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In the past few years a new scenario for robot-based applications has emerged. Service

and mobile robots have opened newmarket niches. Also, new frameworks for shop-floor

robot applications have been developed. In all these contexts, robots are requested to

perform tasks within open-ended conditions, possibly dynamically varying. These new

requirements ask also for a change of paradigm in the design of robots: on-line and safe

feedback motion control becomes the core of modern robot systems. Future robots will

learn autonomously, interact safely and possess qualities like self-maintenance. Attaining

these features would have been relatively easy if a complete model of the environment

was available, and if the robot actuators could execute motion commands perfectly

relative to this model. Unfortunately, a complete world model is not available and robots

have to plan and execute the tasks in the presence of environmental uncertainties which

makes sensing an important component of new generation robots. For this reason,

today’s new generation robots are equipped with more and more sensing components,

and consequently they are ready to actively deal with the high complexity of the real

world. Complex sensorimotor tasks such as exploration require coordination between the

motor system and the sensory feedback. For robot control purposes, sensory feedback

should be adequately organized in terms of relevant features and the associated data

representation. In this paper, we propose an overall functional picture linking sensing

to action in closed-loop sensorimotor control of robots for touch (hands, fingers). Basic

qualities of haptic perception in humans inspire themodels and categories comprising the

proposed classification. The objective is to provide a reasoned, principled perspective on

the connections between different taxonomies used in the Robotics and human haptic

literature. The specific case of active exploration is chosen to ground interesting use

cases. Two reasons motivate this choice. First, in the literature on haptics, exploration has

been treated only to a limited extent compared to grasping and manipulation. Second,

exploration involves specific robot behaviors that exploit distributed and heterogeneous

sensory data.
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1. INTRODUCTION

There is a compelling case for using principles of human haptic
perception—active touch—to inspire the development of robot
haptic systems. Human haptic exploration is efficient, robust to
noise, yet adapts rapidly to changing conditions (Prescott et al.,
2011). Moreover, human hand control is the archetypal general-
purpose sensorimotor system. It uses biological mechanisms
to achieve a remarkable degree of functional flexibility, across
huge variations in conditions, that remains elusive in “intelligent
machines.” Key to this capability (over-and-above the hand’s
anatomy) are the neural control processes underlying hand
function. It is valuable therefore to consider the approaches

taken to robot haptics, and the main challenges, in light of

these “organizational principles” of human hand control. In this

paper, we analyse Robotics-related and human haptic literature to
discuss about how human-centered studies can inform the design
of novel robot behaviors when haptic processes are needed.

Haptics provides useful information under a wider set of
circumstances than is sometimes appreciated (Lederman and
Klatzky, 2009). First, and most obviously, haptics can be the
only available signal, such as in poorly lit environments, or when
reaching into a bag. Second, even when other senses are available,
haptics provides direct information about properties of objects
that are poorly (or at least very indirectly) specified by other
senses. This is because haptics, uniquely among human senses,
involves physical interaction with objects, allowing properties
such as friction and compliance to be sensed. Third, haptics
contributes to sensorimotor processing even when it provides
redundant information to other senses. Our perception of the
size of an object held in our hand, for example, is derived by
integrating information from vision and haptics, in a statistically
optimal fashion, resulting in the most precise estimate possible
in a given situation (Ernst and Banks, 2002). Thus, just as
ventriloquism reveals that people routinely integrate visual and
auditory signals even when other senses are available (Alais and
Burr, 2004), we constantly make use of haptic information to
optimize perception (though we may not be aware of it).

A primary property of human haptic perception is that
it is active: sensory signals are acquired through purposive
movements, made to actively explore the world (Prescott et al.,
2011; Bajcsy et al., 2018). This places haptics at the nexus of
perceiving and acting—two facets that are sometimes explicitly
separated in human neuroscience (Trevarthen, 1968; Marr and
Nishihara, 1978; Bridgeman et al., 1981; Goodale et al., 1991;
Milner, 1995; Jeannerod, 1997). The need for highly organized
and purposeful movements for haptic object recognition is
evident in findings from human neuropsychology. Binkofski
et al. (2001) demonstrate that impaired haptic object recognition
following damage to specific parts of parietal cortex is associated
with atypical exploratory movement strategies. Patients showed
decreased frequency and regularity of digit movements, and
increased “exploration space,” consistent with an inability to
identify and exploit areas of “object space” that are most
diagnostic for object recognition. Critically, impaired explorative
strategies were not attributable to low-level sensory or movement
deficits, but reflected the loss of ability to organize movements

as an effective information-seeking plan. Thus, as Prescott et al.
(2011) note, understanding haptics requires understanding a
system in which there is “no strong demarcation between
sensation and action.”

The active nature of haptics presents key challenges to haptic-
sensing robots. It is necessary to determine not only what the
properties of the sensors should be, but also what information
is required in a given situation, and which actions should be
performed to elicit it. Gibson (1950) described active perception
in the context of vision, noting that optic flow signals to observer
motion and the structure of the environment are acquired by
an observer who moves, and therefore directly influences the
acquired information. More generally, active perception involves
not only active control of the sensory apparatus, but also dynamic
reconfiguring of the internal parameters of the system to suit the
current task (Coates et al., 2008; Prescott et al., 2011; Bajcsy et al.,
2018). Anyone who has searched their child’s LegoTM tray for
that piece, for example, will appreciate the benefit conferred by
knowing what to look for!

The relative difficulty of this wider challenge of goal-directed
perception seems related to the paucity of general-purpose
intelligent machines. Machine vision algorithms, for example,
canmatch or sometimes exceed human performance on relatively
constrained tasks, such as image classification. However, for
more open-ended tasks, where the agent must decide what
information to seek and which actions to perform, progress is
comparatively limited—see Bajcsy et al. (2018)’s discussion of
a machine-vision guided system for making a salad! In haptic
sensing, there are no signals without movements, and so the
problem of seeking information is inherent and cannot be
avoided in robot haptics. Systems will be needed that perform
functions analogous to maintaining goals, attending selectively
to information, decision-making, etc.

Humans use specific movement strategies to extract
information about object properties during haptic exploration.
These stereotyped movements, which Lederman and Klatzky
(1990) referred to as exploratory procedures (EPs), highlight
several challenges in interpreting haptic signals. Examples of
EPs include prodding an object with the fingertips along its
surface-normal, to elicit information about compliance or
hardness, and making side-to-side movements across an object,
to recover surface texture. A key “problem” in both of these
examples is that the incoming signals reflect the simultaneous
activity of multiple sensory systems. Extracting meaningful
information (building up an internal representation of an object,
for example) requires combining information from different
sensors. This presents a version of Bishop Berkeley’s sensory
correspondence problem, where the relationship between
fundamentally different sensory signals must be known in order
to treat those signals as relating to a single, common object or
property (Berkeley, 1709; Ernst, 2007).

Relatedly, raw sensor outputs do not normally map directly
onto meaningful “psychological variables” that relate to our
functional understanding of the world. Consider the task of
estimating the size of an object held in the hand. This information
is sensed by changes in muscle length, finger-joint angles etc.,
but it does not make sense for the brain to have conscious
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access to these raw signals. Rather, perception requires access to
higher-order properties relevant to the task (here, size). Similar
arguments can be made for other surface properties. The raw
output of individual or groups of mechanoreceptors is not the
desired output. Rather, we wish to know the properties of surfaces
in meaningful terms such as texture and compliance (Johansson
and Pruszynski, 2014). This is somewhat analogous to the well-
known size-constancy problem in human vision: we need to
perceive the size of objects in the world, not their size on
the retina (which depends on distance). Indeed, extraction of
“higher-level” properties, may underly human effectiveness at
tasks such as tool use, allowing haptic perception to operate at
the level of object properties, independent of the end effector with
which they are felt (Arbib et al., 2009; Takahashi andWatt, 2017).

Ultimately, assuming sensory information is used to build
useful internal representations of objects, information must be
transformed into units that can be combined with other sensory
signals (e.g., from vision) to create multimodal representations
in higher-order, psychologically meaningful units (Landy et al.,
1995). Evidence from human neuroimaging suggests that
haptic and visual object recognition involve both distinct and
overlapping brain mechanisms (Amedi et al., 2002; James et al.,
2002; Hernandez-Perez et al., 2017).

Integrating information across multiple sensors and sensory
systems also provides a reduction in the dimensionality of
the information, without which the computational challenge of
interpreting sensory signals would be intractable (Wolpert and
Ghahramani, 2000). For example, Prescott et al. (2011) describe
work by Kappers (2011) showing that surface curvature is judged
on the basis of a reduced “dataset” from what is available in
principle at the sensors. They note that such dimension reduction
has been proposed by Hayward (2011) as reflecting a general
principle, whereby the brain makes “simplifying assumptions”
that are necessary to manage the complexity of the totality of
information that can potentially be acquired by the haptic sensory
system (what Hayward calls the “plenhaptic function”; analogous
to the plenoptic function, or light field, in optics). In other words,
information is discarded at the level of the sensors, and in neural
processing beyond, to render the problem tractable.

Inherent in the above discussion, haptic perception extends
beyond extracting meaning from isolated estimates of object
properties to include building up a “holistic picture” that supports
activities such as object recognition, manipulation and so on.
This poses questions about the frame of reference in which
information is encoded. Haptics again differs from vision in this
regard in that such representations must be built from samples
that may be discrete in terms of the properties they specify, and
their spatial locations (and may come from different hands).
This implies that tasks such as object recognition are best served
by a stable (i.e., slow changing), object- or world-based frame
of reference/coordinate system, which maintains unchanging
properties of objects over movements of the hand (the sensor).
At the same time, exploratory hand movements need to reflect
moment-by-moment positions of the digits with respect to the
object, which might be better suited to an egocentric frame of
reference, updated rapidly. Evidence suggests that the systems-
level functional organization of the brain is consistent with

this somewhat task-dependent solution. Object recognition and
the control of actions (and information about where things
are), respectively, largely rely on anatomically and functionally
separable brain systems (Trevarthen, 1968; Ungerleider and
Mishkin, 1982; Goodale et al., 1991; Milner, 1995). This
organization duplicates some information, but in distinct forms
that are better suited for given tasks, allowing, for example, for
rapid and accurate motor responses where necessary.

The requirement for dimension reduction also exists
for controlling motor output. At the conscious level, it is
intractable to plan the trajectory of a grasping movement,
for example, in terms of individual joint angles and torques.
Instead, it is thought that we plan movements in the much
lower dimensional space of our end effectors (here, our hand
and fingers), while unconscious processes are responsible for
the specific transformations required to achieve this. Indeed,
relatively recent evidence from electrophysiological studies in
primates suggests that movements of end effectors may even be
represented in primary motor cortex (M1), previously thought
to reflect the “commands” sent to the muscles (Umiltà et al.,
2008). Relatedly, the relationships between the firing patterns of
specific cells in M1 and electrical activity in the muscles of the
arm/hand have been shown to exhibit task-specificity, consistent
with the idea that goals and context can change the ultimate
effect of outgoing signals from M1 on muscle contractions
(Quallo et al., 2012). Of course, at some level individual muscles
must be controlled, and so there is a dimension-reduction
problem here too. The related ideas of motor primitives, and
motor synergies—characteristic spatiotemporal patterns of
“control signals,” potentially at multiple levels (activation of
nearby muscles, up to higher-level co-ordination), which can
be combined to build complex movements—provide plausible
ways in which this problem might be solved (Thoroughman
and Shadmehr, 2000; Wolpert and Ghahramani, 2000;
Santello et al., 2016).

A similar complexity problem to controlling movements
exists at the level of selecting which movement to make, from
the potentially infinite number of possibilities. Recently, it has
been proposed that these processes—movement specification and
selection—may be carried out using common brain mechanisms.
Numerous data indicate that the same neural populations
responsible for specifying the spatiotemporal parameters of
forthcoming actions causally contribute to action selection
(Cisek and Kalaska, 2005; Hanks et al., 2006; Scherberger
and Andersen, 2007; Pesaran et al., 2008; Pastor-Bernier and
Cisek, 2011; Thura and Cisek, 2014; Christopoulos V. N. et al.,
2015). These data motivate the hypothesis that decisions about
which actions to perform are made by resolving competition
between concurrently active sensorimotor representations that
specify how actions can be performed (Cisek, 2007; Cisek and
Kalaska, 2010; Christopoulos V. et al., 2015). From a biological
perspective, this idea has several attractive features, including
making dual use of the same neural resources, and unifying
the problems of action planning (how to move) and selection
(which actions to perform). Such insights might be useful for
Robotics. An artificial system that converts sensory inputs into
motor parameters capable of being used to control future actions

Frontiers in Neurorobotics | www.frontiersin.org 3 July 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Seminara et al. Active Haptic Perception in Robots

could also be programmed to make action choices on the basis
of those same units. Of course, to make adaptive, goal-directed
“choices,” the problem of how to implement high-level context
signals (i.e., goals) remains.

