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Abstract

We introduce an abstract concept of quantum field theory on categories fibered in groupoids
over the category of spacetimes. This provides us with a general and flexible framework to
study quantum field theories defined on spacetimes with extra geometric structures such as
bundles, connections and spin structures. Using right Kan extensions, we can assign to any
such theory an ordinary quantum field theory defined on the category of spacetimes and we
shall clarify under which conditions it satisfies the axioms of locally covariant quantum field
theory. The same constructions can be performed in a homotopy theoretic framework by us-
ing homotopy right Kan extensions, which allows us to obtain first toy-models of homotopical
quantum field theories resembling some aspects of gauge theories.
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1 Introduction and summary

A locally covariant quantum field theory in the original sense of [BFV03] is a functor A : Loc→
Alg which assigns algebras of quantum observables to globally hyperbolic Lorentzian manifolds
(i.e. spacetimes) subject to a collection of physically motivated axioms. In practice, however,
it is often convenient to slightly generalize this framework and consider functors A : Str → Alg

defined on a category Str of spacetimes with additional geometric structures. For example,
Dirac quantum fields are typically defined on the category of globally hyperbolic Lorentzian spin
manifolds (cf. [Ver01, DHP09, San10]) and charged quantum fields in the presence of background
gauge fields are defined on a category of principal bundles with connections over spacetimes (cf.
[Zah14, SZ16]). A common feature of these and similar examples appearing throughout the
literature is that there exists a projection functor π : Str → Loc from structured spacetimes to
spacetimes which forgets the extra geometric structures. In examples, the functor π : Str→ Loc

exhibits special properties in the sense that 1.) geometric structures defined over a spacetime
M ′ admit pullbacks along Loc-morphisms f : M → M ′ and 2.) the fibers π−1(M) of geometric
structures over a spacetime M are groupoids. (The morphisms of these groupoids should be
interpreted as gauge transformations between geometric structures over M .) In technical terms,
this means that π : Str→ Loc is a category fibered in groupoids.

In this paper we abstract these examples and study quantum field theories A : Str → Alg

defined on categories fibered in groupoids π : Str→ Loc from a model-independent perspective.
We shall show that to any such theory one can assign (via a universal construction called right
Kan extension) a functor UπA : Loc → Alg defined on the category of spacetimes Loc. The
relationship between UπA and A is specified by a (universal) diagram of functors

Str

π
!!❉

❉❉
❉❉

❉❉
❉

A //
KS

ǫ

Alg

Loc

UπA

<<③③③③③③③③

(1.1)

which commutes up to a natural transformation ǫ that embeds UπA◦π as a subtheory of A. We
will show that the right Kan extension UπA : Loc→ Alg assigns interesting algebras UπA(M) to
spacetimes M , which one may interpret as gauge invariant combinations of classical observables
for the geometric structures overM and quantum observables of the original theory A : Str→ Alg

corresponding to all possible structures over M . In physical terminology, this means that the
background geometric structures of the theory A : Str → Alg on Str are promoted via the right
Kan extension to (classical) degrees of freedom of the theory UπA : Loc→ Alg on Loc. The latter
perspective has the advantage that the extra geometric structures do not have to be chosen a
priori for assigning an algebra via A : Str → Alg, but they may be selected later by a suitable
choice of state on the algebra UπA(M). We will prove a theorem providing sufficient (and in
some cases also necessary) conditions on the category fibered in groupoids π : Str → Loc such
that the right Kan extension UπA : Loc→ Alg satisfies the axioms of locally covariant quantum
field theory [BFV03]. In particular, we find that the isotony axiom is often violated by the
typical examples π : Str → Loc of spacetimes equipped with additional geometric structures
considered in the literature. Such feature is similar to the isotony violations observed in models
of quantum gauge theories [DL12, SDH14, BDS14, BDHS14, BSS16, BBSS17, Ben15].

In very special instances, our general construction reduces to the assignment of the fixed-
point theory of a locally covariant quantum field theory with “global gauge group”, which has
been studied by Fewster in [Few13]. A quantum field theory B : Loc → Alg on Loc together
with a representation η : G → Aut(B) of a group G in terms of automorphisms is equivalent
to a quantum field theory A : Loc × G → Alg on the trivial category fibered in groupoids
π : Loc × G → Loc, where all fibers are given by G (regarded as a groupoid with only one
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object). The right Kan extension UπA : Loc→ Alg of such a theory is then precisely the fixed-
point theory of (B, η). From this perspective, our construction may also be interpreted as a
generalization of the assignment of fixed-point theories to situations where the “global gauge
group” G is replaced by “local gauge groupoids” π−1(M), i.e. a family of groupoids depending on
the underlying spacetime M . A very intriguing (and, most likely, challenging) task would be to
understand which parts of the program of Doplicher, Haag and Roberts [DHR69a, DHR69b] can
be generalized to our situation. For an extension of these techniques to Lorentzian manifolds see
[Ruz05, BR07]. In a first attempt, this could be simplified by studying one of the following two
distinct scenarios: a) The symmetries are described by a “global gauge groupoid”, i.e. quantum
field theories on the trivial category fibered in groupoids π : Loc×G → Loc, where G is now any
groupoid. b) The symmetries are described by a “local gauge group”, i.e. quantum field theories
on a category fibered in groupoids π : Str → Loc, where all fibers π−1(M) are (M -dependent)
groupoids with only one object. Such questions lie beyond the scope of this paper because, in
contrast to our purely algebraic and categorical approach, they presumably also require a careful
treatment of functional analytical aspects.

In the second part of this paper we go beyond the standard framework of locally covari-
ant quantum field theory by adding a homotopy theoretical flavor to our constructions. This
generalization is motivated by the well-known mathematical fact that the local-to-global behav-
ior of gauge theories, which is captured by the concept of descent for stacks, see e.g. [Hol08],
is necessarily of a homotopical (or higher categorical) nature. In [BSS15], we initiated the
development of a homotopical generalization of locally covariant quantum field theory, where
observable algebras are replaced by higher algebraic structures such as differential graded alge-
bras or cosimplicial algebras. Using simple toy-models given by classical (i.e. not quantized) and
non-dynamical Abelian gauge theories, we confirmed that this approach allows for a homotopi-
cally refined version of Fredenhagen’s “universal algebra” construction [Fre90, Fre93, FRS92]
which is suitable for gauge theories. What was missing in [BSS15] is a study of the crucial
question how the axioms of locally covariant quantum field theory may be implemented in a
homotopically meaningful way. In this work we provide a first answer to this question by con-
structing toy-models of homotopical quantum field theories via a homotopical generalization of
the right Kan extension. Concretely, we consider a category fibered in groupoids π : Str→ Loc

and a non-homotopical quantum field theory A : Str→ Alg on it. As an example, one may think
of A as a charged matter quantum field theory coupled to background gauge fields that are
encoded in the groupoids π−1(M). Regarding A : Str→ dgAlg as a trivial homotopical quantum
field theory via the embedding Alg → dgAlg of algebras into differential graded algebras con-
centrated in degree 0, we produce a (generically) non-trivial homotopical quantum field theory
hoUπA : Loc → dgAlg on Loc via the homotopy right Kan extension. We observe that this
theory assigns to a spacetime M the differential graded algebra hoUπA(M) = C•(π−1(M);A)
underlying the groupoid cohomology of π−1(M) with values in the functor A : Str → Alg. Its
zeroth cohomology is precisely the algebra UπA(M) assigned by the ordinary right Kan ex-
tension (i.e. an algebra of gauge invariant combinations of classical gauge field and quantum
matter field observables) and its higher cohomologies encode more detailed aspects of the action
of the “gauge groupoids” π−1(M) on A. Notice that the higher cohomologies are not visible
in a non-homotopical approach and hence are novel features arising within it. Unfortunately,
a satisfactory interpretation of the physics encoded in such higher cohomologies is not entirely
developed yet.

Using our toy-models hoUπA : Loc → dgAlg for homotopical quantum field theories we
investigate to which extent they satisfy the axioms of locally covariant quantum field theory
[BFV03]. Our first observation is that hoUπA : Loc → dgAlg is in general not a strict functor.
It is only a functor ‘up to homotopy’ in the sense that for two composable Loc-morphisms
f and f ′ there exists a cochain homotopy hoUπA(f

′) ◦ hoUπA(f) ∼ hoUπA(f
′ ◦ f) controlling

compositions. Similarly, we observe that the causality axiom and (under suitable conditions) the
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time-slice axiom hold ‘up to homotopy’. Such weaker notions of the axioms of locally covariant
quantum field theory are mathematically expected because the strict axioms are unstable under
weak equivalences. Concretely, once we are given a model for a homotopical quantum field
theory satisfying the strict axioms, we could pass to a weakly equivalent description that will
only satisfy the axioms ‘up to homotopy’. We would like to emphasize that the concept of
causality ‘up to homotopy’ is different from the weakened causality condition for interlinked
regions discovered in [BCRV16, BCRV17]. In fact, the former descends to strict causality on
the level of cohomologies and in particular on the level of gauge invariant observables (i.e. the
zeroth cohomology).

Our studies also indicate that there seems to exist a refinement of the ‘up to homotopy’ ax-
ioms by higher homotopies and coherence conditions. This means that one may choose particular
cochain homotopies which enforce the ‘up to homotopy’ axioms and control their iterations (e.g.
multiple compositions of morphisms or multiple commutations of spacelike separated observ-
ables) by higher cochain homotopies and coherences. From a homotopical perspective, it is
natural to add all those (higher) homotopies and their coherences to the data defining a ho-
motopical quantum field theory. It is however very hard to deal with such structures by using
only elementary categorical techniques. To cope with (higher) homotopies and their coherences
systematically, one needs the machinery of colored operads (see e.g. [BM07]). Hence, our results
point towards the usefulness of colored operads in the formulation of locally covariant quantum
field theory and its coherent homotopical generalization. This operadic perspective will be de-
veloped in our future works. It is worth to emphasize the differences between the non-coherent
approach to homotopical quantum field theory employed in the present paper and the afore-
mentioned coherent one: The former allows us to assign interesting differential graded algebras
to spacetimes, whose cohomologies capture, in addition to gauge invariant observables, further
information about the action of gauge transformations. Moreover, all information encoded in
these cohomologies satisfies the locally covariant quantum field theory axioms strictly. This is
already quite satisfactory if one is mainly interested in cohomological information (even more so,
when gauge invariant observables, i.e. the zeroth cohomology, are the main object of concern).
On the contrary, in order to perform certain constructions, it becomes crucial to keep track of
all (higher) homotopies and their coherences and therefore a coherent homotopical generaliza-
tion (in the sense explained above) of locally covariant quantum field theory becomes necessary.
For example, this is the case when one is confronted with questions related to local-to-global
properties, e.g. generalizations of Fredenhagen’s “universal algebra” construction. The reason
is that such constructions involve colimits over commutative diagrams associated to embeddings
of spacetime regions, whose homotopical generalization must be in terms of homotopy coherent
commutative diagrams. Notice that this is very similar to the formulation of descent for stacks
in non-strict models, e.g. in terms of pseudo-functors (cf. [Vis05]).

The outline of the remainder of this paper is as follows: In Section 2 we review some basic
aspects of categories fibered in groupoids π : Str → Loc over the spacetime category Loc and
introduce a notion of quantum field theory on them. We will also show that many examples of
quantum field theories defined on spacetimes with extra geometric structures appearing through-
out the literature fit into our framework. In Section 3 we compute the right Kan extension of
a quantum field theory A : Str → Alg on structured spacetimes along the projection functor
π : Str → Loc and thereby obtain candidates UπA : Loc → Alg for quantum field theories on
Loc. In Section 4 we prove a theorem providing sufficient (and in some cases also necessary)
conditions on the category fibered in groupoids π : Str→ Loc such that the right Kan extension
UπA : Loc→ Alg satisfies the axioms of locally covariant quantum field theory. We will confirm
by examples that there exist right Kan extensions which satisfy the causality and time-slice
axioms, while the isotony axiom is typically violated. A homotopical generalization of these
constructions is studied in Section 5 and its properties are studies in Section 6. As a result,
we construct first toy-models of homotopical quantum field theories via homotopy right Kan
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extensions. Appendix A contains some standard material on the homotopy theory of differential
graded vector spaces and differential graded algebras, which is used in the main text.

2 Setup

Let us denote by Loc the category of m-dimensional oriented, time-oriented and globally hy-
perbolic Lorentzian manifolds with morphisms given by orientation and time-orientation pre-
serving causal, isometric and open embeddings. Physically, Loc describes the category of space-
times without additional geometric structures such as bundles (with connections) or spin struc-
tures. In order to allow for such additional geometric structures, we consider a category Str,
which describes the structures of interest as well as their symmetries, together with a functor
π : Str→ Loc that assigns the underlying spacetime.

A quantum field theory on structured spacetimes is then given by a functor

A : Str −→ Alg (2.1)

to the category of unital associative algebras over a (fixed) fieldK with morphisms given by unital
algebra homomorphisms. We shall assume the standard axioms of locally covariant quantum
field theory [BFV03], adapted to the category Str and the functor π : Str→ Loc.

Definition 2.1. A functor A : Str → Alg is called a quantum field theory on π : Str → Loc if
the following axioms are fulfilled.

• Isotony: For every Str-morphism g : S → S′, the Alg-morphism A(g) : A(S) → A(S′) is a
monomorphism.

• Causality: Let S1
g1
−→ S

g2
←− S2 be a Str-diagram, such that its projection via π to Loc

π(S1)
π(g1)
−→ π(S)

π(g2)
←− π(S2) is causally disjoint, i.e. the images of π(g1) and π(g2) are

causally disjoint subsets of π(S). Then the induced commutator

[ · , · ] ◦
(
A(g1)⊗ A(g2)

)
: A(S1)⊗A(S2) −→ A(S) (2.2)

is zero.

• Time-slice: Let g : S → S′ be a Str-morphism, such that its projection π(g) : π(S)→ π(S′)
via π to Loc is a Cauchy Loc-morphism, i.e. the image of π(g) contains a Cauchy surface
of π(S′). Then the Alg-morphism A(g) : A(S)→ A(S′) is an isomorphism.

Moreover, we shall always assume that, for each object S in Str, A(S) is not a terminal object in
Alg. Equivalently, this means that the unit element 1 ∈ A(S) is different from the zero element
0 ∈ A(S), i.e. 1 6= 0, for each object S in Str.

Remark 2.2. Notice that a quantum field theory A : Loc → Alg on the identity functor
idLoc : Loc→ Loc is a locally covariant quantum field theory in the sense of [BFV03]. △

The case where we just assume any functor π : Str→ Loc will turn out to be too generic to
allow for interesting model-independent constructions. In many examples of interest, some of
which we shall review below, it turns out that any object S′ in Str may be pulled back along
a Loc-morphism f : M → π(S′), giving rise to an object f∗S′ in Str with π(f∗S′) = M and a
Str-morphism f∗ : f∗S′ → S′ such that π(f∗) = f : M → π(S′). Existence of pullbacks can be
formalized in terms of fibered categories, see e.g. [Vis05, Section 3] for an introduction. Let us
briefly review the main definitions relevant for our work.
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Definition 2.3. A Str-morphism g : S → S′ is called cartesian if for any Str-morphism g′ : S̃ →
S′ and any Loc-morphism f : π(S̃)→ π(S), such that the Loc-diagram

π(S̃)

f
""❊

❊❊
❊❊

❊❊
❊❊

π(g′)
// π(S′)

π(S)

π(g)

<<①①①①①①①①①

(2.3)

commutes, there exists a unique Str-morphism g̃ : S̃ → S, such that π(g̃) = f and the Str-
diagram

S̃

∃! g̃
��
❃

❃
❃

❃

g′
// S′

S

g

??⑧⑧⑧⑧⑧⑧⑧⑧

(2.4)

commutes. If g : S → S′ is a cartesian Str-morphism, we also say that S is a pullback of S′ to
π(S) (along the Loc-morphism π(g) : π(S)→ π(S′)).

Remark 2.4. As a direct consequence of the universal definition of cartesian Str-morphisms, it
follows that any two pullbacks of S′ to M along a Loc-morphism f : M → π(S′) (if they exist)
are isomorphic via a unique isomorphism. △

Definition 2.5. A functor π : Str → Loc is called a fibered category over Loc if for any Loc-
morphism f : M → M ′ and any object S′ in Str with π(S′) = M ′ there exists a cartesian
Str-morphism g : S → S′ such that π(g) = f :M →M ′.

