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ABSTRACT

Soundness of type systems is an important property to guar-
antee the absence of certain kinds of runtime errors, that is,
no false negatives can occur.

Unfortunately, for well-known theoretical limits, there are
many programs that cannot be typed correctly, even though
they will never manifest runtime errors, that is, false posi-
tives can occur.

Minimizing the rate of false positives makes static type
analysis more effective, especially for dynamically typed lan-
guages. In this paper we propose a new approach to type
systems, aiming to distinguish true from potentially false
positives, and, thus, to provide useful hints on those lines of
code that definitely contain a bug that sooner or later will
occur.

To this aim, we define a three-valued type system for
Featherweight Java which is sound in the usual sense, but
can also distinguish true positives from potentially false ones.

Categories and Subject Descriptors

D.3.1 [Programming languages|: Formal Definitions and
Theory
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1. INTRODUCTION

Type systems are fundamental formal tools for static type
analysis to guarantee early error detection in programs. To

*Partly funded by MIUR CINA - Compositionality, Interac-

tion, Negotiation, Autonomicity for the future ICT society.
Permission fo make digital or hard copies ot all or part of this work for personal ‘or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

FTfJP’17th Workshop on Formal Techniques for Java-like Programs, July 07 2015,
Prague, Czech Republic.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3656-7/15/07 ...$15.00
http://dx.doi.org/10.1145/2786536.2786539

be useful, type systems must be sound to ensure that well-
typed programs always enjoy certain important properties,
which most of the times correspond to the absence of some
kind of runtime errors. For instance, sound type systems for
object-oriented languages prevent that errors like “field or
method not found” can ever occur in well-typed programs.
If a type system is sound, then false negatives will never
occur; a false negative corresponds to a well-typed program
whose execution can exhibit a problem that the type analysis
was expected to prevent.

To be effective and implementable, a type system must
provide an over-approximation of the semantics of the ana-
lyzed program. Loss of precision is experienced at the level
of both control and data flow; in the former case, this hap-
pens because typechecking of an expression necessarily in-
volves the typechecking of all its subexpressions, indepen-
dently of whether or not they are reachable; in the latter
case, this is directly connected with the notion of type, which
is an abstraction of the notion of value, and with the notion
of subtyping. Subtyping allows typechecking to be at the
same time flexible and compositional, to avoid, for instance,
typechecking the body of a method again for each distinct
invocation; however, the cost for compositionality is a loss
of precision in data flow analysis due to type widening.

Loss of precision of data flow analysis can be partially
mitigated by introducing more precise types and paramet-
ric polymorphism (that is, generic classes and methods in
object-oriented programming languages). However, for ob-
vious reasons, loss of precision cannot be avoided; as a con-
sequence, false positives are a necessary drawback of type
analysis: some reported type errors will never manifest at
runtime.

False positives are tolerated because their absence is only
guaranteed by a complete type system, whose typechecking
procedure is in general not decidable. However, a high aver-
age rate of false positives may compromise the effectiveness
of a type system; smarter type systems can reduce this rate,
and, indeed, this is the main solution adopted to tackle this
problem.

In this paper we explore another possibility to reduce false
positives, which can be usefully integrated with the most
commonly followed solution of devising more expressive type
systems. The idea we develop is based on the simple con-
sideration that type systems do not exploit opportunities to
classify positives (that is, detected type errors) into true and
(potentially) false ones, even when this could be achieved
with relatively modest efforts.

Let us consider, for instance, the expression new C().m();



if class C does not have method m(), then the typechecking
of the expression simply fails, but an important detail is
missing: such an error corresponds to a true positive. More
precisely, in this case the type analysis could inform the user
that when reached, the evaluation of the expression will al-
ways fail. Of course, the problem can never manifest if the
expression can never be reached; anyway, in both cases a
critical error has been detected: either the expression be-
longs to dead code, or it will eventually fail when evaluated.

