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Abstract 24 

In this study, an alternative analytical approach for analyzing and characterizing green tea (GT) samples is 25 

proposed, based on the combination of excitation–emission matrix (EEM) fluorescence spectroscopy and multivariate 26 

chemometric techniques. The three-dimensional spectra of 63 GT samples were recorded using a Perkin–Elmer LS55 27 

luminescence spectrometer; emission spectra were recorded between 295 and 800 nm at excitation wavelength ranging 28 

from 200 to 290 nm, with excitation and emission slits both set at 10 nm. The excitation and emission profiles of two 29 

factors were obtained using Parallel Factor Analysis (PARAFAC) as a 3-way decomposition method. In this way, for 30 

the first time, the spectra of two main fluorophores in green teas have been found. Moreover, a cyclodextrin-modified 31 

micellar electrokinetic chromatography method was employed to quantify the most represented catechins and 32 

methylxanthines in a subset of 24 GT samples in order to obtain complementary information on the geographical origin 33 

of tea. The discrimination ability between the two types of tea has been shown by a Partial Least Squares Class-34 

Modelling performed on the electrokinetic chromatography data, being the sensitivity and specificity of the class model 35 

built for the Japanese GT samples 98.70% and 98.68%, respectively. This comprehensive work demonstrates the 36 

capability of the combination of EEM fluorescence spectroscopy and PARAFAC model for characterizing, 37 

differentiating and analyzing GT samples. 38 
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1. Introduction 49 

Tea is an aromatic beverage made from the leaves of Camellia sinensis, a plant native to Southeast Asia, 50 

cultivated and consumed by humans for thousands of years. Due to its attractive aroma and taste and its effect on 51 

reducing lifestyle-related diseases, tea is the most consumed beverage in the world. Green tea (GT) is made from 52 

unfermented leaves of Camellia sinensis and contains a high concentration of polyphenols, which are powerful 53 

antioxidants. The potential health benefits of GT, especially related to its antioxidant properties, have led to an increase 54 

of its consumption in the last decades. The principal compounds of GT having biological effects have been identified as 55 

catechins and xanthines [1]. Catechins show a strong antioxidant activity and exert antiinflammatory, antiarhtritic, 56 

antiangiogenic, neuroprotective, anticancer, antiobesity, antiatherosclerotic, anti-diabetic, antibacterial, antiviral and 57 

antidental caries effects. Xanthines are responsible for the stimulating effects; caffeine (CF) is a central nervous system 58 

and cardiac stimulant and has a diuretic effect, while theobromine (TB), which is present in lower amounts, has also a 59 

diuretic effect [1-7]. Among the most abundant catechins in GT there are (+)-catechin, ((+)C), (-)-epicatechin (EC), (-)-60 

epigallocatechin (EGC), (-)-epicatechingallate (ECG), (-)-epigallocatechin gallate (EGCG) [8]. 61 

The composition of GT can be influenced by several parameters associated with growth conditions, such as 62 

genetic strain, season, climatic conditions, soil profile, growth altitude, horticultural practices, plucking season, shade 63 

growth, and with the region in which tea has been cultivated. The other factors that can influence the profile of 64 

bioactive compounds are manufacturing process (withering, steaming/pan-firing, rolling, oxidation/fermentation and 65 

drying) and storage [8,9]. Besides this huge variability, the price of tea greatly varies according to its geographical 66 

origin. Hence, the recognition of the origin of GT is crucial to protect the interests of both consumers and sellers 67 

[10,11]. Several analytical methods have been proposed together with chemometric techniques in order to characterize 68 

the geographical origins and/or varieties of teas [12-15]. However, most of these methods require expensive equipment 69 

and involve tedious sample preparation in order to discriminate GT samples from different geographical origins; as an 70 

example, Ye et al. [14] extracted the volatile organic components from the dried tea leaves by headspace solid-phase 71 

microextraction procedure, followed by GC–MS analysis. 72 

In a previous paper coauthored by some of us [10], cyclodextrin-modified micellar electrokinetic 73 

chromatography  (CyD-MEKC) was employed to simultaneously analyse the most represented catechins and 74 

methylxanthines in 92 GT samples of different geographical origin, and the comparison of the obtained data showed 75 

that Japanese commercial GT products contained a general lower level of catechins than Chinese GTs.  76 