Definition 2.6. A functor π : Str→ Loc is called a category fibered in groupoids over Loc if it is a
fibered category over Loc and additionally π−1(M) is a groupoid, for each objectM in Loc. Here
π−1(M) is the subcategory of Str with objects given by all objects S in Str such that π(S) =M
and morphisms given by all Str-morphisms g : S → S′ such that π(g) = idM :M →M .

We finish this section by providing some examples of categories fibered in groupoids over
Loc, which were used in the literature to describe quantum field theories that are defined on
spacetimes with extra geometric structures or admit some additional symmetries.

Example 2.7 (Spin structures). Assume that the spacetime dimension is m ≥ 4. Let SLoc be
the category of m-dimensional oriented, time-oriented and globally hyperbolic Lorentzian spin
manifolds. Its objects are all tuples (M,P,ψ), where M is an object in Loc, P is a principal
Spin0(1,m − 1)-bundle over M and ψ : P → FM is a Spin0(1,m − 1)-equivariant bundle map
(over idM ) to the pseudo-orthonormal oriented and time-oriented frame bundle FM over M .
(The right Spin0(1,m−1)-action on FM is induced by the double covering group homomorphism
ρ : Spin0(1,m − 1) → SO0(1,m − 1).) A morphism g : (M,P,ψ) → (M ′, P ′, ψ′) in SLoc is a
principal Spin0(1,m − 1)-bundle morphism g : P → P ′ covering a Loc-morphism f : M → M ′,
such that ψ′ ◦ g = f∗ ◦ ψ, where f∗ : FM → FM ′ is the pseudo-orthonormal oriented and
time-oriented frame bundle morphism induced by the Loc-morphism f :M →M ′.

There is an obvious functor π : SLoc→ Loc which forgets the spin structure, i.e. π(M,P,ψ) =
M and π(g) = f . The fiber π−1(M) over any object M in Loc is a groupoid, because principal
bundle morphisms covering the identity are isomorphism. Moreover, π : SLoc→ Loc is a fibered
category and thus a category fibered in groupoids: Given any object (M ′, P ′, ψ′) in SLoc and
any Loc-morphism f :M →M ′, we pull P ′ back to a principal Spin0(1,m−1)-bundle f∗P ′ over
M and FM ′ to a principal SO0(1,m−1)-bundle f∗FM ′ over M , where, as a consequence of the
properties of Loc-morphisms, the latter is isomorphic to the pseudo-orthonormal oriented and
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time-oriented frame bundle FM over M . Composing the induced map f∗ψ′ : f∗P ′ → f∗FM ′

with the isomorphism f∗FM ′ ≃ FM we obtain a Spin0(1,m − 1)-equivariant bundle map
ψ : f∗P ′ → FM , hence an object (M,f∗P ′, ψ) in SLoc. The canonical principal Spin0(1,m−1)-
bundle morphism f∗ : f∗P ′ → P ′ covering the Loc-morphism f : M → M ′ defines a SLoc-
morphism f∗ : (M,f∗P ′, ψ) → (M ′, P ′, ψ′) and it is straightforward to verify that the latter is
cartesian.

Examples of quantum field theories defined on π : SLoc→ Loc include Dirac quantum fields,
see e.g. [Ver01, DHP09, San10]. (In order to include also fermionic quantum field theories,
Definition 2.1 has to be generalized in the usual way to Z2-graded algebras, see e.g. [BG11].) ▽

Example 2.8 (Principal bundles (with connections)). Fix any Lie group G. Let BGLoc be
the category with objects given by all pairs (M,P ), where M is an object in Loc and P is a
principal G-bundle over M , and morphisms g : (M,P ) → (M ′, P ′) given by all principal G-
bundle morphisms g : P → P ′ covering a Loc-morphism f : M → M ′. There is an obvious
functor π : BGLoc→ Loc which forgets the bundle data, i.e. π(M,P ) =M and π(g) = f . Using
ordinary pullbacks of principal bundles as in Example 2.7, it is easy to show that π : BGLoc→
Loc is a category fibered in groupoids.

Let BGconLoc be the category with objects given by all tuples (M,P,A), where M is an
object in Loc, P is a principal G-bundle over M and A is a connection on P , and morphisms
g : (M,P,A) → (M ′, P ′, A′) given by all principal G-bundle morphisms g : P → P ′ covering a
Loc-morphism f : M → M ′ and preserving the connections, i.e. g∗A′ = A. There is an obvious
functor π : BGconLoc → Loc which forgets the bundle and connection data, i.e. π(M,P,A) =
M and π(g) = f . Using again ordinary pullbacks of principal bundles and also pullbacks of
connections, it is easy to show that π : BGconLoc→ Loc is a category fibered in groupoids.

Examples of quantum field theories defined on π : BGLoc→ Loc include dynamical quantum
gauge theories on fixed but arbitrary principal bundles, see e.g. [BDHS14, BDS14]. Examples
of quantum field theories defined on π : BGconLoc→ Loc include charged matter quantum field
theories on fixed but arbitrary background gauge fields, see e.g. [Zah14, SZ16]. ▽

Example 2.9 (Global coframes). In [Few16a, Few16b], Fewster introduced the category FLoc

of (co)framed spacetimes for studying model-independent aspects of the spin-statistics theorem.
Objects in FLoc are all pairs (M,e), where M is an m-dimensional manifold and e = {ea ∈
Ω1(M) : a = 0, 1, . . . ,m − 1} is a global coframe, such that the tuple π(M,e) := (M,ηab e

a ⊗
eb, e0, e0∧· · ·∧em−1) is an object in Loc. Here ηab = diag(1,−1, . . . ,−1)ab denotes the Minkowski
metric. A morphism g : (M,e) → (M ′, e′) in FLoc is a smooth map g : M → M ′, such that
g∗e′a = ea, for all a, and π(g) := g : π(M,e) → π(M ′, e′) is a Loc-morphism. We obtain a
functor π : FLoc → Loc, which is easily seen to be a category fibered in groupoids by pulling
back global coframes. ▽

Example 2.10 (Source terms). For studying inhomogeneous Klein-Gordon quantum field theo-
ries in the presence of source terms J ∈ C∞(M), [FS15] introduced the category LocSrc. Objects
in LocSrc are all pairs (M,J), where M is an object in Loc and J ∈ C∞(M), and morphisms
g : (M,J) → (M ′, J ′) are given by all Loc-morphisms g : M → M ′ such that g∗J ′ = J . There
is an obvious functor π : LocSrc → Loc which forgets the source terms, i.e. π(M,J) = M and
π(g) = g. It is easy to check that π : LocSrc→ Loc is a category fibered in groupoids. ▽

Example 2.11 (Global gauge transformations). Let G be a group. Interpreting G as a groupoid
with only one object (the automorphisms of this object are given by the elements g ∈ G of the
group), we may form the product category Loc ×G. Its objects are the same as the objects in
Loc and its morphisms are pairs (f, g) : M → M ′, where f : M → M ′ is a Loc-morphism and
g ∈ G is a group element. Composition of morphisms is given by (f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ g)
with g′ g defined by the group operation on G, and the identity morphisms are (idM , e) with
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e ∈ G the identity element. There is an obvious functor π : Loc×G→ Loc projecting onto Loc,
i.e. π(M) = M and π(f, g) = f . The fiber π−1(M) over any object M in Loc is isomorphic to
the groupoid G. It is easy to show that π : Loc × G → Loc is a category fibered in groupoids.
(Notice that every Loc×G-morphism is cartesian.)

Quantum field theories A : Loc×G→ Alg on π : Loc×G→ Loc are in one-to-one correspon-
dence with ordinary quantum field theories B : Loc→ Alg on Loc together with a representation
η : G → Aut(B) of the group G in terms of automorphisms of B. (The concept of automor-
phism groups of locally covariant quantum field theories was introduced and studied by Fewster
in [Few13].) Explicitly, given A : Loc × G → Alg, we define a functor B : Loc → Alg by set-
ting B(M) := A(M), for all objects M in Loc, and B(f) := A(f, e), for all Loc-morphisms
f : M → M ′. For g ∈ G, the natural isomorphism η(g) : B ⇒ B is specified by the com-
ponents η(g)M := A(idM , g), for all objects M in Loc. It is easy to check naturality of these
components and also that η defines a representation of G. Conversely, given B : Loc→ Alg and
η : G → Aut(B), we define a functor A : Loc × G → Alg by setting A(M) := B(M), for all
objects M in Loc×G, and A(f, g) := B(f)◦η(g)M , for all Loc×G-morphisms (f, g) :M →M ′.
Since η is a representation in terms of automorphisms of the functor B, it follows that A is
indeed a functor.

The automorphism group Aut(B) of a quantum field theory B : Loc → Alg on Loc was
interpreted in [Few13] as the “global gauge group” of the theory. See also [Ruz05, BR07] for a
different point of view. Our fibered category approach thus includes also scenarios where one
is interested in (subgroups of) the “global gauge group” of ordinary quantum field theories and
their actions. It is important to emphasize that the corresponding category fibered in groupoids
π : Loc ×G → Loc is extremely special when compared to our other examples above: 1.) Each
fiber π−1(M) is isomorphic to G, i.e. a groupoid with only one object. In our informal language
from above, this means that there are no additional geometric structures attached to spacetimes
but only additional automorphisms. 2.) The fibers π−1(M) are the same for all spacetimes M .
This justifies employing the terminology “global gauge group” for the present scenario. ▽

Remark 2.12. Example 2.11 also captures a variant of Kaluza-Klein theories. (We are grateful
to one of the referees for asking us to address this point.) Let us fix a compact oriented k-
dimensional Riemannian manifold K, which we interpret as the “internal space” of a Kaluza-
Klein theory. The category Locm+k is defined analogously to Loc by replacing m-dimensional
manifolds with m+ k-dimensional ones. Let LocK be the subcategory of Locm+k whose objects
are of the form M ×K, with M an object in Loc (i.e. M is m-dimensional) and K our “internal
space”, and whose morphisms are of the form (f, g) : M × K → M ′ × K, with f : M → M ′

a Loc-morphism. It follows that g : K → K is an orientation preserving isometry of K (in
particular, note that g is a diffeomorphism because it is an open embedding with compact
image, hence g(K) = K), i.e. g ∈ Iso+(K) is an element of the orientation preserving isometry
group. There is an obvious functor π : LocK → Loc projecting onto Loc, i.e. π(M × K) = M
and π(f, g) = f . Notice that π : LocK → Loc is a category fibered in groupoids and as such
isomorphic to π : Loc × Iso+(K) → Loc, cf. Example 2.11. Given any m + k-dimensional
quantum field theory A : Locm+k → Alg, we may restrict it to the subcategory LocK and obtain
a quantum field theory on π : LocK → Loc. This restriction may be interpreted as the first step
of a Kaluza-Klein construction because one introduces a fixed “internal space” K and considers
the theory only on spacetimes of the form M × K, where M is m-dimensional. A variant of
Kaluza-Klein reduction is then given by assigning the fixed-point theory of the Iso+(K)-action.
This is captured by our general construction presented in the next section, see Remark 3.6. △
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3 Kan extension

Let π : Str→ Loc be a category fibered in groupoids over Loc and let A : Str→ Alg be a functor.
In practice, A will satisfy the quantum field theory axioms of Definition 2.1, but these are not
needed for the present section. The goal of this section is to canonically induce from this data
a functor RanπA : Loc → Alg on the category Loc, i.e. a candidate for a quantum field theory
defined on spacetimes without additional structures. Technically, our construction is a right
Kan extension [MacL98, Chapter X].

Definition 3.1. A right Kan extension of A : Str → Alg along π : Str → Loc is a functor
RanπA : Loc → Alg, together with a natural transformation ǫ : RanπA ◦ π ⇒ A, that is
universal in the following sense: Given any functor B : Loc → Alg and natural transformation
ζ : B ◦ π ⇒ A, then ζ uniquely factors through ǫ.

Remark 3.2. A right Kan extension may be visualized by the diagram

Str

π
!!❉

❉❉
❉❉

❉❉
❉

A //
KS

ǫ

Alg

Loc

RanπA

<<③③③③③③③③

(3.1)

which commutes up to the natural transformation ǫ. The universal property then says that for
any other such diagram

Str

π
!!❉

❉❉
❉❉

❉❉
❉

A //
KS

ζ

Alg

Loc

B

<<③③③③③③③③

(3.2)

there exists a unique natural transformation α : B⇒ RanπA such that

Str

π

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
A //
KS

ζ

Alg

Loc

B

<<②②②②②②②②②②②②

=

Str

π

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
A //
KS

ǫ

Alg

Loc

RanπA

⇒α

55

B

EE

(3.3)

If it exists, a right Kan extension is unique up to a unique isomorphism, hence it is justified to
speak of the right Kan extension RanπA : Loc→ Alg of A : Str→ Alg along π : Str→ Loc. △

Because the category Alg is complete, i.e. all limits in Alg exist, the right Kan extension
RanπA : Loc → Alg of A : Str → Alg along π : Str → Loc exists and may be computed via
limits. For an object M in Loc, we denote its under-category by M ↓ π: Objects in M ↓ π are
pairs (S, h) consisting of an object S in Str and a Loc-morphism h : M → π(S). Morphisms
g : (S, h)→ (S̃, h̃) in M ↓ π are Str-morphisms g : S → S̃ such that the diagram

M
h

}}③③
③③
③③
③③
③

h̃

!!❉
❉❉

❉❉
❉❉

❉

π(S)
π(g)

// π(S̃)

(3.4)

commutes. There is a projection functor

Q
M :M ↓ π −→ Str (3.5)
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that acts on objects as (S, h) 7→ S and on morphisms as (g : (S, h) → (S̃, h̃)) 7→ (g : S → S̃).
Moreover, given any Loc-morphism f : M → M ′, there is a functor f ↓ π : M ′ ↓ π → M ↓ π
that acts on objects (S′, h′) as

f ↓ π(S′, h′) := (S′, h′ ◦ f) (3.6a)

and on morphisms g′ : (S′, h′)→ (S̃′, h̃′) as

f ↓ π(g′) := g′ : (S′, h′ ◦ f) −→ (S̃′, h̃′ ◦ f) . (3.6b)

Hence, we obtain a functor

− ↓ π : Locop −→ Cat (3.7)

to the category Cat of categories.

For any object M in Loc, we define an object in Alg by forming the limit

RanπA(M) := lim
(
M ↓ π

QM

−→ Str
A
−→ Alg

)
(3.8)

in the category Alg. Given any Loc-morphism f :M →M ′, there are two functors from M ′ ↓ π
to Alg,

M ′ ↓ π
f↓π
−→M ↓ π

QM

−→ Str
A
−→ Alg , M ′ ↓ π

QM′

−→ Str
A
−→ Alg , (3.9)

and a natural transformation η : A ◦ QM ◦ f ↓ π ⇒ A ◦ QM ′
with components given by

η(S′,h′) = idA(S′) : A(S
′) → A(S′), for all objects (S′, h′) in M ′ ↓ π. By universality of limits,

this defines an Alg-morphism

RanπA(f) : RanπA(M) −→ RanπA(M
′) , (3.10)

for any Loc-morphism f : M → M ′. It is easy to show that the construction above defines a
functor

RanπA : Loc −→ Alg . (3.11)

Moreover, there is a natural transformation ǫ : RanπA ◦ π ⇒ A with components

ǫS := pr(S,idπ(S))
: RanπA(π(S)) −→ A(S) , (3.12)

for all objects S in Str, given by the canonical projections from the limit (3.8) to the factor
labeled by the object (S, idπ(S)) in π(S) ↓ π.

Theorem 3.3 ([MacL98, Theorem X.3.1]). The functor RanπA : Loc → Alg together with
the natural transformation ǫ : RanπA ◦ π ⇒ A constructed above is a right Kan extension of
A : Str→ Alg along π : Str→ Loc.