If, instead, we consider the expression x.m(), where x has
static type C, then the situation is different; if class C does
not have method m(), then the typechecker should detect
an error, which, however, should be classified as a poten-
tially false positive, because x could denote an instance of a
subclass of C which defines method m().

Partitioning positives in true and potentially false ones has
at least two advantages: it decreases the number of positives
that could be false, and allows typecheckers to report errors
at different levels of severity to focus the attention of de-
velopers on those parts of the program that surely contain
errors, and, thus, require to be fixed with higher priority.
This is especially useful when a static type analysis tool is
used for detecting errors in programs written in dynamically
typed scripting languages like JavaScript and Python. In-
deed, differently from statically typed languages which are
compiled only after typechecking has succeeded, type anal-
ysis in dynamic languages is optional and does not prevent
the execution of programs for which errors have been re-
ported. Under this point of view, error messages are simply
considered as suggestions for potential bugs; however, if the
analysis is able to identify lines of code for which an error
will surely manifest sooner or later, then the developers can
focus their attention on those fragments to try to solve the
reported problems.

To allow a type system to distinguish between true and
potentially false positives, a radical shift is needed: as has
happened with shape analysis [7], the type system must be
based on a three-valued logic. Given a type environment
I', an expression e, and a type 7, the judgment e has type
7 in I' may have three different truth values: true, maybe,
and false. Value true corresponds to the standard case, and
the classical soundness result is expected to hold: either e
diverges, or it evaluates to a value of type 7 (true nega-
tive). Value maybe corresponds to the situation where e
could have type 7 (potentially false positive); in this case
only a weak soundness result is expected to hold. Value
false corresponds to the situation where e cannot have type
7; if this happens for all possible types 7, then a relative
completeness result is expected to hold: whenever reached,
e will fail (true positive).

As a concrete example, we define a three-valued type sys-
tem for a slight variation of Featherweight Java (FJ) [6]
which is sound in the usual sense, but can also distinguish
between true positives from potentially false ones. In order
to increase the number of detected true positives the type
system uses also exact types [5]. The claims corresponding
to the main properties of the type system (standard and
weak soundness, and relative completeness) are expressed in
terms of the approximating semantics [2] of FJ.

The paper is structured in the following way. Section 2
briefly introduces FJ and its big-step operational semantics;
its three-valued type system is defined in Section 3. Sec-
tion 4 contains the main claims concerning the type system,

while Section 5 concludes and outlines directions for further
investigation.

2. LANGUAGE SEMANTICS

In this section we present a slight variation of FJ and its
big-step semantics.
The syntax is defined by the following extended BNF

grammar.
—n
p = cd e
cd = class c; extends cp { fd " md" }
fd == cf;
md = co m(cz") {e}
e == newc(e")|z|ef|e.m(E)](c)e

Assumptions: n,k > 0, inheritance is acyclic, names are distinct
in class, method, field, and parameter declarations. Names of
declared classes # Object, names of declared parameters # this.

The language coincides with FJ, except for the fact that
constructors are declared implicitly.

Standard syntactic restrictions are implicitly imposed in
the figure. Bars denote sequences of n items, where n is the
superscript of the bar and the first index is 1. Sometimes
this notation is abused, as in fh = ?h; which is a shorthand
for fi = e1;...fu = ep;-

A program consists of a sequence of class declarations and
a main expression. Types can only be class names.

A class declaration contains field and method declarations;
in contrast with FJ, constructors are not declared, but every
class is equipped with an implicit constructor with param-
eters corresponding to all fields, in the same order as they
are inherited and declared.

Method declarations are standard; in the body, the tar-
get object can be accessed via the implicit parameter this,
therefore all explicitly declared formal parameters must be
different from this. Expressions include instance creation,
variables, field selection, method invocation, and type casts.

The judgment IT-e=-v formalizes the big-step semantics,
and is defined by the rules in Figure 1, and stating that in
the evaluation environment II, the expression e evaluates to
the value v.

