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Decidual and uterine natural killer (NK) cells have been shown to contribute to the 
successful pregnancy both in humans and mice. NK cells represent “cytotoxic” group 
1 innate lymphoid cells (ILCs) and are distinct from the recently described “helper” 
ILC1. Here, we show that both in humans and mice the majority of group 1 ILC in 
endometrium/uterus and decidua express Eomesodermin (Eomes), thus suggesting that 
they are developmentally related to conventional NK cells. However, they differ from 
peripheral NK cells. In humans, Eomes+ decidual NK (dNK) cells express CD49a and 
other markers of tissue residency, including CD103, integrin β7, CD9, and CD69. The 
expression of CD103 allows the identification of different subsets of IFNγ-producing 
Eomes+ NK cells. We show that TGFβ can sustain/induce CD103 and CD9 expression 
in dNK cells and decidual CD34-derived NK cells, indicating that the decidual microenvi-
ronment can instruct the phenotype of Eomes+ NK cells. In murine decidua and uterus, 
Eomes+ cells include CD49a−CD49b+ conventional NK cells and CD49a+ cells. Notably, 
Eomes+CD49a+ cells are absent in spleen and liver. Decidual and uterine Eomes+CD49a+ 
cells can be dissected in two peculiar cell subsets according to CD49b expression. 
CD49a+CD49b− and CD49a+CD49b+ cells are enriched in immature CD11blowCD27high 
cells, while CD49a−CD49b+ cells contain higher percentages of mature CD11bhighCD27low 
cells, both in uterus and decidua. Moreover, Eomes+CD49a+CD49b− cells decrease 
during gestation, thus suggesting that this peculiar subset may be required in early 
pregnancy rather than on later phases. Conversely, a minor Eomes−CD49a+ ILC1 pop-
ulation present in decidua and uterus increases during pregnancy. CD49b−Eomes± cells 
produce mainly TNF, while CD49a−CD49b+ conventional NK cells and CD49a+CD49b+ 
cells produce both IFNγ and TNF. Thus, human and murine decidua contains unique 
subsets of group 1 ILCs, including Eomes+ and Eomes− cells, with peculiar phenotypic 
and functional features. Our study contributes to re-examination of the complexity of 
uterine and decidual ILC subsets in humans and mice and highlights the role of the 
decidual microenvironment in shaping the features of these cells.
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inTrODUcTiOn

Innate lymphoid cells (ILCs) represent a family of lymphocytes 
that differ from B and T cells since they lack recombination acti-
vating gene (RAG)-dependent rearranged antigen receptors. ILCs 
share the dependence on Id2 transcriptional repressor and on the 
common γ chain cytokine receptor for their development. ILCs 
have been classified into three main groups according to their 
transcription factor and cytokine profile. Group 1 ILCs express 
the T-box transcription factor T-bet (Tbx21) and mainly express 
IFNγ and TNF. Group 2 ILCs (ILC2) depend on GATA binding 
protein-3 transcription factor and produce type-2 cytokines. 
Finally, group 3 ILCs (ILC3) express the retinoic acid receptor 
(RAR)-related orphan receptor (ROR)γt, and produce IL-17 and 
IL-22 (1, 2).

Group 1 ILCs include “helper-ILC1” (hereinafter referred 
to as ILC1) and “cytotoxic-ILCs,” i.e., natural killer (NK) cells 
(2). ILC1 mainly express IFNγ and TNF and provide defenses 
against intracellular bacteria and protozoa. Conversely, NK 
cells, beside IFNγ production, also display cytolytic activity 
against virus-infected or tumor cells. Unlike ILC1, NK cells 
also express the transcription factor Eomesodermin (Eomes) 
(3). ILC1 appear to be resident populations in intestine, liver, 
and uterus, while NK cells are present in tissues and recirculate 
in the blood (4–9). A peculiar subset of NK cells residing in 
murine liver has been recently described and termed tissue-
resident NK (trNK) cells (10). These cells express T-bet, but not 
Eomes. Liver trNK cells display striking phenotypical similari-
ties with ILC1 described in mucosal tissues (11, 12), suggesting 
a partial overlap between these two cell subsets. Indeed, studies 
regarding ILC lineage specifications suggested that liver trNK 
cells are more related to ILC1 than to “conventional” splenic NK 
(cNK) cells (5). Moreover, Daussy et al. demonstrated that liver 
NK1.1+T-bet+Eomes+ and NK1.1+T-bet+Eomes− cells represent 
two distinct lineages of differentiation, which derive from 
precursors of medullary and peripheral origin, respectively (6, 
9). Of note, peculiar Eomes+ NK cells, differing from cNK and 
ILC1, have been identified in murine salivary glands and uterus 
(7, 13).