It is instructive to provide also more explicit formulas for the right Kan extension constructed
above: Given any object M in Loc, the limit in (3.8) can be expressed as

RanπA(M) =
{
a ∈

∏

(S,h)∈(M↓π)0

A(S) : A(g)
(
a(S, h)

)
= a(S̃, h̃) , ∀g : (S, h)→ (S̃, h̃)

}
. (3.13)

In this expression we have regarded elements a ∈
∏

(S,h)∈(M↓π)0

A(S) of the product as mappings

(M ↓ π)0 ∋ (S, h) 7−→ a(S, h) ∈ A(S) (3.14)
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from the objects (M ↓ π)0 of the category M ↓ π to the functor A ◦ QM . Given any Loc-
morphism f : M → M ′, the Alg-morphism RanπA(f) : RanπA(M) → RanπA(M

′) maps an
element a ∈ RanπA(M) to the element in RanπA(M

′) specified by

(
RanπA(f)(a)

)
(S′, h′) = a(S′, h′ ◦ f) , (3.15)

for all objects (S′, h′) in M ′ ↓ π. Finally, the natural transformation ǫ : Ranπ ◦ π ⇒ A has
components

ǫS : RanπA(π(S)) −→ A(S) , a 7−→ a(S, idπ(S)) , (3.16)

for all objects S in Str. The fact that ǫ is a natural transformation, i.e. that for any Str-morphism
g : S → S′ the diagram

RanπA(π(S))

ǫS
��

RanπA(π(g)) // RanπA(π(S
′))

ǫ
S′

��

A(S)
A(g)

// A(S′)

(3.17)

in Alg commutes, may also be confirmed by an explicit computation: Mapping an element
a ∈ RanπA(π(S)) along the upper path of this diagram, we obtain

ǫS′

(
RanπA(π(g))(a)

)
=

(
RanπA(π(g))(a)

)
(S′, idπ(S′)) = a(S′, π(g)) , (3.18a)

while going the lower path we obtain

A(g)
(
ǫS(a)

)
= A(g)

(
a(S, idπ(S))

)
. (3.18b)

Equality holds true because of the compatibility conditions in (3.13) and the fact that the
Str-morphism g : S → S′ defines a π(S) ↓ π-morphism g : (S, idπ(S))→ (S′, π(g)).

At first glance, the functor RanπA : Loc → Alg of Theorem 3.3, which we later would like
to interpret as a quantum field theory on Loc, seems to be non-local: For an object M in Loc

the algebra RanπA(M) is constructed as a limit over the under-category M ↓ π [cf. (3.8) and
(3.13)] and hence it seems to depend on algebras A(S) associated to structured spacetimes S
whose underlying spacetime π(S) is larger than M . Using that, by assumption, π : Str→ Loc is
a category fibered in groupoids, we shall now show that RanπA(M) is isomorphic to a limit over
the groupoid π−1(M) and hence just depends on the algebras A(S) for structured spacetimes S
over M .

Theorem 3.4. If π : Str → Loc is a category fibered in groupoids (or just a fibered category),
then, for any object M in Loc, there exists a canonical isomorphism

RanπA(M)
≃ // limA|

π−1(M) , (3.19)

where A|π−1(M) : π−1(M) → Alg denotes the restriction of the functor A : Str → Alg to the
subcategory π−1(M) of Str.

Proof. Let M be any object in Loc. Then there exists a functor ι : π−1(M) → M ↓ π which
assigns to an object S in π−1(M) the object ι(S) := (S, idM ) and to a π−1(M)-morphism
g : S → S′ the M ↓ π-morphism ι(g) = g : (S, idM )→ (S′, idM ). Notice that

A ◦QM ◦ ι = A|π−1(M) (3.20)
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as functors from π−1(M) to Alg. Hence, there exists a canonical Alg-morphism

RanπA(M) = lim
(
M ↓ π

QM

−→ Str
A
−→ Alg

)
// lim

(
A|

π−1(M) : π
−1(M)→ Alg

)
. (3.21)

Our claim that this morphism is an isomorphism would follow if we can show that the functor
ι : π−1(M) → M ↓ π is initial, i.e. the dual notion of final, cf. [MacL98, Chapter IX.3]. This is
the goal of the rest of this proof. The functor ι : π−1(M)→M ↓ π is by definition initial if the
following properties hold true:

1. For all objects (S, h) inM ↓ π there exists an object S′ in π−1(M) and anM ↓ π-morphism
ι(S′)→ (S, h);

2. For any object (S, h) in M ↓ π, any objects S′, S′′ in π−1(M) and any M ↓ π-diagram
ι(S′)→ (S, h)← ι(S′′), there exists a zig-zag of π−1(M)-morphisms

S′ = S0 ← S1 → S2 ← S3 → · · · → S2n = S′′ (3.22)

and M ↓ π-morphisms ι(Si)→ (S, h), for i = 0, . . . , 2n, such that the diagrams

ι(S2k)

%%❑
❑❑

❑❑
❑❑

❑❑
ι(S2k+1) //

��

oo ι(S2k+2)

xxrr
rr
rr
rr
rr

(S, h)

(3.23)

commute, for all k = 0, . . . , n − 1.

We show the first property: Let (S, h) be any object in M ↓ π. By Definition 2.5, there exists
a (cartesian) Str-morphism g : S′ → S such that π(g) = h : M → π(S). It follows that S′ is an
object in π−1(M) and that g : ι(S′) = (S′, idM )→ (S, h) is an M ↓ π-morphism.

We next show the second property: Let (S, h) be any object in M ↓ π, let S′, S′′ be any
objects in π−1(M) and let ι(S′) → (S, h) ← ι(S′′) be any M ↓ π-diagram. The latter is given
by two Str-morphisms g′ : S′ → S and g′′ : S′′ → S satisfying π(g′) = π(g′′) = h : M →
π(S). Using Definition 2.5, we further can find a cartesian Str-morphism g : S2 → S such that
π(g) = h : M → π(S). Notice that S2 is an object in π−1(M) and that g : ι(S2)→ (S, h) is an
M ↓ π-morphism. Moreover, we obtain the commutative diagram

π(S′) =M

idM ''❖
❖❖

❖❖
❖❖

❖❖
❖❖

π(g′)=h
// π(S)

π(S2) =M

π(g)=h

99rrrrrrrrrr

(3.24a)

in Loc and the incomplete diagram

S′ g′
// S

S2

g

??⑧⑧⑧⑧⑧⑧⑧⑧

(3.24b)

in Str. By Definition 2.3, there exists a unique Str-morphism g̃′ : S′ → S2 completing this
diagram to a commutative diagram, such that π(g̃′) = idM . Hence, g̃′ is a π−1(M)-morphism.
Replacing S′ by S′′ in this construction, we obtain a π−1(M)-morphism g̃′′ : S′′ → S2. This
yields the following zig-zag of π−1(M)-morphisms

S′ S′
idS′
oo

g̃′
// S2 S′′g̃′′

oo
idS′′

// S′′ , (3.25)
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and the associated diagrams

ι(S′)

g′ ##●
●●

●●
●●

●●
ι(S′)

g′

��

idS′
oo

g̃′
// ι(S2)

g
{{✇✇
✇✇
✇✇
✇✇
✇

ι(S2)

g
##●

●●
●●

●●
●●

ι(S′′)

g′′

��

g̃′′
oo

idS′′
// ι(S′′)

g′′{{✇✇
✇✇
✇✇
✇✇
✇

(S, h) (S, h)

(3.26)

in M ↓ π commute by construction.

Let us make this isomorphism more explicit: Given any object M in Loc, the limit of the
restricted functor A|π−1(M) : π

−1(M)→ Alg is given by

limA|π−1(M) =
{
a ∈

∏

S∈π−1(M)0

A(S) : A(g)
(
a(S)

)
= a(S̃) , ∀g : S → S̃

}
, (3.27)

where we again regard elements of the product as mappings

π−1(M)0 ∋ S 7−→ a(S) ∈ A(S) (3.28)

from the objects π−1(M)0 of the groupoid π−1(M) to the functor A. Denoting the isomorphism
established in Theorem 3.4 by

κM : RanπA(M) −→ limA|π−1(M) , (3.29a)

we explicitly have that

(
κM (a)

)
(S) := a(S, idM ) , (3.29b)

for all a ∈ RanπA(M) and all objects S in π−1(M). To find an explicit expression for the
inverse of κM , we shall fix for each object S in Str and each Loc-morphism f : M → π(S) a
choice of pullback f∗ : f∗S → S. Technically, this is called a cleavage of the fibered category
π : Str→ Loc, cf. [Vis05]. We set

(
κ−1
M (a)

)
(S, h) := A(h∗)

(
a(h∗S)

)
, (3.30)

for all a ∈ limA|π−1(M) and all objects (S, h) in M ↓ π. It is easy to verify that κ−1
M is the

inverse of κM and hence that it does not depend on the choice of cleavage: We have that

(
κM ◦ κ

−1
M (a)

)
(S) =

(
κ−1
M (a)

)
(S, idM ) = A(idM ∗)

(
a(idM

∗S)
)
= a(S) , (3.31a)

for all a ∈ limA|π−1(M) and all objects S in π−1(M), where in the last equality we have used
the compatibility condition in (3.27) for the π−1(M)-morphism idM ∗ : idM

∗S → S. Moreover,
we have that

(
κ−1
M ◦ κM (a)

)
(S, h) = A(h∗)

((
κM (a)

)
(h∗S)

)
= A(h∗)

(
a(h∗S, idM )

)
= a(S, h) , (3.31b)

for all a ∈ RanπA(M) and all objects (S, h) in M ↓ π, where in the last equality we have used
the compatibility condition in (3.13) for the M ↓ π-morphism h∗ : (h

∗S, idM )→ (S, h).

Notice that the assignment of algebras M 7→ limA|π−1(M) does not admit an obvious func-
torial structure because the assignment of groupoids M 7→ π−1(M), which determines the
shape of the diagrams A|π−1(M), is only pseudo-functorial (after choosing any cleavage), cf.
[Vis05]. We may however make use of our canonical isomorphisms κM given in (3.29) in order
to equip the assignment of algebras M 7→ limA|π−1(M) with the functorial structure induced
by RanπA : Loc → Alg. By construction, the κM will then become the components of a nat-
ural isomorphism between RanπA : Loc → Alg and a more convenient and efficient model for
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the right Kan extension which is based on the assignment M 7→ limA|π−1(M). Concretely, the
construction is as follows: We define the functor

UπA : Loc −→ Alg (3.32a)

by setting

UπA(M) := limA|π−1(M) =
{
a ∈

∏

S∈π−1(M)0

A(S) : A(g)
(
a(S)

)
= a(S̃) , ∀g : S → S̃

}
, (3.32b)

for all objects M in Loc, and

UπA(f) := κM ′ ◦ RanπA(f) ◦ κ
−1
M : UπA(M) −→ UπA(M

′) , (3.32c)

for all Loc-morphisms f :M →M ′. Explicitly, the Alg-morphism UπA(f) acts as
(
UπA(f)(a)

)
(S′) = A(f∗)

(
a(f∗S′)

)
, (3.33)

for all a ∈ UπA(M) and all objects S′ in π−1(M ′). By construction, we obtain

Corollary 3.5. The natural transformation κ : RanπA⇒ UπA with components given in (3.29)
is a natural isomorphism. In particular, the functor UπA : Loc→ Alg given by (3.32) is a model
for the right Kan extension of A : Str→ Alg along π : Str→ Loc.

Remark 3.6. The algebra UπA(M) assigned by our model (3.32) for the right Kan extension to
a spacetime M has the following natural physical interpretation: Motivated by our examples in
Section 2, π−1(M) should be interpreted as the groupoid of geometric structures and their gauge
transformations over M . Elements in UπA(M) are then functions on the space of geometric
structures π−1(M)0 with values in the quantum field theory A : Str → Alg in the sense that
they assign to each structure S ∈ π−1(M)0 an element a(S) ∈ A(S) of its corresponding algebra.
The compatibility conditions in UπA(M) (cf. (3.32)) enforce gauge-equivariance of such A-valued
functions. In other words, UπA(M) is an algebra of observables which describes gauge invariant
combinations of classical (i.e. not quantized) observables for the geometric structures overM and
quantum observables for the quantum field theory A : Str→ Alg for each structure S ∈ π−1(M)0
over M . In the spirit of Doplicher, Haag and Roberts [DHR69a, DHR69b] and its generalization
to Lorentzian manifolds [Ruz05, BR07], a major achievement would be to understand which
aspects of the information encoded by the groupoids π−1(M) may be reconstructed from the
right Kan extension UπA : Loc→ Alg. Such questions however lie beyond the scope of this paper
as they require a careful treatment of functional analytical aspects of quantum field theories, as
well as their states and representation theory.

In the simplest scenario where the category fibered in groupoids π : Loc × G → Loc is the
one corresponding to a “global gauge group” G (cf. Example 2.11), the algebra UπA(M) is just
the fixed-point subalgebra of the G-action on A(M). This agrees with Fewster’s construction
in [Few13]. For the particular case of Kaluza-Klein theories (cf. Remark 2.12), UπA(M) is the
subalgebra of the algebra A(M ×K) of an m+k-dimensional quantum field theory consisting of
those observables that are invariant under the isometries ofK. If for exampleK = Tk is the usual
flat k-torus, then the Iso+(K)-invariant observables are those observables on M ×K that “have
zero momentum along the extra-dimensions”. From the m-dimensional perspective, momentum
along the extra-dimensions corresponds to additional mass terms, hence one may interpret such
observables as “low-energy” observables arising from a Kaluza-Klein reduction. △

4 Properties

A natural question to ask is whether the right Kan extension UπA : Loc → Alg of Corollary
3.5 is an ordinary quantum field theory in the sense of [BFV03], i.e. a quantum field theory on
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idLoc : Loc→ Loc according to Definition 2.1. In general, the answer will be negative, unless the
category fibered in groupoids π : Str → Loc satisfies suitable extension properties, mimicking
for example the notion of a deterministic time evolution. (See Remark 4.2 below for a more
detailed physical interpretation of the following definition.)

Definition 4.1. a) A category fibered in groupoids π : Str→ Loc is called flabby if for every
object S in Str and every Loc-morphism f : π(S) → M ′ there exists a Str-morphism
g : S → S′ with the property π(g) = f : π(S)→M ′.

b) A category fibered in groupoids π : Str → Loc is called Cauchy flabby if the following
two properties hold true: 1.) For every object S in Str and every Cauchy Loc-morphism
f : π(S) → M ′ there exists a Str-morphism g : S → S′ such that π(g) = f : π(S) → M ′.
2.) Given two such Str-morphisms g : S → S′ and g̃ : S → S̃′, there exists a π−1(M ′)-
morphism g′ : S′ → S̃′ such that the Str-diagram

S
g

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ g̃

��
❄❄

❄❄
❄❄

❄❄

S′

g′
// S̃′

(4.1)

commutes.

Remark 4.2. Loosely speaking, the flabbiness condition formalizes the idea that the geometric
structures on Loc which are described by the category Str always admit an extension (possibly
non-canonical) from smaller to larger spacetimes. This is in analogy to the flabbiness condition
in sheaf theory. As we shall see later, flabbiness is a very restrictive condition that is not
satisfied in our examples of categories fibered in groupoids presented in Section 2. (It holds only
for the very special case describing “global gauge groups”, see Example 2.11 and also Example
4.10 below.) On the other hand, the Cauchy flabbiness condition formalizes the idea that the
geometric structures on Loc which are described by the category Str admit a ‘time evolution’
that is unique up to isomorphisms. As we shall clarify in the examples at the end of this
section, Cauchy flabbiness is satisfied in many of our examples of categories fibered in groupoids
presented in Section 2 after performing some obvious and well-motivated modifications. △

Theorem 4.3. Let π : Str→ Loc be a category fibered in groupoids and A : Str→ Alg a quantum
field theory in the sense of Definition 2.1. Then the right Kan extension UπA : Loc → Alg

(cf. Corollary 3.5) satisfies the causality axiom. It satisfies the isotony axiom if and only if
π : Str → Loc is flabby. If π : Str → Loc is Cauchy flabby, then UπA : Loc → Alg satisfies the
time-slice axiom. The converse of this statement is not true, see Remark 4.4 below.

Proof. Causality: Let M1
f1
−→ M

f2
←− M2 be a causally disjoint Loc-diagram. Take any two

elements a ∈ UπA(M1) and b ∈ UπA(M2). Using (3.33), we obtain

[
UπA(f1)(a),UπA(f2)(b)

]
(S) =

[
A(f1∗)

(
a(f∗1S)

)
,A(f2∗)

(
b(f∗2S)

)]
, (4.2)

for all objects S in π−1(M), where the first commutator is in UπA(M) and the second one is in

A(S). It then follows that (4.2) is equal to zero because f∗1S
f1∗−→ S

f2∗←− f∗2S projects via π to
our causally disjoint Loc-diagram and A : Str→ Alg satisfies by assumption the causality axiom.
Hence, UπA satisfies causality.

