up to
the κ-th order satisfy r non-zero constraints inside the domain. These are described
by a map ζ, which we now introduce. For b, r ∈ N∗ let

ζ = (ζ1, . . . , ζr) : Cκ(Ω;C6)b −→ C(Ω;C)r be holomorphic, such that(18a) ∥∥ζ((ui, vi)i)
∥∥
C(Ω;C)r ≤ cζ(1 +

∥∥((ui, vi)i)
∥∥s
Cκ(Ω;C6)b),(18b) ∥∥Dζ((ui,vi)i)∥∥B(Cκ(Ω;C6)b,C(Ω;C)r)≤cζ(1 +
∥∥((ui, vi)i)

∥∥s
Cκ(Ω;C6)b)(18c)

for some cζ > 0 and s ∈ N∗. We shall use the notation Cζ = (cζ , s, r, κ, p).
We now consider one example of map ζ. For other examples, see [4].

Example 2. Take b = 3, r = 1, κ = 0 and let ζMdet be defined by

ζMdet((u1, v1), (u2, v2), (u3, v3)) = det
[
u1 u2 u3

]
, (ui, vi) ∈ C(Ω;C6).

The map ζMdet is multilinear and bounded, whence holomorphic by Lemma 1. As-
sumptions (18b) and (18c) are obviously verified. In this case, the condition char-
acterising (ζMdet, C)-complete sets of measurements is

∣∣det
[
E1
ω E2

ω E3
ω

]
(x)
∣∣ ≥ C.

In other words, this constraints signals the availability, in every point, of three
independent electric fields and, in particular, of one non-vanishing electric field.

We now give the precise definition of (ζ, C)-complete sets of measurements for
Maxwell’s equations. The only difference with the Helmholtz equation is that here,
for simplicity, we require the constraints to hold in the whole domain Ω.

Definition 4. Let b, r ∈ N∗ be two positive integers, C > 0 and let ζ be as in (18).
A set of measurements K × {ϕ1, . . . , ϕb} is (ζ, C)-complete if there exists an open
cover of Ω, Ω = ∪ω∈KΩω, such that for any ω ∈ K

(19)
∣∣ζj((E1

ω, H
1
ω), . . . , (Ebω, Hb

ω)
)
(x)
∣∣ ≥ C, j = 1, . . . , r, x ∈ Ωω.

Let K(n) be as in (14). The main result of this subsection reads as follows.
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Theorem 2. Assume that (17) holds. Let σ̂ ∈ Wκ,p(Ω;R3×3) satisfy (17a). Let
ζ be as in (18) and assume that there exist ϕ1, . . . , ϕb ∈ Wκ+1,p(Ω;C3) satisfying
(17c) and C0 > 0 such that
(20)

∣∣ζj((Ê1
0 , Ĥ

1
0 ), . . . , (Êb0, Ĥb

0)
)
(x)
∣∣ ≥ C0, x ∈ Ω, j = 1, . . . , r,

where (Êi0, Ĥi
0) ∈ H(curl,Ω)×Hµ(curl,Ω) is the solution to (16) with σ̂ in lieu of

σ and ω = 0, namely

(21)


curlÊi0 = 0 in Ω,
div(σ̂Êi0) = 0 in Ω,
Êi0 × ν = ϕi × ν on ∂Ω,


curlĤi

0 = σ̂Êi0 in Ω,
div(µĤi

0) = 0 in Ω,
µĤi

0 · ν = 0 on ∂Ω.
There exist δ, C > 0 and n ∈ N depending on Ω, Λ, |A|, M , Cζ , ‖ϕi‖Wκ+1,p(Ω;C3),
‖(ε, σ, µ)‖Wκ+1,p(Ω;R3×3) and C0 such that if ‖σ − σ̂‖Wκ+1,p(Ω;R3×3) ≤ δ then

K(n) × {ϕ1, . . . , ϕb}
is a (ζ, C)-complete set of measurements.

We now discuss assumption (20), the dependence of the construction of the
illuminations on the electromagnetic parameters and the regularity assumption on
the coefficients (see Remarks 1 and 3).

Remark 7. Suppose that we are in the simpler case σ̂ = σ. Note that (21) does not
depend on ε, so that the construction of ϕ1, . . . , ϕb is always independent of ε but
may depend on σ and µ. However, in the cases where the maps ζj involve only the
electric field E, it depends on σ, and not on ε and µ (see Corollary 2).

A typical application of the theorem is in the case where σ is a small perturbation
of a known constant tensor σ̂. Then, the construction of ϕ1, . . . , ϕb is independent
of σ. A similar argument would work if µ were a small perturbation of a constant
tensor µ̂. We have decided to omit it for simplicity, since in the applications we
have in mind the maps ζj do not depend on the magnetic field H.

Remark 8. The regularity of the coefficients required for this approach is much lower
than the regularity required if CGO solutions are used. Indeed, if the constraints
depend on the derivatives up to the κ-th order, with this approach we require the
parameters to be in Wκ+1,p, while with CGO we need Wκ+3,p [29].

In the case where the conditions given by the map ζ are independent of the
magnetic field H, Theorem 2 can be rewritten in the following form.

Corollary 2. Assume that (17) holds. Let σ̂ ∈Wκ,p(Ω;R3×3) satisfy (17a) and ζ
be as in (18) and independent of H. Take ψ1, . . . , ψb ∈Wκ+2,p(Ω;C). Suppose
(22)

∣∣ζj(∇w1, . . . ,∇wb
)
(x)
∣∣ ≥ C0, x ∈ Ω, j = 1, . . . , r

for some C0 > 0, where wi ∈ H1(Ω;C) is the solution to{
div(σ̂∇wi) = 0 in Ω,
wi = ψi on ∂Ω.

There exist δ, C > 0 and n ∈ N depending on Ω, Λ, |A|, M , Cζ , ‖ψi‖Wκ+2,p(Ω;C3),
‖(ε, σ, µ)‖Wκ+1,p(Ω;R3×3) and C0 such that if ‖σ − σ̂‖Wκ+1,p(Ω;R3×3) ≤ δ then

K(n) × {∇ψ1, . . . ,∇ψb}
is a (ζ, C)-complete set of measurements.
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In other words, if the required constraints do not depend on H, then the prob-
lem of finding ζ-complete sets is reduced to satisfying the same conditions for the
gradients of solutions to the conductivity equation, as with the Helmholtz equation.