Innate immune cells are important components of decidual 
microenvironment during pregnancy (14–16). Among ILCs, we 
recently identified ILC3 in human decidua during early preg-
nancy (17). However, the best-characterized and more abundant 
ILC population is that of NK cells that, during the first trimester 
of pregnancy, represents up to 70% of decidual infiltrating 
lymphocytes (DILs). Human decidual NK (dNK) cells are char-
acterized by CD56brightCD16−KIR+CD9+CD49a+ phenotype, are 
poorly cytolytic, and produce low amounts of IFNγ, as compared 
to peripheral blood (PB) NK cells (15, 18–20). On the other 
hand, dNK cells secrete cytokines and chemokines that promote 
neo-angiogenesis, tissue remodeling and placentation (16). 
Similar to humans, also murine dNK cells are abundant during 
the early phase of pregnancy and display unique phenotypic and 
functional features (21). Since we have previously shown that 
uterine (u)NK and dNK cells may originate, at least in part, from 
in situ precursors (21) and in light of recent evidences about ILC 

complexity and differentiation (6, 9, 10), here we re-evaluated the 
nature of uterine and dNK cells in humans and mice, in order to 
clarify whether they may be ascribed to ILCs previously identified 
in other tissues or rather represent unique subsets only present in 
uterus and decidua.

MaTerials anD MeThODs

isolation of human cells
Endometrial biopsies were obtained from normally cycling 
women undergoing surgery for ovarian cyst removal at IRCCS 
AOU San Martino-IST (Genova, Italy). Decidua (d) samples 
were obtained at 9–12  weeks of gestation from singleton 
pregnancies of mothers requesting termination of pregnancy 
for social reasons at IRCCS AOU San Martino-IST (Genova, 
Italy). The relevant institutional review boards approved the 
study and all patients gave their written informed consent 
according to the Declaration of Helsinki. We isolated cell 
suspensions from decidual and endometrial tissue with 
GentleMacs (Miltenyi Biotec, Bergisch Gladbach, Germany) 
and cells were then filtered as previously described (22). 
Decidua and endometrial infiltrating lymphocytes were 
isolated by Fycoll (Cedarlane, Burlington, ON, Canada) 
gradient centrifugation. Lymphocytes obtained were subse-
quently analyzed by flow cytometry, stimulated for cytokine 
production, or sorted for subsequent stimulation and culture. 
In order to isolate ILC subsets and CD34+ cells, DILs were 
sorted as (CD45+CD3−CD14−CD34−CD56+CD127−CD117−)-
NKp44+CD103+, -NKp44−CD103+, and -NKp44−CD103− cells 
and CD45+CD14−CD19−CD3−CD56−CD34+ cells at FACSAria 
(BD Bioscience, San Jose, CA, USA), purity was routinely 
>95%. Decidual stromal cells (dSC) were isolated as previously 
described (23). PB NK cells were isolated with Human NK cell 
enrichment cocktail-RosetteSep (StemCell technologies).

ilc culture, analysis of cytokine 
Production, and Degranulation
Innate lymphoid cell subsets were cultured in U-bottom 
96-well plates (Corning, Tewksbury, MA, USA) in RPMI-1640 
medium (Lonza, Basel, Switzerland) supplemented with 10% 
(vol/vol) FCS (Lonza), 1% (vol/vol) glutamine, and 1% (vol/
vol) penicillin, neomycin, and streptomycin antibiotic mixture 
(Lonza and Cambrex, Charles City, IA, USA). When indicated 
we added 10 ng/ml IL-15 (Miltenyi) and 5 ng/ml recombinant 
TGFβ (Peprotech). To perform co-culture experiments, dSC and 
NK cells were plated at the ratio of 1:5 ± α-TGFβ neutralizing 
antibody (R&D). CD34+ cells were cultured in the presence of 
RPMI-1640 medium supplemented with 10% (vol/vol) human 
AB serum (Lonza), 1% (vol/vol) glutamine, and 1% (vol/vol) 
penicillin, neomycin, and streptomycin antibiotic mixture in the 
presence of 10 ng/ml Flt3-L, 20 ng/ml SCF, IL-7, IL-15, and IL-21 
(Milteny) ±5 ng/ml TGFβ. For the analysis of cytokine produc-
tion, cells were stimulated as indicated in figures with 25  ng/
ml PMA, 1 μg/ml Ionomycin (Sigma-Aldrich), 50 ng/ml IL-23, 
50 ng/ml IL-15, 10 ng/ml IL-12 (Miltenyi), and 100 ng/ml IL-18 
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TaBle 1 | list of reagents used for flow cytometry analysis.