Isotony: Let us first prove the direction “π : Str→ Loc is flabby”⇒ “UπA satisfies isotony”:
Let f :M →M ′ be any Loc-morphism. Let a ∈ UπA(M) be any element such that UπA(f)(a) =
0, i.e. A(f∗)(a(f

∗S′)) = 0, for all objects S′ in π−1(M ′). Using isotony of A : Str → Alg, this
implies that a(f∗S′) = 0, for all objects S′ in π−1(M ′). We have to show that a(S) = 0, for all
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objects S in π−1(M). By the flabbiness assumption, there exists for every object S in π−1(M)
a Str-morphism g : S → S′ such that π(g) = f : M → M ′. As a consequence, S is isomorphic
(in π−1(M)) to any pullback f∗S′ of S′ to M along f . (In fact, since f∗ : f

∗S′ → S′ is cartesian,
we get a unique π−1(M)-morphism S → f∗S′ that can be inverted as π−1(M) is a groupoid.)
Choosing such a π−1(M)-morphism g̃ : f∗S′ → S, the compatibility conditions in (3.32) imply
that A(g̃)(a(f∗S′)) = a(S) and thus a(S) = 0 because we have seen above that a(f∗S′) = 0.
Hence, UπA satisfies isotony.

We prove the opposite direction by contraposition, i.e. “π : Str→ Loc is not flabby”⇒ “UπA

does not satisfy isotony”: As π : Str → Loc is not flabby, we can find an object S in Str and a
Loc-morphism f :M →M ′ (with M = π(S)) such that there exists no Str-morphism g : S → S′

with the property π(g) = f :M →M ′. Let a ∈ UπA(M) be the element specified by

a(S̃) =

{
1 , if S̃ ≃ S in π−1(M) ,

0 , else ,
(4.3)

for all objects S̃ in π−1(M), where 1 is the unit element in A(S̃). It follows that a 6= 0 and

(
UπA(f)(a)

)
(S′) = A(f∗)

(
a(f∗S′)

)
= 0 , (4.4)

for all objects S′ in π−1(M ′). The latter statement is a consequence of f∗S′ 6≃ S (otherwise
S′ would be an extension of S along f , which is against the hypothesis) and of our particular
choice (4.3) of the element a ∈ UπA(M). Hence, isotony is violated.

Time-slice: Let π : Str→ Loc be Cauchy flabby. If f :M →M ′ is a Cauchy Loc-morphism,
a similar argument as in the proof of isotony above shows that UπA(f) : UπA(M) → UπA(M

′)
is injective. It hence remains to show that this Alg-morphism is surjective. For this let b ∈
UπA(M

′) be an arbitrary element. We have to find a preimage, i.e. an element a ∈ UπA(M)
such that UπA(f)(a) = b. Given any object S in π−1(M), Cauchy flabbiness allows us to find
an extension g : S → S′ such that π(g) = f : M → M ′. Making an arbitrary choice of such
extensions, we set

a(S) := A(g)−1
(
b(S′)

)
, (4.5)

for all objects S in π−1(M), where we also have used that A : Str → Alg satisfies the time-slice
axiom in order to define the inverse A(g)−1. Notice that (4.5) does not depend on the choice of
extension: Given any other extension g̃ : S → S̃′, there exists by definition of Cauchy flabbiness
a π−1(M ′)-morphism g′ : S′ → S̃′ such that g̃ = g′ ◦ g and hence

A(g̃)−1
(
b(S̃′)

)
= A(g)−1 ◦ A(g′ −1)

(
b(S̃′)

)
= A(g)−1

(
b(S′)

)
= a(S) . (4.6)

It remains to prove that the family of elements defined in (4.5) satisfies the compatibility con-
ditions: For any π−1(M)-morphism g̃ : S → S̃ we have that

A(g̃)
(
a(S)

)
= A(g ◦ g̃−1)−1

(
b(S′)

)
= a(S̃) , (4.7)

where in the last step we used that (4.5) does not depend on the choice of extension. By a
similar argument, we can confirm that a is indeed a preimage of b,

UπA(f)(a)(S
′) = A(f∗)

(
a(f∗S′)

)
= A(f∗) ◦ A(f∗)

−1
(
b(S′)

)
= b(S′) , (4.8)

where in the second step we used (4.5) and that f∗ : f∗S′ → S′ is an extension. Hence, UπA

satisfies time-slice.

16



Remark 4.4. The converse implication “UπA satisfies time-slice” ⇒ “π : Str→ Loc is Cauchy
flabby” is not necessarily true. Consider for example A = B ◦ π : Str → Alg, where B :
Loc → Alg is an ordinary locally covariant quantum field theory. (Physically, such theories
may be interpreted as quantum field theories that are insensitive, i.e. do not couple to, the
gauge theoretic structures captured by the groupoids π−1(M).) For any object M in Loc,
we then have that UπA(M) ≃

∏
[S]∈π0(π−1(M))B(M), where π0(π

−1(M)) denotes the set of

connected components of the groupoid π−1(M), i.e. the quotient of the set of objects π−1(M)0
of the groupoid by the equivalence relation induced by its morphisms. It is clear that for
this particular example UπA satisfies the time-slice axiom if and only if all equivalence classes
[S] ∈ π0(π

−1(M)) admit a unique extension along all Cauchy Loc-morphisms f : M → M ′.
This is however a weaker condition than Cauchy flabbiness, because it does not require that for
any two extensions there exists a commutative diagram as in (4.1). The examples below further
clarify the difference between Cauchy flabbiness and the unique extendability of isomorphism
classes along Cauchy Loc-morphism.

As a side remark, it is easy to show (by contraposition) that for any quantum field theory
A : Str → Alg on a category fibered in groupoids π : Str → Loc, the right Kan extension UπA :
Loc→ Alg satisfies the time-slice axiom only if, for all objects M in Loc, all equivalence classes
[S] ∈ π0(π

−1(M)) admit a unique extension along all Cauchy Loc-morphisms f : M → M ′. In
fact, UπA(f) is not injective if there exists an equivalence class that cannot be extended, while
surjectivity fails if such extension is not unique. △

Example 4.5. Recall the category fibered in groupoids π : SLoc → Loc presented in Example
2.7. Using the classification of spin structures, we will show that there are counterexamples to
flabbiness, while Cauchy flabbiness holds true. Note that, for each object M of Loc admitting a
spin structure, i.e. such that the obstruction class in H2(M ;Z2) vanishes, the set of isomorphism
classes of the groupoid π−1(M) is an affine space over H1(M ;Z2), the first cohomology group of
M with Z2-coefficients, see e.g. [GB78]. To exhibit a counterexample to flabbiness, let M ′ = R4

be the 4-dimensional Minkowski spacetime and consider its time zero Cauchy surface {0} ×R3.
Removing the z-axis of the Cauchy surface Σ := {0} × (R3 \ {(0, 0, z) : z ∈ R}), we define
M := D(Σ) ⊆ M ′ as the Cauchy development D(Σ) of Σ in M ′. Notice that both M and
M ′ are objects of Loc and that the obvious inclusion of M into M ′ provides a Loc-morphism
f : M → M ′, see e.g. [BGP07, Lemma A.5.9]. Observe further that M is homotopic to S1 and
hence the second cohomology group with Z2-coefficients vanishes for both M and M ′. As a
consequence, both M and M ′ admit a spin structure. Because H1(M ′;Z2) = 0, any two spin
structures on M ′ are isomorphic. On the other hand, because H1(M ;Z2) ≃ Z2, there exist
non-isomorphic choices of spin structures on M . As the pullback of any two spin structures
on M ′ along f : M → M ′ induces isomorphic spin structures on M , we obtain that all spin
structures on M which are not isomorphic to one that is obtained via pullback do not admit an
extension to M ′ along f :M →M ′. Hence, flabbiness is violated.

We next show that Cauchy flabbiness holds true. As Cauchy Loc-morphisms are homotopy
equivalences, they induce isomorphisms in cohomology that allow us to extend any spin structure.
Given any two SLoc-morphisms g : (M,P,ψ) → (M ′, P ′, ψ′) and g̃ : (M,P,ψ) → (M ′, P̃ ′, ψ̃′)
such that π(g) = π(g̃) = f :M →M ′ is a Cauchy Loc-morphism, we have to show that there ex-

ists g′ : (M ′, P ′, ψ′)→ (M ′, P̃ ′, ψ̃′) with π(g′) = idM ′ closing the commutative diagram in (4.1).
From the cohomology isomorphism, it follows that there exists indeed a π−1(M ′)-morphism

g′′ : (M ′, P ′, ψ′) → (M ′, P̃ ′, ψ̃′), however it is not guaranteed that it closes the commutative
diagram in (4.1). Fixing any such g′′, we consider the two parallel SLoc-morphisms

(M,P,ψ)
g

//

ḡ:=g′′ −1◦g̃
// (M

′, P ′, ψ′) . (4.9)
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Because g and ḡ are in particular principal Spin0(1,m−1)-bundle morphisms (over the same f :
M →M ′), it is easy to confirm that there exists a unique function s ∈ C∞(P,Spin0(1,m−1))

eqv

(equivariant under the adjoint action), such that ḡ(p) = g(p) s(p), for all p ∈ P . Regarding s as
a principal bundle automorphism s : P → P over idM (i.e. a gauge transformation), the above
equality reads as ḡ = g ◦ s. If there exists s′ ∈ C∞(P ′,Spin0(1,m−1))

eqv such that g ◦ s = s′ ◦ g,
the above equality implies that g̃ = g′′ ◦ s′ ◦ g, hence g′ := g′′ ◦ s′ closes the commutative
diagram in (4.1). In order to prove existence of such s′, we have to make use of the fact that
s : P → P is not only a gauge transformation, but also a SLoc-automorphism. Its compatibility
with the equivariant bundle map ψ : P → FM to the frame bundle, i.e. ψ ◦ s = ψ, implies
that the corresponding equivariant function s ∈ C∞(P,Spin0(1,m−1))

eqv takes values in the
kernel of the double covering group homomorphism ρ : Spin0(1,m−1)→ SO0(1,m−1), which is
isomorphic to the group Z2. As the kernel of ρ lies in the center of Spin0(1,m−1), the adjoint
action becomes trivial, which provides us with a canonical isomorphism C∞(P, ker(ρ))eqv ≃
C∞(M,Z2). Regarding s as an element in C∞(M,Z2), we can uniquely extend it along f :
M → M ′ to an element s′ ∈ C∞(M ′,Z2) because Z2 is a discrete group and the image of
every Cauchy morphism f : M → M ′ intersects non-trivially all connected components of M ′.
Regarding this s′ as an element in C∞(P ′, ker(ρ))eqv via the canonical isomorphism completes
our proof of Cauchy flabbiness. ▽

Example 4.6. The category fibered in groupoids π : BGLoc→ Loc presented in Example 2.8 is
in general neither flabby nor Cauchy flabby. Regarding flabbiness, let us consider for example
G = U(1), M ′ = R4 the 4-dimensional Minkowski spacetime and M := M ′ \ JM ′({0}) the
Minkowski spacetime with the closed light-cone of the origin removed. The obvious submanifold
embedding defines a Loc-morphism f : M → M ′. As M is homotopic to the 2-sphere S2,
principal U(1)-bundles over M are classified up to isomorphism by the magnetic monopole
charge in H2(M ;Z) ≃ H2(S2;Z) ≃ Z, while each principal U(1)-bundle over M ′ is isomorphic
to the trivial one (i.e. charge 0). If a principal U(1)-bundle P over M has an extension to M ′

along f : M → M ′, i.e. there is a principal U(1)-bundle morphism g : P → P ′ covering f , then
P has to be isomorphic to the pullback bundle f∗P ′ and in particular its monopole charge has
to be 0. This shows that only topologically trivial principal U(1)-bundles extend for our choice
of Loc-morphism and hence that π : BGLoc→ Loc is in general not flabby.

Regarding Cauchy flabbiness, notice that principal G-bundles may be extended along Cauchy
Loc-morphisms because these are homotopy equivalences and the classification of principal G-
bundles up to isomorphism only depends on the homotopy type of the base manifold. However,
there exist extensions g : (M,P ) → (M ′, P ′) and g̃ : (M,P ) → (M ′, P̃ ′) along Cauchy Loc-
morphisms f : M → M ′ for which one cannot close the commutative diagram in (4.1). For ex-
ample, take G any Lie group of dimension dim(G) ≥ 1, M ′ = Rm the m-dimensional Minkowski
spacetime and M = (−1, 1)×Rm−1 $M ′. Consider the two BGLoc-morphisms (between trivial
principal G-bundles)

g :M ×G −→M ′ ×G , (x, q) 7−→ (x, q) , (4.10a)

g̃ :M ×G −→M ′ ×G , (x, q) 7−→ (x, s(x) q) , (4.10b)

where s ∈ C∞(M,G) is any G-valued smooth function on M which does not admit an extension
to M ′. (Because G is by assumption of dimension ≥ 1, examples of such s are functions which
wildly oscillate whenever the time coordinate approaches the boundaries of (−1, 1).) Closing the
commutative diagram in (4.1) requires an extension of s to M ′, which by construction does not
exist. Hence, π : BGLoc → Loc is in general not Cauchy flabby. As a side remark, notice that
in the case where G is a discrete group (i.e. a 0-dimensional Lie group), the category fibered in
groupoids π : BGLoc → Loc is Cauchy flabby. (This is similar to the the previous example of
spin structures.) ▽
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Example 4.7. The category fibered in groupoids π : BGconLoc→ Loc presented in Example 2.8
is in general neither flabby nor Cauchy flabby. The violation of flabbiness is because, similarly to
the case of BGLoc before, principal G-bundles do not always extend along Loc-morphisms and
moreover, even if they would do, arbitrary connections do not extend as well. Cauchy flabbiness
is violated because arbitrary connections do not extend along Cauchy Loc-morphisms and, even
if they would do, this extension is not unique up to isomorphism.

Let us define the full subcategory BGconLocYM of BGconLoc whose objects (M,P,A) sat-
isfy the Yang-Mills equation on M . The corresponding category fibered in groupoids π :
BGconLocYM → Loc is not flabby (by the same arguments as above) however, under certain con-
ditions to be explained below, it is Cauchy flabby. Assuming that the global Yang-Mills Cauchy
problem is well-posed for gauge equivalence classes, as it is the case in dimension m = 2, 3, 4 and
for the usual choices of structure group G [C-B91, CS97], any object (M,P,A) in BGconLocYM

admits an extension along any Cauchy Loc-morphism f :M →M ′ by solving the Cauchy prob-
lem. It remains to study if, given two BGconLocYM-morphisms g : (M,P,A)→ (M ′, P ′, A′) and

g̃ : (M,P,A) → (M ′, P̃ ′, Ã′) such that π(g) = π(g̃) = f : M → M ′ is a Cauchy Loc-morphism,

there exists a π−1(M ′)-morphism g′ : (M ′, P ′, A′) → (M ′, P̃ ′, Ã′) closing the commutative dia-
gram in (4.1). From the well-posed Cauchy problem for equivalence classes, it follows that there

exists indeed a π−1(M ′)-morphism g′′ : (M ′, P ′, A′)→ (M ′, P̃ ′, Ã′), however it is not guaranteed
that it closes the commutative diagram in (4.1). The next steps are similar to Example 4.5. We
fix any such g′′ and consider the two parallel BGconLocYM-morphisms

(M,P,A)
g

//

ḡ:=g′′ −1◦g̃
// (M

′, P ′, A′) . (4.11)

There exists a unique s ∈ C∞(P,G)eqv (i.e. a gauge transformation) such that ḡ = g ◦ s.
We can close the commutative diagram in (4.1) if we can find s′ ∈ C∞(P ′, G)eqv satisfying
s′ ◦ g = g ◦ s. Because s and s′ are by assumption BGconLocYM-automorphisms, they have to
stabilize the corresponding connections A and A′. Assuming in the following that G is a matrix
Lie group, the stabilizing property is equivalent to the partial differential equations (PDEs)
dA(′)s(′) := ds(′) + [A(′), s(′)] = 0, where we regard s(′) as an element in Γ∞(M (′), P (′) ×Ad G)
via the standard canonical isomorphism. This is an initial-value constraint for the sigma-model-
type hyperbolic PDE δA(′)dA(′)s(′) = 0, where δA(′) is the covariant codifferential, i.e. δA(′) :=
∗−1 dA(′) ∗ with ∗ the Hodge operator. Assuming that the Cauchy problem for this equation is
well-posed, we obtain a unique s′ from s by solving the Cauchy problem, which implies that
π : BGconLocYM → Loc is Cauchy flabby. By [C-B87], this is a reasonable assumption at least for
low spacetime dimensions. Notice that in the special case where G = U(1) is Abelian, solutions
to dAs = ds = 0 are locally constant U(1)-valued functions onM and hence they admit a unique
extension along any Cauchy Loc-morphism f : M → M ′. Hence, π : BU(1)conLocYM → Loc is
Cauchy flabby for any choice of spacetime dimension m. ▽