The evaluation environment II models the stack frame of
the method that is currently executed, and it is a finite par-
tial map from variables (corresponding to the implicit pa-
rameter this denoting the target object, and the explicitly
declared formal parameters of the current method) to val-
ues. Object values are pairs obj(c, [f " + V"]), where ¢ is the
class from which the object has been created, and [f" — V"]
is a finite partial map associating the fields of the object
with their corresponding values.

As usual, the judgment should be indexed over the col-
lection of all class declarations contained in the program,
however for brevity we leave implicit such an index in all
judgments defined in the paper. The straightforward def-
initions of the auxiliary functions fields and mcode can be
found in Figure 4.

3. TYPE SYSTEM

In this section we define a three-valued type system for
FJ. Types used in the type systems are defined as follows.

T = ¥

v e|lo|+

Besides plain class names, which are the only allowed types



O(z) =v Vie {l.n} OFe;=v; fields(c) =¢" f -e=obj(c,[f" — V")) 1<i<n
(VAR) ———— (NEW) —n (FLD)
Fz=v Tltnew c(€™)=o0bj(c, [f  — V"]) e fi=v;
Vi=0.nlllFe=V; this+— Vvg,z" > V'Fe=V
Vo = obj(co,[...]) mcode(co,m) =7".e IMFe=v v=obj(,[...]) <c¢
(1vv) — (csT)
IIFeg.m(e™)=v I-(¢) e=v

Figure 1: Big-step operational semantics

class c extends ¢/ {...} " <

c1<co VFHe

(refl<) (inh<)

T<T c< ¢

(annot<)
¢y < c2

Figure 2: Subtyping rules

in the code, the type system employs two kinds of exact
types, distinguished by an annotation of the corresponding
class type; ¢° specifies values having exactly type c¢ (that
is, just the instances of ¢, without the instances of the sub-
classes of c¢), whereas ¢’ is more precise than ¢° since it
requires all fields of instances of ¢ to contain a value having
exactly the type declared for the field, and so on recursively.
For instance, given the class declaration

class C extends Object { A f; }

and assuming that D < C and B < A, and that A, B, and
D do not declare fields, we have that new D(new A()) has
type C, but neither C° nor C*, new C(new B()) has type C,
C°, but not C", and new C(new A()) has type C, C°, and
C*. The requirement for the type c' is very strong, but
has been introduced to make the nominal type system more
interesting, by allowing propagation of exact type informa-
tion to the fields of an object, even though, in practice, this
could be achieved more effectively on a per field basis with
a structural type system.

The pretty standard subtyping rules are defined in Fig-
ure 2. Since plain class names are the only allowed types in
the code, exact types cannot appear on the right hand side
of the < relation symbol.

To support a three-valued logic, two main typing judg-
ments are defined. The judgment I' - e:7 has the standard
meaning, where I' denotes a type environment, that is, a
finite map from variables to types; the judgment is expected
to be sound: in an evaluation environment compatible with
I, the evaluation of e either diverges, or it returns a value of
type 7. The judgment T’ F7? e:7 means that in an evaluation
environment compatible with I" the evaluation of e may di-
verge, return a value or fail, but in case a value is provided,
then that value will have type c¢. In other words, I' - e:r
and I' -’ e:7 correspond to the cases where typechecking re-
turns the truth values true and maybe, respectively; for this
reason, it can never happen® that both I' - e:7 and T' F7 e:r
are derivable. Finally, the truth value false corresponds to
the fact that neither I' + e:r nor I F’ e:7 is derivable.
Summarizing, I' F e:7 and I' F’ e:7 define a three-valued

The proof of this claim, omitted for space limitation, can
proceed by induction on the typing rules, and exploits
the hypothesis that if mtype(co, m,¢* — c¢) holds, then

mtype’ (co, m,€" — ¢') does not hold for all ¢’

predicate typecheck as follows:

true if'F er
maybe ifTH err
false if 1 e and T H er

typecheck (T, e, 7) =

If for all types 7 neither I' - e:7 nor I' 7 e:7 is derivable,
then the following relative completeness claim holds: when
reached, the evaluation of e will always fail. The typing
rules for ' e:7 and T F7 e:7 can be found in Figure 3.