3. Non-zero constraints in PDEs

The results stated in Section 2 are proven here. In particular, some preliminary
lemmata on holomorphic functions are discussed in § 3.1, and the proofs of Theo-
rem 1, Corollary 1 and Theorem 2 are given in § 3.2, § 3.3 and § 3.4, respectively.

3.1. Holomorphic functions. Holomorphic functions in a Banach space setting
were studied in [45]. Let E and E′ be complex Banach spaces, D ⊆ E be an open
set and take f : D → E′. We say that f is holomorphic if it is continuous and if

lim
τ→0

f(x0 + τy)− f(x0)
τ

exists in E′ for all x0 ∈ D and y ∈ E. This notion extends the classical notion of
holomorphicity for functions of complex variable.

This lemma summarises some of the basic properties of holomorphic functions.

Lemma 1. Let E1, . . . , Er, E and E′ be complex Banach spaces and D ⊆ E be an
open set.
(1) If f : E1 × · · · × Er → E′ is multilinear and bounded then f is holomorphic.
(2) If f : D → E1 and g : E1 → E′ are holomorphic then g ◦ f : D → E′ is holo-

morphic.
(3) Take f = (f1, . . . fr) : D → E1 × · · · × Er. Then f is holomorphic if and only

if f j is holomorphic for every j = 1, . . . , r.

The following result is a quantitative version of the unique continuation property
for holomorphic functions of one complex variable.

Lemma 2. Take C0, D > 0, θ ∈ (0, 1) and r ∈ (0, θ]. Let g be a holomorphic
function in B(0, 1) ⊆ C such that |g(0)| ≥ C0 and supB(0,1) |g| ≤ D. There exists
ω ∈ [r, 1) such that

|g(ω)| ≥ C
for some constant C > 0 depending on θ, C0 and D only.

Proof. Since [θ, (1 + θ)/2] ⊆ [r, 1), it is sufficient to show that there exists C > 0
depending on θ, C0 and D only such that

max
[θ,(1+θ)/2]

|g| ≥ C.

By contradiction, suppose that there exists a sequence (gn)n of holomorphic func-
tions in B(0, 1) such that supB(0,1) |gn| ≤ D, |gn(0)| ≥ C0 and max[θ,(1+θ)/2] |gn| →
0. Since supB(0,1) |gn| ≤ D, by standard complex analysis, up to a subsequence
gn → g∞ for some g∞ holomorphic in B(0, 1). As max[θ,(1+θ)/2] |gn| → 0, we ob-
tain g∞ = 0 on [θ, (1 + θ)/2], whence g∞ = 0, which contradicts |g∞(0)| ≥ C0. �

Remark 9. Although elementary, the proof of Lemma 2 does not give the depen-
dence of the constant C on the parameters θ, C0 and D.

By [37] there is a Jordan curve Γ in r < |ω| < 1 around the origin such that

log |g(ω)/g(0)| ≥ − C̃

1− r

(ˆ 1

0

( log supB(0,t) |g/g(0)|
1− t

)1/2

dt

)2
, ω ∈ Γ,
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for an absolute constant C̃ > 0. By the Jordan curve theorem there exists ω ∈ (r, 1)
such that

log |g(ω)/g(0)| ≥ − C̃ log(DC−1
0 )

1− r .

Therefore |g(ω)| ≥ |g(0)| (DC−1
0 )−

C̃
1−r ≥ C0(DC−1

0 )−
C̃

1−r ≥ C0(DC−1
0 )−

C̃
1−θ , whence

the constant given in Lemma 2 is C = C0(DC−1
0 )−

C̃
1−θ .

It is possible to generalise the previous result to functions defined in an ellipse.
The proof is elementary, but needed to show the precise dependence of C on R1−r.
Lemma 3. Take 0 < r < R1 ≤ M and 0 < η ≤ R2. Let g be a holomorphic
function in the ellipse

E = {ω ∈ C : (<ω)2

R2
1

+ (=ω)2

R2
2

< 1}

such that |g(0)| ≥ C0 > 0 and supE |g| ≤ D. There exists ω ∈ (r,R1) such that
|g(ω)| ≥ C

for some constant C > 0 depending on M , R1 − r, η, C0 and D only.
Proof. Without loss of generality, we can always suppose R2 ≤ R1.

Set β :=
√
R2

1 +R2
2 ≤
√

2M , ri = Ri/β and Ẽ := {ω ∈ C : (<ω)2

r2
1

+ (=ω)2

r2
2

< 1}.
The map ψ1 : Ẽ → E, ω 7→ βω is bi-holomorphic and the segment (r,R1) ⊆ E
is transformed via ψ−1

1 into (r/β,R1/β) ⊆ Ẽ. Consider now a bi-holomorphic
transformation ψ2 : B(0, 1)→ Ẽ. The existence of this map is a consequence of the
Riemann mapping theorem, and an explicit formula is given in [38, page 296]. In
particular, ψ2 can be chosen so that ψ2(0) = 0 and ψ−1

2 ((r/β,R1/β)) = (r′, 1) for
some r′ ∈ (0, 1). Since (R1 − r)/β ≥ (R1 − r)/(

√
2M) and 1 ≤ r1/r2 = R1/R2 ≤

M/η we have 1 − r′ ≥ c for some c > 0 depending only on M , R1 − r, η, C0 and
D, as the ratio r1/r2 determines the deformation carried out by ψ2. Hence r′ ≤ θ
with θ = 1− c.