As noted earlier, motor control and sensory input are
interlinked in human haptic sensing: purposive movements
provide information to build internal representations of
properties of the world and guide future movements, in a
closely coupled manner. It is likely to be valuable, then, to
consider general emergent principles across these “domains.”
Dimension reduction is one such. Indeed, to the degree that these
lower-dimensional spaces for motor control and perception are
common, they offer a computational framework for considering
perception in terms of the opportunities for actions that objects
provide, similar to Gibson’s long-standing idea of “affordances”
(Gibson, 1950). Moreover, an important common principle of
human motor control and perception that has emerged in the
last 25 years is that both are well characterized as optimization
problems (Knill and Richards, 1996; Harris and Wolpert, 1998;
Todorov and Jordan, 2002). The motivating assumption is
that neural systems are corrupted by noise/uncertainty, at
all levels (knowledge of the world, sensory signals, motor
outputs, and any intervening neural processes such as coordinate
transformations). Thus, the “job” of planning movements, or
recovering properties of the world, is rendered probabilistic
in nature, and can be thought of as decision-making under
uncertainty (Trommershäuser et al., 2008; Wolpert and Landy,
2012). Bayesian inference provides a principled framework for
optimally solving such problems, and there is now considerable
empirical evidence that the human brain takes noise into account
appropriately, combining sensory signals, and programming
movements, in ways that resemble Bayes-optimal solutions, see
Ernst and Bülthoff (2004), Wolpert and Landy (2012), and
Wolpert and Ghahramani (2000). In particular, Wolpert and
Ghahramani (2000) describe an optimal control framework
for motor control, which may provide a unifying framework
for human haptics. They consider the problem of planning a
movement (based on sensory input) and carrying it out using
sensory feedback about the state of the moving limb (in low-
dimensionality units), which is inherently subject to sensory
processing delays. Their work highlights the importance of
forward models, in particular, generated from a copy of the
motor commands, and used to predict the future outcome of the
movement (Wolpert et al., 1995). These forward models result in
error signals between actual and expected outcomes, which can
support calibration, and learning. Moreover, the predicted state
of the limb can be combined with sensory feedback to estimate
its state optimally, given uncertainty in all estimates, and despite
delayed sensory feedback.

2. CLOSED-LOOP SENSORIMOTOR
CONTROL OF ROBOT HANDS: A NEW
TAXONOMY

The Introduction gave us an overview of the fundamental
conceptual organizational principles of human haptic

perception, which is intrinsically connected with the capability of
attending selectively to information, making decisions, planning,
producing movements and executing tasks in the presence of
environmental uncertainties. All of this requires coordination
between motor and sensory-feedback systems.

While debates on human sensorimotor control are still open,
in the case of robots the haptic processing workflow must
nonetheless be clearly defined, because robots are guided by
algorithms. For a roboticist, it is natural to think of closed-loop
sensorimotor robot control as comprising the following pipeline:
sensing, processing, state representation, reasoning and acting.
In a robot, perceptual data are organized into data structures.
Extracted features are represented as part of the system state
and enable checking that control objectives are met. We thus
describe the sensorimotor robot control loop at a high level as a
sequence of “states,” where the transition between two subsequent
states is governed by a “process” step, which therefore modifies
the state itself. In line with what was posited by Wolpert and
Ghahramani (2000), the state directs the next motion step and
motion commands depend on the context and on the chosen
“behavior,” “goal” and the corresponding “tasks” (Figure 1).

2.1. The State: The Concept of
Representation
In the proposed conceptualization, the system state is in-between
two steps of motion of the robot for touch. Depending on
the context-behavior-goal-task, both rough sensory data and
specific features extracted from sensor measurements during
hand motion help in defining the overall (haptic) state. The
state therefore enables checking whether control objectives are
met, and this output defines what information is fed back to
the reasoning stage that guides new actions. Consistent with
theoretical accounts of human sensory-feedback systems where
lower-dimensional representations are derived from purposeful
exploratory movements (Wolpert and Ghahramani, 2000), the
robot-related system state directly connects with the concept of
an internal haptic representation. Like in humans, for robots
the haptic representation is task-dependent and might include
spatial properties (i.e., poses of both touched object and the
hand), and/or canonical properties of the touched object (mainly
geometry and material of the object itself). The state, in so far
as it includes haptic information, is represented accordingly.
Focusing on the touched object, its haptic representation is
based on a number of haptically-specified features that are
constituents of the “object proper” (whole object), which itself
has spatial properties, including location and orientation about
a principal axis.

The concept of haptic representation is directly connected
with the concept of haptic measurement (Figure 2). Starting
with touch, high resolution and distributed tactile information
mimicking human sense of touch requires the use of coordinated
groups of tactile sensors (typically, in the form of arrays). The
literature on tactile sensing is extensive, and recent advances
on tactile sensors for Robotics have been discussed elsewhere
(Dahiya et al., 2010; Yousef et al., 2011; Kappassov et al., 2015;
Martinez-Hernandez, 2016).
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FIGURE 1 | The closed-loop sensorimotor control of robots for touch is intended as a sequence of system states, represented through features. The process step

includes all dynamical processes in-between two states and it is enabled by haptic feedback. This step includes a reasoning stage in which choices are made on how

to move (decision making and planning), and a controlled haptic sensing-while-moving stage to acquire sensor data to be processed for system representation.

Motion commands are tailored to prevailing movement contexts, defined by discrete or slowly changing parameters with respect to the movements for touch (Wolpert

and Ghahramani, 2000).

Classification of sensory outputs is of particular relevance
for the scope of this paper. Contributions from other, non-
tactile sensors are considered when they are inextricably
bound with haptic processing and representation. Consistent
with a biomimetic perspective, we include proximity sensors
mimicking whiskers and antennae (from animal active touch)
in the category of exteroceptive sensors, and add proprioceptive
sensors. Even if intrinsic sensors can give approximate
information about interaction forces, extrinsic tactile sensors
give much more precise information about interaction properties
(Wettels et al., 2014).

It is noteworthy that sensory information is rarely used
in its raw form: algorithms are used to extract features from
sensory data. This is akin to the data-reduction processes that
are thought to characterize human sensory-feedback control
systems, as discussed above. At the lowest level, tactile sensor
arrays can be used to find contact locations with a high
resolution, and to track variation of contact points. Model-
based approaches can be used to retrieve higher-level information
related to contact features, such as contact force distributions
(Seminara et al., 2015) or contact shape (Khan et al., 2016;
Wasko et al., 2019). In all cases, such algorithms are needed
to embed 3D sensor locations into a lower dimensional space
representing the robot surface, and a further processing step
is required to move toward a higher dimensional space by
computing features. General techniques of data pre-processing
can be used, such as scaling, dimensionality reduction, spatial

filtering and/or thresholding. Alternatively, pattern recognition
algorithms have been used extensively for different purposes,
including object features. Finally, features can be combined
through additional processing steps, e.g., concatenation, voting
and joint probability. A comprehensive overview of the different
approaches used to extract high-level information from haptic
sensory data in Robotics is beyond the scope of this review, and
has been discussed elsewhere (Hoelscher et al., 2015; Kappassov
et al., 2015; Luo et al., 2017). Haptically accessible object
properties and system spatial properties define the system state,
i.e., the representation, which—as for humans—contains all the
relevant time-varying information needed for control, through
sensory feedback, and predict the future state of the system
(Wolpert and Ghahramani, 2000).

To define categories for the canonical properties of a touched
object, research on human haptics is informative (Lederman
and Klatzky, 2009): haptically specified object properties include
“geometric” (e.g., object size and shape), “hybrid” (e.g., weight),
and “material” (e.g., surface, mechanical, thermal) properties (see
Figure 2). Regarding geometric properties, the size and shape
of objects can be considered on two scales: objects smaller than
the fingertip, thus revealing their shape by skin indentation, and
objects with contours that extend beyond this scale, for which
shape perception reflects the contribution of proprioceptive
inputs. Out of the various geometric properties, curvature has
received themost attention. Size can bemeasured using a number
of metrics, namely total area, volume, or perimeter. Shape is
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FIGURE 2 | The artificial sensory apparatus related to robot touch dynamically measures information about contact: the picture illustrates the route from sensor

outputs to a system haptic representation. The sensor block includes an improved taxonomy, borrowing some details from a scheme introduced by Kappassov et al.

(2015) (with permission from the authors). It contains information about all sensor types that are relevant for haptics (i.e., both proprioceptive and exteroceptive

sensors) and specifies what tactile sensors in particular measure at their positions (raw sensor data), i.e., temperature, stress/force, displacement and/or vibrations.

Distributed or concentrated information related to contact is generally the result of applying algorithms to sensor outputs. Higher level feature extraction allows for

task-dependent haptic representation of the system state, including haptically accessible object properties and the spatial properties of both the touched object and

the agent for touch. All categories for object properties (in bold) are derived from Lederman and Klatzky (2009). The intent here is to present an overall perspective,

opening different routes on possible integrated approaches. Analyzing how to practically integrate these approaches with their benefits and drawbacks is beyond the

scope of this paper.

particularly hard to characterize and the orientation of certain
object features, like its edges, vertices and contours, is relevant
for shape recognition. As for material properties, among the
different ways of characterizing surface textures, roughness has
been investigated the most. The roughness percept contains
information about the properties of the touched surface in
relation to how the object is manually explored. The mechanical
compliance of a touched object refers to its deformability
under force, and measuring differences in thermal properties
is necessary for material discrimination. Finally, the perceived
weight of an object indicates its density and structure.Movability
has been added to account for an interesting salient feature
from the human haptic literature. In particular, it has been
found that if an object moves upon touch, this greatly adds to
the perception of indeed touching an object and not just the
background (Pawluk et al., 2011).

Task-dependent system representations might include the
spatial properties of both the touched object and the agent
for touch. In general, those properties are mainly related to
position and orientation (i.e., the “pose”) of both the agent for
touch and the object itself (or some of its parts, such as edges
and surfaces). These features are important to represent for the
control of specific robot behaviors such as grasping, and certain
exploratory procedures.

2.2. The Process: All Around Changing the
State
Recalling that our aim is to provide the reader with an
overall functional picture of sensorimotor control of agents
for touch (i.e., hands or fingers), Figure 3 illustrates the
complete proposed dynamic framework. It is important to
emphasize that the taxonomy defined in the figure is not a
rigid scheme: it is rather an instance of the current state of
the literature, which will develop with time and continued
advancements. The purpose of this taxonomy is to generate an
overall framework to be applied to specific examples of active
exploration (section 3).

In the scheme of Figure 1 all aspects related to decision
making (i.e., choice of behavior, high-level goals, and tasks)
and motion planning (i.e., selection of the movement sequence
within the space of possible solutions) are included in a
“reasoning” stage1.

When an object is in contact, an incessant coupling between
heterogeneous, distributed sensing and robot behavior is
needed to allow data processing and robot control units to
apply appropriate interleaved sensing and action policies.

1It is worth noting that the term “reasoning” has been used differently by other

authors, associated with the step before decision making (Bajcsy, 1988).
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FIGURE 3 | Overview of the proposed taxonomy. The state includes all categories described in section 2.1. Gray blocks among haptic features are related to the

object: darkest are geometric, lighter is hybrid and mid gray blocks are related to material properties. For all gray blocks, top features belong to the taxonomy from

Lederman and Klatzky (2009), at the bottom (yellow) are same category features as commonly found in the Robotics literature. Movability is added among gray blocks.

Light blue blocks relate to spatial information. The process step includes both a first phase of choice, planning and triggering motion (corresponding to action planning

and selection in humans), and a dynamic phase including all adjustments during sensorimotor control driven by sensory feedback. Blocks belonging to Haptic

Sensing reproduce information given by all sensor categories of Figure 2: exteroceptive-mechanical (orange), exteroceptive-thermal (brown), exteroceptive-proximity

(yellow), proprioceptive-dynamics/kinematics (pink). Motion Control first guides motion unfolding to reach goal locations in space. Reactive (orange) and reflexive

(white) actions have been included in the motion control scheme for the sake of completeness. “No action” includes receptive mode through whiskers and antennae.

Inspiration can be gained here from the science of human
sensory systems, for example, from our understanding
of how haptic exploratory movements are organized to
extract specific object properties (Figure 4). Together with
exploratory procedures, dynamic touch (e.g., grasping
or wielding) can also be conceptualized within this scope
(Turvey and Carello, 1995).

Therefore, in robots, action induced bymotor control includes
generating the desired motion of the end-effector during the
contact event (controlling movement speed or contact force) and
applying the desired forces/torques to accomplish a certain task.
A variety of tasks can be carried out, from generating or following
specific trajectories (e.g., contours) to exploring, manipulating,
or grasping objects. In the case of active movements there
are mainly two aspects of motor control which need to be
included (Denei et al., 2015): maintaining contact with the
body and planning the contact trajectory. It is noteworthy that
controlling the contact force and the movement speed within the
contact regime can be a possible solution to reduce the haptic
rebound effects. Obviously for scenarios of physical human-robot
interaction, such a phenomenon is also due to the peculiar choice
of control algorithm.