Marker Fluorocrome supplier reactivity

β7 APC BD Bioscience h/m

CD3 ECD Beckman Coulter h

CD3 PE Miltenyi h

CD3 PE/Dazzle594 BioLegend m

CD3 PacificBlue BioLegend m

CD9 PE Miltenyi h

CD9 PE eBioscience m

CD14 APC-eFluor480 eBioscience h

CD14 ECD Beckman Coulter h

CD34 FITC Miltenyi h

CD45 APC-H7 BD Bioscience h

CD45 biotin BD Bioscience m

CD49a APC-Vio770 Miltenyi h

CD49a APC BioLegend m

CD49b PacificBlue BioLegend m

CD49b PE Miltenyi m

CD56 PC7 Beckman Coulter h

CD69 PE Miltenyi h

CD69 biotin eBioscience m

CD94 FITC BioLegend h

CD103 PE BioLegend h

CD103 FITC BioLegend h

CD107a FITC BD Bioscience h

CD117 APC Miltenyi h

CD117 PerCP-Cy5.5 BioLegend h

CD122 PE BD Bioscience m

CD122 biotin BD Bioscience m

CD127 BrilliantViolet421 BioLegend h

CD127 PerCP-Cy5.5 BioLegend h

CD158a,h PE Beckman Coulter h

CD158b1/b2,j PE Beckman Coulter h

CD158e1,e2 PE Beckman Coulter h

CD160 eFluor660 eBioscience m

CD314 (NKG2D) PE Miltenyi h

CD335 (NKp46) APC Miltenyi h

CD336 (NKp44) APC BioLegend h

CD337 (NKp30) PE Miltenyi h

NKp46 PE eBioscience m

NKp46 eFluor660 eBioscience m

Eomes AlexaFluor647 eBioscience h

GranzymeA PE BD Bioscience h

GranzymeB PE Life Technologies h

IFNγ Alexa647 BD Bioscience h

IFNγ PerCP-Cy5.5 eBioscience h

IFNγ PECy7 BD Bioscience m

IL-22 PE eBioscience h

NK1.1 APC BioLegend m

NK1.1 PerCP-Cy5.5 eBioscience m

Perforin PE Ancell h

RORγt PE eBioscience h/m

TNFα eFluor450 eBioscience h

TNF PE Miltenyi m

TRAIL VioBlue Miltenyi m

Live/dead fixable Aqua Dead Life Technologies

Streptavidin Alexa-fluor700 Life Technologies

Streptavidin PE Life Technologies

Streptavidin eFluor710 eBioscience
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(MBL). To perform intracellular cytokine analysis, cells were 
stimulated 18 h in the presence of Brefeldin A (BD Bioscience). 
After stimulation, cells were stained for surface markers, fixed 
with Cytofix/Cytoperm, and permeabilized with Perm/Wash 
(BD Bioscience) according to the manufacturer’s instructions. 
To perform supernatants (spt) cell analysis, ILCs were stimulated 
for 72  h, the spt were collected, and cytokine concentration 
was evaluated by ELISA multiplex assay (Merck Millipore) and 
analyzed with Magpix system (Luminex). TGFβ produced by 
dSC was measured by ELISA multiplex assay in spt collected after 
1 week of culture in serum-supplemented RPMI-1640 medium. 
To perform degranulation assays coupled with analysis of IFNγ 
production, 72-h-cytokine-activated DILs were co-cultured with 
K562 cells at an effector:target (E:T) ratio of 1:1, in the presence 
of anti-CD107a and Monensin (BD Bioscience). After 4 h, cells 
were washed and stained for surface and intracellular markers.