Consider now the map g′ : B(0, 1)→ C defined by g′ = g ◦ψ1 ◦ψ2. We have that
g′ is holomorphic in B(0, 1), |g′(0)| = |g(0)| ≥ C0 and supB(0,1) |g′| = supE |g| ≤ D.
By Lemma 2 applied to g′ and r′ we obtain the result. �

3.2. The Helmholtz equation. We prove here Theorem 1. For simplicity, we
shall say that a positive constant depends on a priori data if it depends on Ω,
Λ, |A|, M , Cζ , ‖a‖Cκ−1,α(Ω;Rd×d), ‖(ε, σ)‖Wκ−1,∞(Ω;R)2 , ‖ϕi‖Cκ,α(Ω;C) and C0 only.
Recall that D is given by (11) and that Σ = {λl : l ∈ N∗} denotes the set of the
Dirichlet eigenvalues of problem (6). During the proof, we shall often refer to the
results given in the Appendix.

We first show that the map ω ∈ D 7→ uiω ∈ Cκ is holomorphic. This will be one
of the basic tools of the proof of Theorem 1.
Proposition 1. Under the assumptions of Theorem 1, the map

D −→ Cκ(Ω;C), ω 7−→ uiω

is holomorphic.
Proof. In view of Propositions 7 and 8, problem (6) is well-posed and uiω ∈ Cκ. If
(8) holds, this result has already been proved in [1]. The case where (9) holds can
be handled similarly [2]. �
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Figure 1. The domain D and the admissible set A.

<ω

=ω

0−
√
λ1

√
λ1

√
λN

√
λN+1

√
λN+2A

(a) D = C \
√

Σ if (8) holds.

<ω

=ω
η

−η
A

(b) D = {ω ∈ C : |=ω| < η} if (9) holds.

Define for every j = 1, . . . , r
θj : D → C(Ω;C), ω 7→ ζj

(
u1
ω, . . . , u

b
ω

)
.

As a consequence of the previous result, the maps θj are holomorphic.

Lemma 4. Under the hypotheses of Theorem 1, the map θj : D → C(Ω;C) is
holomorphic for all j.

Proof. It follows from Proposition 1, (12a) and Lemma 1, parts 2 and 3. �

We next study some a priori bounds on θj and ∂ωθj (notation of Proposition 7).

Lemma 5. Assume that the hypotheses of Theorem 1 hold true and take j = 1, . . . , r
and ω ∈ B(0,M) ∩D.
(1) If (8) holds true then there exists C > 0 depending on a priori data such that

(a)
∥∥θjω∥∥C(Ω;C) ≤ C

[
1 + supl∈N∗ 1

|λl−ω2|

]s
;

(b)
∥∥∂ωθjω∥∥C(Ω;C) ≤ C

[
1 + supl∈N∗ 1

|λl−ω2|

]s+2
.

(2) If (9) holds true then there exists C > 0 depending on a priori data such that
(a)

∥∥θjω∥∥C(Ω;C) ≤ C;
(b)

∥∥∂ωθjω∥∥C(Ω;C) ≤ C.

Proof. We first prove part 1, namely we take σ = 0. In view of Proposition 7, part
1 and Proposition 8 we have

(23)
∥∥uiω∥∥Cκ(Ω;C) ≤ C

[
1 + sup

l∈N∗

1
|λl − ω2|

]
, ω ∈ B(0,M) ∩D,

whence we obtain part 1a from (12b).
It can be easily seen that ∂ωuiω is the solution to{

−div(a∇(∂ωuiω))− ω2ε ∂ωu
i
ω = 2ωεuiω in Ω,

∂ωu
i
ω = 0 on ∂Ω.
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Figure 2. The admissible sets A and Ã.

<ω

=ω

0−
√
λ1

√
λ1

√
λN

√
λN+1

√
λN+2A

Ã

Arguing as before, from Proposition 7, part 1 and Proposition 8 we obtain

(24)
∥∥∂ωuiω∥∥Cκ(Ω;C) ≤ C

[
1 + sup

l∈N∗

1
|λl − ω2|

]2
.

Since ∂ωθjω = Dζj(u1
ω,...,u

b
ω)(∂ωu

1
ω, . . . , ∂ωu

b
ω) we have∥∥∂ωθjω∥∥C(Ω;C) =

∥∥Dζj(u1
ω,...,u

b
ω)(∂ωu

1
ω, . . . , ∂ωu

b
ω)
∥∥
C(Ω;C)

≤
∥∥Dζj(u1

ω,...,u
b
ω)

∥∥
B(Cκ(Ω;C)b,C(Ω;C))

∥∥(∂ωu1
ω, . . . , ∂ωu

b
ω)
∥∥
Cκ(Ω;C)b

≤ C
[
1 + sup

l∈N∗

1
|λl − ω2|

]s+2
,

where the last inequality follows from (12c), (23) and (24). Part 1b is now proved.
Part 2 can be proved analogously, by using part 2 of Proposition 7 in lieu of part

1. The details are left to the reader. �

In the following two lemmata we study the case where (8) holds true, and how
to deal with the presence of the eigenvalues (see Figure 2).

Lemma 6. Under the hypotheses of Theorem 1, assume that (8) holds true. Then
there exist N ∈ N∗, δ > 0 and β > 0 depending on Ω, Λ, |A| and M only and a
closed interval Ã = [K̃min, K̃max] ⊆ A such that

d(Ã2,Σ) ≥ δ, Ã2 ⊆ (λl, λl+1),
∣∣Ã∣∣ ≥ β

for some l ≤ N , where Ã2 = {ω2 : ω ∈ Ã}.

Proof. In view of Lemma 9 there exists N ∈ N∗ depending on Ω, Λ andM only such
that [0,K2

max]∩Σ ⊆ {λ1, . . . , λN}. In particular, #(A2 ∩Σ) ≤ N . Therefore there
exists l ≤ N such that

∣∣A2 ∩ (λl, λl+1)
∣∣ ≥ ∣∣A2

∣∣ (N + 1)−1. Write A2 ∩ (λl, λl+1) =

[p, q] and define Ã by Ã2 = [p+ |A2|
3(N+1) , q−

|A2|
3(N+1) ]. This concludes the proof, since∣∣A2

∣∣ depends on |A| and N only. �

Thanks to Lemma 6, by taking a subinterval of the original admissible set A,
without loss of generality we can assume that

(25) d(A2,Σ) ≥ δ, A2 ⊆ (λl, λl+1), l ≤ N

for some δ > 0 and N ∈ N∗ depending on Ω, Λ, |A| and M only. Moreover, the
new size of A is comparable with the size of the original A by means of constants
depending on Ω, Λ, |A| and M only.
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The main idea is to apply Lemma 3 to the maps ω 7→ θjω(x) and use the fact
that in ω = 0 they are non-zero. However, in the case where (8) holds true we first
need to remove the singularities in the poles ±

√
λ1, . . . ,±

√
λN .