The contents of catechins and methylxanthines were thus used as chemical descriptors and potential indicators of 77 

the geographical origin. Considering this previous work as a starting point for further investigations, in the present study 78 

an alternative analytical approach was applied for identifying the differences in terms of active compounds content in 79 
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GT samples from different geographical origin. In order to reach this aim, 63 GT samples were analysed by 80 

fluorescence spectroscopy: 29 samples from Japan and 34 from China. The main reason of the choice of these two 81 

countries was the interest of the consumers in the comparison of Japanese and Chinese GTs in terms of active 82 

compounds content. As a matter of facts, Chinese GT tends to cost consumers much less than Japanese GT, for the 83 

massive prevalence of Chinese GT and thus the necessity of maintaining low prices by Chinese producers, and for the 84 

lack of space for the production of GT in Japan. Moreover, one of the main differences in GT processing between 85 

Chinese and Japanese producers is the way deactivation of enzymes is performed. Chinese GT is usually dry heated in 86 

order to deactivate oxidases, whereas in the case of Japanese GT steaming is employed. Besides, Japanese GT is usually 87 

shade grown [9]. Hence, we deemed it worthwhile to compare the GTs from these two countries in order to understand 88 

if the higher price of Japanese teas can be supported or not by the fact that it is a more prized tea for its higher 89 

antioxidant capacity.  90 

In more detail, the innovative analytical approach presented is based on the combination of excitation–emission 91 

matrix (EEM) fluorescence spectroscopy and chemometric tools to extract useful information from a huge amount of 92 

data. The chemometric approach is a fundamental part of the interpretation of fluorescence spectral data of agro-food 93 

products due to the presence of many fluorophores, since the fluorescence of a sample consists of a number of 94 

overlapping signals not easily understandable without a proper data processing. Accordingly to these principles, three-95 

dimensional fluorescence spectra were elaborated through PCA [16] after unfolding the data into matrices and through 96 

Parallel Factor Analysis (PARAFAC) [17] on three-way data as display methods. Moreover, SELECT [18] technique 97 

was applied for variable selection, in order to individuate the variables with the highest classification power, i.e. the 98 

most informative emission bands in discriminating between Japanese and Chinese GTs. 99 

Finally, the content of catechins and methylxanthines was determined in a subset of 24 GT samples by the 100 

previously developed chiral CyD-MEKC method in order to obtain complementary information on the geographical 101 

origin of GT samples and to confirm what observed in our previous work [10], i.e. that the amount of all the considered 102 

compounds was higher for Chinese GTs, with the exception of ECG. A Partial Least Squares Class-Modelling (PLS-103 

CM) was carried out on this subset of samples to develop a predictive model able to classify new GT samples according 104 

to the geographical origin using the CyD-MEKC data.  105 

 106 

2. Materials and methods 107 

2.1.  Chemicals, solutions and samples 108 

The reference standards of (+)C, EC, EGC, ECG, EGCG, CF, TB, as well as boric acid, 86.1% phosphoric acid, 109 

sodium dodecyl sulphate (SDS), (2-hydroxypropyl)-β-cyclodextrin (HPβCyD, degree of substitution 0.6), were 110 
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purchased from Sigma-Aldrich (St. Louis, MO, USA). The standard stock solutions (1 mg mL-1) of (+)C, EC, EGC, 111 

ECG, EGCG, CF, TB and of the internal standard syringic acid were prepared in a mixture of methanol/water in 15:85 112 

ratio %v/v. Working standard solutions were obtained by dilution with water in a vial to 500 μL for achieving the 113 

desired final concentration values of the compounds. 114 

A set of 63 GT samples of different varieties and from different geographical origins (29 from Japan and 34 from 115 