Mice, collection of Decidual and Uterine 
Tissues, and cell isolation
C57BL/6 mice were purchased from Charles River (Como, Italy). 
Eomes-GFP reporter mice (6) were maintained and mated at 
the Animal Facility of the IRCCS-AOU San Martino-IST. All 
mice were used between 6 and 12  weeks of age. Housing and 
treatments of animals were in accordance with the Italian and 
European Community guidelines (D.L. 2711/92 No.116; 86/609/
EEC Directive) and approved by the internal Ethic Committee. 
To time pregnant females, superovulation was induced by intra-
peritoneal injection of 5 IU of Pregnant Mares Serum (Folligon; 
Intervet, Italy) followed, 48  h later, by 5 additional IU of hCG 
(Corulon; Intervet, Italy). Immediately following injection, each 
female was mated with a syngeneic male overnight. Females with 
copulation plug were separated and identified as gestation day 
(gd) 0.5. Mice were killed at different gd by cervical dislocation 
and uterus was processed as previously described (21). Lymphoid 
cells present in the implant before gd 9 are of maternal origin 
since fetal hematopoiesis starts at gd 9. Thus, at gd 5.5 uterus was 
open and the implants were isolated and processed as a source of 
decidual tissue; while at gd 10.5 and 14.5, the decidua was sepa-
rated from the implant by cutting away the mesometrial pole and 
all decidua derived from the same uterus were pooled. Uterine 
wall, once cleared out of the implants, was further processed. 
The uteri of virgin females were isolated and processed entirely. 
Decidual and uterine tissues were mechanically disrupted. Spleen 
and liver were also collected from virgin and pregnant mice and 
single-cell suspensions were prepared as previously described 
(24).

Flow cytometry analyses and Monoclonal 
antibodies
Human and mouse cells were stained with the monoclonal 
antibodies listed in Table 1. Before staining with mAbs, murine 
cells were incubated with FcR blocking reagent (Miltenyi). For 
intranuclear staining of transcription factor, cells were stained 
for surface markers, fixed with Fixation/Permeabilization buffer 
and permeabilized with permeabilization buffer (eBioscience), 
respectively, according to the manufacturer’s instructions. All 
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samples were analyzed on Gallios Flow Cytometer (Beckman 
Coulter) or MACSQuant Analyzer (Miltenyi). Data were analyzed 
with FlowJo software (TreeStar, Ashland, OR, USA). Unstained 
cells were used as negative controls and markers set accordingly.

statistical analysis
Prism6 GraphPad software was used for statistical analy-
sis. Figures  2C,D, 4A,C and 5B show one-way ANOVA. 
Figures 4E– G and 5H show two-way ANOVA. Figure 5F show 
one-way ANOVA plus post test for linear trend. We considered 
significant p-values ≤0.05.

resUlTs

Distinct eomes+ nK subsets are Present 
in human endometrium and Decidua
It has been shown that in tonsil and gastrointestinal epithelium 
NKp44 molecule is expressed by CD56+CD127+RORγt+ ILC3 and 
CD56+CD127−CD103+ ILCs (8). Lymphoid cells isolated from 
human endometrium and decidua contained similar percentages 
of Lin−CD56+CD127+CD117+ RORγt+ ILC3 (Figures  1A–C) 
that homogeneously expressed NKp44 (not shown) (7, 17). 
Among Lin−CD56+CD127−CD117−RORγt− cells, we identified 
three subsets according to NKp44 and CD103 surface expression 
(Figures 1A,D). In particular, NKp44+CD103+ subset represented 
a minor fraction of CD56+ cells as compared to NKp44−CD103+ 
and NKp44−CD103− cells (Figures 1A,D). The frequency of these 
three cell subsets did not significantly differ between endometrium 
and decidua. Thus, the presence of these ILC subsets seems not to 
depend on pregnancy status. NKp44+CD103+, NKp44−CD103+, 
and NKp44−CD103− cells expressed T-bet and Eomes (Figure 1E 
and not shown), thus strongly suggesting that they belong to 
the NK cell lineage. The analysis of markers commonly used to 
identify endometrial and dNK cells (15) revealed that all three 
subsets were CD49a+, while CD9 and CD69 were expressed at 
higher levels by NKp44+CD103+ and NKp44−CD103+ cells than 
by NKp44−CD103− cells. In addition, CD103+ subsets expressed 
integrin β7 that, together with CD103, can forms the αEβ7 heter-
odimer. Moreover, the main activating NK cell receptors, includ-
ing NKp46, NKp30, NKG2D, and DNAM-1 were homogenously 
expressed by all three cell populations (Figure 1F). All subsets 
were CD16− CD57−and CD94/NKG2A+ (Figure  1F), while 
expressing variable amounts of KIRs (Figure 1E).