Similarly to what happens for the operational semantics,
all typing judgments are implicitly indexed over a class table
containing all needed information on the classes declared in
the program. Additionally, we implicitly refer to a method
table mt consisting of the three functions mtype, mtype’,
and mtype® that we assume to be given, and whose meaning
is explained below. Comments suggesting how a method
table can be computed in practice for a given program can
be found in Section 5.

In the rules the meta-variable x can be instantiated only
with either 7, or the empty string.

Rules (pro) and (pro?) define typechecking for a whole
program; typechecking returns true if all classes of the pro-
gram are well-typed, and its main expression e is well-typed
in the empty type environment. It returns maybe if the
typechecking of at least one class declaration, or the main
expression returns maybe. The judgment + mt ok (defined
in Figure 4) ensures in both rules that the method table mt
(that is, the three functions mtype, mtype’, and mtype®) is
consistent with the bodies of the methods declared in the
program.

Similarly, rules (cla) and (cla?) define typechecking for
class declarations; typechecking returns true if all methods
of the checked class ¢ are well-typed, and fields(c) is defined
(the standard definition can be found in Figure 4), that is,
no inherited field is redefined. It returns maybe if the type-
checking of one method declaration returns maybe, provid-
ing that fields(c) is defined; this last condition ensures that
the objects of the class will have a valid structure, hence it
is essential also for the maybe case.

Typechecking of methods (rules (met) and (mei?)) rely
on the functions mtype and mtype’ defined by the implicit
method table mt; mtype(c, m,c" — cp) is a more compact
notation for mtype(c, m) = ¢" — co, to mean that class ¢
has a method m of arity n that when invoked with arguments
compatible with the parameters of type ¢", correctly returns
a value of type co. Similarly, mtype’(c, m,€" — co) means



Vi€ {l.n} + cd; ok + mtok O+ e

Vie {l.n} F"i cd; ok F mtok OF" err i€ {1.n} k; =7V K ="

(pro) (pro?)

Fcd"e ok

F? cd" e ok

(el )Vi € {1..k} ¢+ md; ok fields(c) defined
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mitype(c, m,e" — co) override(c, m,€", co)
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I(z)=r1 L Vie{ln}TH e fields(c) =c" f"
(var) L'k z:7 (rew™) [+ new c(e™):ct
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Vie {l.n} DF5i epiry  fields(c) =¢" F

'+ new c(e"):c°

Fie{ln}ri=?VrH Lc

(new?)

L'k e’ fields(c) =¢" f"

1<i<n

I'F? new c(e"):c°

v=+=v=4 v£&+=>1 =¢

(f1d)

T HF e:c?  fields(c) =¢" f

Tk efct

5:7\/(”:6/\f€{fl77fn})

(fld?)

l"l—"e:ci’1 c1<c co=cr=vVy=Vv1 CFClL=>V)=¢

I'F? e.f:0bject

I'Frec c<ca co#ca

(cast-wide) T~ (co) 6:650

Vie{0.n} Tk ey F mo.m(T"):r

(inv) (inv?)

Vie {OTL} I ri €;:T;

(cast-narrow)

T'F? (eo) eico

Frmo.m(T"):r 3i€ {0.n} k; =7V K="

't eg.m(e™):r

T'F? eg.m(em):r

Figure 3: Nominal type system

that class ¢ has a method m of arity n that even when
invoked with arguments compatible with the parameters of
type ¢", might fail to complete or might return a value non
compatible with c¢g.