China) was selected for the study and analysis. In order to assure a good degree of representativity of the samples, the 116 

main sources of variability for GTs were considered, i.e. for Japanese GTs the different varieties, including Bancha, 117 

Gyokuro, Matcha, Sencha, Matcha Tsuru types, while for Chinese GTs the different zones (the ten provinces of Hunan, 118 

Fujian, Zhejiang, Anhui, Yunnan, Guandong, Jiangsu, Hubei, Shandong, Guanxi). Moreover, each geographical group 119 

included samples stored in different  conditions and coming from different manufacturing processes. Supplementary 120 

Table S1 shows the description of the samples and the corresponding assigned code. The commercial GT samples were 121 

collected locally in specialized stores located in the cities of Florence and Genoa (Italy). A subset of 24 samples 122 

randomly selected including different types of Japanese GT and different zones of Chinese GT has been analyzed using 123 

the CyD-MEKC method for the quantitation of catechins and methylxanthines (Table 1). 124 

 125 

2.2. Preparation of GT samples 126 

In order to simulate the content of active compounds in a cup of tea, GT samples were prepared by infusion of 127 

tea leaves. The samples were prepared immersing 0.2 g of finely powdered tea leaves in 10 mL of water at 85 ºC for 5 128 

min in a beaker. Then, the beaker containing tea leaves and water was transferred into an ice bath for 30 s to stop the 129 

infusion at the same moment for each sample. In order to remove the leaves before performing the analysis, the infusion 130 

was filtered using a filter paper (Albet® LabScience) with a porosity equal to 73 g/m2. 131 

 132 

2.3. Instrumental 133 

2.3.1. Capillary electrophoresis 134 

The CyD-MEKC method used for the determination of the compounds was derived from a previous study 135 

coauthored by one of us [15]. The analyses were carried out using a 3DCE instrument from Agilent Technologies 136 

(Waldbronn, Germany) controlled by the software 3DCE ChemStation (Agilent Technologies) for both acquisition and 137 

data management. Fused-silica capillaries (Unifibre, Settimo Milanese, Italy) of 33.0 total length, 8.5 cm effective 138 

length and 50 μm inner diameter were used. The detection was carried out by using the on-line DAD detector and the 139 

detection wavelength was 200 nm. Voltage and temperature were set at 15 kV and 25 °C, respectively. The background 140 

electrolyte was made by 25 mM borate-phosphate buffer pH 2.50 with the addition of 90 mM sodium dodecyl sulphate 141 
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and 25 mM HPβCyD. Total analysis time was about 8 minutes. Calibration was perfomed by the internal standard 142 

method, using syringic acid as internal standard. The method had been previously validated in terms of selectivity, 143 

linearity, repeatability, accuracy and sensitivity, showing adequate performances for the analysis of catechins and 144 

methylxanthines in GT, with LOQ values ranging from 0.05 to 0.7 μg mL-1 [15]. Further information on the CE method 145 

and procedure may be found in mentioned Ref. [15]. 146 

 147 

2.3.2. Fluorescence spectroscopy  148 

The EEM fluorescence measurements were performed directly on GT extracts at room temperature on a Perkin-149 

Elmer LS55B luminescence spectrometer (Waltham, MA, USA). The excitation-emission matrices of the GT infusions 150 

were recorded using the standard cell holder and a 10 mm quartz SUPRASIL® cell with cell volume of 3.5 mL by 151 

PerkinElmer. The excitation spectra were recorded between 200 nm and 290 nm each 5 nm (19 recorded points), 152 

whereas the emission wavelengths ranged from 295 nm to 800 nm each 0.5 nm (1011 recorded points). The excitation 153 

and the emission monochromator slits were set to 10 nm. The FL WinLab software (PerkinElmer) was used to register 154 

the fluorescent signals. 155 

 156 

2.4.  Multivariate data analysis 157 

2.4.1. Data exploration 158 

PCA [16] is the most used tool in exploratory data analysis and it uses an orthogonal transformation to convert a 159 