Decidual stromal cells-Derived TgFβ 
influences dnK cell Phenotype
The typical features of dNK cells depend, at least in part, from 
the influence of decidual microenvironment. Previous reports 
indicated CD103 and CD9 as markers of exposure to TGFβ (8, 
25, 26). Endometrial and dSC were shown to produce molecules 
of the TGFβ family (27). Accordingly, we found that dSC isolated 
from different donors produced TGFβ (Figure 2A). dSC-derived 
spt or recombinant (r) TGFβ induced de novo expression of 
CD103 and CD9 on PB NK cells. In addition, in the presence 
of anti-TGFβ (α-TGFβ) neutralizing antibody, the expression 

of both markers was inhibited (Figure 2B). Next, we evaluated 
the effect of rTGFβ on the three dNK subsets identified. Only 
the NKp44+CD103+ subset underwent in vitro cell proliferation 
upon 7 days culture (Figure 2C). This result was in accordance 
with higher ex vivo expression of Ki67 (Figure  2D). Although 
TGFβ did not influence cell proliferation (Figure  2C), it did 
affect the phenotypic features of the three subsets. In particular, 
NKp44+CD103+ retained CD103 expression only when cultured 
in the presence of rTGFβ (Figure 2E). In agreement with previ-
ous studies, NKp44−CD103− cells cultured with rTGFβ acquired 
CD103 (8, 26). CD9 expression was partially downregulated 
when cells were cultured in the absence of TGFβ (Figure 2E). In 
addition, rTGFβ reduced the expression of NKp30, particularly 
in NKp44−CD103+ cells (Figure 2E) (28).

We also investigated whether rTGFβ could influence dNK 
cell differentiation from dCD34+ hematopoietic precursors. 
In the presence of rTGFβ, dCD34+ cell number fold expan-
sion was affected in two out of three experiments (Figure 3A). 
Differentiation toward Lin-CD56+CD161± cells was inhibited 
(Figure  3B). However, CD56+ cells expressed higher levels of 
CD103 and CD9 than cells cultured in the absence of rTGFβ 
(Figures  3C,D). Thus, it is conceivable that uterine/decidual 
microenvironment, enriched in TGFβ, may play a relevant role in 
the induction of unique features in recruited or in situ differenti-
ated NK cells and in the maintenance of dNK cell phenotype.

cD103+ cells represent the Major source 
of iFnγ in dnK cells
During the early phases of pregnancy, the balance between 
inflammation and tolerance is critical (29). A successful preg-
nancy needs a “regulatory phase” that inhibits immuno-mediated 
fetal rejection. However, an early “inflammatory phase” favors 
embryo implantation thanks to the production of cytokines and 
chemokines that contribute to tissue remodeling and neo-angi-
ogenesis (30). Analysis of cytokines produced by the three dNK 
subsets revealed that CD103+ cells expressed higher amounts of 
IFNγ and TNF than CD103− cells upon stimulation (Figure 4A). 
IL-22 was exclusively produced by ILC3 (Figure 4A). dNK cells 
are classically considered as poorly cytotoxic, in spite of their 
content of cytolytic granules (15). All dNK subsets expressed 
similar levels of perforin, granzymes A and B (Figure 4B). After 
18 h of stimulation with different cytokine combinations, dNK 
cell subsets were co-cultured with K562 target cells and analyzed 
for IFNγ production and CD107a expression. Stimulation 
of dNK subsets with IL-12 or IL-15, or IL-18 did not induce 
significant IFNγ production (Figures  4C,D). Conversely, cells 
stimulated with IL-12  +  IL-15 expressed higher amounts of 
IFNγ than unstimulated cells. Moreover, cells cultured with 
IL-12 +  IL-15 +  IL-18 produced the highest amounts of IFNγ 
(Figures 4C–E), highlighting the known synergy between these 
cytokines (31). CD107a expression was enhanced upon cell 
stimulation with IL-15, either alone or in combination with other 
cytokines (Figures 4C,D). Remarkably, although NKp44+CD103+ 
cells produced the highest amounts of IFNγ and TNF on a per 
cell basis (Figure  4E), this cell subset represented only 2% of 
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FigUre 1 | Ex vivo characterization of human endometrial and decidual ilc subsets. (a) Identification of different ILC subsets by surface marker analysis, 
after gating on Lin−CD56+ cells. (B) Intranuclear expression of RORγt (n = 4–8). (c) Mean ± SEM of Lin−CD127+CD117+ ILC3 (n = 7). (D) Percentage of different NK 
cell subsets after gating on endometrial and decidual Lin−CD56+CD127−CD117− cells (mean ± SEM; n = 6 and 28, respectively). (e,F) Phenotypic analysis of 
endometrial (e) and decidual (e,F) NKp44+CD103+, NKp44−CD103+, and NKp44−CD103− cells. Control (ctr) corresponds to unstained cells. One representative 
experiment out of 8 performed.
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CD56+CD127−CD117− cells (see Figure 1D). Indeed, when the 
amount of cytokines produced was normalized to the relative 
frequency of the cell subsets, NKp44−CD103+ cells resulted as 
the most important source of IFNγ (Figure 4F). In any case, all 
three dNK subsets displayed both lower IFNγ production and 
CD107a expression than PB NK cells (Figure 4G), in line with 
previous reports (23, 26, 32). Thus, decidual microenvironment is 
likely to affect both the phenotypical and the functional features 
typical of NK cells.