For a method declaration to be well-typed, the usual con-
straints on method overriding have to be verified (with the
auxiliary predicate override defined in Figure 4); if a method
with the same name is declared in a subclass, then its type
must be a subtype of the overridden method: the arity must
be the same (overloading is not supported), parameter types
can be widened, while the return type can be narrowed.
In case the typechecking of the method declaration returns
maybe (case override(c, m’, ", co)), the requirements for
correct overriding are stricter: the typechecking of the over-
ridden method, if present, must return maybe as well. To
see why, let us consider the following example:

class C extends Object {
D m1(C x){ return x }
C m2(C x){ return x }

class D extends C {
D m1(C x){ return new D() }
D m2(C x){ returnm x }

Since CLD, the typechecking of method m1 in class C, and
m2 in class D returns maybe, whereas the typechecking of
the other two methods returns true. The overriding rules
concerning method m1 are verified; indeed, the typechecking
of x.m1(x) returns maybe if x has static type C, since method
ml of class C might be invoked, while it returns true if x
has static type D, since method m1 of class C may not be

invoked. The overriding rules concerning method m2 are
not verified since the typechecking of the overriding method
returns maybe, whereas the typechecking of the overridden
method returns true; indeed, if x has static type C, then the
typechecking of x.m2(x) would return ¢rue, but method m2
of class D might be invoked, and, hence, typechecking should
return maybe.

The typechecking of variables (rule (var)) may only return
either true or false, but not maybe, because the evaluation
of x will always fail if z is not in scope.

For instance creation there are three rules: (new"), (new),
and (new?); for the first two rules, typechecking returns true,
but the derived type for (new") is more precise. Indeed, if all
the argument expressions €” have the exact type cj , where
¢; coincides with the type of the corresponding field, then
the exact type ¢¥ can be deduced for the whole expression.

If at least one argument expression does not have an ex-
act type annotated with +, and coinciding with the type of
the corresponding field, then the less precise type ¢ can be
deduced, providing that the types of the argument expres-
sions are subtypes of the declared types for the correspond-
ing fields. For instance, let us consider the following class
declarations and assume that class C does not have fields:

class A extends Object { B f; }
class B extends Object { C f; }

The type AT can be deduced for new A(new B(new C())),
whereas, if we assume that D is a subclass of C that does
not declare fields, then the type A°, but not AT, can be
deduced for new A(new B(new D())) (and new B(new D())
and new D() have type B® and D, respectively).

Finally, according to rule (new?), the typechecking of the
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Figure 4: Auxiliary functions and judgments

whole expression returns maybe, if the typechecking of one
argument expressions returns maybe, or if the invariant that
argument types must be subtype of the corresponding field
types is broken. If fields(C') is undefined or returns a number
of fields different from the number of argument expressions,
the typechecking returns false (hence, fails), because in such
situations the evaluation of new c(e") always fails.

For field selection e.f (rules (fld) and (fld?)), the type-
checking returns true if the typechecking of e returns true,
and for the corresponding class type c, fields is defined and
returns a list of fields including f. The class type of the
whole expression is the declared type for f, while the an-
notation depends on the annotation of the type of e: the
annotation is preserved only in case of +, in all other cases
a non exact type is derived.

The typechecking of the whole expression returns maybe
if either the typechecking of e returns maybe, or fields(c)
is defined, but does not include the field f and the class
type of e does not carry any annotation; if the typecheck-
ing of e returns maybe, then some subtype constraint that
is expected to be verified for instance creation or method
invocation might be broken, therefore the derived type for
the whole expression can only be the top type Object; anal-
ogously, if f cannot be found in fields(c), and the type of e
is ¢ (without any annotation), then e could denote an in-
stance of a subclass of ¢ that could have field f, but no type
information can be deduced for its type, except for the ob-

vious top type Object. Finally, if fields(c) is undefined, or
f is not included in fields(c), and e has type ¢, with v # ¢,
then the typechecking of the whole expression returns false
because the evaluation of e.f will always fail.

For casting (rules (cast-wide) and (cast-narrow)), there
are two different rules, the former dealing with the situation
where the type of e will be always compatible with the type
¢o required by the cast, and the latter with the case where
the type of e could be compatible with the type cy. For the
first rule, the validity of ¢1 < cp ensures that the cast is safe.
However, the truth value returned by the typechecking of the
whole expression always coincides with that returned by the
typechecking of e. The annotation of the class type for e is
propagated to the class type for the whole expression if ¢y =
c1 (identity conversion), otherwise the widening conversion
implies a loss of type information, and the derived type for
the whole expression cannot carry any annotation.