Elements of a task-specific representation (section 2.1) are
used as an input to the control algorithms used to accomplish a
certain motor task. Robots need algorithms that can conveniently
map the information provided by high-density, distributed
heterogeneous sensing into a specific coding system (i.e., haptic
feedback) oriented toward motion control. Details and models
behind this dynamic process strongly depend on whether we
deal with passive or active perception. In preliminary (passive)
attempts to include information from artificial tactile sensory
feedback to guide motion control of robot hands, motion control
was oriented to a specific predefined state and sensory feedback
was used only to allow for error compensation between the real
and target states. Conversely, active robot sensorimotor control is
closer to what humans do when purposefully moving their hands
and fingers to enhance the perceptual characteristics of what
they are touching (Lederman and Klatzky, 2009). In this case,
sensor positions in space can be dynamically adjusted with local
small repositioning movements to reduce perceptual uncertainty.
This can be followed by explorative movements based on the
outcomes of each perceptual decision-making step (Martinez-
Hernandez et al., 2017). Bayesian approaches are mainly used for
that, as discussed in the next section.
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FIGURE 4 | Exploratory procedures associated with haptic features as in Lederman and Klatzky (2009). Pictures on exploratory procedures have been borrowed from

Lederman and Klatzky (1987) (with permission from the authors), where the human hand has been replaced with a robotic one.

3. ACTIVE EXPLORATION: USE CASES

In a typical Robotics-based design process, the scope is related
to the optimization of a specific function of the artificial
agent for touch. Therefore, the design is mostly governed by
such principles as those related to some metric of optimality.
In principle, the control of robot agents for touch does
not necessarily employ biomimetic-related design concepts.
Traditionally, motion control of robot hands or fingers makes use
of concepts like synergies and dimensionality reduction only to a
limited extent, and always to trade-off between the complexity
in mechanical and control design and function. Optimizing
certain haptics-based tasks or behaviors might lead to specialized
mechanical structures for the robot device, whose appearance
might differ quite a lot from that of the corresponding human
agent. However, human-inspired principles might be useful when
such behaviors as active exploration are under study, possibly
related to contexts in which robots are requested to perform
tasks within open-ended conditions and should be capable of
interacting with objects, other robots, or humans.

Conversely, the constrained mechanical structure of the agent
for touch has implications on the kind of control principles
that can be implemented, thus influencing behaviors the agent
can perform or the way in which specific tasks can be carried
out. Anthropomorphic approaches become relevant when a task-
driven approach is not possible as the task is not well-defined,
or cannot be characterized in terms of estimated input models.
Instead of solving a specific task in the most efficient way,
the goal in this case is to provide a general purpose machine,

suitable to manage a variety of possible behaviors and tasks
in different contexts. This approach is certainly relevant for
applications including humans into the sensorimotor control
loop, for example when designing artificial prosthetic systems
for the reconstruction of the sense of touch. The key aspect in
this case is the set-up of a human-like artificial prosthesis for
touch allowing its user to move and/or feel in a recognizable and
intuitiveway, which not only relates to hand functions but also to
the concept of “embodiment.”

The following discussion is structured into two main
categories: approaches conceived to optimize a specific haptic
task with a specific platform for touch (“task-based”), and
approaches based on anthropomorphic platforms for open-
ended haptic behaviors (“structure-based”). The focus will be on
such behaviors as active exploration, in that they inherently link
to the active nature of human touch and the related principles
of human motor control, relevant for the framework of this
paper. Common to the two approaches, what enables the ability
of an artificial agent for touch to perform a variety of tasks and
behaviors is also the qualities of its sensing system. It is useful to
start this discussion focusing on the required perceptual abilities
of an artificial finger suitable for active touch, already observing
from the perspective of a closed-loop approach.

3.1. Perceptual Abilities of the Artificial
Agent for Active Touch
A broad overview of materials and sensing technologies for
advanced biomimetic tactile sensing for prosthetic hands is
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reported by Chortos et al. (2016) and Li et al. (2017). In particular,
Chortos et al. (2016) present a complete overview of current
research on materials and devices designed for mimicking the
skin’s ability to sense and generate signals. A fully biomimetic
approach is used, starting from sensors (illustrating biomimetic
strategies to improve the performance of the sensing device
and provide skin-like functionality), moving to the electronics
for reading sensory data and encoding biomimetic output, and
ending up with revising all current methods for interfacing the
artificial sensing system with the human nervous system.

When it comes to active control in Robotics, a human is
not included in the sensorimotor control loop. However, haptic
perception in humans might inspire the design of sensing
systems suitable for active touch. Leaving classical modular
compartments (e.g., sensations, percepts, and cognitions), the
proposed functional distinction between what and where systems
proposed by Lederman and Klatzky (2009) is useful for the
framework presented in this paper and already inspired the
building blocks of the haptic representation of the touched
surface or object (section 2.1). The spatial and temporal resolving
capacities of the skin are relevant for the haptic perception of
object and surface properties. The precision with which humans
can localize features and contacts is affected by the spatial
resolving capacity of the human skin: the spatial acuity for
human hands is around 1–2 mm for the fingertips and about
1 cm for the palm (Lederman and Klatzky, 2009). About the
temporal resolving capacity of the skin, a common measure
indicates that people can resolve successive taps on the skin
at a frequency lower than 200 Hz. High resolution distributed
tactile sensing might enable human-like perception: to make
an example, as roughness perception in humans is determined
by the spatial distribution of the textural elements rather than
by temporal factors (Lederman and Taylor, 1972), appreciating
spatial information distribution through an artificial skin may
be needed. Certainly, adequate spatial resolution is necessary for
perception of surface roughness and textures at different scales
(Johnson and Hsiao, 1994; Bensmaïa and Hollins, 2003). The
work by Kappassov et al. (2015) includes a useful summary
table in which sensor design criteria are summarized into
system characteristics (spatial resolution and number of wires),
sensor properties (sensitivity, frequency response, hysteresis) and
properties of the outer structural skin layer (hysteresis, surface
friction, compliance).

A behavioral approach can be used to characterize artificial
fingers from the point of view of their behaviors and functions,
more than focusing on the specifications of the sensory system.
In particular, metrics have been used to probe behaviorally
relevant stimulus quantities analogous to how human perceptual
skills are tested (Delhaye et al., 2016). In this case, the well-
known sensorised BIOTAC finger is under test. Behaviorally
relevant experiments are mainly related to testing the spatio-
temporal resolving power of the finger sensing system, and its
ability to detect contact stimuli and movement. In particular,
experiments are related to localizing contact (localization),
measuring the amplitude of the tactile stimuli (pressure
discrimination), characterizing motion (motion direction and
speed discrimination), and contact surface properties (texture

discrimination). The combination of prosthetic fingers and
decoders often matches or even outperforms humans under
analogous contact stimulation, except for the localization
task (due to lower BIOTAC sensor density with respect to
that of human mechanoreceptors). The main finding is that
the use of relatively few distributed sensors seems not to
limit spatial acuity provided that sensors have overlapping
receptive fields and biomimetic hyperacuity can be achieved
by combining information from adjacent sensors. Regarding
the temporal resolving power of the sensing apparatus, at least
one high frequency sensor (more than 200 Hz) is needed
to measure small vibrations relevant for texture exploration.
Nevertheless, it is necessary to test the behavior of this sensing
system from dynamic active perspective to fully validate the
artificial sensorisation.

A second relevant state-of-the-art study, this time involving
a sensing structure which is also producing movements, is
reported by Pestell et al. (2018). The authors propose a low-cost
3D-printed optical tactile sensor using a small image tracking
chip for high frequency bandwidth and high spatial resolution
sensing. Investigated finger capabilities are again focused on the
spatial and temporal resolving power of the sensing apparatus.
Sensing is the perceptive guidance for two actions. The first
is following a given trajectory (e.g., the object contour) whilst
maintaining contact with the surface by modulating the contact
depth. The second action is precisely identifying a specific
position (determined by angle and radial distance) with respect
to an edge. The perception of multiple dimensions (depth, angle,
distance) is used to successfully guide the robot motion in
the closed-loop exploration task of following the contour of
a previously unseen object of unknown location. It is worth
noting that this is an example of how sensory inputs are
transformed and represented as units that are used to drive
actions, in line with the concept of affordance specification in
driving the processes of action planning and selection in the
human brain.

3.2. Task-Based Design Approaches
Interpreting haptics at the nexus of perceiving and acting
(Prescott et al., 2011) is quite a recent approach in Robotics.
Only recently we have witnessed a compelling need to integrate
the two spaces. This does not mean that no approaches to that
aim have been proposed before, but other challenges seemed
more relevant, and because reliable tactile sensors were not
available. In passive perception, data acquired by the sensorised
fingertip cannot affect the fingertip motion: this approach can
be robust if it is used to optimize a specific task, but it is less
robust if targeting unstructured environments. On the other
hand, in active perception, sensory signals are self-generated
and this requires actively moving, seeking information, testing
hypotheses. For humans, this happens at the level of a particular
haptic feature, but also at a higher level (What is this object?
Where is my door key?). For robots, this concept of “active”
has a local, constrained logic, which is intrinsic to the concept
of Artificial Intelligence, at least in its current interpretation.
High-level goals are still defined by humans. If the context and
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high-level goals are defined, in a task-driven approach the robot
can be able tomanage the task in an optimal way, sometimes even
outperforming humans. Dynamically reconfiguring the internal
parameters of the system to suit the current task is a well-known
concept in Robotics, although typically not conceptually related
to active perception. It is noteworthy that not all robot agents
for touch are intended for “active touch.” This is something that
needs to be carefully engineered, if an active approach is needed.

In the following paragraphs, we concentrate on recent
examples of active perception with haptic systems built to
optimize a certain task. We use a systematic approach to these
use cases and recall keywords that enable an easy mapping to
the taxonomy (Figure 3), thus making “behavior,” “goal,” “task,”
“sensing,” “sensorimotor architecture,” and “control” explicit.
Table 1 supports reading by using the same taxonomy. For robots
to operate autonomously in unconstrained environments, active
robot perception has been mainly used to estimate (for unknown
objects) or classify (among a set of known objects) the shape of
the touched object. Relevant information for shape recognition in
humans comes from exploring surfaces, following contours and
edges (Germagnoli et al., 1996), and similar approaches have been
adopted for robots.

Matsubara and Shibata (2017) propose amethod for fast shape
estimation (goal) of unknown objects based on active touch-
point selection. Active exploration is achieved by implementing a
loop including three steps (tasks): shape estimator (representing
the object shape given a sequence of touch data); path planner
(generating paths from the current robot location to all next
touch candidates); touch-point selector (selecting the best point
for next touch). The loop ends when the shape estimation
converges. The sensorimotor architecture is based on an
anthropomorphic arm (7 DoF Barret WAM) endowed with a
single finger device, which first collects a touch datum thenmoves
to the next touch-point. Touch-point selection (sensorimotor
control) adopts a cost function that suitably combines the
uncertainty of the shape estimation and cost of the touch in
terms of travel distance. The first term is obtained by modeling
a potential function f (x)∈R, where x is a point in an n-
dimensional Cartesian space. Gaussian Process Implicit Surface
(GPIS) models the function f given a set of touch data; the
uncertainty of the shape estimation is given in analytic forms. The
second term stems from a path planner that utilizes the estimated
shape to implement the travel cost estimation for all touches
to the surface of the (estimated) object; a stochastic model is
adopted to tackle this task.

Martinez-Hernandez et al. (2017) present a Bayesian
approach for actively controlling a biomimetic fingertip during
autonomous exploration (behavior) of an unknown object to
extract its contour (goal). Active perception relies on adjusting
the local position of the fingertip until the edge orientation
can be reliably estimated, and moving the fingertip tangentially
along the estimated orientation (tasks). The fingertip is coupled
with a Cartesian 2 DoF robot arm spanning x and y axes, while
a Mindstorm NXT Lego robot generates movements in the z
axis. A tactile exploration based on palpation is chosen. The
sensorimotor architecture envisages (i) tapping for 2s over a
given location in the x − y plane while collecting digitized

pressure values from the tactile sensor array on the fingertip
(sensing); (ii) updating the position of the fingertip if required;
(iii) moving the fingertip in the x − y plane. Bayesian inference
supports estimation of edge orientation: position is updated
until the degree of belief in the orientation estimation is above
a given threshold (sensorimotor control). To support the
active repositioning system, 1296 perceptual classes have been
generated by tapping against a flat circular object over different
locations in the x − y plane sampled in polar coordinates
(data collection). That is, given a fixed angle between sensor
and edge, the object is tapped along a line radially extending
from the inside of the object (“full contact”), passing over
the edge (“partial contact”), and ending outside the object
(“no contact”). Accordingly, the 1296 perceptual classes are
characterized as many pairs including orientation and position.
A “position” aggregates 5 sequential taps in steps of 0.2 mm, thus
spanning 1 mm.

In Strub et al. (2014) a neural-dynamic model is proposed
for a robot to use dynamic touch (behavior) to autonomously
learn the shape of an object (goal). The scheme envisages
online adaptation of both object shape representation and pose
estimation (tasks). Shunk Dexterous Hand2 is employed with
two fingers, each having 2 DoF (i.e., controlled joints). The two
phalanges of the fingers are each equipped with tactile sensor
arrays to reconstruct the contact pressure distribution (sensing).
The robot hand performs an object rotation while recording
haptic data, first moving the fingers toward each other until
tactile feedback signals sufficient contact with the object, then
rotating the object along its z axis while controlling the contact
force (sensorimotor architecture). The sensorimotor control
is based on the following. An object manipulation behavior
drives an interactive exploration loop using contact position,
orientation, and curvature, respectively, as inputs. Curvature is
modeled by the eigenvectors and eigenvalues of the covariance
of the pressure distributions, along with the angle of the first
eigenvector. All these features are associated with their location
in a 3D external coordinate system, computed using forward
kinematics. An “estimation path” processes the generated tactile
and proprioceptive data to estimate the change of the object
pose. A “mapping path” maintains the object model location
by extracting allocentric features. A “localizing path” maintains
the object pose, i.e., it tracks the object in the 3D external
coordinate system. They are both controlled by a “matching
module” that uses Dynamic Neural Fields to compare the sensed
features with the current object representation in order to
decide whether an update of the pose, or the object shape
is appropriate.