Murine Uterus and Decidua contain 
eomes+cD49a+cD49b+ and 
eomes+cD49a+cD49b− nK cell subsets
Previous studies in mice indicated that during midgestation 
the majority of uterine CD3−NK1.1+ cells express high levels 
of Eomes (7, 33). Taking advantage of Eomes-GFP mice, we 
analyzed the expression of Eomes in dNK and uNK cells 
(identified as CD3−NK1.1+ cells) starting from the early phase 
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FigUre 3 | TgFβ modulates human dcD34+ cell differentiation toward 
cD56+cD103+cD9+ cells. Purified dCD34+ cells were cultured 14 days in 
the presence of Flt3-L, SCF, IL-7, IL-15, and IL-21 ± rTGFβ (a) Cell number 
fold change calculated as ratio of cell number at day 14 to that at day 0. (B) 
Flow cytometry analysis of in vitro differentiated cells after gating on 
Lin− cells. (c,D) Flow cytometry analysis of in vitro differentiated cells after 
gating on Lin−CD56+ cells, (c) mean ± SEM of positive cells (n = 3), and (D) 
one representative experiment, gray histogram corresponds to unstained 
cells, black line gated on Lin−CD56+ cells.

FigUre 2 | TgFβ modulates human dnK cell phenotype. (a) TGFβ 
concentration (picogram/milliliter) in dSC spt derived from 8 different donors. 
(B) PB NK cells were cultured as indicated for 15 days and analyzed by flow 
cytometry for the expression of CD103 and CD9; mean ± SEM of positive 
cells (n = 5). (c) NKp44+CD103+, NKp44−CD103+, and NKp44−CD103− dNK 
cell subsets were sorted and cultured with IL-15 ± rTGFβ. Cell number fold 
change is depicted, calculated as ratio of cell number at day 20 to that at day 
0. (D) Ki67 expression on DILs after gating on dNK cell subsets (n = 6). (e) 
Sorted dNK cell subsets were cultured for 20 days in IL-15 ± TGFβ and 
analyzed for the expression of the indicated markers, one representative 
experiment out of 3 performed. Control (ctr) corresponds to unstained cells.
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of pregnancy (gd 5.5). The majority of dNK and uNK cells at 
gd 5.5 were Eomes+ and no differences were detected between 
pregnant and virgin uteri (Figure 5A). A small proportion of 
CD3−NK1.1+Eomes− ILC1 was present in uterus and decidua 
at gd 5.5 and increased in percentages during pregnancy 
(Figure  5B). Both Eomes+ and Eomes− cells were T-bet 
positive (not shown). Uterine and decidua NK1.1+Eomes− cells 
expressed markers of tissue retention (CD49a, CD160, CD9, 
and CD69) and TRAIL, while they were negative for β7 integrin 
(Figures  5C,D). Notably, u- and d-Eomes+ cells displayed 
a bimodal expression of CD49a and β7 integrin, while they 
homogeneously expressed CD160, CD9, CD69, and TRAIL 
(Figures 5C,D).