Rule (rules (cast-narrow) deals with the disjoint case co <
c1, co # c1, corresponding to type narrowing. In this case
the returned truth value will always be maybe, since there
is no guarantee that the dynamic typecheck will succeed;
furthermore, e could denote an instance of a subclass of co,
therefore no type annotation can be derived for the class
type of the whole expression. Finally, if either Cy and Ci
are not comparable (c1 € ¢y and ¢y £ c¢1), or the type of
e is exact (with annotation + or o) and ¢1 € co, then the
typechecking of the whole expression returns false because



its evaluation will always fail.

The typing rules for method invocation (rules (inv) and
(inv?)) use an auxiliary three-valued judgment, defined in
Figure 4; - 70.m(7"):7 means that an invocation of method
m on a target object of type 1o with n arguments of type
T is always type safe (truth value true) and always returns
a value of type 7; similarly, -’ 79.m(7"):7 means that an
invocation of method m on a target object of type 70 with n
arguments of type 7" might be type safe (truth value maybe)
and, if so, the returned value is guaranteed to have type
7. Rule (inv) is applicable when typechecking returns true,
whereas if the typechecking of some subexpression returns
maybe or the judgment F* 79.m(7"):7 is derivable, then the
typechecking of the whole expression returns maybe (rule
(inv?)).

The judgments - 7o.m(7"):7 and [ T0.m(7T"):7T are de-
fined by the three rules (meth-inv°), (meth-inv), and (meth-
wnv?). The first rule deals with the situation where the
most precise type information can be deduced for the tar-
get object; indeed, if the type of the target is exact (with
annotation + or o), then the exact method that will be in-
voked is known statically; in this case, a more precise type
for the method, not subjected to the rules for overriding,
can be used, to make typechecking more accurate. Such
a type is returned by the function mtype°® defined by the
method table mt, and whose consistency is checked by the
judgment = miype®(c, m, \;c(o. 4y Ti" — 7i) ok defined in
Figure 4; the function is expected to return a conjunction
/\ie{O..k} 7" — 7; of method types (that is, arrow types),
all having the same number n of parameters, where the
first method type? must always coincide with the default
type of the method, as declared in the method definition
(mdec(c, m) = ¢ 7™ T".e:7), and all other types must be
consistent w.r.t. the method body. Finally, the argument
types in the conjunction must be pairwise disjoint to avoid
ambiguities.

An invocation of method m of type /\ie{o_‘k}ﬁ'" - 7
for arguments of type 7 is correct only if n = m, and
there exists a unique member 7;" — 7; which is compatible
with the type arguments (7™ < 7" — 7;) and is minimal
(there are no more specific applicable types, as defined by
the auxiliary function best_matches in Figure 4).

Rule (meth-inv) corresponds to the standard rule for type-
checking method invocation; the type ¢y of the target is not
exact, hence the exact method that will be executed cannot
be known statically, since an overriding method defined in
a subclass of ¢p could be called. The function mtype en-
sures that the types declared in the method definition for
the parameters and the returned value are correct, that is,
the typechecking of the body returns true in the type envi-
ronment defined by the parameter declaration for a subtype
of the return type. The typechecking succeeds if the types
of the arguments are compatible with the types of the cor-
responding parameters.

The typechecking of method invocation returns maybe
(rule (meth-inv?)), if either mtype’(co, m,E* — ¢) holds,
or mitype(co, m,¢" — c¢) holds and there exists an argu-
ment whose type is not compatible with the type of the
corresponding parameter, or the class c¢o of the target ob-

2For sake of simplicity, we follow the convention that the de-
fault method type is always the first one, even though this
is not strictly necessary, since type conjunction is commuta-
tive.

ject does not have any method m (mdec(co, m) undefined).
Differently from casts, passing an argument that will always
be incompatible with the formal parameter of a method does
not imply that its invocation will fail. Finally, we recall that
FJ does not allow method overloading, therefore if ¢y has a
method m with the wrong number of parameters, then all
subclasses of ¢y will have method m with the wrong number
of parameters.