Jamali et al. (2016) present a method based on active
perception that reduces the number of samples required to
construct a 3D point cloud of an object to capture its shape
(goal), i.e., its edges and surface curvature. In the proposed
method, the robot arm with a fingertip endowed with an array
of capacitive tactile sensors (sensing) uses a tapping strategy to
detect a contact event (when force exceeds a given threshold). At
each iteration, collected data are used to construct a probabilistic
model of the object surface. The robot selects an x-y location,
and samples the z coordinate, which corresponds to the object
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TABLE 1 | Haptic behavior, goal, tasks, and sensing system are specified for each selected use case.

References Behavior Goal Tasks Sensing system

Matsubara and

Shibata, 2017

Exploration of

unknown objects

Object shape

reconstruction

• Shape estimator

• Path planner

• Touch point selector

Tactile sensor array (8 FSR

sensors)

Martinez-

Hernandez et al.,

2017

Contour

exploration of

unknown objects

Object contour

extraction

• Adjust local fingertip position

until edge orientation can be

reliably estimated

• Move fingertip tangentially

along estimated orientation

iCub tactile sensor array (12

capacitive sensors)

Strub et al., 2014 Dynamic touch

(grasping,

manipulation,

exploration)

Autonomous

learning of object

shape

• Online adaptation of object

shape representation

• Online adaption of pose

estimate

Tactile sensor array to

reconstruct contact

pressure distribution

Jamali et al., 2016 Surface

exploration of

unknown objects

Object shape

reconstruction (3D

point cloud)

• Fit the best object shape to

observed data

• Identify next contact location

iCub tactile sensor array (12

capacitive sensors)

Abraham et al.,

2017

Ergodic

exploration of

unknown objects

Object shape

estimation

• Collect data by trajectory

following

• Shape estimation

• Define new trajectory to collect

highly structured information

Low-resolution binary tactile

sensor (contact/no contact)

Sommer and

Billard, 2016

Exploration of

unknown surface

and/or grasping of

unknown objects

Creating and

maintaining

contacts at

desired positions

on the robot hand

• Maximize the number of

contact points

• Prevent uneven distribution of

contact forces at each contact

point

Tekscan tactile sensor array

Bologna et al.,

2013

Surface scanning

of Braille

characters

Online

discrimination of

Braille inputs

• Scan a given character

• Optimize the scanning speed

control

• Compensate for movement

execution errors

Tactile sensor array (24

capacitive sensors)

Sun et al., 2018 Surface

exploration

Active strategy for

object recognition

among a set of

previously

explored objects

• Explore object along a

trajectory at given contact

force/velocity

• Assess recognition reliability

• Set trajectory for next

exploration to improve

recognition reliability

Commercial proprioceptive

(6-axis force-torque) sensor

Martinez-

Hernandez et al.,

2017

Fast object

exploration

Object recognition

among a set of

previously

explored objects

• Data collection: fingers move

on the object at given

orientation

• Choice of the object

• If choice is not possible,

identify next exploration

orientation

Tactile pressure sensor array

on fingers plus palm.

Proprioceptive sensors

(strain plus finger joint angle

plus spread motor).

surface (sensorimotor architecture). Given a finite number of
observed contact locations and associated object heights, the
problem is divided in two parts (tasks), i.e., it fits the best
object shape to the observed data and identifies the next contact
location capturing more information about the object’s shape,
edges and surface. Both steps are implemented by a supervised
learning approach. An iterative process (sensorimotor control)
guides surface exploration: a classifier and a regression based on
Gaussian Processes are trained by using the sequence of observed
contact locations. Then, a new sequence of contact locations
is presented as input to the two different predictors. The next
contact location is the location where the models have the lowest
confidence in their prediction.

High resolution sensing is not always necessary for shape
estimation. A low-resolution binary contact sensor (sensing) is
utilized to reliably support shape estimation (goal) by ergodic
exploration (behavior) in Abraham et al. (2017). Specifically,
it is showed that a binary form of tactile sensing (i.e.,
collision detection) has enough information for shape estimation,
when combined with an active exploration algorithm that
automatically takes into account regions of shape information.
A robot arm carrying a probe in the end-effector has to
follow a trajectory modeled as a finite, discrete sequence of
locations, and detects a contact, i.e., a sudden change in joint
torques (sensorimotor architecture). The sensorimotor control
is based on the following sequence: (i) given a trajectory, it
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collects location and measurement pairs; (ii) it trains a kernel-
based classification method that is entitled to approximate the
decision boundary between two classes: “collision” and “no
collision”; (iii) it transforms the decision boundary (i.e., the
shape estimation) into a likelihood distribution; (iv) it uses the
estimated posterior distribution to calculate the new trajectory to
be completed to search for highly structured information such as
shape contours.

Managing shape uncertainty is also useful to optimize object
grasping (Li et al., 2016). The uncertainty in object shape is
parameterized and included as a constraint in the movement
planning stage. The proposed approach is used to plan feasible
hand configurations for realizing planned contacts using different
robot hand platforms. A compliant finger closing scheme is
devised by exploiting both the object shape uncertainty and
tactile sensing at fingertips. In another work (Sommer and
Billard, 2016) dealing with a robot hand actively complying
with unknown surfaces for haptic exploration or grasping
(behavior), the goal is to create and maintain contacts at desired
positions on the robot hand, while having unilateral constraints
on undesired contacts. Tasks maximize the number of contact
points while the hand is scanning the surface or grasping the
object and preventing an uneven distribution of contact forces
at each contact point. The employed dexterous hand (16 DoF
AllegroHand with 4 fingers, 4 DoFs each) is controlled using
open-loop torques with tactile sensor arrays placed on the
inner surface of the phalanxes (sensing). The robot hand has
to enclose objects at a predefined position. Using the 7 DoFs
Kuka LWR robot, the object is sequentially released and grasped
in four other configurations shifted by 2 cm in two different
directions, and shifted by 17 deg in two different orientations
(sensorimotor architecture). The task execution switches across
two modes of sensorimotor control: one controls links not yet
in contact, and the other controls the contact force at the
joints already in contact. All joints in the fingers that affect
force control at the contact points and the desired contact
points are controlled in torque. The other finger joints are
controlled by a PD controller. At each time step, the control
mode for each joint depends on its position relative to the set
of contact points C and the set of desired contact points D.
The set of joints with existing desired contact points is given
by C ∪ D, i.e., the intersection of current existing contacts and
desired contacts; the set of joints with desired contact points
is given by D \ C, i.e., a desired contact but not a contact
yet. The mechanism of choosing the desired contact points
depends on many criteria, including the robot platform, the
task and possible prior on the shape. In the proposed compliant
grasping example, all the contact points are considered desired
contact points.

In a different perspective, active sensing policies have been
used for fine discrimination of Braille inputs (goal) using a
closed-loop neurorobotic system (Bologna et al., 2013). The
sensing system envisages a fingertip endowed with 24 capacitive
sensors responding to mechanical indentation, mounted on
a robot arm. Planned tasks are scanning a given character,
optimizing the scanning speed control and compensating for
movement execution errors. Therefore, the fingertip scans

the character at a controlled scanning speed and corrections
to the movement trajectory are performed (sensorimotor
architecture). Closed-loop sensorimotor control includes (i) two
levels of processing implemented by as many levels of spiking
networks (ii) a probabilistic classification system for tactile input
recognition based on a Naive Bayesian classifier; (iii) a high-level
controller that shapes scanning based on optimality classification
principles; (iv) a low-level controller for online sensorimotor
adaptation. Regarding data collection, 150 trials (scanning) per
character have been recorded as training set for the classifier.

At a higher level with respect to extracted features like
fine geometrical structures or the whole object shape, there
are works related to object reconstruction. This might require
a number of steps of feature extraction with features to be
combined. How to combine haptic features for recognizing the
environment is still not explored in detail. In recent work,
Sun et al. (2018) present an object recognition (goal) method
that utilizes haptic information gained through surface haptic
exploration (behavior). Exploration involves a two-joint finger
(with encoders at each joint), with a 6 axis force-torque sensor
mounted inside a soft silicone fingertip (sensing). The finger is
attached to the UR-3 robot arm, only rotating when necessary
to relocate the finger relative to the explored object. The active
strategy relies on three tasks, i.e., exploring an object along
a trajectory at a given contact force and velocity, assessing
the recognition reliability, and setting the trajectory for the
next exploration to improve the recognition reliability. The
sensorimotor architecture considers first moving the fingertip on
the object along a sequence of contact points at given contact
(normal) force and velocity: contact locations are obtained by
exploiting a contact equilibrium system of equations fed by force-
torque measurements. Then, at each contact the pair (normal
force, tangential force) is measured. A Bayesian decision rule
supports the active strategy for object recognition (sensorimotor
control): given all explorations executed at a time t, the posterior
probabilities for all known objects are computed. If none of
the posterior probabilities exceeds a defined threshold, a new
exploration is carried out. The training set (data collection)
includes 100 different explorations (i.e., trajectories) per object.
Accordingly, each object is modeled as a multivariate Gaussian
distribution of three features: (i) the average value and (ii)
the variance of the friction coefficient over the trajectory, the
geometry feature computed by exploiting Iterative Closest Point.

Martinez-Hernandez et al. (2017) propose an approach for
object exploration (behavior) and recognition (goal), which
allows a robot hand to autonomously inspect interesting object
locations to improve perception. The exploration procedure
exploits a three-finger robot hand (sensing: 22 tactile pressure
sensors on the fingers, 24 on the palm, strain sensors at each
finger base), with 1 DoF in each finger to perform opening and
closing movements, and 1 DoF for spreading fingers around the
palm. It is also possible to acquire proprioceptive information
from finger joint angles and from the spread motor in real-time
(sensing). A robot arm allows for performing precise exploratory
movements in the x, y, and z axes, and rotations in yaw.
The sensorimotor architecture for a single exploration envisages
that the fingers move to contact the object and stop as soon
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as a predefined pressure is exceeded, to avoid any damage.
Then, the fingers are kept in contact with the object for 1
s, giving enough time to collect 50 samples of position and
orientation information from fingers and wrist. For each object
to be included in the dataset, a sequence of 30 rotations in
yaw and contacts around each object have been performed with
rotations of 12 degrees, thereby exploring the complete object
(data collection). The active exploration is implemented by a loop
involving three steps (tasks and sensorimotor control). The first
completes data collection, given an angle orientation as input.
The second uses a Bayesian formulation tomake a decision on the
object (once a belief threshold is exceeded), otherwise the angle
orientation is identified for next data collection, by exploiting the
information available through the posterior probabilities.

In summary, in all cases above decision making is the most
critical step: humans are behind high-level choices which define
behaviors, high-level goals and specific tasks. Once these three
elements have been defined, together with the context, active
touch can be used to find the best strategy to accomplish the
specific task using criteria of optimality.

3.3. Structure-Based Design Approaches
The way a specific task is accomplished is constrained to the
employed platform for touch (e.g., hand, finger), and to its
degrees of freedom. In this section, we focus on dexterous
mechanical structures of the agent for touch with functionalities
comparable to human ones (including those with super-human
capabilities2). These platforms are not restricted to well-defined
tasks and could be suitable to open-ended robot behaviors, as
discussed in the following section. Among dexterous agents
and at the intersection between Neuroscience and Robotics we
find those named as anthropomorphic. Degrees of freedom here
are quite often higher than in common robot hands/fingers
and relate to a mechanical structure which tries to mimic the
appearance and versatility of a human hand and its grasping
mechanisms (Carrozza et al., 2006; Prattichizzo et al., 2013;
Mnyusiwalla et al., 2016; Xiong et al., 2016; Zhang et al., 2018).

These approaches are interesting in the context of this
paper, including those applications where the human user is
involved into the control loop of the artificial hand. Referring
to prosthetics, the motivation for this research is that low
functionality and controllability together with poor cosmetic
appearance are the main reasons why amputees do not
regularly use their artificial hands. Concepts like synergies and
dimensionality reduction illustrated in the Introduction are of
utmost importance in this case. Mimicking humans, possible
approaches to simplification consist of coupling some of the
hand’s degrees of freedom for a reduction of the number of
effective inputs. Limiting the number of independent inputs to a
few coupled motions has an impact on hand dexterity, improving
functions and embodiment of the artificial hand. Postural
synergies refer to the coordinated ways humans control dozens

2It is still unknown whether better hands for manipulation than the human

hand exist or not, and the relationship between the manipulative capability and

hand morphology needs to be investigated in the region of more possible hand

morphologies (Hu et al., 2018).

of muscles for different hand postures and these principles
affect the design of the anthropomorphic hand. A survey of the
techniques for dimensionality reduction as well as learning and
control strategies built on subspaces of reduced dimension across
different fully actuated and underactuated anthropomorphic
designs is contained by Ficuciello et al. (2018).