set of correlated variables into a set of uncorrelated variables called principal components. This approach makes it 160 

possible to visualize in a comprehensive way the dataset starting from a two-dimensional data matrix. According to the 161 

specific nature of EEM data, organized in a three-dimensional data array, for performing PCA a step of unfolding of the 162 

matrix is requested, while with the PARAFAC algorithm it is possible to directly model n-way data. In the case of 163 

three-way data, like the EEM data, PARAFAC decomposes a data array X with dimension I × J × K into three loading 164 

matrices A, B and C, being their columns ai, bj and ck respectively. The trilinear PARAFAC model is expressed as 165 

follows: 166 





F

f

ijkkfjfifijk ecbax
1           

i = 1, 2,…, I;   j = 1, 2,…, J;   k = 1, 2, …, K       (1)

     

where xijk is the element in the position i, j, k of the three-way array X; F is the number of factors; aif, bjf and ckf 167 

are the elements of the matrices A (I × F), B (J × F) and C (K × F), respectively; eijk represents the generic element of 168 

the residual array E (I × J × K). The PARAFAC model is found by minimizing the sum of squares of the residuals. 169 
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The excitation-emission fluorescence matrices obtained for several samples can be arranged into a three-way 170 

array and the PARAFAC decomposition can be applied for the analysis of fluorescent data. In this case, X contains the 171 

fluorescence intensity at the k-th excitation wavelength and j-th emission wavelength recorded for the i-th sample. 172 

Therefore, the vectors ai, bj and ck are the sample, emission and excitation profiles of the f-th fluorophore, respectively. 173 

The similarity between the trilinear PARAFAC model and the physical model for fluorescence can be found in Ref. 174 

[19].   175 

Data are trilinear when the experimental data array is compatible with the structure in Eq. (1). The core 176 

consistency diagnostic (CORCONDIA) developed by Bro and Kiers [20] is an index that measures the degree of 177 

trilinearity of the experimental data array. A trilinear model has a value of CORCONDIA index close to 100%.  178 

If the fluorescence data are trilinear and the appropriate number of factors has been chosen to fit the model, the 179 

PARAFAC decomposition provides unique profile estimations, and the achievement of the true underlying excitation 180 

and emission spectra for every fluorophore is ensured [17]. PARAFAC has been widely used due to this highly 181 

attractive uniqueness property [21], which could be used for the unequivocal identification of compounds. 182 

 183 

2.4.2. Variable selection 184 

The selection of the informative variables was performed by means of SELECT [18], a feature selection 185 

technique based on the stepwise decorrelation of the variables, which is implemented in the V-Parvus software [22]. 186 

This technique generates a set of decorrelated variables ordered according to their Fisher weights. At each step, 187 

SELECT searches for the variable with the largest classification weight. This variable is selected and decorrelated from 188 

the other variables; then the algorithm is repeated until a fixed number of variables is selected or the Fisher weight is 189 

lower than a specific cut-off value. SELECT presents an interesting characteristic: the fraction of the residual variance 190 

of the predictors after the orthogonalization can be used to select intervals of predictors with better classification 191 

performance. 192 

 193 

2.4.3. Class modeling  194 

PLS-CM [23] is a supervised method of classification between two categories (or classes), in our case Japanese 195 

or Chinese GT. It is a version of Partial Least Squares (PLS) algorithm with a binary response that makes it possible to 196 

model the probability distribution of the samples for each class and then performs a hypothesis test evaluating the α 197 

probability of type I error and the β probability of type II error. Class-model sensitivity (proportion of the samples of 198 

the class that are correctly assigned) and specificity (proportion of samples correctly rejected) are (1-α)·100 and (1-199 

β)·100, respectively. The risk curve is the plot of β error versus α error probabilities. 200 
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 201 