Lemma 7. Under the hypotheses of Theorem 1, if (8) and (25) hold true then for
any x ∈ Ω the function

(26) ω ∈ B(0,Kmax) 7−→ gjx(ω) := θjω(x)
N∏
l=1

(λl − ω2)s

λsl
,

is holomorphic in B(0,Kmax) and
sup

B(0,Kmax)

∣∣gjx∣∣ ≤ C
for some C > 0 depending on a priori data.

Proof. Different positive constants depending on a priori data will be denoted by
C. In view of Lemma 4, the map ω ∈ C \

√
Σ 7→ θjω(x) ∈ C is holomorphic and by

Lemma 5, part 1a, it is meromorphic in B(0,Kmax). For ω ∈ B(0,Kmax) ∩D we
have ∣∣gjx(ω)

∣∣ ≤ ∣∣θjω(x)
∣∣ N∏
l=1

∣∣λl − ω2
∣∣s

λsl

≤ Cλ−Ns1

N∏
l=1

∣∣λl − ω2∣∣s [1 + sup
l∈N∗

1
|λl − ω2|s

]

≤ C
N∏
l=1

∣∣λl − ω2∣∣s [1 + sup
l≤N

1
|λl − ω2|s

+ sup
l>N

1
|λl − ω2|s

]
,

where the second inequality follows from Lemma 5, part 1a. As a consequence∣∣gjx(ω)
∣∣ ≤ C N∏

l=1

∣∣λl − ω2∣∣s [1 + sup
l≤N

1
|λl − ω2|s

]

≤ C

[
N∏
l=1

∣∣λl − ω2∣∣s +
∏N
l=1
∣∣λl − ω2

∣∣s
inf l≤N |λl − ω2|s

]
≤ C,

where the first inequality follows from∣∣λl − ω2∣∣ ≥ δ, l > N,

and the third inequality from∣∣λl − ω2∣∣ ≤ 2M2, l ≤ N.

Therefore the map gjx is holomorphic in B(0,Kmax) and supB(0,Kmax)
∣∣gjx∣∣ ≤ C. �

The next lemma is the last step needed for the proof of Theorem 1.

Lemma 8. Under the hypotheses of Theorem 1, assume that if (8) holds then (25)
holds. Then for every x ∈ Ω′ there exists ωx ∈ A such that∣∣θjωx(x)

∣∣ ≥ C, j = 1, . . . , r
for some C > 0 depending on a priori data.



ENFORCING NON-ZERO CONSTRAINTS IN PDES AND APPLICATIONS 14

Proof. Several positive constants depending on a priori data will be denoted by C.
First case – Assumption (8). Take x ∈ Ω′ and define gjx as in (26), where N is

given by (25). Set

gx =
r∏
j=1

gjx.

By Lemma 7 the map gx is holomorphic in B(0,Kmax) and maxB(0,Kmax)
∣∣gx∣∣ ≤ C.

Moreover, |gx(0)| ≥ Cr0 by (15). Therefore, by Lemma 3 with r = Kmin and
R1 = R2 = Kmax there exists ωx ∈ [r,R] = A such that

∣∣gx(ωx)
∣∣ ≥ C. As a

consequence, in view of (26) we obtain∣∣ r∏
j=1

θjωx(x)
∣∣ =

∣∣gx(ωx)
∣∣ N∏
l=1

λrsl
|λl − ω2

x|
rs ≥ C,

since λl ≥ λ1 ≥ C(Ω,Λ) and
∣∣λl − ω2

x

∣∣ ≤ 2M2. The result now follows from
Lemma 5, part 1a.

Second case – Assumption (9). Take x ∈ Ω′ and define

gx(ω) =
r∏
j=1

θjω(x), ω ∈ D.

In view of Lemma 4, the map gx is holomorphic in D and by Lemma 5, part 2a,
maxB(0,M)∩D

∣∣gx∣∣ ≤ C. Moreover, |gx(0)| ≥ Cr0 by (15). Therefore, by Lemma 3
with r = Kmin, R1 = Kmax, and R2 = η there exists ωx ∈ A such that

∣∣gx(ωx)
∣∣ ≥

C. The result now follows from Lemma 5, part 2a. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Different positive constants depending on a priori data will be
denoted by C or Z.

If (8) holds true, by Lemma 6 we can assume (25). Thus, in view of Lemma 8,
for every x ∈ Ω′ there exists ωx ∈ A such that∣∣θjωx(x)

∣∣ ≥ C, j = 1, . . . , r.
Thus, by Lemma 5, parts 1b and 2b, there exists Z > 0 such that
(27)

∣∣θjω(x)
∣∣ ≥ C, ω ∈ [ωx − Z, ωx + Z] ∩ A, j = 1, . . . , r.

Recall that A = [Kmin,Kmax] and that ω(n)
i = Kmin + (i−1)

(n−1) (Kmax −Kmin). It is
trivial to see that there exists P = P (Z, |A|) ∈ N such that

(28) A ⊆
P⋃
p=1

Ip, Ip = [Kmin + (p− 1)Z,Kmin + pZ].

Choose now n ∈ N big enough so that for every p = 1, . . . , P there exists ip =
1, . . . , n such that ω(p) := ω

(n)
ip
∈ Ip. Note that n depends on Z and |A| only.

Take now x ∈ Ω′. Since |[ωx − Z, ωx + Z]| = 2Z and |Ip| = Z, in view of (28)
there exists px = 1, . . . , P such that Ipx ⊆ [ωx − Z, ωx + Z]. Therefore ω(px) ∈
[ωx−Z, ωx+Z]∩A, whence by (27) there holds

∣∣θjω(px)(x)
∣∣ ≥ C for all j = 1, . . . , r.