Underactuation involving fewer degrees of actuation
than degrees of freedom is the most common approach
when designing anthropomorphic hands or fingers. To give
a few examples, the biomimetic design of the cybernetic
anthropomorphic hand CyberHand illustrated in Carrozza
et al. (2006) consists of the modular architecture and multilevel
control, together with its appearance, kinematics, sensorisation
and actuation. A few efferent channels are available, allowing for
separate control of each digit as well as thumb finger opposition.
As for humans, dimension reduction is also introduced for
afferent information, requiring integration from proprioceptive
and tactile (exteroceptive) sensors relevant to grasping and
holding objects. Interestingly, the control of the artificial hand
can be shared between the user and the intelligent mechanics:
high-level control interprets the users intention (grasp selection
and force level) and low-level control is used to actuate specific
grasps and apply the desired total force. In another paper, Xiong
et al. (2016) focus on the movement relationship among joints
in a digit and among digits in the hand, and on finger postural
synergies during grasping. They propose a design theory for
the kinematic transmission mechanism to be embedded into
the hand palm mimicking postural finger synergies by using
a limited number of actuators. Prattichizzo et al. (2013) also
develop tools to establish how many task-dependent synergies
should be involved in a certain grasp for its stability and
efficiency. In the framework of “soft synergies,” they define the
correspondence between the controllable internal forces and
the motions of the grasped object and the actuated inputs. A
recent work illustrates a systematic approach to identify the
actuation strategy by studying the correlations of coordinated
movements in human hands during 23 grasp tasks (Zarzoura
et al., 2019). The authors conclude that 19 degrees of freedom
for an anthropomorphic hand can be reduced to 13 degrees of
actuation (reduced to 6 by relaxing dimensionality reduction
criteria) distributed between six groups of joints. In another
recent paper, a continuum mechanism—previously used for
manipulator designs—has been applied to an anthropomorphic
hand to form synergy-based hand poses in a pre-grasp phase
(Xu et al., 2019): three actuators actuate this mechanism to
drive eleven hand joints according to two synergy inputs. The
designed grasping control strategy presented by Ficuciello
(2019) allows an anthropomorphic robot hand to adapt to
object contours by means of coordinated finger motion in the
synergies subspace, computed through a well-known method
for human grasp mapping adapted to underactuated kinematics.
Finally, Vulliez et al. (2018) illustrate a novel tendon-driven,
bio-inspired design for the fingers of the dexterous RoBioSS
hand (4 fingers, 16 DoFs) enabling a relevant simplification
of the hand control software with respect to the previous
solution characterized by unwanted backlash and nonlinearities
(Mnyusiwalla et al., 2016).
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4. FROM TASK-BASED TO
STRUCTURE-BASED DESIGNS: THE
CONTRIBUTION OF ROBOT
TECHNOLOGY AND ITS USE IN
OPEN-ENDED ROBOT BEHAVIORS

While in previous sections we investigated human-centered
principles to the definition of robot behaviors, especially in so
far as exploration is concerned, here we extend the discussion
about how Robotics-related approaches can enable the use of
anthropomorphic robot hands in open-ended contexts, as well
as what are the main hypotheses involved when robots are used.
We analyse two related enabling factors that current research
trends in Robotics may bring to the discussion so far. The first
posits that the relationships between the most common task-
based approach and the formalization of robot behaviors allow
for the development of robot behaviors where tasks cannot be
clearly defined. The second has to do with the use of general-
purpose anthropomorphic robot hands to design and develop
open-ended robot behaviors. Such enabling factors include

• The availability of heterogeneous, distributed sensing on the
surface of a robot’s body, including its hands, along with the
representation of tactile information for data processing and
control, which is fundamental to integrating human-centered
design principles into real robot structures, and

• The need for computational efficiency in robot-based
sensorimotor loops, which brings about the introduction of
bio-inspired solutions.

These two factors are discussed in the paragraphs that follow.
Recent trends in robot-based object manipulation

may provide new perspectives for the development of
anthropomorphic robot hands inspired by the dexterity of
human hands. Such robot hands can leverage the information
originating from high-density distributed sensing, and are
amenable to use computationally-efficient algorithms to process
haptic information for motion planning and control. The
computational aspect is of major importance when considering
that such devices as next-generation prostheses are meant to be
supported by embedded computational systems satisfying both
real-time and power-consumption constraints by design. While a
number of approaches, conceptual methods, and algorithms for
interpreting large-scale tactile information have been extensively
reviewed by Kappassov et al. (2015) and Luo et al. (2017),
such analyses did not address in depth the aspects related to
the actual requirements involved in their implementation on
resource-constrained, embedded electronic systems.

Since sensory information (although rich and distributed) is
useless if it is not employed in effective sensorimotor loops,
an effort must be made to deploy techniques to determine a
representation (i.e., a map) of the locations where information
from sensors originates and to manage integration with other
useful sensory modes (e.g., proprioception). The way such
representations can ground actual robot perception and control
is at the core of the conceptual differences between “geometry-
based” and “information-based” representation approaches, as
discussed above.

From an historical perspective, and counterintuitively,
information-based approaches (including logic-based ones and
topographic maps) have been developed before geometry-based
approaches, which weight more an abstract view of the robot
body. The work discussed by Stiehl et al. (2004), Kuniyoshi et al.
(2004), Olsson et al. (2006), Modayil (2010), McGregor et al.
(2011), and Noda et al. (2012) exploit logic-based or information
theoretic principles to obtain a representation of a robot surface.
In these approaches the focus is on the representation per se,
and as such all aspects related to how the representation can
ground actual behaviors at the motor control levels are explored
only to a limited extent. A computational model translating
contact events in language-like discrete symbols with well-
defined semantics has been presented by Stiehl et al. (2004).
Tactile features are rendered as logic symbols, to be used in
action planning, with the aim of obtaining a high-level, cognitive
representation out of tactile data. There is no direct connection
with motion control, action planning being the reference level
which the representation interacts with. We observe that the
presence of logic symbols associated with certain tactile features
would be a nice-to-have feature at the decision making level
in robots, where context-based information can be used to
decide which task or behavior is more relevant or urgent,
irrespective of the involvedmotor actions. The work presented by
Kuniyoshi et al. (2004) faces the problem of learning topographic
representations by physically interacting with the environment.
Via simulations, it is demonstrated how it is possible to build a
tactile body map by temporally correlating signals from tactile
sensors. Such maps give priority to the detection of selected,
more frequent, patterns of activity, which is fundamental to
attain reactive robot behavior. While this approach does not
yield novel insights into the problem of translating a rich
and complex representation into a motion control problem of
lower dimensionality, it provides interesting hints about how
information could bootstrap autonomous behaviors in robots or
next-generation prosthetic limbs. A task-based representation of
a robot body and its functions is generated, together with an
optimal sensory flow, which is expected to optimize such tasks.

Along these lines, frameworks using similar principles have
been presented in Olsson et al. (2006), Modayil (2010), McGregor
et al. (2011), and Noda et al. (2012). The work described in
Olsson et al. (2006) and McGregor et al. (2011) is aimed at
building sensoritopic maps of groups of sensors using self-
organizing processes. This approach produces a representation
describing the logical correlations among sensors, but it does
not quantitatively represent where, on the robot surface, they
are. Sensoritopic maps maintain a logic structure where points
of high correlations (in terms of synchronous sensor activations)
become very close in the map (on a statistical basis), where
spatially and temporally uncorrelated sensors are far from
each other. It is evident how such a representation cannot be
directly mapped to robot perception or control processes. It
defines a data processing information flow playing a role when
huge amounts of sensory data must be processed in close to
real-time. A similar approach is pursued by Modayil (2010).
Feedback from groups of sensors has been used by Noda et al.
(2012) to determine somatotopic connections between spatially
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and temporally correlated elements. All in all, information-
based approaches can effectively build a representation of the
sensors distributed on a large-scale surface, but they cannot be
easily employed to implement such functions as autonomous
manipulation tasks, since their integration with motion control
is difficult to implement. In the Robotics literature, it has
been argued that the missing link between the representation
of sensory information and robot motion control is a well-
defined geometrical characterization of the robot’s surface, and
therefore such a characterization has been sought by Cannata
et al. (2010b), Cannata et al. (2010a), Del Prete et al. (2011),
Mittendorfer and Cheng (2012), and Denei et al. (2015). Based on
the preliminary work presented by Cannata et al. (2010b), surface
parameterization techniques have been employed to obtain a
2D topographic map of a robot surface provided with tactile
sensors (Cannata et al., 2010a; Denei et al., 2015). Such a map
is able to uniquely represent different parts of the surface in
the same metric space, therefore paving the way for general-
purpose data-processing algorithms. The work discussed by
Mittendorfer and Cheng (2012) is able to retrieve the position
of tactile elements in 3D space using a priori knowledge about
both robot shape and inertial information. Such an architecture
could enable autonomous, pose-dependent robot hand behaviors
by integrating multi-modal (tactile and inertial) information,
thereby allowing for dedicated autonomous hand motions, e.g.,
dexterous grasping, in response to specific tactile events or
motion patterns.

Once a representation of the tactile space is available, the need
arises to correlate it with perception processes and sensorimotor
loops to implement actual autonomous behavior. As far as the
scope of this paper is concerned, the work in Stober et al. (2011)
is worth discussing. It shows how sensorimotor loops and robot-
environment interaction allow for the creation of structure and
correlations in sensory information. It is discussed therein how
a robot is able to acquire an egocentric body model including
sensory geometry and structure, and how such sensorimotor
structure can be used by high-level, autonomous robot behavior.
These facts are particularly relevant to enable such functions as
tactile servoing or slip detection during contact regimes subject to
gravity and other external forces, since they allow for mapping
patterns of tactile data with autonomous behaviors not mediated
by high-level reasoning processes, as it would be required for
reactive behaviors in prosthetic devices. It is noteworthy that,
as far as robot grasping is concerned, such mappings have been
developed by De Souza et al. (2015) to infer grasp intentions
in humans and by El-Khoury et al. (2015) to synthetise robot
grasping behaviors for the specific task at hand.

5. DISCUSSION AND CONCLUSIONS

Today’s new-generation robots are increasingly equipped with
more sensing components and consequently they are (to some
extent) able to deal with highly complex and dynamic real-
world tasks. Human-like perceptual qualities have been discussed
by Delhaye et al. (2016) and Pestell et al. (2018) involving
artificial fingers based on distributed heterogeneous sensors.

The proposed approaches demonstrate that such dynamic
sensing qualities of artificial fingers are particularly relevant
for active explorative behaviors. While completely handling
open-ended active behaviors is not mature as a feature yet

because, conceptually, Artificial Intelligence is bound to the

concept of a closed-world model, first attempts toward specific

active approaches involving well-defined tasks can be found
in the recent literature pertaining to the niche of Cognitive
Robotics. Robust active exploration remains a challenging
problem, and major practical hurdle in the deployment of
exteroceptive and proprioceptive sensors. It is worth noting
that this approach is not the gold standard; in contrast, active
exploration is still cutting-edge and experimental in Robotics
research, and underappreciated. Some attempts to organize
movements based on autonomous robot ability with fingers
acting as effective information-seeking agents can be found in
task-based approaches (section 3.2). The work by Strub et al.
(2014) is an interesting example of how a representation of an
object shape can be autonomously built by a robot through
dynamic touch, a single term used in the literature on human
haptic perception to include different robotic behaviors. All use-
cases discussed in this paper can be summarized within the
general scheme proposed in section 2. To enable the reader to
navigate that section and the whole paper through pictures, we
recall that Figure 1 illustrates the proposed scheme for closed
loop sensorimotor control of robot agents for touch, Figure 2
depicts the transition from sensor data to system representation,
Figure 3 details all sub-blocks and categories of Figure 1,
and finally Figure 4 concludes with how specific exploratory
procedures are linked to corresponding haptic features. Not
surprisingly, movability is not yet a keyword in the Robotics
literature on active touch, as objects are often quite-artificially
constrained to fixed positions during active exploration so as
not to add a degree of complexity to the challenging problem
of shape estimation or classification. For those use-cases based
on probabilistic approaches, we include in our scheme a useful
framework from leading human motor control theory (Wolpert
and Ghahramani, 2000), as illustrated in Figure 5. This helps in
showing how a theoretical framework developed from human
movement science has grounded and inspired robot control
solutions within the context of well-defined tasks, which in turn
reflects preliminary steps toward autonomous robot exploration.