2.4.4. Software 202 

Data analysis was performed in the MATLAB environment [24], thanks to tailor made algorithms developed and 203 

implemented by the Authors. For the data processing, PCA, PARAFAC and PLS-CM algorithms were applied, in order 204 

to extract the significant information embodied within data. For performing variable selection, the SELECT method was 205 

applied thanks to its implementation in the software V-Parvus [22]. 206 

 207 

3. Results and discussion  208 

3.1.Catechins and methylxanthines content  209 

The CyD-MEKC method previously described [15] was applied to the analysis of a subset of 24 GT samples in 210 

order to confirm our previous observations [10] and to lay the basis for the EEM data processing. By applying the CyD-211 

MEKC method, the samples were characterized by means of n=7 variables, namely (+)C, EC, EGC, ECG, EGCG, CF 212 

and TB (mg g-1, dry basis), obtaining a data matrix having 24 rows (samples) and 7 columns (variables), shown in Table 213 

1. This data set was submitted to chemometric modeling starting from PCA as a display method and then applying the 214 

PLS-CM algorithm for class modeling purposes. 215 

Firstly, PCA was performed on the data matrix to enhance the presence of structures inside the samples and to 216 

understand the correlation between the variables. Fig. 1 shows the loading (a) and the score (b) plots of the catechins 217 

((+)C, EC, EGC, ECG, EGCG), CF and TB autoscaled data in the plane of the 2 first Principal Components, that 218 

explain the 86% of the total variance. From the loading plot it was possible to point out that the variable EGCG is the 219 

most important factor in PC1, followed by CF and EGC. All loadings are positive so that the samples with highest 220 

scores on PC1 have greater value in all the variables. On the contrary, loadings of PC2 have different sign: ECG has the 221 

highest positive loading and TB has the highest negative. Along PC1, the scores of the Japanese GT samples in relation 222 

to the scores of the Chinese GT samples are lower, indicating that in general Chinese GT samples were characterized by 223 

a higher content in the active compounds. This observation is in full agreement with what reported in our previous study 224 

[10]. 225 

In order to build the PLS-CM model, it is necessary to build a dummy vector containing the information about 226 

class membership; for this reason, a binary response was constructed considering the values 1 and 2 for the Japanese 227 

and Chinese GT, respectively (Table 1). The number of PLS latent variables that minimized the root mean square error 228 

in cross-validation (RMSECV) obtained by leave one out procedure was 3, and they explained the 81.68% of response 229 

with 90.05% of predictors variance. Fig. 2 shows the distribution of PLS fitted values for the Japanese and Chinese GT 230 
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samples. Both classes have normal distribution with mean values 1.09 and 1.91 and SD values 0.09 and 0.27, 231 

respectively. 232 

In order to decide if an unknown sample belongs to one or another class, a threshold value, tv, between 1 (GT 233 

from Japan) and 2 (GT from China) must be established. If the value estimated by PLS is higher than tv the sample is 234 

classified to belong to class 2 (China), while for estimated values lower than tv the sample is classified to belong to class 235 

1 (Japan). A model for one class (e.g. “GT Japanese”), is in fact the acceptation region for the null hypothesis H0: the 236 

sample belongs to “Japanese GT” class. Therefore, the evaluation of the quality of a class model is given by its 237 

sensitivity and specificity. Both parameters have been evaluated in cross-validation, being 98.70% and 98.68%, 238 

respectively. The risk curve, reported in Supplementary Fig. S1, is the plot of β versus α probabilities, where it is clear 239 

that both probabilities change in opposite directions, that is, α decreases when β increases and vice versa. 240 

 241 

3.2 Fluorescence spectra 242 

Fig. 3 shows two typical excitation-emission spectra of one Japanese (J1) and one Chinese GT sample (C1). 243 

 244 

3.2.1. Repeatability studies 245 

In order to assess the experimental variability and the repeatability in preparing the tea infusions, the analysis of 246 

two GT samples of different geographical origin (one from Japan and one from China) were replicated 3 times at a 247 

distance of time (one week). Supplementary Fig. S2 displays the score plot obtained by PCA of the spectral data after 248 

unfolding. PC1, which explains 97.8% of the total variance, clearly separates the 2 GT samples; on the contrary, the 249 

difference among the 3 replicates of the same sample is along PC2, which explains only 1.4% of the variance. 250 