Recalling the definition of θj this implies
(29)

∣∣ζj(u1
ω(px), . . . , u

b
ω(px)

)
(x)
∣∣ ≥ C, j = 1, . . . , r.
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Define now Ω′ω = {x ∈ Ω′ : minj |ζj
(
u1
ω, . . . , u

b
ω

)
(x)| > C/2}. By (29) this gives

an open cover Ω′ = ∪ω∈K(n)Ω′ω, since ω(px) ∈ K(n). As a consequence, K(n) ×
{ϕ1, . . . , ϕb} is (ζ, C/2)-complete in Ω′ (Definition 2). The theorem is proved. �

3.3. (ζdet, C)-complete sets of measurements. We now show how to apply The-
orem 1 to the particular case of (ζdet, C)-complete sets.

Proof of Corollary 1. The main point of the proof of this theorem is satisfying (15)
for ζ = ζdet. Then, the result will follow immediately from Theorem 1.

Case d = 2. It is sufficient to prove that∣∣ζjdet
(
u1

0, u
2
0, u

3
0
)
(x)
∣∣ ≥ C0, j = 1, . . . , 3, x ∈ Ω′

for some C0 > 0 depending on Ω, Ω′, Λ, α and ‖a‖C0,α(Ω;R2×2).
Several positive constants depending on Ω, Ω′, Λ, α and ‖a‖C0,1(Ω;R2×2) will be

denoted by C. Recall that, setting “x0 = 1”, we have{
−div(a∇ui0) = 0 in ∂Ω,

ui0 = xi−1 on ∂Ω.

Since u1
0 = 1, the thesis is equivalent to show that

(30) |γ(x)| :=
∣∣det

[
∇u2

0 ∇u3
0
]

(x)
∣∣ ≥ C, x ∈ Ω′.

Fix now x ∈ Ω′. Since Ω is convex, in view of Proposition 11 we have β :=∣∣∇u2
0(x)

∣∣ ≥ C. Set ∇⊥u2
0 = (−∂2u

2
0, ∂1u

2
0). Therefore {β−1∇u2

0(x), β−1∇⊥u2
0(x)}

is an orthonormal basis of R2. As a consequence there holds

∇u3
0(x) = (∇u3

0(x) · β−2∇u2
0(x))∇u2

0(x) + (∇u3
0(x) · β−2∇⊥u2

0(x))∇⊥u2
0(x).

Setting ξ = ∇u3
0(x) · β−2∇u2

0(x) and v = u3
0 − ξu2

0, since γ(x) = ∇u3
0(x) · ∇⊥u2

0(x)
we have β−2γ(x)∇⊥u2

0(x) = ∇v(x), whence

(31) |γ(x)| = β |∇v(x)| .

Since Ω is convex and v is the solution to{
−div(a∇v) = 0 in ∂Ω,
v = x2 − ξx1 on ∂Ω,

we can apply again Proposition 11 and obtain |∇v(x)| ≥ C (note that |ξ| ≤ C by
standard elliptic regularity theory – see Proposition 8). As a consequence, in view
of (31) we obtain (30).

Case d = 3. For simplicity, suppose first that a = â. Thus ui0 = xi−1 for
i = 1, . . . , 4 (“x0 = 1”). Therefore (15) is immediately satisfied with C0 = 1. The
general case where ‖a− â‖C0,α ≤ δ can be handled by using a standard continuity
argument. More precisely, we obtain

∥∥ui0 − xi−1
∥∥
C1 ≤ cδ, and so (15) is satisfied

provided that δ is chosen small enough (for details, see [1]). �

3.4. Maxwell’s equations. As in the case of the Helmholtz equation, the basic
tool to prove Theorem 2 is the holomorphicity of the map ω 7→ (Eiω, Hi

ω) ∈ Cκ.

Proposition 2 ([4]). Under the assumptions of Theorem 2, the map

{ω ∈ B(0,M) : |=ω| < η} −→ Cκ(Ω;C6), ω 7−→ (Eiω, Hi
ω)

is holomorphic, where η > 0 is given by Proposition 9.
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The rest of the proof of Theorem 2 is very similar to the proof of Theorem 1
in the case where (9) holds true. The results of § A.2 have to be used in place of
the corresponding results of § A.1. If σ = σ̂, no further investigation is needed. If
‖σ − σ̂‖Wκ+1,p ≤ δ, an argument similar to the one given in the proof of Corollary 1
in the 3D case can be used [4]. The details are omitted.

4. Applications to hybrid imaging inverse problems

In this section we apply the theory presented so far to three examples of hybrid
imaging problems. The reader is referred to [4, 2, 16] for other relevant examples.

4.1. Microwave imaging by ultrasound deformation. We consider the hybrid
problem arising from the combination of microwaves and ultrasounds that was
introduced in [14]. The problem is modelled by the Helmholtz equation (6). In
addition to the previous assumptions, we suppose that a is scalar-valued and σ = 0.
In microwave imaging, a is the inverse of the magnetic permeability, ε is the electric
permittivity and A = [Kmin,Kmax] represent the admissible frequencies in the
microwave regime.

Given a set of measurements K × {ϕi} we consider internal data of the form
eijω = ε uiωu

j
ω, Eijω = a∇uiω · ∇ujω.

For simplicity, we denote eω = (eijω )ij and similarly for E. These internal energies
have to be considered as known functions in some subdomain Ω′ b Ω.

We need to choose a suitable set K × {ϕi} and find a and ε in Ω′ from the
knowledge of eijω and Eijω in Ω′. This can be achieved via two reconstruction for-
mulae for a/ε and ε, respectively. Their applicability is guaranteed if K × {ϕi} is
(ζ×, C)-complete, where ζ× : C1(Ω;C)3 −→ C(Ω;C)2 is given by

ζ×(u1, u2, u3) =
{(
u1,∇u2 ×∇u3) if d = 2,(
u1, (∇u2 ×∇u3)3

)
if d = 3.

Note that ζ2
× = ζ2

det in two dimensions, but if d = 3 then only two linearly indepen-
dent gradients are required with ζ2

×. Thus, (ζ×, C)-complete sets can be constructed
by arguing as in Corollary 1. In particular, under the assumptions of Corollary 1,
a suitable choice for the boundary conditions is ϕ1 = 1, ϕ2 = x1 and ϕ3 = x2. The
reconstruction algorithm with the use of multiple frequencies was detailed in [1].
Only the main steps are presented here.