Because some subtype constraint is broken, or no method
declaration can be found, in this case the unique type that
can be correctly derived for the whole expression is Object.

If the type of the target object is exact, but no well-typed
method m (that is, the typechecking of the body returns
true) with n arguments can be found, or the type of the
class is not exact and a method m with the wrong number
of parameters is found, then the typechecking of the method
invocation returns false because its evaluation will always
fail.

4. FORMAL RESULTS

In this section we formalize the main properties of the
type system, and provide some proof sketches.

4.1 Standard soundness

When typechecking returns the truth value true (judg-
ment I' F e:7) the standard soundness property is expected
to hold. As shown in previous work [1, 2], the soundness
claim can be expressed and proved by introducing the no-
tion of approximating semantics.

The rules in Figure 1 are extended with the rule (APPROX)
allowing arbitrary approximation of the proof trees. In this
way, infinite proof trees corresponding to diverging compu-
tations can be approximated by an infinite sequence of finite
proof trees, solving the typical issue concerning the inability
of big-step operational semantics to capture non terminat-
ing computations; with approximating semantics the proof
of soundness can be done by simple arithmetic induction.

(APPROX) IFemv
The auxiliary judgment IIF} e=sV is introduced to specify
that the judgment IT-e=-v can be (inductively) derived from
the system of semantic rules extended with rule (APPROX),
by possibly using the new rule, but only at depth d > n
in the proof tree. Intuitively, the subscript n in IIF) e=Vv
specifies the precision of the approximation: the higher n,
the more accurate is the approximation. If I+ e=-v; for all
i € N, then the evaluation of e in IT either converges, hence,
there exists a proof tree of depth n for II-e=v and v; = v
for all ¢ > n, or diverges, but cannot go wrong.

For formulating the claim of soundness the usual judg-
ment vV € 7 for typing values (whose rules have been omitted
for space limitations) and the agreement relation between
evaluation and type environments are needed: II € I' iff
dom(I") C dom(II) and for all z € dom(T") II(z) € I'(z).

THEOREM 4.1  (STANDARD SOUNDNESS). If for all © €
{l.n} F cdiok, &+ mtok, '+ err, and Il € T in cd”,
then for all k € N there exists Vi, s.t. I e=Vy in a”, and
Vi €T.

4.2 Weak soundness



In case typechecking returns the maybe truth value, a
much weaker property can be proved, stating that if a value
is returned, then it must agree with the derived type for the
expression.

The claim can be easily formulated in terms of the approx-
imating semantics, as done for the standard soundness re-
sult. In this case typechecking is allowed to return maybe not
only for the main expression, but also for the classes declared
by the program, and the agreement relation between evalu-
ation and type environments: IT € T" iff dom(T") C dom(IT)
and there exists ¢ € dom(I") s.t. II(z) & I'(z).

THEOREM 4.2 (WEAK SOUNDNESS). If foralli € {1..n}
F% cd; ok, = mt ok, T F" e, 11 e~ I in cd”, and for all
k € N there exists Vi, s.t. TIF7, e=Vg in cdn, then Vi € T.

4.3 Relative completeness

The three-valued type system allows formulation of a com-
pleteness result that holds if one assumes that the ill-typed
expression is reachable.

THEOREM 4.3  (RELATIVE COMPLETENESS). If for all
i € {l.n} " cd; ok, F mtok, II e’ T, and for all types
7Tt e:xr and Tt e:r, then there exists ko € N s.t. for all
k> ko there is no v s.t. IIF¥e=V in cd .