 251 

3.2.2. PCA 252 

Two bands of the emission spectra were removed, namely from 295 to 350 nm and from 700 to 800 nm, due to 253 

the lack of information typical of these two areas (Fig. 3). The range between 350-700 nm was retained and used for 254 

data elaboration. A data matrix of dimension 63 × 13300 was built, where each row corresponded to the emission 255 

spectrum (700 wavelengths) obtained at each of the 19 excitation wavelengths for all the 63 GT samples measured. 256 

PCA was performed as unsupervised pattern recognition technique on this ‘unfolded’ matrix after the data had been 257 

mean-centered.  258 

Fig. 4 shows the score plot on the plane PC1-PC4. It is possible to notice a discrimination between Japanese and 259 

Chinese GT samples along PC1, the direction explaining the 74.3% of the total variance, even if a certain overlap is 260 

present and the complete separation between the classes is not obtained. In the PC1-PC4 plot it can be also clearly 261 
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noticed that Matcha GT samples, considered one of the Japan’s rarest and most precious GT variety, are grouped in a 262 

cluster in the orthogonal space at negative scores on PC1. 263 

Looking at the loading profile on PC1 (Fig. 5), it is possible to notice the bands more informative along PC1 and 264 

thus useful for discriminating between Japanese and Chinese GTs, namely 410-450 nm and 500-600 nm. The first band 265 

(410-450 nm) shows positive loadings on PC1 and this suggests that it is related to active compounds content in GT 266 

from China; on the contrary the broad band (500-600 nm) has negative loadings, therefore it seems linked to chemical 267 

compounds characterizing the Japanese GTs. 268 

 269 

3.2.3. PARAFAC 270 

The EEM data recorded for the 63 samples analysed were arranged into a data array where the excitation 271 

wavelengths between 200 nm and 290 nm and the emission wavelengths between 295 nm and 800 nm were considered. 272 

Therefore, the dimension of this array was 63 × 1011 × 19 (where 63 are the samples, 1011 the emission wavelengths 273 

and 19 the excitation wavelengths). The PARAFAC decomposition of this array, without any constrain, required two 274 

factors (CORCONDIA of 100%, explained variance of 98.6%).  275 

The plot of the loadings of the mode of the samples (first mode, Fig. 6a) is similar to the PCA score plot (Fig. 4) 276 

and it shows a rather clear discrimination between Chinese and Japanese GTs. The plot of the loadings of the mode of 277 

the emission (second mode, Fig. 6b) shows the emission spectra for two fluorophores, one with maximum around 420 278 

nm and the other one with maxima at 500-550 nm. The plot of the loadings of the third mode (Fig. 6c) shows the 279 

excitation profiles. As can be seen in these plots, PARAFAC enabled to differentiate the infusions of GT according to 280 

the geographical origin (Chinese and Japanese). Moreover, due to the trilinearity of the data, it can be concluded that 281 

the two groups of fluorophores found with the PARAFAC model are the same in all the GT samples. 282 

 283 

3.2.4. Variable selection 284 

SELECT was applied as a variable selection technique in order to individuate the variables with the highest 285 

classification power, i.e. the most informative emission bands in discriminating between Japanese and Chinese GT 286 

samples. SELECT was applied on the unfolded data matrix of dimension 63 × 13300 where each row corresponded to 287 

the emission spectrum obtained for each excitation wavelength of each GT sample measured; the frequency histogram 288 

of the selections showed as the most selected variables the two bands 415-450 nm and 495-550 nm (Supplementary Fig. 289 

S3). 290 

It is worthwhile to notice that the variables chosen by SELECT corresponded to the two bands highlighted by 291 

PARAFAC in the second mode, namely the emission spectra of two fluorophores. These outcomes are also in 292 
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agreement with the profile of the loading on PC1, that highlights the presence of two important bands, the first positive 293 

at 410-450 nm and the second negative over 500 nm. Combining this information, it was possible to assume that the 294 

first emission band (410-450 nm) is due to a fluorophore characterizing the Chinese GT samples and that the broad 295 

band at 500-550 nm is related to the presence of compounds most abundant in the Japanese GT samples. The band at 296 