Example 4.8. The category fibered in groupoids π : FLoc → Loc presented in Example 2.9
is in general neither flabby nor Cauchy flabby. A simple counterexample to flabbiness is as
follows: Let M $M ′ = R2 be any globally hyperbolic proper open subset of the 2-dimensional
Minkowski spacetime M ′, e.g. a diamond or a Rindler wedge. Then there is an associated Loc-
morphism f : M → M ′. We take global coordinates (t, x) on R2 in which the metric of both
M and M ′ takes the standard form dt⊗ dt − dx ⊗ dx. (We also assume that the orientations
and time-orientations are represented by dt ∧ dx and dt.) On M we choose a global coframe
e of the form e0 = dt cosh q + dx sinh q and e1 = dt sinh q + dx cosh q, where q ∈ C∞(M)
is any smooth function on M which goes to infinity towards the boundary of M ⊂ M ′. As
a consequence, q and therefore e does not admit an extension to M ′ along f : M → M ′ and
hence π : FLoc → Loc is not flabby. The same argument also shows that π : FLoc→ Loc is not
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Cauchy flabby, as we could take for example M = (−1, 1) × R $ M ′ as our globally hyperbolic
proper open subset, in which case f :M →M ′ is a Cauchy Loc-morphism. Obstructions of this
kind could be mildened by redefining the morphisms g : (M,e) → (M ′, e′) in FLoc to be pairs
g = (f,Λ), where f : M → M ′ is a smooth map and Λ ∈ C∞(M,SO0(1,m − 1)), such that
f∗e′ = Λ e, i.e. the coframes are preserved only up to a local Lorentz transformation. This is
however against the perspective taken by Fewster in his study of the spin-statistics connection
[Few16a, Few16b]. ▽

Example 4.9. The category fibered in groupoids π : LocSrc→ Loc presented in Example 2.10
is in general neither flabby nor Cauchy flabby because arbitrary functions J ∈ C∞(M) do not
admit an extension to M ′ along f : M → M ′. Choosing any natural normally hyperbolic
differential operator D : C∞ ⇒ C∞ (e.g. a Klein-Gordon operator) and defining LocSrcD to be
the full subcategory of LocSrc whose objects (M,J) satisfy the equation of motion DMJ = 0,
then the category fibered in groupoids π : LocSrcD → Loc is Cauchy flabby with a unique
extension given by solving the Cauchy problem. ▽

Example 4.10. The category fibered in groupoids π : Loc×G→ Loc presented in Example 2.11
is both flabby and Cauchy flabby because each fiber π−1(M) ≃ G is a groupoid with only one
object. Notice further that the morphism g′ closing the diagram (4.1) defining Cauchy flabbiness
is uniquely specified by this diagram. The same statements hold true for Kaluza-Klein theories
(cf. Remark 2.12) as these are special instances of the present example. ▽

Remark 4.11. As a consequence of Theorem 4.3 and our examples presented above, we observe
that the right Kan extension UπA : Loc → Alg satisfies always the causality axiom and very
often also the time-slice axiom. However, it almost never satisfies the isotony axiom, which by
Theorem 4.3 is equivalent to the very restrictive condition of π : Str→ Loc being flabby that is
satisfied only by the very special and non-representative case of “global gauge transformations”,
cf. Example 4.10. A similar violation of isotony has been observed before in models of quantum
gauge theories, see e.g. [DL12, SDH14, BDS14, BDHS14, BSS16, BBSS17, Ben15]. Thus, our
present results provide additional motivation and justification to exclude isotony from the list
of axioms of locally covariant quantum field theory [BFV03]. △

5 Homotopy Kan extension

The goal of this section is to construct toy-models of homotopical quantum field theories by
using a homotopical generalization of the right Kan extension [Cis03, Cis09, Rod14]. Instead
of ordinary observable algebras, these theories assign higher algebraic structures to spacetimes,
which we shall model concretely by differential graded algebras. As a consequence, homotopical
quantum field theories are more flexible and in particular they are able to capture detailed aspects
of gauge theories that become invisible at the level of gauge invariant observables [BSS15]. By
Remark 3.6, gauge symmetries also play an important role in our present work because one
may loosely think of UπA(M) as an algebra of gauge invariant observables, where the gauge
symmetries are the morphisms in π−1(M).

Let π : Str → Loc be a category fibered in groupoids over Loc and A : Str → Alg a functor.
In practice, A will satisfy the quantum field theory axioms of Definition 2.1, but these are
not needed for the present section. We may regard A as a functor A : Str → dgAlg with
values in the model category of differential graded algebras by regarding algebras as differential
graded algebras concentrated in degree zero (with trivial differential). For a brief introduction
to differential graded algebras and their homotopy theory we refer the reader to Appendix A.
The homotopy right Kan extension of A : Str → dgAlg along π : Str → Loc provides us with a
functor

hoRanπA : Loc −→ dgAlg (5.1)
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that may be computed “pointwise” by homotopy limits, see [Cis03, Cis09, Rod14]. Explicitly, to
any object M in Loc this functor assigns the differential graded algebra given by the homotopy
limit

hoRanπA(M) := holimdgAlg

(
M ↓ π

QM

−→ Str
A
−→ dgAlg

)
(5.2)

in the category dgAlg. Using the explicit description of holimdgAlg presented in Appendix A, we
obtain that the graded vector space underlying hoRanπA(M) is

(
hoRanπA(M)

)0
=

∏

(S,h)∈(M↓π)0

A(S) , (5.3a)

(
hoRanπA(M)

)n
=

∏

(g1,...,gn)∈(M↓π)n
gi 6=id

A
(
Q

M (t(g1))
)
, (5.3b)

for all n ∈ Z≥1, where (M ↓ π)n denotes the degree n component of the nerve of the category
M ↓ π, i.e. elements (g1, . . . , gn) ∈ (M ↓ π)n are composable n-arrows inM ↓ π, and t(g) denotes
the target of the M ↓ π-morphism g. It is convenient to regard elements a ∈ hoRanπA(M)0 as
mappings

(M ↓ π)0 ∋ (S, h) 7−→ a(S, h) ∈ A(S) (5.4)

and elements a ∈ hoRanπA(M)n, for n ≥ 1, as mappings

(M ↓ π)n ∋ (g1, . . . , gn) 7−→ a(g1, . . . , gn) ∈ A
(
Q

M (t(g1))
)

(5.5a)

on all of (M ↓ π)n, which satisfy the normalization condition

a(g1, . . . , gi−1, id, gi+1, . . . gn) = 0 , (5.5b)

for all i = 1, . . . , n. Notice that, compared to the general procedure to compute homotopy limits
in dgAlg (cf. Appendix A), some major simplifications occur in the present situation because
the functor A : Str→ dgAlg assigns differential graded algebras that are concentrated in degree
0. As a consequence, the horizontal part of the double cochain complex (A.7) is trivial. This
is reflected also by the definitions of differential and product displayed below. The differential
d : hoRanπA(M)n → hoRanπA(M)n+1 is given by

da(g1, . . . , gn+1) = A(g1)
(
a(g2, . . . , gn+1)

)

+
n∑

i=1

(−1)i a(g1, . . . , gi ◦ gi+1, . . . , gn+1) + (−1)n+1 a(g1, . . . , gn) , (5.6)

for all a ∈ hoRanπA(M)n. The product on hoRanπA(M) reads as

(a a′)(g1, . . . , gn+n′) = a(g1, . . . , gn)A(g1 ◦ · · · ◦ gn)
(
a′(gn+1, . . . , gn+n′)

)
, (5.7)

for all a ∈ hoRanπA(M)n and a′ ∈ hoRanπA(M)n
′
, and the unit element is given by

1(S, h) = 1 ∈ A(S) . (5.8)

Remark 5.1. Notice that the zeroth cohomology of the differential graded algebra hoRanπA(M)
given by (5.3) is the algebra RanπA(M) that is assigned by the ordinary right Kan extension, cf.
(3.13). In fact, an element a ∈ hoRanπA(M)0 is specified by an arbitrary sequence of elements
a(S, h) ∈ A(S), for all objects (S, h) in M ↓ π, and da = 0 is equivalent to

da(g) = A(g)
(
a(S, h)

)
− a(S̃, h̃) = 0 , (5.9)
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for all M ↓ π-morphisms g : (S, h) → (S̃, h̃), which is precisely the compatibility condition in
(3.13). It thus follows that

H0
(
hoRanπA(M)

)
= RanπA(M) , (5.10)

for each object M in Loc. △

It remains to explain how the functor hoRanπA : Loc→ dgAlg acts on morphisms: Given any
Loc-morphism f :M →M ′, the dgAlg-morphism hoRanπA(f) : hoRanπA(M)→ hoRanπA(M

′)
is specified in degree zero by

(
hoRanπA(f)(a)

)
(S′, h′) = a(S′, h′ ◦ f) , (5.11a)

for all a ∈ hoRanπA(M)0 and (S′, h′) ∈ (M ′ ↓ π)0, and in degree n ∈ Z≥1 by

(
hoRanπA(f)(a)

)
(g′1, . . . , g

′
n) = a

(
f∗(g′1, . . . , g

′
n)
)
, (5.11b)

for all a ∈ hoRanπA(M)n and composable n-arrows

(S′
0, h

′
0) (S′

1, h
′
1)

g′1oo · · ·
g′2oo (S′

n, h
′
n)

g′noo (5.12a)

in M ′ ↓ π, where the composable n-arrow f∗(g′1, . . . , g
′
n) in M ↓ π explicitly reads as

(S′
0, h

′
0 ◦ f) (S′

1, h
′
1 ◦ f)

g′1oo · · ·
g′2oo (S′

n, h
′
n ◦ f)

g′noo . (5.12b)

It is easy to check that hoRanπA(f) : hoRanπA(M)→ hoRanπA(M
′) preserves the differentials,

products and units. Using Remark 5.1, we further obtain

Proposition 5.2. The composition of the homotopy right Kan extension hoRanπA : Loc →
dgAlg with the zeroth cohomology functor H0 : dgAlg → Alg yields the ordinary right Kan
extension, i.e. RanπA = H0 ◦ hoRanπA : Loc→ Alg.

We now shall prove a generalization of Theorem 3.4, which allows us describe (up to weak
equivalence) the differential graded algebras hoRanπA(M) arising from the homotopy right Kan
extension in terms of the homotopy limit holimdgAlgA|π−1(M) of the restricted functor A|π−1(M) :
π−1(M) → dgAlg. Similarly to the non-homotopic case (cf. Section 4), this reformulation will
later be used in order to simplify the study of properties of the homotopy right Kan extension.

Let us start with working out explicitly the homotopy limit holimdgAlgA|π−1(M). Using again
Appendix A, we obtain that the graded vector space underlying holimdgAlgA|π−1(M) is

(
holimdgAlgA|π−1(M)

)0
=

∏

S∈π−1(M)0

A(S) , (5.13a)

(
holimdgAlgA|π−1(M)

)n
=

∏

(g1,...,gn)∈π−1(M)n
gi 6=id

A
(
t(g1)

)
. (5.13b)

Again, it is convenient to regard elements a ∈ (holimdgAlgA|π−1(M))
0 as mappings

π−1(M)0 ∋ S 7−→ a(S) ∈ A(S) (5.14)

and elements a ∈ (holimdgAlgA|π−1(M))
n, for n ≥ 1, as mappings

π−1(M)n ∋ (g1, . . . , gn) 7−→ a(g1, . . . , gn) ∈ A
(
t(g1)

)
(5.15a)
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on all of π−1(M)n, which satisfy the normalization condition

a(g1, . . . , gi−1, id, gi+1, . . . gn) = 0 , (5.15b)

for all i = 1, . . . , n. The differential d : (holimdgAlgA|π−1(M))
n → (holimdgAlgA|π−1(M))

n+1 is
given by

da(g1, . . . , gn+1) = A(g1)
(
a(g2, . . . , gn+1)

)

+
n∑

i=1

(−1)i a(g1, . . . , gi ◦ gi+1, . . . , gn+1) + (−1)n+1 a(g1, . . . , gn) , (5.16)

for all a ∈ (holimdgAlgA|π−1(M))
n. The product on holimdgAlgA|π−1(M) reads as

(a a′)(g1, . . . , gn+n′) = a(g1, . . . , gn)A(g1 ◦ · · · ◦ gn)
(
a′(gn+1, . . . , gn+n′)

)
, (5.17)

for all a ∈ (holimdgAlgA|π−1(M))
n and a′ ∈ (holimdgAlgA|π−1(M))

n′
, and the unit element is given

by

1(S) = 1 ∈ A(S) . (5.18)

The canonical mapping

κM : hoRanπA(M) −→ holimdgAlgA|π−1(M) (5.19a)

specified by
(
κ0M (a)

)
(S) := a(S, idM ) , (5.19b)

for all a ∈ hoRanπA(M)0 and S ∈ π−1(M)0, and
(
κnM (a)

)
(g1, . . . , gn) := a(g1, . . . , gn) , (5.19c)

for all n ∈ Z≥1, a ∈ hoRanπA(M)n and (g1, . . . , gn) ∈ π
−1(M)n, is a dgAlg-morphism.

Theorem 5.3. Let π : Str → Loc be a category fibered in groupoids (or just a fibered category)
and A : Str → Alg a functor. Then, for each object M in Loc, the dgAlg-morphism (5.19) is a
weak equivalence in the model category dgAlg.

Proof. By [Hir03, Theorem 19.6.7], it is sufficient to prove that our functor ι : π−1(M)→M ↓ π
(cf. proof of Theorem 3.4) is homotopy initial. According to [Hir03, Definition 19.6.1], the
functor ι : π−1(M) → M ↓ π is homotopy initial if for every object (S, h) in M ↓ π the nerve
of its over-category ι ↓ (S, h) is contractible as a simplicial set. We shall now show that the
category ι ↓ (S, h) has a terminal object, which by [Hir03, Proposition 14.3.14] implies that its
nerve is contractible and hence completes the proof.

Recall that objects in ι ↓ (S, h) are pairs (S′, g′), where S′ is an object in π−1(M) and
g′ : ι(S′) = (S′, idM )→ (S, h) is an M ↓ π-morphism. We may visualize objects in ι ↓ (S, h) by
morphisms of the form

(S′, idM )
g′

// (S, h) (5.20)

in M ↓ π. Using that ι : π−1(M) → M ↓ π is fully faithful, a morphism g : (S′, g′) → (S′′, g′′)
in ι ↓ (S, h) is given by a commutative triangle

(S′, idM )

g′ %%❑
❑❑

❑❑
❑❑

❑❑

g
// (S′′, idM )

g′′yyss
ss
ss
ss
ss

(S, h)

(5.21)
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in M ↓ π. By Definition 2.5, there exists a pullback of S to M along the Loc-morphism
h : M → π(S) and we make an arbitrary choice h∗ : h∗S → S of such cartesian Str-morphism.
By definition, we have that π(h∗) = h :M → π(S) and hence we obtain an M ↓ π-morphism of
the form h∗ : (h∗S, idM ) → (S, h) which defines an object in ι ↓ (S, h). Our claim is that this
object is a terminal object in ι ↓ (S, h). To prove this claim, we have to show that given any
other object (S′, g′) in ι ↓ (S, h), there exists a unique way to complete the diagram

(S′, idM )

g′ %%❑
❑❑

❑❑
❑❑

❑❑

∃!g
//❴❴❴❴❴❴❴❴❴ (h∗S, idM )

h∗yyrr
rr
rr
rr
rr

(S, h)

(5.22)

in M ↓ π. Using that π(g′) = π(h∗) = h : M → π(S), this is equivalent to completing the
Str-diagram

S′

g′
��
❅❅

❅❅
❅❅

❅❅

∃!g
//❴❴❴❴❴❴❴ h∗S

h∗
}}④④
④④
④④
④④

S

(5.23)

by a unique Str-morphism g : S′ → h∗S satisfying π(g) = idM :M →M . Since h∗ : h
∗S → S is

by construction a cartesian Str-morphism, existence and uniqueness of the sought g are ensured,
see Definition 2.3. This shows that h∗ : (h

∗S, idM )→ (S, h) is a terminal object in ι ↓ (S, h) and
completes the proof.