Let us consider, for instance, the following class declara-
tion.

class C extends Object {
C mi1(){return this.m()}
C m2(C x,C y){return x}
}

If efqu denotes an expression for which typechecking fails,
then the typechecking of e=new C() .m2(new C() .m1Q), i)
returns false, that is, 0 I/ e:7 and 0 &7 e:7 for all types 7.
Failure of e is generated from the subexpression ef,i;, how-
ever, since new C().m1() diverges and arguments are eval-
uated from left to right, the evaluation of e diverges and,
hence, does not fail. Nevertheless, the type system detects
that the evaluation goes wrong under the assumption that
efair is reachable. Interestingly enough, for languages like
FJ, where there are no conditional expressions, the approxi-
mating semantics always fails if there exists a subexpression
that would fail when reached; for this specific example, an
infinite sequence of approximating proof trees can be built
for e, only if the same holds for new C() and efqi, but this
property does not hold for e, therefore there exists ko s.t.
for all k > ko, there is no value v s.t. OF7 e=V.

However, for languages with conditional expressions, or,
more in general, short-circuiting operators, the statement
holds only if it is existentially quantified over the subex-
pressions of e (e included). For instance, the typechecking
of e’=if (true) then 1 else efaa fails, but for all k& € N,
OF% e’=1. However, there exists a subexpression e’ of e’
(efeu in this case) s.t. there exists ko s.t. for all k& > ko,

~ I

there is no value v s.t. O3 e”’=v.

5. CONCLUSION AND FUTURE WORK

We have defined a type system for FJ based on a three-
valued logic which is able to distinguish true positives from
potentially false ones, and, therefore, is able to produce more
informative and useful type errors.

Three main claims about the type system have been for-
mulated in terms of the approximating big-step semantics
of the language: standard soundness (when typechecking
returns the truth value ¢rue), weak soundness (when maybe
is returned), and relative completeness (when false is re-
turned).

To our knowledge, this is the first attempt to define a
type system based on a three-valued logic to detect true
positives. For simplicity, we have integrated our idea with
the nominal type system of FJ, even though we expect that
more interesting results could be achieved with structural
types.

One of the main issues that have to be addressed to make
this approach effective is how to get the right balance be-
tween compositionality and precision, that is, how a method
table can be computed in practice for a given program: on
one hand one need to propagate exact type information to
the body of the method in order to maximize the detection of
true positives (and to get more accurate typing, of course),
on the other one, compositional typechecking of methods
would be preferable.

To leave open all possibilities, for the proposed type sys-
tem we have deliberately chosen a non algorithmic definition
based on the notion of method table, and of its three com-
ponents mtype, mtype’, and mtype®. Whereas the functions
mitype, and mtype’ can be easily computed thanks to the
type information in method headers, computing mtype® is
more challenging. A simple algorithmic solution could con-
sist in typechecking method bodies once for all for a fixed
number of combinations of type parameters, automatically
deduced?® from the declared types. More sophisticated solu-
tions can rely on type constraint generation and parametric
polymorphism [4, 3].

6. REFERENCES

[1] D. Ancona. Soundness of Object-Oriented Languages
with Coinductive Big-Step Semantics. In J. Noble,
editor, ECOOP 2012 - Object-Oriented Programming,
volume 7313, pages 459-483. Springer, 2012.

[2] D. Ancona. How to prove type soundness of Java-like
languages without forgoing big-step semantics. In
FTfJP’1}, pages 1:1-1:6. ACM, 2014.

[3] D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca.
Polymorphic bytecode: Compositional compilation for
Java-like languages. In POPL 2005, pages 26-37, 2005.

[4] D. Ancona and E. Zucca. Principal typings for Java-like
languages. In POPL 2004, pages 306-317, 2004.

[5] K. B. Bruce and J. N. Foster. LOOJ: weaving LOOM
into Java. In ECOOP 2004, pages 389-413, 2004.

[6] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight
Java: a minimal core calculus for Java and GJ.
TOPLAS, 23(3):396-450, 2001.

[7] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and
E. Yahav. Alias analysis for object-oriented programs.
In Aliasing in Object-Oriented Programming. Types,
Analysis and Verification, pages 196-232. Springer,
2013.

3For instance, for a method with two parameters with de-

clared types c1 and cz, the body could be typechecked also

when both parameters have types ¢;, and ¢ and ¢f and

cs.