Beyond the current state of the art, human-inspired principles
and current research in Robotics provide valuable insights for the
advancement of future general-purpose sensorimotor systems for
robots. Novel platforms based on anthropomorphic mechanics
of the artificial hand are now available, which might be suitable
to handle more open-ended tasks in the future, in that they
mimic the potentialities of the human hand which is the result
of thousands of years of human evolution. Robots may use
prior experience to learn about new objects they have not
encountered. To give a recent example, zero-shot learning has
been applied to mediate haptic recognition of new objects
using an anthropomorphic robot hand (Abderrahmane et al.,
2018). However, the objective of having autonomous robots
successfully manage a variety of tasks in uncertain environments
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FIGURE 5 | Taxonomy for active exploration based on probabilistic approaches: the scheme reported in Figure 1 has been enriched with conceptual pictures

adapted from human motor control theory (Wolpert and Ghahramani, 2000) into robot-like schemes (with permission from the authors of the original pictures). In

particular, at each step of the sensorimotor loop a model of the system state is done, which relies on noisy data. A representation is thus given of the system state

which is based on probability distributions of features and poses. Related parameters and functions are fed back to the reasoning stage to plan and control the next

motion step. Sensor data acquired during motion enables the system to tune the model according to the new sensory information.

is yet far from realization. As stated in the Introduction,
the remarkable degree of functional flexibility of the human
hand across extensive variations in conditions is the result
of both extraordinary anatomical design and highly complex
underpinning central nervous system control processes. The
use of anthropomorphic robot hands suitable to operate in
open-ended contexts, not constrained to well-defined tasks, may
benefit from the recent availability of large-scale, distributed
tactile sensing in Robotics, enabling human-like perceptual
capabilities. Moreover, the absence of constraints on the types
of hand motions and possible hand-object interactions is likely
to require the detection and interpretation of heterogeneous
contact phenomena spanning the whole hand surface. Obviously,
this requires the deployment of an increased ratio between the
number of sensors and the surface of interest, for instance,
a huge number of tactile sensors on a small robot fingertip,
as required on an anthropomorphic robot arm or next-
generation prosthetic limb. Managing these complex systems
will require implementing sensorimotor control mechanisms
that draw from such concepts as sensor binding, representation,
dimensionality reduction and motor synergies. In particular, an
effort must be made to design, develop and deploy techniques
to determine a representation of sensor locations, and the
relationships between the tactile domain and other useful
sensory modes, such as proprioceptive sensing. This is where
some current research trends in Robotics might bring an
important contribution.

Much of the current research in Robotics about the
exploitation of large-scale tactile information is aimed at

addressing two related challenges. On the one hand, the
representation and management of heterogeneous, distributed
sensory information originating from large-scale robot surfaces;
on the other hand, the adoption of a real-time computational
infrastructure to collect and process sensory data for motion
planning and control. Both of these challenges are strongly
related to the geometry-based and information-based paradigms
introduced above, as well as to the task-based or structure-
based design approaches, discussed in this paper. Analysing
these two challenges in light of these two dichotomies, a
few novel principles for the design of human-like robot
hands that are apt to work in open-ended contexts can be
proposed, for example as far as autonomous grasp control and
active exploration (and, in the future, dexterous manipulation)
are concerned.

In any case, the location of tactile elements with respect
to one or more robot-centered reference frames (in a full
analogy with what has been hypothesized for humans),
and the correspondence between those tactile elements and
their representation for control, must be determined without
ambiguity. As a consequence, any future control framework
for human-like, anthropomorphic robot hands that includes
sensorimotor loops based on tactile information for perception
and motion control will need to address the following
specific questions:

• How can a “useful” (i.e., for perception and control aspects),
computationally efficient, representation of an artificial hand
surface (and its sensors) be automatically generated from
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tactile elements, which is able to guide autonomous, open-
ended behaviors for which a robot has not been designed to
solve in advance?

• Is it possible to obtain this kind of representation allowing for
the design of tactile data-processing algorithms independent
of the peculiar shape and morphology of the robot hand, and
enable adaptive solutions to open-ended tasks?

• How to exploit such a representation for goal-oriented tactile-
based robot behaviors?

A number of approaches in the past few years have addressed
these questions in Robotics, and specifically the representation
problem, proposing solutions and models at different levels
of abstraction, encompassing geometry-based representations,
logic-based principles, and topographic maps. Needless to say,
the specific approach to the way an anthropomorphic hand
structure as well as its sensors are represented has a strong
impact on the kind of sensorimotor loops (including all the haptic
processes) that can be grounded.

Information-based approaches are appealing for enabling
autonomous behaviors in human-like, anthropomorphic robot
hands by offering plausible mechanisms for building and
maintaining knowledge of the relationships between specific
contact events and how they are processed for control purposes.
In other terms, information-based approaches may represent
a key means to allow for symbol grounding as posited by
Harnad (1990). However, dynamic adaptation mechanisms are
necessary for an anthropomorphic robot hand to learn new
somatotopic correlations as new tasks are carried out, i.e.,
a high-level of acute plasticity in the design of perception,
representation and control components is required for a truly
flexible and adaptive robot hand. Moreover, information-based
approaches cannot be easily employed to implement autonomous
behaviors, since their integration with motion control is difficult
to implement.

While in information-based approaches representation
criteria may not be related to Euclidean metrics, geometry-based
representational approaches can help in managing data coming
from heterogeneous sensors distributed over complex 3D
structures. Being able to abstract shape from a given surface is
of the utmost importance for distributed, modular and scalable
data processing architectures, since this enables the distribution
of computational units in the mechanical structure of the
artificial hand device irrespective of its mechanical design, thus
addressing the second question posed above.

To conclude, to make adaptive, goal-directed “choices,” the
problem of how to implement high-level goals remains. A
bottleneck here is still the decision-making step for high-level
goals (in any case, whether humans should strictly govern the
control of robots or not is certainly among the most contentious
ethical issues related to active robot control). This might be
partially solved when anthropomorphic-based approaches guide
the design of artificial limbs for prosthetics, in that the human
brain is directly integrated into the control loop and might be
the agent responsible for high-level choices. Depending on the
requirements for the task at hand, however, some intelligence
embedded into the prosthesis can be envisaged. First attempts in

this direction are related to the prosthesis’ automatic control of
incipient slip, e.g., Zhang et al. (2018).

In the future, other forms of advanced haptic intelligence
may be embedded into prostheses, and human psychology and
neuroscience may provide inspiration for this. As noted in
the Introduction, there is evidence for modular task-dependent
solutions in the functional organization of the human brain.
Object recognition and the control of actions are governed,
at least in part, by anatomically and functionally separable
brain systems, —the same haptic information is used, yet
organized differently according to the task. These concepts
might be applied to the management of haptic feedback in
prosthetics. Task-dependent processing of haptic information
might be mimicked by an Artificial Intelligence embedded
in the prosthetic device: sensor redundancy might be used
to extract rich haptic information from heterogeneous sensor
data and the interface with the human can be—either by the
human or by the prosthesis itself—adaptively configured to
send back to the user different haptic information depending
on the task.

Completely new scenarios are also envisaged in which
multisensory integration can be used together with acutely plastic
brain mechanisms to enable dynamic user-device solutions that
transform over time. Basic neuroscience questions may also
arise from such advancements, such as what are the necessary
conditions for the brain to build feedforward models of the
prosthetic limb, and what neural changes accompany learning to
use a prosthetic device where visual and tactile signals caused by
a single event (e.g., one object touching the skin) are physically
displaced and delayed in time.

In summary, there is no shortage of possible contributions
that research in Robotics can deliver to the design of novel
human-like robotic hands, especially where the transition
from task-based to structure-based design is concerned. These
contributions rely on continuing advancements that are both
cognitive and physical in nature, such as efficient data
representation, real-time processing and embedded networking.
However, it is apparent that these feature advancements cannot
be considered in isolation, since a number of interdependences
affect various levels of design, as this brief discussion suggests,
one of these dependences being the relationships entailed by
the robot structure and the environment where it operates
(Marcel et al., 2017).

AUTHOR CONTRIBUTIONS

LS: main conceptualization and definition of the overall narrative
structure, literature investigation, picture design and realization,
and paper writing. PG: literature analysis, conceptualization
of task-based approaches, and main contributor to section 3.2.
SW and KV: conceptualization, introduction writing, review,
and editing of the whole manuscript. FZ: literature database.
FM: supervision, main conceptualization and definition of
the overall narrative structure, main contributor of section 4,
contributions to discussion/conclusion, review, and editing of
the whole manuscript.

Frontiers in Neurorobotics | www.frontiersin.org 17 July 2019 | Volume 13 | Article 53

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Seminara et al. Active Haptic Perception in Robots

ACKNOWLEDGMENTS

We are grateful to Luigi Pinna for his precious help in

transforming conceptual ideas into expressive pictures. We

acknowledge Strahinja Dosen for his valued feedback and for

fruitful discussion during paper writing. LS also likes to show

her gratitude to Maurizio Valle for funding this research and
encouraging her all along this study. The research leading to these
results received funding from the European Commission within
the Horizon 2020 Framework (CHIST-ERA, 2014-2020), project
InDex. This work has also been partially funded by Compagnia
di San Paolo, grant number: 2017.0559, ID ROL: 19795.

REFERENCES

Abderrahmane, Z., Ganesh, G., Crosnier, A., and Cherubini, A. (2018). Haptic

zero-shot learning: recognition of objects never touched before. Robot. Auton.

Syst. 105, 11–25. doi: 10.1016/j.robot.2018.03.002

Abraham, I., Prabhakar, A., Hartmann, M. J., and Murphey, T. D. (2017). Ergodic

exploration using binary sensing for nonparametric shape estimation. IEEE

Robot. Automat. Lett. 2, 827–834. doi: 10.1109/LRA.2017.2654542

Alais, D., and Burr, D. (2004). The ventriloquist effect results from near-optimal

bimodal integration. Curr. Biol. 14, 257–262. doi: 10.1016/j.cub.2004.01.029

Amedi, A., Jacobson, G., Hendler, T., Malach, R., and Zohary, E. (2002).

Convergence of visual and tactile shape processing in the human lateral

occipital complex. Cereb. Cortex 12, 1202–1212. doi: 10.1093/cercor/12.11.1202

Arbib, M. A., Bonaiuto, J. B., Jacobs, S., and Frey, S. H. (2009). Tool use and

the distalization of the end-effector. Psychol. Res. Psychol. Forsc. 73, 441–462.

doi: 10.1007/s00426-009-0242-2

Bajcsy, R. (1988). Active perception. Proc. IEEE 76, 966–1005. doi: 10.1109/5.5968

Bajcsy, R., Aloimonos, Y., and Tsotsos, J. K. (2018). Revisiting active perception.

Auton. Robots 42, 177–196. doi: 10.1007/s10514-017-9615-3

Bensmaïa, S. J., and Hollins, M. (2003). The vibrations of texture. Somatosens.

Motor Res. 20, 33–43. doi: 10.1080/0899022031000083825

Berkeley, G. (1709). An Essay Towards a New Theory of Vision. Dublin: Aaron

Rhames, for Jeremy Pepyat.

Binkofski, F., Kunesch, E., Classen, J., Seitz, R. J., and Freund, H. J. (2001). Tactile

apraxia: unimodal apractic disorder of tactile object exploration associated with

parietal lobe lesions. Brain 124(Pt 1):132–44. doi: 10.1093/brain/124.1.132

Bologna, L., Pinoteau, J., Passot, J., Garrido, J., Vogel, J., Vidal, E. R., et al. (2013). A

closed-loop neurobotic system for fine touch sensing. J. Neural Eng. 10:046019.

doi: 10.1088/1741-2560/10/4/046019

Bridgeman, B., Kirch, M., and Sperling, A. (1981). Segregation of cognitive and

motor aspects of visual function using induced motion. Percept. Psychophys.

29, 336–342. doi: 10.3758/BF03207342

Cannata, G., Denei, S., and Mastrogiovanni, F. (2010a). “Tactile sensing: steps to

artificial somatosensory maps,” in RO-MAN, 2010 IEEE (Viareggio: IEEE),

576–581.

Cannata, G., Denei, S., and Mastrogiovanni, F. (2010b). “Towards automated self-

calibration of robot skin,” in Robotics and Automation (ICRA), 2010

IEEE International Conference on (Anchorage, AK: IEEE), 4849–4854.

doi: 10.1109/ROBOT.2010.5509370

Carrozza, M. C., Cappiello, G., Micera, S., Edin, B. B., Beccai, L., and Cipriani, C.

(2006). Design of a cybernetic hand for perception and action. Biol. Cybern.

95:629. doi: 10.1007/s00422-006-0124-2

Chortos, A., Liu, J., and Bao, Z. (2016). Pursuing prosthetic electronic skin. Nat.

Mater. 15, 937–950. doi: 10.1038/nmat4671

Christopoulos, V., Bonaiuto, J., and Andersen, R. A. (2015). A biologically

plausible computational theory for value integration and action selection

in decisions with competing alternatives. PLoS Comput. Biol. 11:e1004104.

doi: 10.1371/journal.pcbi.1004104

Christopoulos, V. N., Bonaiuto, J., Kagan, I., and Andersen, R. A. (2015).

Inactivation of parietal reach region affects reaching but not saccade

choices in internally guided decisions. J. Neurosci. 35, 11719–11728.

doi: 10.1523/JNEUROSCI.1068-15.2015

Cisek, P. (2007). Cortical mechanisms of action selection: the affordance

competition hypothesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362, 1585–1599.

doi: 10.1098/rstb.2007.2054

Cisek, P., and Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal

premotor cortex: specification of multiple direction choices and final selection

of action. Neuron 45, 801–814. doi: 10.1016/j.neuron.2005.01.027

Cisek, P., and Kalaska, J. F. (2010). Neural mechanisms for interacting

with a world full of action choices. Annu. Rev. Neurosci. 33, 269–298.

doi: 10.1146/annurev.neuro.051508.135409

Coates, A., Abbeel, P., and Ng, A. Y. (2008). “Learning for control from

multiple demonstrations,” in Proceedings of the 25th International Conference

on Machine Learning, ICML ’08 (New York, NY: ACM), 144–151.