We will now show that the weak equivalences (5.19) may be inverted up to cochain ho-
motopies. Let us fix a cleavage on π : Str → Loc, i.e. for each object S in Str and each
Loc-morphism f : M → π(S) we make a choice of cartesian Str-morphism f∗ : f∗S → S
satisfying π(f∗) = f : M → π(S). In order to simplify some of the formulas below, we will
choose all idM ∗ : id∗MS → S to be the identity Str-morphisms idS : S → S. Given a choice
of cleavage, we can assign to each element (g1, . . . , gn) ∈ (M ↓ π)n, with n ≥ 1, an n-arrow
(gh1 , . . . , g

h
n) ∈ π

−1(M)n via the commutative diagram

(S0, h0) (S1, h1)
g1

oo · · ·
g2

oo (Sn, hn)
gn

oo

(h∗0S0, idM )

h0∗

OO

(h∗1S1, idM )

h1∗

OO

gh1

oo · · ·
gh2

oo (h∗nSn, idM )

hn∗

OO

ghn

oo

(5.24)

in M ↓ π. With these preparations, we define a dgAlg-morphism

ζM : holimdgAlgA|π−1(M) −→ hoRanπA(M) (5.25a)

by setting

(
ζ0M(a)

)
(S, h) := A(h∗)

(
a(h∗S)

)
, (5.25b)

for all a ∈ (holimdgAlgA|π−1(M))
0 and (S, h) ∈ (M ↓ π)0, and

(
ζnM(a)

)
(g1, . . . , gn) := A(h0∗)

(
a(gh1 , . . . , g

h
n)
)
, (5.25c)

for all n ∈ Z≥1, a ∈ (holimdgAlgA|π−1(M))
n and (g1, . . . , gn) ∈ (M ↓ π)n. Recalling the definition

of κM : hoRanπA(M)→ holimdgAlgA|π−1(M), see (5.19), one easily confirms that

κM ◦ ζM = idholimdgAlgA|π−1(M)
. (5.26)
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Here it is essential to use that for our choice of cleavage the pullbacks idM ∗ : id∗MS → S along
the identity morphisms idM are the identities idS. For an arbitrary choice of cleavage, equation
(5.26) just holds true up to cochain homotopy.

The other composition ζM ◦ κM is just cochain homotopic to the identity, i.e.

ζM ◦ κM − idhoRanπA(M) = ηM ◦ d + d ◦ ηM . (5.27)

The cochain homotopy

ηM : hoRanπA(M)•+1 −→ hoRanπA(M)• (5.28a)

explicitly reads as
(
η1M (a)

)
(S, h) := a(h∗) , (5.28b)

for all a ∈ hoRanπA(M)1 and (S, h) ∈ (M ↓ π)0, and

(
ηn+1
M (a)

)
(g1, . . . , gn) :=

n∑

i=0

(−1)i a(g1, . . . , gi, hi∗, g
h
i+1, . . . , g

h
n) , (5.28c)

for all n ∈ Z≥1, a ∈ hoRanπA(M)n+1 and (g1, . . . , gn) ∈ (M ↓ π)n. The verification of (5.27)
is a straightforward, but slightly lengthy, computation. We suggest the reader to explore the
pattern in low degree before attacking the full calculation.

Similarly to (3.32), we may now define a more convenient and efficient model for the homo-
topy right Kan extension by using the weak equivalences κM (5.19) and their inverses (up to
homotopy) ζM (5.25). In contrast to (3.32), our present construction does not equip the assign-
ment of differential graded algebras M 7→ holimdgAlgA|π−1(M) with a strict functorial structure,
but only with a functorial structure ‘up to homotopy’. The reason for this is that κM and ζM
are inverse to each other only up to homotopy. Concretely, the construction is as follows: We
define the assignment

hoUπA : Loc −→ dgAlg (5.29a)

by setting

hoUπA(M) := holimdgAlgA|π−1(M) , (5.29b)

for all objects M in Loc, and

hoUπA(f) := κM ′ ◦ hoRanπA(f) ◦ ζM : hoUπA(M) −→ hoUπA(M
′) , (5.29c)

for all Loc-morphisms f : M →M ′. Explicitly, the dgAlg-morphism hoUπA(f) acts in degree 0
as

(
hoUπA(f)(a)

)
(S′) = A(f∗)

(
a(f∗S′)

)
, (5.30a)

for all a ∈ hoUπA(M)0 and S′ ∈ π−1(M ′)0, and in degree n ≥ 1 as
(
hoUπA(f)(a)

)
(g′1, . . . , g

′
n) = A(f∗)

(
a(g′ f1 , . . . , g

′ f
n )

)
, (5.30b)

for all a ∈ hoUπA(M)n and (g′1, . . . , g
′
n) ∈ π−1(M ′)n, where similarly to (5.24) the n-arrow

(g′ f1 , . . . , g
′ f
n ) ∈ π−1(M)n is defined by pullback along f of the n-arrow (g′1, . . . , g

′
n) ∈ π

−1(M ′)n.

Concretely, (g′ f1 , . . . , g
′ f
n ) ∈ π−1(M)n is defined by the commutative diagram

(S′
0, f) (S′

1, f)
g′1oo · · ·

g′2oo (S′
n, f)

g′noo

(f∗S′
0, idM )

f∗

OO

(f∗S′
1, idM )

f∗

OO

g
′ f
1

oo · · ·
g
′f
2

oo (f∗S′
n, idM )

f∗

OO

g
′ f
n

oo

(5.30c)
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in M ↓ π. Due to our special choice of cleavage, (5.29) preserves identities, i.e.

hoUπA(idM ) = κM ◦ hoRanπA(idM ) ◦ ζM = κM ◦ ζM = idhoUπA(M) , (5.31)

for all objects M in Loc. However, compositions are only preserved up to homotopy, i.e. there
exists a cochain homotopy hoUπA(f

′) ◦ hoUπA(f) ∼ hoUπA(f
′ ◦ f). Indeed, using (5.27), one

finds that

hoUπA(f
′) ◦ hoUπA(f) = hoUπA(f

′ ◦ f) + γf ′,f ◦ d + d ◦ γf ′,f , (5.32a)

for all composable Loc-morphisms f :M →M ′ and f ′ :M ′ →M ′′, where

γf ′,f := κM ′′ ◦ hoRanπA(f
′) ◦ ηM ′ ◦ hoRanπA(f) ◦ ζM . (5.32b)

In the following we shall use the ‘up to homotopy’ functor (5.29) as a model for the homotopy
right Kan extension.

Remark 5.4. The differential graded algebra hoUπA(M) assigned to a spacetime M by our
model (5.29) for the homotopy right Kan extension has an interpretation in terms of groupoid
cohomology: From the explicit description of the homotopy limit, see below (5.13), we observe
that hoUπA(M) = C•(π−1(M);A) is the differential graded algebra underlying the groupoid
cohomology of π−1(M) with values in the functor A : Str → Alg. (See e.g. [Cra03] for some
background material on groupoid cohomology.) Taking cohomologies, we obtain a graded algebra
H•(hoUπA(M)) = H•(π−1(M);A), whose zeroth degree is the algebra UπA(M) assigned by the
ordinary right Kan extension (3.32) to the spacetime M . This observation suggests that the
information about the action of gauge transformations on the quantum field theory A : Str→ Alg

that is captured by the homotopy right Kan extension is more detailed than the one available
in the ordinary right Kan extension UπA : Loc→ Alg. The extra information is encoded in the
higher cohomologies Hn(hoUπA(M)) = Hn(π−1(M);A), for n ≥ 1. Unfortunately, the physical
interpretation of such higher-order information is currently not fully clear to us.

As a side remark, notice that the assignment of cohomologies M 7→ H•(hoUπA(M)) is a
strict functor, even though hoUπA is just a functor ‘up to homotopy’. In fact, by construction
the cohomology functors send cochain homotopies to identities. Observe, moreover, that in the
special case of a “global gauge group” G (cf. Example 2.11) groupoid cohomology reduces to
group cohomology, i.e. hoUπA(M) = C•(G;A) and H•(hoUπA(M)) = H•(G;A). △

Remark 5.5. From a homotopical perspective, it would be natural to refine our concept of
‘up to homotopy’ functor hoUπA : Loc → dgAlg by adding coherence conditions: Instead of
just demanding that there exists a cochain homotopy hoUπA(f

′) ◦ hoUπA(f) ∼ hoUπA(f
′ ◦ f)

controlling compositions, one should make a particular choice for every pair of composable
morphisms f and f ′ (e.g. γf ′,f given in (5.32)) and add this choice to the data defining an
‘up to homotopy’ functor. This is however just the first step towards a homotopically coherent
description: Given three composable Loc-morphisms f : M → M ′, f ′ : M ′ → M ′′ and f ′′ :
M ′′ → M ′′′, we may compare the two cochain homotopies corresponding to compositions in
different orders, i.e.

hoUπA(f
′′) ◦

(
hoUπA(f

′) ◦ hoUπA(f)
)

(5.33a)

and
(
hoUπA(f

′′) ◦ hoUπA(f
′)
)
◦ hoUπA(f) . (5.33b)

It turns out these these two cochain homotopies are homotopic by a higher cochain homotopy.
Explicitly, the difference of the two cochain homotopies is given by

γf ′′,f ′◦f + hoUπA(f
′′) ◦ γf ′,f −

(
γf ′′◦f ′,f + γf ′′,f ′ ◦ hoUπA(f)

)
= d ◦ γf ′′,f ′,f − γf ′′,f ′,f ◦ d ,

(5.34a)
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where

γf ′′,f ′,f := κM ′′′ ◦ hoRanπA(f
′′) ◦ ηM ′′ ◦ hoRanπA(f

′) ◦ ηM ′ ◦ hoRanπA(f) ◦ ζM . (5.34b)

A particular choice of such higher cochain homotopies (e.g. γf ′′,f ′,f given in (5.34b)) should be
added to the data defining an ‘up to homotopy’ functor. It is crucial to notice that the cochain
homotopies γf ′,f and higher cochain homotopies γf ′′,f ′,f have to satisfy the coherence conditions
(5.34a). Considering compositions of four and more morphisms introduces additional higher
cochain homotopies and coherence conditions, which all should be added to the definition of ‘up
to homotopy’ functor.

From the above description it becomes evident that adding coherent homotopies to our
definition of ‘up to homotopy’ functor hoUπA : Loc → dgAlg is a very cumbersome task if we
restrict ourselves to elementary categorical techniques. The right framework to systematically
address these issues lies in the theory of colored operads. (We are very grateful to Ulrich
Bunke for suggesting this operadic picture to us.) In this framework, coherent ‘up to homotopy’
functors may be naturally defined as homotopy coherent diagrams, which are algebras (in the
operadic sense) over the cofibrant replacement of the diagram operad, see e.g. [BM07]. By such
operadic techniques, in particular the homotopy transfer theorem, we can already infer that our
‘up to homotopy’ functor hoUπA : Loc→ dgAlg is a homotopy coherent diagram in the sense of
[BM07] because its ‘up to homotopy’ functoriality is transferred from the the strict functoriality
of hoRanπA : Loc→ dgAlg via the weak equivalences κM (5.19) and ζM (5.25), see (5.29).

In the next section, we shall observe that dealing with coherent versions of commutativity (in
the sense of the causality axiom) ‘up to homotopy’ leads to similar technical issues as above. See
in particular Remark 6.1 for further comments. This suggest the development of an operadic
framework for locally covariant quantum field theory and its homotopical generalization. In
this way all higher-order coherences would be automatically encoded in the framework. This
is similar to the recent factorization algebra approach to quantum field theory by Costello and
Gwilliam [CG16], however using a different colored operad that captures the causal structure of
Lorentzian spacetime manifolds. Developing such an operadic framework for locally covariant
quantum field theory is beyond the scope of the present paper, but we plan to come back to this
in future works. △

6 Homotopical properties

Let A : Str→ Alg be a quantum field theory on a category fibered in groupoids π : Str→ Loc in
the sense of Definition 2.1. In the previous section we obtained a convenient description of its
homotopy right Kan extension in terms of an ‘up to homotopy’ functor hoUπA : Loc → dgAlg

with values in the category of differential graded algebras, cf. (5.29). We will now address the
question whether hoUπA : Loc → dgAlg is a homotopical quantum field theory, i.e. whether it
satisfies homotopically meaningful generalizations of the axioms proposed in [BFV03]. We shall
focus only on the causality and the time-slice axiom because, as we have seen in Section 4,
isotony is violated for almost all of our examples of interest.

We start with the causality axiom. Given a causally disjoint Loc-diagramM1
f1
−→M

f2
←−M2,

we consider the induced Z≥0-graded commutator

[ · , · ] ◦
(
hoUπA(f1)⊗ hoUπA(f2)

)
: hoUπA(M1)⊗ hoUπA(M2) −→ hoUπA(M) , (6.1)

which is a dgVec-morphism. (Here ⊗ denotes the tensor product of differential graded vector
spaces.) Using the explicit expression (5.17) for the product on hoUπA(M), we observe that the
graded commutator [hoUπA(f1)(a),hoUπA(f2)(a

′)] vanishes only if both a and a′ are of degree
0. However, if a or a′ (or both) are of degree ≥ 1, then the graded commutator in general does
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not vanish. Hence, our ‘up to homotopy’ functor hoUπA : Loc → dgAlg does not satisfy the
original form of the causality axiom.

The fact that hoUπA : Loc→ dgAlg does not satisfy the original form of the causality axiom
is not problematic at all (even more, it should be expected), because strict commutativity is
not a homotopically meaningful concept, i.e. it is not preserved under weak equivalences in
dgVec. The homotopically meaningful replacement of the causality axiom is commutativity ‘up

to homotopy’, i.e. for each causally disjoint Loc-diagram M1
f1
−→M

f2
←−M2 there should exist a

cochain homotopy [ · , · ] ∼ 0 to the zero map. Hence, in order to prove that hoUπA : Loc→ dgAlg

satisfies causality ‘up to homotopy’, we must find

λf1,f2 :
(
hoUπA(M1)⊗ hoUπA(M2)

)•+1
−→ hoUπA(M)• , (6.2)

such that

[ · , · ] ◦
(
hoUπA(f1)⊗ hoUπA(f2)

)
= λf1,f2 ◦ d + d ◦ λf1,f2 , (6.3)

for each causally disjoint Loc-diagram M1
f1
−→M

f2
←−M2. Our goal is to construct such cochain

homotopies and thereby to show that hoUπA : Loc→ dgAlg satisfies the causality axiom ‘up to
homotopy’.

Remark 6.1. Similarly to Remark 5.5, it would be natural from a homotopical perspective
to refine this notation of causality ‘up to homotopy’ by adding the (higher) homotopies and
their coherence conditions to the data of a homotopical quantum field theory. These additional
structures would capture the homotopical information encoded in the commutation of more than
two observables arising from families of mutually causally disjoint embeddings fi :Mi →M , with
i = 1, 2, . . . , N . For example, given N = 3 and observables ai localized in Mi, these structures
relate the cochain homotopy for the 2-step commutation a1 a2 a3 → a1 a3 a2 → a3 a1 a2 (i.e.
first commuting a2 with a3 and then commuting a1 with a3) and the cochain homotopy for the
1-step commutation a1 a2 a3 → a3 a1 a2 (i.e. immediately commuting a1 a2 with a3) by a higher
cochain homotopy. An operadic point of view on locally covariant quantum field theory would
be capable to systematically address such a refined notion of causality ‘up to homotopy’ by using
cofibrant replacements of colored operads [BM07]. Interestingly, the algebraic structures we are
looking for resemble a colored operad that interpolates between the A∞ and the E∞-operad,
depending on the causal relations between subspacetimes. This will be studied and clarified in
future works.

As a side remark, notice that our present (non-coherent) notion of causality ‘up to homotopy’
is sufficiently strong to imply that the (strictly functorial) assignment of cohomologies M 7→
H•(hoUπA(M)) satisfies strict causality (in the sense of graded algebras). Hence, all information
about the homotopical quantum field theory hoUπA(M) that is contained in its cohomologies
behaves in a strictly causal way. △

Our method for establishing the cochain homotopies in (6.3) is inspired by the treatment of
the cup product in singular cohomology, see e.g. [Hat02, Proof of Theorem 3.11]. Let us first
define a dgVec-morphism

ρM : hoUπA(M) −→ hoUπA(M) , (6.4a)

which reverses the direction of an n-arrow in π−1(M) (notice that for this it is crucial that
π−1(M) is a groupoid). Explicitly, we set

(
ρ0M (a)

)
(S) := a(S) , (6.4b)
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for all a ∈ hoUπA(M)0 and S ∈ π−1(M)0, and

(
ρnM (a)

)
(g1, . . . , gn) := (−1)

n(n+1)
2 A(g1 ◦ · · · ◦ gn)

(
a(g−1

n , . . . , g−1
1 )

)
, (6.4c)

for all n ∈ Z≥1, a ∈ hoUπA(M)n and (g1, . . . , gn) ∈ π
−1(M)n. The sign factor is motivated by

the fact that n(n+ 1)/2 is the number of transpositions of adjacent elements taking the string
(1, 2, . . . , n) to the string (n, n − 1, . . . , 1). Notice that reversing twice gives the identity, i.e.
ρM ◦ ρM = idhoUπA(M). A crucial property of ρM is that it is cochain homotopic to the identity
idhoUπA(M). Let us define

βM : hoUπA(M)•+1 −→ hoUπA(M)• (6.5a)

by setting

(
β1M (a)

)
(S) := 0 , (6.5b)

for all a ∈ hoUπA(M)1 and S ∈ π−1(M)0, and

(
βn+1
M (a)

)
(g1, . . . , gn) := (−1)n

n∑

i=1

(−1)
(n−i)(n−i+1)

2 a(g1, . . . , gi−1, gi ◦ · · · ◦ gn, g
−1
n , . . . , g−1

i ) ,

(6.5c)

for all n ∈ Z≥1, a ∈ hoUπA(M)n+1 and (g1, . . . , gn) ∈ π
−1(M)n.