Let K × {ϕ1, ϕ2, ϕ3} be a (ζ×, C)-complete set of measurements in Ω′. As in
Definition 2, this gives an open cover Ω′ = ∪ω∈K∩DΩ′ω such that∣∣u1

ω

∣∣ ≥ C, ∣∣∇u2
ω ×∇u3

ω

∣∣ ≥ C in Ω′ω.
These constraints allow to apply the following reconstruction procedure.

Proposition 3 ([1]). Suppose that for all ω ∈ K ∩D and i = 1, 2, 3,
∥∥eiiω∥∥L∞(Ω′) ≤

F and
∥∥Eiiω ∥∥L∞(Ω′) ≤ F for some F > 0.

(1) There exists c > 0 depending on Λ and F such that for any ω ∈ K ∩D

|∇(eω/tr(eω))|22 ≥ cC
6 in Ω′ω

and a/ε is given in terms of the data by
a

ε
= 2 tr(eω) tr(Eω)− tr(eωEω)

tr(eω)2 |∇(eω/tr(eω))|22
in Ω′ω.
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(2) Moreover, if ε ∈ H1(Ω) then log ε is the unique solution to the problem{
−div

(
a
ε

∑
ω e

11
ω ∇u

)
= −div

(
a
ε ∇

(∑
ω e

11
ω

))
+ 2

∑
ω

(
E11
ω − ωe11

ω

)
in Ω′,

u = log ε|∂Ω′ on ∂Ω′.

4.2. Quantitative thermo-acoustic tomography (QTAT). In thermo-acoustic
tomography [39], the combination of acoustic waves and microwaves is carried out
in a different way, if compared to the hybrid problem studied in § 4.1. The ab-
sorption of the microwaves inside the object results in local heating, and so in a
local expansion of the medium. This creates acoustic waves that propagate outside
the domain, where they can be measured. In a first step [35, 21], it is possible to
measure the amount of absorbed radiation, which is given by

eiiω(x) = σ(x)
∣∣uiω(x)

∣∣2 , x ∈ Ω,

where Ω ⊆ Rd is a smooth bounded domain, d = 2, 3, uiω is the unique solution to

(32)
{
−∆uiω − (ω2 + iωσ)uiω = 0 in Ω,
uiω = ϕi on ∂Ω,

and σ ∈ L∞(Ω;R) satisfies (9). The problem of QTAT is to reconstruct σ from the
knowledge of eijω , where eijω represent the polarised data

eijω (x) = σ(x)uiω(x)ujω(x), x ∈ Ω.

We shall see that it is possible to reconstruct σ ifK×{ϕ1, . . . , ϕd+1} is a (ζ ′det, C)-
complete set, where ζ ′det : C1(Ω;C)d+1 → C(Ω;C)2 is given by

ζ ′det(u1, . . . , ud+1) =
(
u1,det

[
u1 · · · ud+1

∇u1 · · · ∇ud+1

])
.

Since a = 1, the construction of (ζ ′det, C)-complete sets of measurements can be
easily achieved with the multi-frequency approach in any dimensions.

Proposition 4. Assume that a = ε = 1 and that σ ∈ L∞(Ω;R) satisfies (9). Then
there exist C > 0 and n ∈ N depending on Ω, Λ, M and |A| only such that

K(n) × {1, x1, . . . , xd}

is a (ζ ′det, C)-complete set of measurements in Ω.

Proof. It follows immediately from Theorem 1, since the assumption a = 1 yields
(15) with C0 = 1. �

Let K × {ϕ1, . . . , ϕd+1} be a (ζ ′det, C)-complete set in Ω. As in the previous
subsection, this gives an open cover Ω = ∪ω∈KΩω such that for any ω ∈ K and
x ∈ Ωω

(33)
∣∣u1
ω

∣∣ (x) ≥ C,
∣∣det

[
u1
ω · · · ud+1

ω

∇u1
ω · · · ∇ud+1

ω

]
(x)
∣∣ ≥ C.

With this assumption, it is possible to apply the following reconstruction for-
mula in each subdomain Ωω. We use the notation αiω = ei1ω /e

11
ω and Aω =[

∇α2
ω · · · ∇αd+1

ω

]
: these quantities are well defined if (33) is satisfied.
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Proposition 5 ([15, Theorem 3.3]). Assume that (33) holds in a subdomain Ω̃ ⊆ Ω.
There exists c > 0 depending on Ω, Λ and M such that |detAω| ≥ cC in Ω̃, and σ
can be reconstructed via

σ = −<vω · =vω + div=vω
2ω in Ω̃,

where vω = A−1
ω div(Aω)T (the divergence acts on each column).

In [15], in order to find suitable illuminations to satisfy (33), complex geometric
optics solutions are used; these have several drawbacks, as it was discussed in
Section 1. Proposition 4 gives a priori simple illuminations and a finite number of
frequencies to satisfy the desired constraints in each Ωω. By Proposition 5, σ can
be reconstructed everywhere thanks to the cover Ω = ∪ω∈KΩω.

4.3. Magnetic resonance electrical impedance tomography (MREIT). In
this example, we model the problem with the Maxwell’s equations (16). Combining
electric currents with an MRI scanner, we can measure the internal magnetic fields
Hϕi
ω [43, 42]. Assuming µ = 1, the electromagnetic parameters to image are ε and

σ, and both are assumed isotropic. We present here only a sketch of the use of the
multi-frequency technique to this problem: full details are given in [4].

We shall see that (ζMdet, C)-complete sets are sufficient to be able to image the
electromagnetic parameters (Example 2). The construction of (ζMdet, C)-complete
sets is an immediate consequence of Corollary 2.

Proposition 6. Assume that (17) holds with κ = 0 and let σ̂ ∈ R3×3 satisfy (17a).
There exist δ > 0 and C > 0 depending on Ω, Λ, |A|, M and ‖(µ, ε, σ)‖W 1,p(Ω;R3×3)3

such that if ‖σ − σ̂‖W 1,p(Ω;R3×3) ≤ δ then

K(n) × {e1, e2, e3}
is a (ζMdet, C)-complete set of measurements.