Dahiya, R. S., Metta, G., Valle, M., and Sandini, G. (2010). Tactile sensing

x2014;from humans to humanoids. IEEE Trans. Robot. 26, 1–20.

doi: 10.1109/TRO.2009.2033627

De Souza, R., El-Khoury, S., Santos-Victor, J., and Billard, A. (2015). Recognizing

the grasp intention from human demonstration. Robot. Auton. Syst. 74, 108–

121. doi: 10.1016/j.robot.2015.07.006

Del Prete, A., Denei, S., Natale, L., Mastrogiovanni, F., Nori, F., Cannata, G.,

et al. (2011). “Skin spatial calibration using force/torque measurements,” in

Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference

on (San Francisco, CA: IEEE), 3694–3700.

Delhaye, B. P., Schluter, E. W., and Bensmaia, S. J. (2016). Robo-

psychophysics: extracting behaviorally relevant features from the output

of sensors on a prosthetic finger. IEEE Trans. Hapt. 9, 499–507.

doi: 10.1109/TOH.2016.2573298

Denei, S., Mastrogiovanni, F., and Cannata, G. (2015). Towards the creation of

tactile maps for robots and their use in robot contact motion control. Robot.

Auton. Syst. 63, 293–308. doi: 10.1016/j.robot.2014.09.011

El-Khoury, S., De Souza, R., and Billard, A. (2015). On computing task-

oriented grasps. Robot. Auton. Syst. 66, 145–158. doi: 10.1016/j.robot.2014.

11.016

Ernst, M. O. (2007). Learning to integrate arbitrary signals from vision and touch.

J. Vis. 7, 7–14. doi: 10.1167/7.5.7

Ernst, M. O., and Banks, M. S. (2002). Humans integrate visual and

haptic information in a statistically optimal fashion. Nature 415, 429–433.

doi: 10.1038/415429a

Ernst, M. O., and Bülthoff, H. H. (2004). Merging the senses into a robust percept.

Trends Cogn. Sci. 8, 162–169. doi: 10.1016/j.tics.2004.02.002

Ficuciello, F. (2019). Synergy-based control of underactuated

anthropomorphic hands. IEEE Trans. Indust. Informat. 15, 1144–1152.

doi: 10.1109/TII.2018.2841043

Ficuciello, F., Falco, P., and Calinon, S. (2018). A brief survey on the role of

dimensionality reduction in manipulation learning and control. IEEE Robot.

Automat. Lett. 3, 2608–2615. doi: 10.1109/LRA.2018.2818933

Germagnoli, F., Germagnoli, R., and Magenes, G. (1996). “Human strategies

in exploring objects by touch,” in Engineering in Medicine and Biology Society,

1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual

International Conference of the IEEE, Vol. 4 (Amsterdam, NY: IEEE), 1699–

1700.

Gibson, J. J. (1950). The Perception of the Visual World. Oxford: Houghton Mifflin.

Goodale, M. A., Milner, A. D., Jakobson, L. S., and Carey, D. P. (1991). A

neurological dissociation between perceiving objects and grasping them.Nature

349, 154–156. doi: 10.1038/349154a0

Hanks, T. D., Ditterich, J., and Shadlen, M. N. (2006). Microstimulation of

macaque area lip affects decision-making in a motion discrimination task. Nat.

Neurosci. 9, 682–689. doi: 10.1038/nn1683

Harnad, S. (1990). The symbol grounding problem. Physica D 42, 335–346.

doi: 10.1016/0167-2789(90)90087-6

Harris, C. M., and Wolpert, D. M. (1998). Signal-dependent noise

determines motor planning. Nat. Publ. Group 394, 780–784. doi: 10.1038/

29528

Hayward, V. (2011). Is there a ‘plenhaptic’ function? Philos. Trans. R. Soc. Lond.

Ser. B Biol. Sci. 366, 3115–3122. doi: 10.1098/rstb.2011.0150

Frontiers in Neurorobotics | www.frontiersin.org 18 July 2019 | Volume 13 | Article 53

https://doi.org/10.1016/j.robot.2018.03.002
https://doi.org/10.1109/LRA.2017.2654542
https://doi.org/10.1016/j.cub.2004.01.029
https://doi.org/10.1093/cercor/12.11.1202
https://doi.org/10.1007/s00426-009-0242-2
https://doi.org/10.1109/5.5968
https://doi.org/10.1007/s10514-017-9615-3
https://doi.org/10.1080/0899022031000083825
https://doi.org/10.1093/brain/124.1.132
https://doi.org/10.1088/1741-2560/10/4/046019
https://doi.org/10.3758/BF03207342
https://doi.org/10.1109/ROBOT.2010.5509370
https://doi.org/10.1007/s00422-006-0124-2
https://doi.org/10.1038/nmat4671
https://doi.org/10.1371/journal.pcbi.1004104
https://doi.org/10.1523/JNEUROSCI.1068-15.2015
https://doi.org/10.1098/rstb.2007.2054
https://doi.org/10.1016/j.neuron.2005.01.027
https://doi.org/10.1146/annurev.neuro.051508.135409
https://doi.org/10.1109/TRO.2009.2033627
https://doi.org/10.1016/j.robot.2015.07.006
https://doi.org/10.1109/TOH.2016.2573298
https://doi.org/10.1016/j.robot.2014.09.011
https://doi.org/10.1016/j.robot.2014.11.016
https://doi.org/10.1167/7.5.7
https://doi.org/10.1038/415429a
https://doi.org/10.1016/j.tics.2004.02.002
https://doi.org/10.1109/TII.2018.2841043
https://doi.org/10.1109/LRA.2018.2818933
https://doi.org/10.1038/349154a0
https://doi.org/10.1038/nn1683
https://doi.org/10.1016/0167-2789(90)90087-6
https://doi.org/10.1038/29528
https://doi.org/10.1098/rstb.2011.0150
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Seminara et al. Active Haptic Perception in Robots

Hernandez-Perez, R., Cuaya, L. V., Rojas-Hortelano, E., Reyes-Aguilar, A., Concha,

L., and de Lafuente, V. (2017). Tactile object categories can be decoded

from the parietal and lateral-occipital cortices. Neuroscience 352, 226–235.

doi: 10.1016/j.neuroscience.2017.03.038

Hoelscher, J., Peters, J., and Hermans, T. (2015). “Evaluation of tactile feature

extraction for interactive object recognition,” in 2015 IEEE-RAS 15th

International Conference on Humanoid Robots (Humanoids) (Seoul: IEEE),

310–317.

Hu, D., Xiong, C.-H., and Liu, M.-J. (2018). Exploring the existence of better hands

for manipulation than the human hand based on hand proportions. J. Theor.

Biol. 440, 100–111. doi: 10.1016/j.jtbi.2017.12.026

Jamali, N., Ciliberto, C., Rosasco, L., and Natale, L. (2016). “Active

perception: building objects’ models using tactile exploration,” in 2016

IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)

(Cancun; Mexico: IEEE), 179–185.

James, T. W., Humphrey, G. K., Gati, J. S., Servos, P., Menon, R. S., and

Goodale, M. A. (2002). Haptic study of three-dimensional objects

activates extrastriate visual areas. Neuropsychologia, 40, 1706–1714.

doi: 10.1016/S0028-3932(02)00017-9

Jeannerod, M. (1997). The Cognitive Neuroscience of Action. Malden, MA:

Blackwell.

Johansson, R. S., and Pruszynski, J. A. (2014). Edge-orientation processing in

first-order tactile neurons. Nat. Neurosci. 17, 1–7. doi: 10.1038/nn.3804

Johnson, K. O., and Hsiao, S. S. (1994). Evaluation of the relative roles of slowly

and rapidly adapting afferent fibers in roughness perception. Can. J. Physiol.

Pharmacol. 72, 488–497. doi: 10.1139/y94-072

Kappassov, Z., Corrales, J.-A., and Perdereau, V. (2015). Tactile sensing in

dexterous robot hands review. Robot. Auton. Syst. 74(Pt A), 195–220.

doi: 10.1016/j.robot.2015.07.015

Kappers, A. M. L. (2011). Human perception of shape from touch. Philos. Trans. R.

Soc. Lond. Ser. B Biol. Sci. 366, 3106–3114. doi: 10.1098/rstb.2011.0171

Khan, A., Khosravi, M., Denei, S., Maiolino, P., Kasprzak, W., Mastrogiovanni,

F., et al. (2016). “A tactile-based fabric learning and classification architecture,”

in 2016 IEEE International Conference on Information and Automation for

Sustainability (ICIAfS) (Galle: IEEE), 1–6.

Knill, D. C., and Richards, W. (eds.). (1996). Perception As Bayesian Inference. New

York, NY: Cambridge University Press.

Kuniyoshi, Y., Yorozu, Y., Ohmura, Y., Terada, K., Otani, T., Nagakubo, A.,

et al. (2004). “From humanoid embodiment to theory of mind,” in Embodied

Artificial Intelligence, eds F. Iida, R. Pfeifer, L. Steels, and Y. Kuniyoshi (Berlin;

Heidelberg: Springer), 202–218.

Landy, M. S., Maloney, L. T., Johnston, E. B., and Young, M. (1995). Measurement

and modeling of depth cue combination: in defense of weak fusion. Vis. Res. 35,

389–412. doi: 10.1016/0042-6989(94)00176-M

Lederman, S. J., and Klatzky, R. L. (1987). Hand movements: a

window into haptic object recognition. Cogn. Psychol. 19, 342–368.

doi: 10.1016/0010-0285(87)90008-9

Lederman, S. J., and Klatzky, R. L. (1990). Haptic classification of common

objects: knowledge-driven exploration. Cogn. Psychol. 22, 421–459.

doi: 10.1016/0010-0285(90)90009-S

Lederman, S. J., and Klatzky, R. L. (2009). Haptic perception: a tutorial.

Attent. Percept. Psychophys. 71, 1439–1459. doi: 10.3758/APP.71.

7.1439

Lederman, S. J., and Taylor, M. M. (1972). Fingertip force, surface geometry, and

the perception of roughness by active touch. Attent. Percept. Psychophys. 12,

401–408. doi: 10.3758/BF03205850

Li, K., Fang, Y., Zhou, Y., and Liu, H. (2017). Non-invasive stimulation-based

tactile sensation for upper-extremity prosthesis: a review. IEEE Sens. J. 17,

2625–2635. doi: 10.1109/JSEN.2017.2674965

Li, M., Hang, K., Kragic, D., and Billard, A. (2016). Dexterous grasping under shape

uncertainty. Robot. Auton. Syst. 75, 352–364. doi: 10.1016/j.robot.2015.09.008

Luo, S., Bimbo, J., Dahiya, R., and Liu, H. (2017). Robotic tactile perception

of object properties: a review. Mechatronics 48(Suppl. C), 54–67.

doi: 10.1016/j.mechatronics.2017.11.002

Marcel, V., Argentieri, S., and Gas, B. (2017). Building a sensorimotor

representation of a naive agents tactile space. IEEE Trans. Cogn. Dev. Syst. 9,

141–152. doi: 10.1109/TCDS.2016.2617922

Marr, D., andNishihara, H. K. (1978). Representation and recognition of the spatial

organization of three-dimensional shapes. Proc. R. Soc. Lond. Ser. B Biol. Sci.

200, 269–294. doi: 10.1098/rspb.1978.0020

Martinez-Hernandez, U. (2016). “Tactile sensors,” in Scholarpedia of Touch,

eds T. J. Prescott, E. Ahissar and E. Izhikevich (Berlin: Springer),

783–796.

Martinez-Hernandez, U., Dodd, T. J., Evans, M. H., Prescott, T. J., and Lepora,

N. F. (2017). Active sensorimotor control for tactile exploration. Robot. Auton.

Syst. 87, 15–27. doi: 10.1016/j.robot.2016.09.014

Martinez-Hernandez, U., Dodd, T. J., and Prescott, T. J. (2017). Feeling the

shape: active exploration behaviors for object recognition with a robotic hand.

IEEE Trans. Syst. Man Cybernet. 48, 2339–2348. doi: 10.1109/TSMC.2017.

2732952

Matsubara, T., and Shibata, K. (2017). Active tactile exploration with uncertainty

and travel cost for fast shape estimation of unknown objects. Robot. Auton. Syst.

91, 314–326. doi: 10.1016/j.robot.2017.01.014

McGregor, S., Polani, D., and Dautenhahn, K. (2011). Generation of tactile maps

for artificial skin. PLoS ONE 6:e26561. doi: 10.1371/journal.pone.0026561

Milner, A., D Goodale, M. A. (1995). The Visual Brain in Action. Oxford, UK:

Oxford University Press.

Mittendorfer, P., and Cheng, G. (2012). “3d surface reconstruction for robotic

body parts with artificial skins,” in Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on (Vilamoura: IEEE), 4505–4510.