Lemma 6.2. The equality

ρM − idhoUπA(M) = βM ◦ d + d ◦ βM (6.6)

holds true.

Proof. In degree n = 0 the equality holds true because ρ0M = idhoUπA(M)0 and β1M = 0. Degree
n = 1 already requires a short calculation: For all a ∈ hoUπA(M)1 and g ∈ π−1(M)1,

(
(β2M ◦ d + d ◦ β1M )(a)

)
(g) =

(
β2M (da)

)
(g) = −da(g, g−1)

= −A(g)
(
a(g−1)

)
+ a(g ◦ g−1)− a(g) =

(
ρ1M (a)

)
(g)− a(g) , (6.7)

where we also have used the normalization condition a(id) = 0. In degree n ≥ 2, the equality
(6.6) can be proven with a straightforward but rather lengthy calculation using also the normal-
ization conditions a(g1, . . . , gi−1, id, gi+1, . . . , gn) = 0. As this calculation is not instructive, we
shall not spell it out in detail.

The role of ρM is to reverse the order of the product µ on hoUπA(M) when evaluated on
elements associated to causally disjoint subsets in M .

Lemma 6.3. For any causally disjoint Loc-diagram M1
f1
−→M

f2
←−M2, the equality

ρM ◦ µ ◦
(
hoUπA(f1)⊗ hoUπA(f2)

)
= µop ◦ (ρM ⊗ ρM ) ◦

(
hoUπA(f1)⊗ hoUπA(f2)

)
(6.8)

holds true, where µop is the opposite product on hoUπA(M), i.e. µop(a ⊗ a′) := a ·op a′ :=
(−1)nn′

a′ a, for all a ∈ hoUπA(M)n and a′ ∈ hoUπA(M)n
′
.
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Proof. Let a ∈ hoUπA(M1)
n and a′ ∈ hoUπA(M2)

n′
be arbitrary. Using (5.30), we obtain for

the left-hand side of (6.8)

ρM
(
hoUπA(f1)(a) hoUπA(f2)(a

′)
)
(g1, . . . , gn+n′)

= (−1)
(n+n′)(n+n′+1)

2 A(g1 ◦ · · · ◦ gn+n′)
((
hoUπA(f1)(a) hoUπA(f2)(a

′)
)
(g−1

n+n′ , . . . , g
−1
1 )

)

= (−1)
(n+n′)(n+n′+1)

2 A(g1 ◦ · · · ◦ gn+n′)
(
hoUπA(f1)(a)(g

−1
n+n′ , . . . , g

−1
n′+1)

)

× A(g1 ◦ · · · ◦ gn′)
(
hoUπA(f2)(a

′)(g−1
n′ , . . . , g

−1
1 )

)

= (−1)
(n+n′)(n+n′+1)

2 A(g1 ◦ · · · ◦ gn+n′ ◦ f1∗)
(
a(g−1 f1

n+n′ , . . . , g
−1 f1
n′+1 )

)

× A(g1 ◦ · · · ◦ gn′ ◦ f2∗)
(
a′(g−1 f2

n′ , . . . , g−1 f2
1 )

)
. (6.9)

For the right-hand side of (6.8) we obtain
(
ρM (hoUπA(f1)(a)) ·

op ρM (hoUπA(f2)(a
′))

)
(g1, . . . , gn+n′)

= (−1)n n′ (
ρM (hoUπA(f2)(a

′)) ρM (hoUπA(f1)(a))
)
(g1, . . . , gn+n′)

= (−1)n n′

ρM (hoUπA(f2)(a
′))(g1, . . . , gn′)

× A(g1 ◦ · · · ◦ gn′)
(
ρM (hoUπA(f1)(a))(gn′+1, . . . , gn+n′)

)

= (−1)n n′

(−1)
n′(n′+1)

2 (−1)
n(n+1)

2 A(g1 ◦ · · · ◦ gn′)
(
hoUπA(f2)(a

′)(g−1
n′ , . . . , g

−1
1 )

)

× A(g1 ◦ · · · ◦ gn+n′)
(
hoUπA(f1)(a)(g

−1
n+n′ , . . . , g

−1
n′+1)

)

= (−1)
(n+n′)(n+n′+1)

2 A(g1 ◦ · · · ◦ gn′ ◦ f2∗)
(
a′(g−1 f2

n′ , . . . , g−1 f2
1 )

)

× A(g1 ◦ · · · ◦ gn+n′ ◦ f1∗)
(
a(g−1 f1

n+n′ , . . . , g
−1 f1
n′+1 )

)
. (6.10)

Notice that the Str-morphism g1 ◦· · ·◦gn+n′ ◦f1∗ : f
∗
1Sn+n′ → S0 projects down via π to the Loc-

morphism f1 :M1 →M and that g1 ◦ · · · ◦gn′ ◦f2∗ : f
∗
2Sn′ → S0 projects down to f2 :M2 →M .

By hypothesis, f1 and f2 are causally disjoint and A : Str → Alg satisfies the causality axiom,
hence we can commute the two factors in the last step of (6.10) and thereby show that (6.9) is
equal to (6.10).

With these preparations we can now verify the ‘up to homotopy’ causality axiom.

Theorem 6.4. Let π : Str → Loc be a category fibered in groupoids and A : Str → Alg a
quantum field theory in the sense of Definition 2.1. Then the homotopy right Kan extension
hoUπA : Loc → dgAlg (cf. (5.29)) satisfies the causality axiom ‘up to homotopy’. Explicitly,

given any causally disjoint Loc-diagram M1
f1
−→ M

f2
←− M2, a cochain homotopy between the

induced Z≥0-graded commutator and zero (6.3) is given by

λf1,f2 :=
(
µop ◦

(
ρM ⊗ βM + βM ⊗ idhoUπA(M)

)
− βM ◦ µ

)
◦
(
hoUπA(f1)⊗ hoUπA(f2)

)
,

(6.11)

where βM is defined in (6.5) and µ(op) is the (opposite) product on hoUπA(M).

Proof. Notice that the Z≥0-graded commutator is the difference between the product and the
opposite product, i.e. [ · , · ] = µ− µop. By Lemma 6.2, we can replace µ in this expression by

µ = ρM ◦ µ− βM ◦ µ ◦ d− d ◦ βM ◦ µ . (6.12)

Composing [ · , · ] from the right with L := hoUπA(f1) ⊗ hoUπA(f2) and using Lemma 6.3, we
obtain

[ · , · ] ◦ L =
(
ρM ◦ µ− µ

op
)
◦ L− βM ◦ µ ◦ L ◦ d− d ◦ βM ◦ µ ◦ L

= µop ◦
(
ρM ⊗ ρM − id⊗ id

)
◦ L− βM ◦ µ ◦ L ◦ d− d ◦ βM ◦ µ ◦ L . (6.13)
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Using Lemma 6.2, we obtain that ρM ⊗ ρM − id⊗ id is cochain homotopic to zero, i.e.

ρM ⊗ ρM − id⊗ id = ρM ⊗ (ρM − id) + (ρM − id)⊗ id

= (ρM ⊗ βM ) ◦ d + d ◦ (ρM ⊗ βM ) + (βM ⊗ id) ◦ d + d ◦ (βM ⊗ id)

=
(
ρM ⊗ βM + βM ⊗ id

)
◦ d + d ◦

(
ρM ⊗ βM + βM ⊗ id

)
. (6.14)

In this expression ρM⊗βM and βM⊗ id are understood in terms of the tensor product of internal
homomorphisms in dgVec. Explicitly, for a ∈ hoUπA(M)n and a′ ∈ hoUπA(M)n

′
, we have that

ρM ⊗ βM (a⊗ a′) = (−1)n ρM (a) ⊗ βM (a′) and βM ⊗ id(a ⊗ a′) = βM (a)⊗ a′. (These signs are
crucial for verifying (6.14).) Inserting (6.14) into (6.13) completes the proof.

We next focus on the time-slice axiom. In the following we will always assume the category
fibered in groupoids π : Str→ Loc to be Cauchy flabby, see Definition 4.1. Let f : M →M ′ be
any Cauchy Loc-morphism. Due to Cauchy flabbiness, we may define an extension map

extf : π−1(M)0 −→ π−1(M ′)0 , S 7−→ extfS , (6.15a)

such that for all S ∈ π−1(M)0 there exists a Str-morphism

f♯ : S −→ extfS (6.15b)

with the property π(f♯) = f :M →M ′.

Lemma 6.5. Let π : Str→ Loc be a Cauchy flabby category fibered in groupoids. Then:

(i) For all Cauchy Loc-morphisms f : M → M ′ and all S ∈ π−1(M)0, there exists a unique
π−1(M)-morphism g(S,f) : S → f∗extfS such that the diagram

S

f♯
!!❇

❇❇
❇❇

❇❇
❇❇

g
(S,f)

// f∗extfS

f∗zztt
tt
tt
tt
t

extfS

(6.16)

in Str commutes.

(ii) For all Cauchy Loc-morphisms f : M → M ′ and all S′ ∈ π−1(M ′)0, there exists a (not
necessarily unique) π−1(M ′)-morphism g′(S′,f) : S

′ → extff
∗S′ such that the diagram

S′
g′
(S′,f)

// extff
∗S′

f∗S′

f∗

``❇❇❇❇❇❇❇❇❇ f♯

::✉✉✉✉✉✉✉✉✉

(6.17)

in Str commutes.

Proof. Item (i) is a direct consequence of f∗ : f∗extfS → extfS being cartesian, cf. Definition
2.3. Item (ii) follows from Cauchy flabbiness (cf. Definition 4.1) and the fact that π(f∗) =
π(f♯) = f :M →M ′.

Given any π−1(M)-morphism g : S → S̃, Cauchy flabbiness ensures existence of a π−1(M ′)-
morphism extfg : extfS → extf S̃ such that the diagram

extfS
extf g

// extf S̃

S

f♯

OO

g
// S̃

f♯

OO
(6.18)
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in Str commutes. (This follows from noticing that due to π(f♯) = π(f♯ ◦ g) = f : M → M ′

both f♯ : S → extfS and f♯ ◦ g : S → extf S̃ are extensions of S to M ′ along f .) However, the
extended morphisms extfg in (6.18) in general will not be uniquely defined by this diagram. For
proving a homotopical generalization of the time-slice axiom, we introduce a stronger version
of the Cauchy flabbiness condition ensuring that the extended morphisms are uniquely defined.
(Examples are provided at the end of this section.)

Definition 6.6. A category fibered in groupoids π : Str→ Loc is called strongly Cauchy flabby
if it is Cauchy flabby (cf. Definition 4.1) and the π−1(M ′)-morphisms g′ : S′ → S̃′ in (4.1)
are uniquely specified by this diagram, for all Cauchy Loc-morphisms f : M → M ′ and all
Str-morphisms g : S → S′ and g̃ : S → S̃′ with the property π(g) = π(g̃) = f :M →M ′.

An immediate consequence of this definition is

Corollary 6.7. Let π : Str → Loc be a strongly Cauchy flabby category fibered in groupoids.
Then the π−1(M ′)-morphism extfg : extfS → extf S̃ is uniquely specified by (6.18), for all

Cauchy Loc-morphisms f :M →M ′ and all π−1(M)-morphisms g : S → S̃. As a consequence,
we obtain

extf idS = idext
f
S , extfg1 ◦ extfg2 = extf (g1 ◦ g2) , (6.19)

for all objects S in π−1(M) and all composable 2-arrows S0
g1
←− S1

g2
←− S2 in π−1(M).

We assume from now on the strong Cauchy flabbiness condition of Definition 6.6. Given any
Cauchy Loc-morphism f :M →M ′, Corollary 6.7 allows us to define a dgAlg-morphism

ext∗f : hoUπA(M
′) −→ hoUπA(M) (6.20a)

going in the opposite direction of hoUπA(f) : hoUπA(M)→ hoUπA(M
′) (cf. (5.30)). Explicitly,

we set

(
ext∗f (a

′)
)
(S) := A(f♯)

−1
(
a′(extfS)

)
, (6.20b)

for all a′ ∈ hoUπA(M
′)0 and S ∈ π−1(M)0, and

(
ext∗f (a

′)
)
(g1, . . . , gn) := A(f♯)

−1
(
a′(extfg1, . . . , extfgn)

)
, (6.20c)

for all n ∈ Z≥1, a
′ ∈ hoUπA(M

′)n and (g1, . . . , gn) ∈ π
−1(M)n. (Here we also have used that

A : Str → Alg satisfies the time-slice axiom in the sense of Definition 2.1 in order to define
the inverse A(f♯)

−1.) Using similar techniques as in (5.27), we find that both compositions
ext∗f ◦ hoUπA(f) and hoUπA(f) ◦ ext

∗
f are cochain homotopic to the identity, i.e.

ext∗f ◦ hoUπA(f)− idhoUπA(M) = d ◦ φf + φf ◦ d , (6.21a)

hoUπA(f) ◦ ext
∗
f − idhoUπA(M

′) = d ◦ φ̄f + φ̄f ◦ d . (6.21b)

The cochain homotopies are obtained by using Lemma 6.5. (Notice that for strongly Cauchy
flabby π : Str → Loc the morphisms g′S′,f in Lemma 6.5 (ii) are unique.) Explicitly, the first
cochain homotopy is given by

(
φ1f (a)

)
(S) := a(g−1

(S,f)) , (6.21c)

for all a ∈ hoUπA(M)1 and S ∈ π−1(M)0, and

(
φn+1
f (a)

)
(g1, . . . , gn) :=

n∑

i=0

(−1)i a
(
g1, . . . , gi, g

−1
(Si,f)

, (extfgi+1)
f , . . . , (extfgn)

f
)
, (6.21d)
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for all n ∈ Z≥1, a ∈ hoUπA(M)n+1 and (g1, . . . , gn) ∈ π−1(M)n. (The arrows (extfg)
f are

defined as in (5.30c).) The second cochain homotopy explicitly reads as

(
φ̄1f (a

′)
)
(S′) := a′(g′ −1

(S′,f)) , (6.21e)

for all a′ ∈ hoUπA(M
′)1 and S′ ∈ π−1(M ′)0, and

(
φ̄n+1
f (a′)

)
(g′1, . . . , g

′
n) :=

n∑

i=1

(−1)i a′
(
g′1, . . . , g

′
i, g

′ −1
(S′

i,f)
, extf (g

′ f
i+1), . . . , extf (g

′ f
n )

)
, (6.21f)

for all n ∈ Z≥1, a
′ ∈ hoUπA(M

′)n+1 and (g′1, . . . , g
′
n) ∈ π

−1(M ′)n. This proves the following

Theorem 6.8. Let π : Str → Loc be a strongly Cauchy flabby category fibered in groupoids
and A : Str → Alg a quantum field theory in the sense of Definition 2.1. Then the homo-
topy right Kan extension hoUπA : Loc → dgAlg (cf. (5.29)) satisfies the time-slice axiom ‘up
to homotopy’. Explicitly, for any Cauchy Loc-morphism f : M → M ′, the dgAlg-morphism
hoUπA(f) : hoUπA(M) → A(M ′) is inverted by the dgAlg-morphism (6.20) up to the cochain
homotopies in (6.21).

Remark 6.9. In analogy to Remarks 5.5 and 6.1, a natural refinement of the time-slice axiom
‘up to homotopy’ would be to promote also the cochain homotopies (6.21) and their coherences
to the data defining a homotopical quantum field theory. Again, the systematic way to address
this aspect is to use colored operads. One of the main uses of the time-slice axiom in locally
covariant quantum field theory is to define the relative Cauchy evolution [BFV03, FV12]. Notice
that already our present non-operadic framework allows us to define a notion of relative Cauchy
evolution for homotopical quantum field theories because we can invert up to homotopy all
dgAlg-morphisms hoUπA(f) : hoUπA(M) → A(M ′) corresponding to Cauchy Loc-morphisms.
The homotopical relative Cauchy evolutions are then dgAlg-endomorphism of hoUπA(M) that
are invertible ‘up to homotopy’. In particular, on the level of cohomologies H•(hoUπA(M)) we
obtain strict automorphism of graded algebras. △

We conclude this section by providing some examples of strongly Cauchy flabby categories
fibered in groupoids.