Proof. We want to apply Corollary 2 with ζ = ζMdet and ψi = xi for i = 1, 2, 3. We
only need to show that (22) holds. Since wi = xi, for every x ∈ Ω there holds
ζ
(
∇w1,∇w2,∇w3)(x) = det

[
e1 e2 e3

]
= 1, as desired. �

Let K × {ϕ1, ϕ2, ϕ3} be a (ζMdet, C)-complete set. With the notation of Defini-
tion 4, there is an open cover Ω = ∪ωΩω such that
(34)

∣∣det
[
E1
ω E2

ω E3
ω

]∣∣ > 0 in Ωω.
A simple calculation shows that qω = ωε+iσ satisfies a first order partial differential
equation of the form

∇qωMω = F (ω, qω, Hi
ω,∆Hi

ω) in Ω,
where Mω is the 3× 6 matrix-valued function given by

Mω =
[

curlH1
ω × e1 curlH1

ω × e2 · · · curlH3
ω × e1 curlH3

ω × e2
]
,

and F is a given vector-valued function. If
∣∣det

[
E1
ω E2

ω E3
ω

]
(x)
∣∣ > 0, then it is

easy to see that Mω(x) admits a right inverse M−1
ω (x). By (34), Mω is invertible

in Ωω. The equation for qω becomes
(35) ∇qω = F (ω, qω, Hi

ω,∆Hi
ω)M−1

ω in Ωω.
Proceeding as in [19], it is possible to integrate (35) in each Ωω and reconstruct qω
uniquely, provided that qω is known at one point of Ω [4].



ENFORCING NON-ZERO CONSTRAINTS IN PDES AND APPLICATIONS 19

5. Conclusions

Motivated by several hybrid imaging inverse problems, we studied the bound-
ary control of solutions of the Helmholtz and Maxwell equations to enforce local
non-zero constraints inside the domain. We have improved the multiple frequency
approach to this problem introduced in [1, 4] and have shown its effectiveness in
several contexts. More precisely, we give a priori boundary conditions ϕi and a
finite set of frequencies K(n) such that the corresponding solutions uiω satisfy the
required constraints with an a priori determined constant.

An open problem concerns a more precise estimation of the number of needed
frequencies n. It is possible to show that, under the assumption of real analytic co-
efficients, almost any d+1 frequencies in a fixed range give the required constraints,
where d is the dimension of the space [8]. The proof is based on the structure of
analytic varieties, and so the hypothesis of real analyticity is crucial. However, this
assumption is far too strong for the applications. Thus, a natural question to ask
is whether it is possible to lower the assumption of real analyticity.

Satisfying the constraints in the case ω = 0 is usually straightforward in two
dimensions, but may present difficulties in 3D if a (or σ in the case of Maxwell’s
equations) is not constant. The method may work even if the constraint is not
verified in the case ω = 0: when dealing with the constraints |∇uω| ≥ C, a generic
choice of the boundary condition ϕ is sufficient [3]. However, choosing a generic
boundary condition may give a very low constant C and a very high number of
frequencies. An open problem is to find an alternative to the study of the constraints
in ω = 0. In particular, as far as the Helmholtz equation is concerned, an asymptotic
expansion of uω for high frequencies ω may give the required non-zero constraints,
and by holomorphicity this would still give the desired result.
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Appendix A. Some basic tools

A.1. The Helmholtz equation. The following result concerns the well-posedness
for the Helmholtz equation. The result is standard: for a proof, see [2].

Proposition 7. Assume that (7) holds and take M > 0.
1. If (8) holds then there exists Σ = {λl : l ∈ N∗} ⊆ R+ with λl → +∞ such that

for ω ∈ (C \
√

Σ) ∩B(0,M), f ∈ H−1(Ω;C) and ϕ ∈ H1(Ω;C) the problem

(36)
{
−div(a∇u)− ω2 ε u = f in Ω,
u = ϕ on ∂Ω,

has a unique solution u ∈ H1(Ω;C) and

(37) ‖u‖H1(Ω;C) ≤ C(Ω,Λ,M)
[
1 + sup

l∈N∗

1
|λl − ω2|

](
‖ϕ‖H1(Ω;C) + ‖f‖H−1(Ω;C)

)
.

2. If (9) holds then there exists η > 0 depending on Ω and Λ only such that for
ω ∈ B(0,M) with =ω ≥ −η, f ∈ H−1(Ω;C) and ϕ ∈ H1(Ω;C) the problem

(38)
{
−div(a∇u)− (ω2ε+ iωσ)u = f in Ω,
u = ϕ on ∂Ω,
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has a unique solution u ∈ H1(Ω;C) with

(39) ‖u‖H1(Ω;C) ≤ C(Ω,Λ,M)
[
‖ϕ‖H1(Ω;C) + ‖f‖H−1(Ω;C)

]
.

We have the following result, regarding the asymptotic distribution of the eigen-
values. The result is classical and is known as Weyl’s lemma.

Lemma 9. Assume that (7) and (8) hold true. There exist C1, C2 > 0 depending
on Ω and Λ such that

C1l
2
d ≤ λl ≤ C2l

2
d , l ∈ N∗.

Proof. Let Fl denote the set of all l-dimensional subspaces of H1
0 (Ω). In view of

the Courant–Fischer–Weyl min-max principle [41, Exercise 12.4.2] we have

λl = min
D∈Fl

max
u∈D\{0}

´
Ω a∇u · ∇u dx´

εu2 dx
, l ∈ N∗.