Mnyusiwalla, H., Vulliez, P., Gazeau, J.-P., and Zeghloul, S. (2016). A

new dexterous hand based on bio-inspired finger design for inside-

hand manipulation. IEEE Trans. Syst. Man Cybernet. 46, 809–817.

doi: 10.1109/TSMC.2015.2468678

Modayil, J. (2010). “Discovering sensor space: constructing spatial embeddings

that explain sensor correlations,” in Development and Learning (ICDL), 2010

IEEE 9th International Conference on (Ann Arbor, MI: IEEE), 120–125.

Noda, T., Miyashita, T., Ishiguro, H., and Hagita, N. (2012). “Super-flexible

skin sensors embedded on the whole body self-organizing based on haptic

interactions,” in Human-Robot Interaction in Social Robotics, eds T. Kanda and

H. Ishiguro (Boca Raton, FL: CRC Press - Taylor and Francis Group), 183.

Olsson, L. A., Nehaniv, C. L., and Polani, D. (2006). From unknown sensors and

actuators to actions grounded in sensorimotor perceptions. Connect. Sci. 18,

121–144. doi: 10.1080/09540090600768542

Pastor-Bernier, A., and Cisek, P. (2011). Neural correlates of biased

competition in premotor cortex. J. Neurosci. 31, 7083–7088.

doi: 10.1523/JNEUROSCI.5681-10.2011

Pawluk, D., Kitada, R., Abramowicz, A., Hamilton, C., and Lederman, S. J.

(2011). Figure/ground segmentation via a haptic glance: attributing initial

finger contacts to objects or their supporting surfaces. IEEE Trans. Hapt. 4,

2–13. doi: 10.1109/TOH.2010.25

Pesaran, B., Nelson, M. J., and Andersen, R. A. (2008). Free choice activates

a decision circuit between frontal and parietal cortex. Nature 453, 406–409.

doi: 10.1038/nature06849

Pestell, N., Lloyd, J., Rossiter, J., and Lepora, N. F. (2018). Dual-modal

tactile perception and exploration. IEEE Robot. Automat. Lett. 3, 1033–1040.

doi: 10.1109/LRA.2018.2794609

Prattichizzo, D., Malvezzi, M., Gabiccini, M., and Bicchi, A. (2013). On motion

and force controllability of precision grasps with hands actuated by soft

synergies. IEEE Trans. Robot. 29, 1440–1456. doi: 10.1109/TRO.2013.22

73849

Prescott, T. J., Diamond, M. E., and Wing, A. M. (2011). Active touch

sensing. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366, 2989–2995.

doi: 10.1098/rstb.2011.0167

Quallo,M.M., Kraskov, A., and Lemon, R. N. (2012). The activity of primarymotor

cortex corticospinal neurons during tool use by macaque monkeys. J. Neurosci.

32, 17351–17364. doi: 10.1523/JNEUROSCI.1009-12.2012

Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo,

D., et al. (2016). Hand synergies: integration of robotics and neuroscience for

understanding the control of biological and artificial hands. Phys. Life Rev. 17,

1–23. doi: 10.1016/j.plrev.2016.02.001

Scherberger, H., and Andersen, R. A. (2007). Target selection signals for

arm reaching in the posterior parietal cortex. J. Neurosci. 27, 2001–2012.

doi: 10.1523/JNEUROSCI.4274-06.2007

Frontiers in Neurorobotics | www.frontiersin.org 19 July 2019 | Volume 13 | Article 53

https://doi.org/10.1016/j.neuroscience.2017.03.038
https://doi.org/10.1016/j.jtbi.2017.12.026
https://doi.org/10.1016/S0028-3932(02)00017-9
https://doi.org/10.1038/nn.3804
https://doi.org/10.1139/y94-072
https://doi.org/10.1016/j.robot.2015.07.015
https://doi.org/10.1098/rstb.2011.0171
https://doi.org/10.1016/0042-6989(94)00176-M
https://doi.org/10.1016/0010-0285(87)90008-9
https://doi.org/10.1016/0010-0285(90)90009-S
https://doi.org/10.3758/APP.71.7.1439
https://doi.org/10.3758/BF03205850
https://doi.org/10.1109/JSEN.2017.2674965
https://doi.org/10.1016/j.robot.2015.09.008
https://doi.org/10.1016/j.mechatronics.2017.11.002
https://doi.org/10.1109/TCDS.2016.2617922
https://doi.org/10.1098/rspb.1978.0020
https://doi.org/10.1016/j.robot.2016.09.014
https://doi.org/10.1109/TSMC.2017.2732952
https://doi.org/10.1016/j.robot.2017.01.014
https://doi.org/10.1371/journal.pone.0026561
https://doi.org/10.1109/TSMC.2015.2468678
https://doi.org/10.1080/09540090600768542
https://doi.org/10.1523/JNEUROSCI.5681-10.2011
https://doi.org/10.1109/TOH.2010.25
https://doi.org/10.1038/nature06849
https://doi.org/10.1109/LRA.2018.2794609
https://doi.org/10.1109/TRO.2013.2273849
https://doi.org/10.1098/rstb.2011.0167
https://doi.org/10.1523/JNEUROSCI.1009-12.2012
https://doi.org/10.1016/j.plrev.2016.02.001
https://doi.org/10.1523/JNEUROSCI.4274-06.2007
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Seminara et al. Active Haptic Perception in Robots

Seminara, L., Capurro, M., and Valle, M. (2015). Tactile data processing method

for the reconstruction of contact force distributions. Mechatronics 27, 28–37.

doi: 10.1016/j.mechatronics.2015.02.001

Sommer, N., and Billard, A. (2016). Multi-contact haptic exploration

and grasping with tactile sensors. Robot. Auton. Syst. 85, 48–61.

doi: 10.1016/j.robot.2016.08.007

Stiehl, W. D., Lalla, L., and Breazeal, C. (2004). “A" somatic alphabet" approach to"

sensitive skin",” in Robotics and Automation, 2004. Proceedings. ICRA’04. 2004

IEEE International Conference on, Vol. 3 (New Orleans, LA: IEEE), 2865–2870.

Stober, J., Miikkulainen, R., and Kuipers, B. (2011). “Learning geometry from

sensorimotor experience,” in Development and Learning (ICDL), 2011 IEEE

International Conference on, Vol. 2 (Frankfurt: IEEE), 1–6.

Strub, C., Wörgötter, F., Ritter, H., and Sandamirskaya, Y. (2014). “Correcting

pose estimates during tactile exploration of object shape: a neuro-robotic

study,” in Development and Learning and Epigenetic Robotics (ICDL-Epirob),

2014 Joint IEEE International Conferences on (Genoa, WI: IEEE), 26–33.

Sun, T., Back, J., and Liu, H. (2018). Combining contact forces and geometry to

recognize objects during surface haptic exploration. IEEE Robot. Automat. Lett.

3, 2509–2514. doi: 10.1109/LRA.2018.2814083

Takahashi, C., and Watt, S. J. (2017). Optimal visual-haptic

integration with articulated tools. Exp. Brain Res. 235, 1361–1373.

doi: 10.1007/s00221-017-4896-5

Thoroughman, K. A., and Shadmehr, R. (2000). Learning of action through

adaptive combination of motor primitives. Nat. Publ. Group 407, 742–747.

doi: 10.1038/35037588

Thura, D., and Cisek, P. (2014). Deliberation and commitment in the premotor and

primarymotor cortex during dynamic decisionmaking.Neuron 81, 1401–1416.

doi: 10.1016/j.neuron.2014.01.031

Todorov, E., and Jordan, M. I. (2002). Optimal feedback control as a theory of

motor coordination. Nat. Neurosci. 5:1226. doi: 10.1038/nn963

Trevarthen, C. B. (1968). Two mechanisms of vision in primates. Psychol. Res.

Psychol. Forsch. 31, 299–337. doi: 10.1007/BF00422717

Trommershäuser, J., Maloney, L. T., and Landy, M. S. (2008). Decision making,

movement planning and statistical decision theory. Trends Cogn. Sci. 12,

291–297. doi: 10.1016/j.tics.2008.04.010

Turvey, M. T., and Carello, C. (1995). “Dynamic touch,” in Perception of Space and

Motion, eds E. William and R. Sheena (Amsterdam: Elsevier), 401–490.

Umiltà, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana,

F., et al. (2008). When pliers become fingers in the monkey motor

system. Proc. Natl. Acad. Sci. U.S.A. 105, 2209–2213. doi: 10.1073/pnas.

0705985105

Ungerleider, L., and Mishkin, M. (1982). “Two cortical visual systems,”

in Analysis of Visual Behavior, eds D. J. Ingle, M. A. Goodale, and

R. J. W. Mansfield (Cambridge, MA: MIT Press), 549–586.

Vulliez, P., Gazeau, J. P., Laguillaumie, P., Mnyusiwalla, H., and Seguin, P.

(2018). Focus on the mechatronics design of a new dexterous robotic hand

for inside hand manipulation. Robotica 36, 1206–1224. doi: 10.1017/S026357

4718000346

Wasko, W., Albini, A., Maiolino, P., Mastrogiovanni, F., and Cannata, G. (2019).

Contact modelling and tactile data processing for robot skins. Sensors 19:814.

doi: 10.3390/s19040814

Wettels, N., Fishel, J. A., and Loeb, G. E. (2014). “Multimodal tactile sensor,” in The

Human Hand as an Inspiration for Robot Hand Development (Cham: Springer),

405–429.

Wolpert, D. M., and Ghahramani, Z. (2000). Computational principles of

movement neuroscience. Nat. Neurosci. 3:1212. doi: 10.1038/81497

Wolpert, D. M., ghahramani, Z., and Jordan, M. I. (1995). An internal model

for sensorimotor integration. Science (New York, NY) 269, 1880–1882.

doi: 10.1126/science.7569931

Wolpert, D. M., and Landy, M. S. (2012). Motor control is decision-making. Curr.

Opin. Neurobiol. 22, 996–1003. doi: 10.1016/j.conb.2012.05.003

Xiong, C.-H., Chen, W.-R., Sun, B.-Y., Liu, M.-J., Yue, S.-G., and Chen, W.-

B. (2016). Design and implementation of an anthropomorphic hand for

replicating human grasping functions. IEEE Trans. Robot. 32, 652–671.

doi: 10.1109/TRO.2016.2558193

Xu, K., Liu, Z., Zhao, B., Liu, H., and Zhu, X. (2019). Composed

continuum mechanism for compliant mechanical postural synergy: an

anthropomorphic hand design example. Mech. Mach. Theory 132, 108–122.

doi: 10.1016/j.mechmachtheory.2018.08.015

Yousef, H., Boukallel, M., and Althoefer, K. (2011). Tactile sensing for dexterous

in-hand manipulation in robotics a review. Sens. Actuat. 167, 171–187.

doi: 10.1016/j.sna.2011.02.038

Zarzoura, M., del Moral, P., Awad, M. I., and Tolbah, F. A. (2019). Investigation

into reducing anthropomorphic hand degrees of freedom while maintaining

human hand grasping functions. Proc. Inst. Mech. Eng. H J. Eng. Med. 233,

279–292. doi: 10.1177/0954411918819114

Zhang, T., Jiang, L., and Liu, H. (2018). Design and functional evaluation

of a dexterous myoelectric hand prosthesis with biomimetic tactile

sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1391–1399.

doi: 10.1109/TNSRE.2018.2844807

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Seminara, Gastaldo, Watt, Valyear, Zuher and Mastrogiovanni.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 20 July 2019 | Volume 13 | Article 53

https://doi.org/10.1016/j.mechatronics.2015.02.001
https://doi.org/10.1016/j.robot.2016.08.007
https://doi.org/10.1109/LRA.2018.2814083
https://doi.org/10.1007/s00221-017-4896-5
https://doi.org/10.1038/35037588
https://doi.org/10.1016/j.neuron.2014.01.031
https://doi.org/10.1038/nn963
https://doi.org/10.1007/BF00422717
https://doi.org/10.1016/j.tics.2008.04.010
https://doi.org/10.1073/pnas.0705985105
https://doi.org/10.1017/S0263574718000346
https://doi.org/10.3390/s19040814
https://doi.org/10.1038/81497
https://doi.org/10.1126/science.7569931
https://doi.org/10.1016/j.conb.2012.05.003
https://doi.org/10.1109/TRO.2016.2558193
https://doi.org/10.1016/j.mechmachtheory.2018.08.015
https://doi.org/10.1016/j.sna.2011.02.038
https://doi.org/10.1177/0954411918819114
https://doi.org/10.1109/TNSRE.2018.2844807
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Active Haptic Perception in Robots: A Review
	1. Introduction
	2. Closed-Loop Sensorimotor Control of Robot Hands: A New Taxonomy
	2.1. The State: The Concept of Representation
	2.2. The Process: All Around Changing the State

	3. Active Exploration: Use Cases
	3.1. Perceptual Abilities of the Artificial Agent for Active Touch
	3.2. Task-Based Design Approaches
	3.3. Structure-Based Design Approaches

	4. From Task-Based to Structure-Based Designs: The Contribution of Robot Technology and Its Use in Open-Ended Robot Behaviors
	5. Discussion and Conclusions
	Author Contributions
	Acknowledgments
	References