Example 6.10. Let π : Str→ Loc be a Cauchy flabby category fibered in groupoids such that
for all objects M in Loc the groupoid π−1(M) is discrete (i.e. the only morphisms are identities).
Then π : Str→ Loc is also a strongly Cauchy flabby category fibered in groupoids. An example
of this situation is given by π : LocSrcD → Loc, see Example 4.9. ▽

Example 6.11. Recall from Example 4.5 that the category fibered in groupoids π : SLoc→ Loc

which describes spin structures is Cauchy flabby. It is also strongly Cauchy flabby: The extension
s′ of s constructed in Example 4.5 is unique, because both s and s′ are Z2-valued functions
(hence locally constant) and the image f(M) is homotopic to M ′ for any Cauchy Loc-morphism
f :M →M ′. ▽

Example 6.12. Under the PDE-theoretic assumptions detailed in Example 4.7, the cate-
gory fibered in groupoids π : BGconLocYM → Loc is strongly Cauchy flabby. The assump-
tions are in particular satisfied for G = U(1) and any spacetime dimension m, implying that
π : BU(1)conLocYM → Loc is strongly Cauchy flabby. ▽

Example 6.13. The category fibered in groupoids π : Loc × G → Loc (cf. Examples 2.11 and
4.10) corresponding to a “global gauge group” G is strongly Cauchy flabby. ▽
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A Differential graded vector spaces and algebras

A.1 Basics

We briefly recall some basic notions of differential graded vector spaces (i.e. cochain complexes
of vector spaces) and differential graded algebras. We denote the underlying field by K.

Definition A.1. A differential graded vector space (in non-negative degrees) is a pair (V •,dV ),
where V • = {V n}n∈Z≥0

is a family of vector spaces and dV = {dnV : V n → V n+1}n∈Z≥0
is a family

of linear maps satisfying dn+1
V ◦dnV = 0, for all n ∈ Z≥0. A morphism L : (V •,dV )→ (W •,dW ) of

differential graded vector spaces is a family of linear maps L = {Ln : V n →W n}n∈Z≥0
satisfying

dnW ◦ L
n = Ln+1 ◦ dnV , for all n ∈ Z≥0. We denote by dgVec the category of differential graded

vector spaces (in non-negative degrees).

Remark A.2. In order to simplify notations, we shall denote objects in dgVec simply by symbols
like V • suppressing the differentials dV : V • → V •+1 from the notation. Moreover, we shall
denote all differentials simply by d (without subscript and superscript) as it will be clear from
the context on which graded vector space and degree they act. △

Recall that the category dgVec is monoidal: The tensor product of two objects V • and W •

in dgVec is given by

V • ⊗W • :=
{ ⊕

i+j=n

V i ⊗W j
}
n∈Z≥0

, (A.1a)

together with the differential specified by

d(v ⊗ w) = dv ⊗ w + (−1)i v ⊗ dw , (A.1b)

for all v ∈ V i and w ∈ W j. The monoidal unit is the object I• in dgVec with I0 = K, In = 0,
for all n ≥ 1, and trivial differential d = 0.

Definition A.3. A differential graded algebra (in non-negative degrees) is a monoid object
in dgVec. More explicitly, it is an object A• in dgVec together with two dgVec-morphisms
µA• : A• ⊗A• → A• (called product) and ηA• : I• → A• (called unit), such that the diagrams

A• ⊗A• ⊗A•

idA•⊗µ
A•

��

µ
A•⊗idA•

// A• ⊗A•

µ
A•

��

A• ⊗A•
µ
A•

// A•

(A.2a)

I• ⊗A•

≃
))❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙

η
A•⊗idA•

// A• ⊗A•

µ
A•

��

A• ⊗ I•
idA•⊗η

A•
oo

≃
uu❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦

A•

(A.2b)
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in dgVec commute. A morphism κ : (A•, µA• , ηA•) → (B•, µB• , ηB•) of differential graded
algebras is a dgVec-morphism κ : A• → B• that preserves products and units, i.e. µB• ◦(κ⊗κ) =
κ ◦ µA• and ηB• = κ ◦ ηA• . We denote by dgAlg the category of differential graded algebras (in
non-negative degrees).

Remark A.4. Notice that our differential graded algebras are not assumed to be (graded)
commutative. In order to simplify notations, we shall denote objects in dgAlg simply by sym-
bols like A• suppressing the product µA• and unit ηA• from the notation. We shall often use
juxtaposition a a′ := µA•(a⊗ a′) to denote products and the symbol 1 := ηA•(1) ∈ A0 to denote
the unit element. By definition, we have the following properties

d(a a′) = (da) a′ + (−1)i a (da′) , d1 = 0 , (A.3)

for all a ∈ Ai and a′ ∈ Aj . △

We obviously have a forgetful functor

Forget : dgAlg −→ dgVec (A.4a)

that assigns to an object A• in dgAlg its underlying differential graded vector space, i.e. forgets
the product µA• and unit ηA• . The forgetful functor has a left adjoint

Free : dgVec −→ dgAlg (A.4b)

given by the free dgAlg-construction. Explicitly, given any object V • in dgVec, we have

Free(V •) :=

∞⊕

k=0

V •⊗k , (A.5)

where
⊕

denotes the coproduct in dgVec and by convention V •⊗0 = I•. The product µFree(V •)

is simply given by the identification V •⊗k ⊗ V •⊗l ≃ V •⊗(k+l) and the unit ηFree(V •) is given

by mapping I• via the identity to the component corresponding to k = 0 in (A.5). From this
explicit description, it is easy to show that we have constructed an adjunction

Free : dgVec //
dgAlg : Forgetoo (A.6)

with Forget being the right adjoint.

A.2 Model category structures

Both of our categories dgVec and dgAlg can be equipped with model category structures, see
e.g. [DS95] for a concise introduction to model categories.

Theorem A.5 ([DS95]). Define a morphism L : V • →W • in dgVec to be

(i) a weak equivalence if L induces a cohomology isomorphism H•(L) : H•(V •)→ H•(W •);

(ii) a fibration if Ln : V n → W n is surjective, for all n ∈ Z≥0;

(iii) a cofibration if L has the left lifting property with respect to all morphisms which are
fibrations and weak equivalences (i.e. all acyclic fibrations).

Then with these choices dgVec is a model category.

Theorem A.6 ([Jar97]). Define a morphism κ : A• → B• in dgAlg to be

(i) a weak equivalence if κ induces a cohomology isomorphism H•(κ) : H•(A•)→ H•(B•);
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(ii) a fibration if κn : An → Bn is surjective, for all n ∈ Z≥0;

(iii) a cofibration if κ has the left lifting property with respect to all morphisms which are
fibrations and weak equivalences (i.e. all acyclic fibrations).

Then with these choices dgAlg is a model category.

Remark A.7. Notice that in dgVec all objects are fibrant, i.e. the unique morphism V • → 0
from any object V • to the terminal object is a fibration. The same holds true for dgAlg. △

From the definition of the model structures on dgVec and dgAlg we immediately observe

Proposition A.8. The adjunction (A.6) is a Quillen adjunction, i.e. the right adjoint functor
Forget : dgAlg → dgVec preserves fibrations and acyclic fibrations. Moreover, Forget : dgAlg →
dgVec preserves weak equivalences and it even detects them, i.e., given a dgAlg-morphism κ, if
Forget(κ) is a weak equivalence in dgVec then κ is a weak equivalence in dgAlg.

A.3 Homotopy limits in dgVec

We recall how homotopy limits may be computed in the model category dgVec. For more
details we refer to [Dug, Section 16.8] and [BSS15, Appendix B]; see also [DS95, Hir03] for an
introduction to the abstract theory of homotopy (co)limits.

Let D be a small category. Recall that the nerve of D is the simplicial set {Dn}n∈N0 , where
D0 is the set of objects in D and Dn, for n ≥ 1, is the set of all composable n-arrows in D.
For n ≥ 1, we shall denote an element of Dn by an n-tuple (f1, . . . , fn) of morphisms in D such
that the source of fi is the target of fi+1 (i.e. the compositions fi ◦ fi+1 exist). The face maps
are given by composing two subsequent arrows (or throwing away the first/last arrow) and the
degeneracy maps are given by inserting the identity morphisms.

Given a functor X• : D → dgVec, which we shall interpret as a diagram of shape D in
dgVec, the homotopy limit holimdgVecX

• is an object in dgVec that may be computed by the
following three-step construction, cf. [Dug, Section 16.8] and [BSS15, Appendix B]: First, we
take the cosimplicial replacement of X• : D→ dgVec resulting in a cosimplicial object in dgVec.
Second, we assign to this cosimplicial object a double cochain complex of vector spaces via the
co-normalized Moore complex construction. Third, we define holimdgVecX

• to be the
∏
-total

complex of this double complex. The result of this construction is rather explicit and reads as
follows: The double cochain complex X•,• has components

X0,• =
∏

d∈D0

X(d)• , Xn,• =
∏

(f1,...,fn)∈Dn
fi 6=id

X(t(f1))
• , (A.7)

for n ∈ Z≥1, where t(f) denotes the target of the D-morphism f . It is very convenient to regard
elements x ∈ Xn,m as mappings

Dn ∋ (f1, . . . , fn) 7−→ x(f1, . . . , fn) ∈ X(t(f1))
m (A.8a)

on all of Dn, which satisfy the normalization conditions

x(f1, . . . , fi−1, id, fi+1, . . . fn) = 0 , (A.8b)

for all i = 1, . . . , n. The vertical differential dv : X•,• → X•+1,• in this notation reads as

dvx(f1, . . . , fn+1) = X(f1)
(
x(f2, . . . , fn+1)

)

+

n∑

i=1

(−1)i x(f1, . . . , fi ◦ fi+1, . . . , fn+1) + (−1)n+1 x(f1, . . . , fn) , (A.9a)
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for all x ∈ Xn,m, and the horizontal differential dh : X•,• → X•,•+1 is simply given by

dhx(f1, . . . , fn) = d
(
x(f1, . . . , fn)

)
, (A.9b)

for all x ∈ Xn,m, where d on the right-hand side is the differential on X(t(f1))
•. The homotopy

limit holimdgVecX
• is then the graded vector space with components

(holimdgVecX
•)k =

∏

n+m=k

Xn,m , (A.10a)

for all k ∈ Z≥0, and differential given by

dtot = dv + (−1)n dh (A.10b)

on the factor Xn,m.

It is easy to see that the assignment of the object holimdgVecX
• in dgVec to a diagram

X• : D→ dgVec of shape D is functorial, hence we obtain a homotopy limit functor

holimdgVec : dgVec
D −→ dgVec , (A.11)

where dgVecD is the category of functors from D to dgVec.

A.4 Homotopy limits in dgAlg

Let again D be a small category. The goal of this subsection is to describe the homotopy limit
functor for the model category dgAlg.

Given any diagram X• : D → dgAlg, let us forget for the moment the dgAlg-structure and
form the homotopy limit (A.10) in dgVec. On the resulting object holimdgVecX

• in dgVec we
may define a product and unit by setting

(xx′)(f1, . . . , fn+n′) := (−1)mn′

x(f1, . . . , fn) X(f1 ◦ · · · ◦ fn)
(
x′(fn+1, . . . , fn+n′)

)
, (A.12a)

for all x ∈ Xn,m and x′ ∈ Xn′,m′
, and

1(d) := 1 ∈ X(d)0 . (A.12b)

It is easy to check that the product is associative and compatible with the unit (cf. Definition
A.3). Moreover, a slightly lengthy computation shows that product and unit are also compatible
with the differential of holimdgVecX

• in the sense that

dtot(xx′) = (dtotx)x′ + (−1)n+m x (dtotx′) , dtot1 = 0 , (A.13)

for all x ∈ Xn,m and x′ ∈ Xn′,m′
. As a consequence, we may equip for any diagram X• : D →

dgAlg the differential graded vector space holimdgVecX
• with the structure of a differential graded

algebra. This dgAlg-structure is natural in the sense that given any morphism κ : X• → Y •

in dgAlgD, the dgVec-morphism holimdgVecκ : holimdgVecX
• → holimdgVecY

• preserves products

and units, hence it is a dgAlg-morphism. We thus have obtained a functor from dgAlgD to dgAlg

which we shall denote by

holimdgAlg : dgAlgD −→ dgAlg . (A.14)

Notice that due to the ‘same’ choice of weak equivalences in dgVec and dgAlg (cf. Theorems
A.5 and A.6), holimdgAlg is clearly a homotopy functor (i.e. it preserves weak equivalences) as
holimdgVec is a homotopy functor.

It remains to show that (A.14) is a homotopy limit functor for dgAlg. Using [Wal05, Theorem
2.3.7] and our Quillen adjunction from Proposition A.8, this will be the case provided that we
can verify the following properties, for all diagrams X• : D→ dgAlg:
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1. Forget
(
holimdgAlgX

•
)
= holimdgVecForget

D(X•);

2. there exists a natural dgAlg-morphism eX• : limX• → holimdgAlgX
•, where lim denotes

the ordinary categorical limit in dgAlg;

3. Forget(eX•) is the canonical dgVec-morphism limForgetD(X•)→ holimdgVecForget
D(X•).

Notice that item 1. holds true on account of our definition of holimdgAlg. For items 2.

and 3. we have to form limX• in dgAlg as well as limForgetD(X•) in dgVec. Recalling that
limits in dgAlg may be computed by first computing the limit in dgVec and then equipping the
result with an appropriate product and unit, we start with the second task and form the limit
limForgetD(X•) in dgVec. Its underlying graded vector space has components

(
limForgetD(X•)

)k
=

{
x ∈

∏

d∈D0

X(d)k : X(f)
(
x(s(f))

)
= x(t(f)) , ∀f ∈ D1

}
, (A.15a)

for all k ∈ Z≥0, where s(f) denotes the source of the D-morphism f . The differential dlim on
limForgetD(X•) is given by

dlimx(d) = d
(
x(d)

)
, (A.15b)

for all x ∈ (limForgetD(X•))k, where d on the right-hand side is the differential on X(d)•.

From (A.10), (A.7) and (A.15), we observe that there exists a natural dgVec-morphism

eForgetD(X•) : limForgetD(X•) −→ holimdgVecForget
D(X•) . (A.16a)

Explicitly, the k-th component

eForgetD(X•) :
(
limForgetD(X•)

)k
⊆ X0,k −→

(
holimdgVecForget

D(X•)
)k

=
∏

n+m=k

Xn,m

(A.16b)

is induced by the canonical inclusion

X0,k →֒
∏

n+m=k

Xn,m (A.16c)

in the cartesian product.

In order to obtain the limit limX• in dgAlg, we endow the differential graded vector space
limForgetD(X•) given in (A.15) with a suitable product and unit. Given x ∈ (limForgetD(X•))k

and x′ ∈ (limForgetD(X•))k
′
, we set

(xx′)(d) := x(d)x′(d) . (A.17a)

It is straightforward to check that this product is associative and compatible with the differential
dlim. The unit element 1 is defined as in (A.12), i.e.

1(d) := 1 ∈
(
limForgetD(X•)

)0
, (A.17b)

and it is clear that dlim1 = 0. We shall denote the resulting differential graded algebra by limX•

and note that it fulfills the universal property for the limit of X• : D→ dgAlg.

Note that eForgetD(X•) given in (A.16) is compatible with the products and units we introduced

on the source (A.17) and on the target (A.12). Hence, the dgVec-morphism eForgetD(X•) defines
a dgAlg-morphism

eX• : limX• −→ holimdgAlgX
• . (A.18)
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These eX• are natural with respect to morphisms in the functor category dgAlgD, thus showing
that the requirement of item 2. is fulfilled. By construction, Forget(eX•) coincides with the
canonical dgVec-morphism eForgetD(X•) : limForgetD(X•)→ holimdgVecForget

D(X•), as required

by item 3. Therefore, by [Wal05, Theorem 2.3.7], together with the Quillen adjunction of
Proposition A.8, the proof of the following statement is complete.

Corollary A.9. (A.14) is a homotopy limit functor for dgAlg.
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Inst. H. Poincaré Phys. Théor. 46, no. 1, 97-111 (1987).

[C-B91] Y. Choquet-Bruhat, “Yang-Mills-Higgs fields in three space time dimensions,”
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