Typically, CD49a identifies liver Eomes− cells, while Eomes+ 
cNK cells are CD49a−CD49b+. Strikingly, the simultaneous analy-
sis of Eomes, CD49a, and CD49b allowed the identification of three 
subsets of NK cells in uterus and decidua: Eomes+CD49a+CD49b− 
(population, pop. 1), Eomes+CD49a+CD49b+ (pop. 2), and 
Eomes+CD49a−CD49b+ cells (pop. 3) (Figures 5E,F). The latter 
population (pop. 3) corresponds to cNK cells, while the other 
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FigUre 4 | human decidual nKp44+cD103+, nKp44−cD103+, and nKp44−cD103− cells produce iFnγ upon cytokine stimulation. (a) DILs were 
stimulated with P + I + IL-23 for 18 h and analyzed for intracellular cytokine expression after gating on the three dNK cell subsets and ILC3. Mean ± SEM of 
cytokine positive cells (n = 11). (B) DILs were analyzed for the intracellular expression of perforin and granzymes. Mean ± SEM of positive cells (n = 6). (c,D) DILs 
were stimulated with IL-12, IL-15, and IL-18 alone or in combination. After 72 h, cells were incubated 4 h with K562 cells and analyzed for the expression of IFNγ 
and CD107a. (c) Mean ± SEM of positive cells (n = 6) and (D) one representative experiment. (e,F) dNK cell subsets were sorted and stimulated as indicated. Cell 
spt were collected after 72 h and analyzed by ELISA multiplex assay for IFNγ and TNF. For statistical analysis, within each stimulation condition, data referred to 
different cell populations were compared with Tukey’s multiple comparison. (e) Mean ± SEM of cytokine concentration (picogram/milliliter) produced by 104 cells 
(n = 5). (F) Mean ± SEM of cytokine concentration (picogram/milliliter) is normalized to the mean frequency (see Figure 1D) of each subset (n = 5). (g) DILs and PB 
NK cells were stimulated as indicated. After 72 h, cells were incubated 4 h with K562 cells and analyzed for the expression of IFNγ and CD107a; mean ± SEM of 
positive cells (n = 6).
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FigUre 5 | Peculiar subsets of eomes+ decidual and uterine murine nK cells during pregnancy. (a) Analysis of Eomes expression in CD3−NK1.1+ cells  
in the indicated organs isolated from Eomes-GFP mice at gd 5.5; one representative experiment (n = 25). (B) Mean ± SEM of Eomes− cell percentages among 
CD3−NK1.1+ cells at different gd (n ≥ 3). (*) Indicate statistical analysis of data from spleen, decidua, and uterus compared with liver at the same gd. (§) Indicate 
statistical analysis of data from decidua and pregnant uterus at different gd compared with virgin uterus. (c,D) CD3−NK1.1+ Eomes+ and Eomes− cells isolated from 
decidua and uterus of Eomes-GFP mice at gd 5.5 were analyzed by flow cytometry for the indicated markers (black line), gray histograms correspond to unstained 
cells (c), or splenic NK cells (D); one representative experiment (n ≥ 3). (e,F) CD3−NK1.1+Eomes+ cells were analyzed for the expression of CD49a and CD49b. (e) 
One representative experiment (n = 6) at gd 5.5. (F) Mean ± SEM of percentage of the different subsets of CD3−NK1.1+Eomes+ cells at different gd in decidua and 
uterus (n ≥ 3). (g,h) Analysis of CD27 and CD11b expression in the CD3−NK1.1+Eomes+ cells subsets in pregnant uterus and decidua. (g) One representative 
experiment; (h) mean ± SEM of percentage of positive cells (n = 4).
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two subsets are only present in uterus and decidua. Notably, 
in decidua the percentages of Eomes+CD49a+CD49b− (pop. 1) 
cells decreased during pregnancy, while cNK cells progressively 
increased (Figure 5F). Of note, Eomes+CD49a−CD49b+ (pop.3) 
cells are enriched in mature CD11bhighCD27low cells (24), while 
Eomes+CD49a+CD49b− (pop. 1) and Eomes+CD49a+CD49b+ 
(pop. 2) contain higher percentages of cells displaying an imma-
ture phenotype (CD11blow/highCD27high), both in decidua and 
uterus (Figures 5G,H). In line with previous results (6), Eomes+ 
cells produced higher IFNγ and lower TNF than Eomes− cells 
(Figures 6A,B). In decidua and uterus, Eomes+CD49a+CD49b− 
(pop. 1) cells mainly produced TNF, while the two subsets of CD49b+ 
(pop. 2 and 3) cells expressed both TNF and IFNγ Figure 6C). 
Therefore, murine decidua and uterus contain different subsets 

of group 1 ILCs, including ILC1 (Eomes−CD49a+CD49b−IFNγlow

TNFhigh), cNK (Eomes+CD49a−CD49b+IFNγhighTNFlow), and two 
novel subsets of NK cells (Eomes+CD49a+CD49b−IFNγ+TNF+ 
and Eomes+CD49a+CD49b+IFNγ+TNF+) characterized by 
phenotypic and functional features shared by cNK cells and the 
formerly described trNK cells.