Therefore we have

(40) Λ−2µl ≤ λl ≤ Λ2µl, l ∈ N∗,

where µl = minD∈Fl maxu∈D\{0}(
´

Ω∇u ·∇u dx)(
´
u2 dx)−1. By the min-max prin-

ciple, µl are the eigenvalues of the Laplace operator on Ω, and so they satisfy

c1l
2
d ≤ µl ≤ c2l

2
d , l ∈ N∗

for some c1, c2 > 0 depending on Ω (see [41, Theorem 12.14] or [33, Chapter 5,
Lemma 3.1]). Combining this inequality with (40) yields the result. �

We now study regularity for the Helmholtz equation, which is a consequence
of classical elliptic regularity theory [31, Theorem 5.21]. For κ ∈ N, we use the
notation

Xκ =
{
L∞(Ω;C) if κ = 0, 1,
Cκ−2,α(Ω;C) if κ ≥ 2.

Proposition 8. Take κ ∈ N, α ∈ (0, 1) and M > 0. Assume that (7), (10)
and either (8) or (9) hold. Take ω ∈ C with |ω| ≤ M , f ∈ Xκ, F ∈ X3

κ+1 and
ϕ ∈ Cκ,α(Ω;C). Let u ∈ H1(Ω;C) be a solution to{

−div(a∇u)− (ω2ε+ iωσ)u = divF + f in Ω,
u = ϕ on ∂Ω.

Then u ∈ Cκ,α(Ω;C) and

‖u‖Cκ(Ω;C) ≤ C
(
‖u‖H1(Ω;C) + ‖ϕ‖Cκ,α(Ω;C) + ‖f‖Xκ + ‖F‖X3

κ+1

)
for some C > 0 depending only on Ω, Λ, κ, α, M , ‖(ε, σ)‖Wκ−1,∞(Ω;R)2 and
‖a‖Cκ−1,α(Ω;Rd×d).
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A.2. Maxwell’s equations. We first study well-posedness for Maxwell’s equa-
tions. The result is standard: for a proof, see [4, 2].

Proposition 9. Assume that (17) holds and take M > 0. There exist η, C > 0
depending on Ω, Λ and M such that for all ω ∈ C with |=ω| ≤ η and |ω| ≤ M the
problem

(41)

 curlEω = iωµHω in Ω,
curlHω = −i(ωε+ iσ)Eω in Ω,
Eω × ν = ϕ× ν on ∂Ω,

admits a unique solution (Eω, Hω) in H(curl,Ω)×Hµ(curl,Ω) satisfying
‖(Eω, Hω)‖H(curl,Ω)2 ≤ C ‖ϕ‖H(curl,Ω) .

Next, regularity properties are discussed. This result follows from the regularity
theory for Maxwell’s equations described in [7] and is proven in detail in [4, 2].

Proposition 10. Assume that (17) holds for some p > 3 and κ ∈ N. Take η,M > 0
as in Proposition 9. For ω ∈ C with |=ω| ≤ η and |ω| ≤ M let (Eω, Hω) be the
unique solution in H(curl,Ω) × Hµ(curl,Ω) to (41). Then (Eω, Hω) ∈ Cκ(Ω;C6)
and

‖(Eω, Hω)‖Cκ(Ω;C6) ≤ C ‖ϕ‖Wκ+1,p(Ω;C3)

for some C > 0 depending on Ω, Λ, M , κ, p and ‖(µ, ε, σ)‖Wκ+1,p(Ω;R3×3)3 only.

A.3. The critical points of solutions to the conductivity equation. We start
with a qualitative property for solutions to the conductivity equation.

Lemma 10 ([12, Theorem 2.7]). Let Ω ⊆ R2 be a smooth and bounded domain
and take Ω′ b Ω. Let a ∈ C0,α(Ω;R2×2) be such that (7a) holds true and ϕ ∈
C1,α(Ω;R) be such that ϕ|∂Ω has one minimum and one maximum. Then the
solution u ∈ C1(Ω;R) to {

−div(a∇u) = 0 in Ω,
u = ϕ on ∂Ω,

satisfies
min
Ω′
|∇u| > 0.

By using a standard compactness argument it is possible to give a quantitative
version of this result (see also [13]). We restrict ourselves to a particular choice for
ϕ.

Proposition 11. Let Ω ⊆ R2 be a smooth, bounded and convex domain and take
Ω′ b Ω. Let a ∈ C0,α(Ω;R2×2) be such that (7a) and ‖a‖C0,α(Ω;R2×2) ≤ C1 hold
true for some C1 > 0. Take β ∈ R with |β| ≤ C1. The solution u ∈ C1(Ω) to{

−div(a∇u) = 0 in Ω,
u = x1 + βx2 on ∂Ω,

satisfies
min
Ω′
|∇u| ≥ C

for some C > 0 depending only on Ω, Ω′, Λ, α and C1.

Remark 10. Under the assumption a ∈ C0,1, it is possible to give an explicit
expression for the constant C [10, Remark 3].
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Proof. By contradiction, assume that there exist two sequences an ∈ C0,α(Ω;R2×2)
and βn ∈ R such that an satisfies (7a), ‖an‖C0,α(Ω;R2×2) ≤ C1, |βn| ≤ C1 and

min
Ω′
|∇un| → 0,

where un is the unique solution to{
−div(an∇un) = 0 in Ω,
u = x1 + βnx2 on ∂Ω.

Take xn ∈ Ω′ such that |∇un(xn)| → 0. Up to a subsequence, we have that xn → x̃
for some x̃ ∈ Ω′ and βn → β̃ for some β̃ ∈ [−C1, C1]. By the Ascoli-Arzelà theorem,
the embedding C0,α ↪→ C0,α/2 is compact. Thus, up to a subsequence, we have
that an → ã in C0,α/2(Ω;R2×2) for some ã ∈ C0,α/2(Ω;R2×2) satisfying (7a) and
‖ã‖C0,α/2(Ω;R2×2) ≤ C(Ω)C1.

Let ũ be the unique solution to{
−div(ã∇ũ) = 0 in Ω,
ũ = x1 + β̃x2 on ∂Ω.

By looking at the equation satisfied by un − ũ, by Proposition 8 it is easy to see
that ‖un − ũ‖C1(Ω;R) → 0. Therefore

|∇ũ(x̃)| ≤ |∇ũ(x̃)−∇ũ(xn)|+ |∇ũ(xn)−∇un(xn)|+ |∇un(xn)| → 0,
whence |∇ũ(x̃)| = 0, which contradicts Lemma 10, as Ω is convex. �
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