410-450 nm probably corresponds to fluorescence emission of catechins, which are more abundant in Chinese samples. 297 

The band at 500-550 nm is probably attributable to carotenoids, that are recognized to be in particularly high quantities 298 

in Japanese tea, especially in Matcha, which contains 4 times more carotene than carrots and nine times more than 299 

spinach [25]. The infuses of GT prepared for the analysis were noticed to be slight yellow-green color due to pigments 300 

as chlorophylls and carotenoids; the quantities of pigment extracted in hot water are related to the concentrations of the 301 

pigments in teas [26]. These observations were in agreement with the findings of Ref. [27], where the emission spectra 302 

of various organic compounds which are known to be endogenous component of plant leaves were measured, 303 

evidencing that catechins possess a fluorescence maximum near 440 nm and that β-carotene exhibits fluorescence 304 

emission with a maximum near 530 nm. 305 

 306 

4. Conclusions 307 

The aim of the present study was to evaluate the possibility of using EEM fluorescence spectroscopy  as a rapid 308 

analytical method for analyzing and characterizing GT samples, distinguishing between different geographical origins 309 

(China or Japan). The experimental data, given their complex and multivariate nature, were elaborated with 310 

chemometric techniques with the aim of extracting the useful information contained therein. PCA was applied, as a 311 

display technique, on the “unfolded data” and PARAFAC was performed on three-dimensional arrays. The PCA results 312 

were visualized by means of the score plot related to PC1 and PC4, which explained 76.8% of the total variance making 313 

it possible to distinguish Chinese and Japanese samples. The separation between the two geographical origins was 314 

mainly along PC1. Using PARAFAC, it was possible to perform the decomposition of the three-dimensional emission-315 

excitation matrix: the information on the first mode was similar to that observed by applying PCA to the matrix after 316 

unfolding and it demonstrated that fluorescence spectroscopy is a promising and fast analytical method to characterize 317 

GT samples on the basis of their geographical origin. PARAFAC on the second mode also highlighted the emission 318 

spectra of two fluorophores, one with a maximum around 420 nm and the other with a maximum at 500-550 nm. These 319 

bands correspond to the variables with the highest loadings on PC1 and also correspond to the variables selected by the 320 

SELECT algorithm, that are those with the highest discriminating power between Japanese and Chinese GT samples. 321 

The band around 420 nm was assumed to correspond to the fluorescence emission of catechins, which are more 322 

abundant in the Chinese samples, and the band around 500-550 nm was attributed to carotenoids. Moreover, the CyD-323 
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MEKC method was applied for the analysis of a subset of 24 GT samples confirming that catechins are more abundant 324 

in Chinese samples. In addition, the PLS-CM built with these data made it possible to distinguish Japanese from 325 

Chinese GT samples with a sensitivity and specificity of 98.70 and 98.68%, respectively. 326 
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Figure Captions 394 
 395 

Fig. 1. PCA (a) loading plot and (b) score plot of catechins and methylxanthines data. 396 

 397 

Fig. 2.  Normal distribution fitted for Japanese GT samples (in blue) and Chinese GT samples (in red). 398 

 399 

Fig. 3. A typical excitation-emission spectra of (a) a Japanese (J1) and (b) a Chinese (C1) GT sample. 400 

 401 

Fig. 4. PCA score plot on the PC1-PC4 plane for the fluorescence data. Matcha samples are indicated in green in the 402 

plot. 403 

 404 

Fig. 5. Loading profile on PC1. 405 

 406 

Fig. 6. PARAFAC results: (a) loading plot of the mode of the samples (first mode); explained variance 98.6% 407 

(F1=96.0% and F2=2.6%); (b) loading plot of the emission mode (second mode); (c) loading plot of the excitation mode 408 

(third mode).  409 

 410 