DiscUssiOn

In the present study, we show that both human and murine uterine 
microenvironments are enriched in Eomes+ ILCs, i.e., NK cells. 
In particular, human endometrium and decidua NK cells include 
two subsets of CD103+ cells that could be further dissected on 
the basis of NKp44 expression. We found that decidual CD103+ 
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FigUre 6 | cytokines production by murine eomes+ and eomes− cells. (a–c) Decidua and uterus (CD3−NK1.1+) Eomes+ and Eomes− cells were sorted from 
Eomes-GFP mice, stimulated with P + I for 18 h and analyzed for intracellular cytokine expression. (a) One representative experiment; (B) mean ± SEM of cytokine 
positive cells (n = 3); (c) percentages of IFNγ+ and TNF+ cells in the different Eomes+ cell subsets (see Figure 5F). Data derived from a pool of 10 mice.
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NK cells produce higher amounts of IFNγ than CD103− cells 
and express markers of tissue residency, that were maintained in 
culture with TGFβ. In murine uterus and decidua, Eomes+ cells 
are heterogeneous and, besides cNK cells, contain two peculiar 
subsets dissected by the expression of CD49a and CD49b. In 
particular, Eomes+CD49a+CD49b– cells are mainly present dur-
ing the early phase of pregnancy (gd 5.5) and characterized by 
TNF production.

Human NK cells represent the most abundant lymphoid popu-
lation in decidual tissue during the first trimester of pregnancy. 
This, together with their peculiar phenotypic and functional 
features, raised many questions regarding their origin. Here, we 
show that dNK cells express markers suggestive of TGFβ imprint-
ing, such as CD103 and CD9. Eomes+CD103+CD9+ NK cells are 
already detectable in the endometrium, thus, suggesting that the 
presence/recruitment of these ILC subsets does not depend on 
the pregnancy status. Stromal cells present in endometrium and 
decidua release TGFβ able to induce or maintain expression of 
these markers on NK cells and on dCD34-derived NK cells. These 
data suggest that both PB NK cells and dCD34+ precursors may 
be influenced by decidual microenvironment. Whether a similar 
TGFβ-dependent mechanism occurs also in mice remains to 
be determined. A population of CD103+ cells was described 
also in the human intestinal epithelia (8). Intestinal CD103+ 

cells homogeneously express NKp44 and are IFNγ producers. 
Conversely, most endometrial and decidual CD103+ cells do not 
co-express NKp44 and produce low levels of IFNγ as compared 
to PB NK cells. Nevertheless, among dNK cells, CD103+ cells 
represent the major source of IFNγ.

A recent report identified in mice Eomes+CD49a+ cells in the 
virgin uterus (7). Here, we show that these cells are also present 
in pregnant uterus and decidua and that CD49b expression allows 
the further identification of two subsets of Eomes+CD49a+ cells 
only detectable in these tissues. Eomes+CD49a−CD49b+ cNK cells, 
which are enriched in IFNγ producing cells, are the predominant 
Eomes+ subset during midgestation (gd 10.5) when they might 
contribute to spiral artery modification (34). On the other hand, 
Eomes+CD49a+CD49b− cells mainly produce TNF, are abundant 
at gd 5.5 and subsequently decrease. A minor Eomes−CD49a+ cell 
population able to produce TNF is also present in decidua and 
uterus and increases during pregnancy. Thus, a source of TNF is 
constantly present during early and midgestation.

Studies aiming to characterize ILC subsets in several organs 
highlighted the complexity of this cell family and suggested that 
ILCs may display tissue-specific features and developmental 
requirements. In liver, it has been shown that T-bet+Eomes+ 
cNK and T-bet+Eomes− ILC1 differentiate from precursors of 
medullary and peripheral origin, respectively (6). Our present 
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