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ABSTRACT  7 

In this paper, an analysis of the integration of a carbon capture unit and a power to fuel system for methanol synthesis with a 8 

coal power plant is presented from the energetic, environmental and economic standpoints. The study is carried out in three 9 

different sections. In the first part, the impact of the integration of a carbon capture system (CCS ) and of a power to fuel plant 10 

(PtF) for methanol production is investigated in terms of plant average efficiency, fuel consumption, CO2 emissions. In the 11 

second part, the annual fixed and variable costs of the power plant, and the annual cost of electricity (COE) are assessed for 12 

different plant configurations. Additionally, future scenarios are analyzed considering the impact of European policies on the 13 

CO2 emission’s cost, defined by the European Emission Trading System (ETS). Finally, an economic feasibility analysis of the 14 

power to fuel plant is performed and the methanol production is evaluated. Moreover, a sensitivity analysis is carried out to 15 

evaluate the impact of the most affecting parameters (electrical energy cost, the methanol selling price and the capital cost of 16 

the electrolyzer) in terms of Internal Rate of Return (IRR).    17 

Keywords: power to fuel, CO2 Sequestration and Utilization, coal power plants, economic analysis, CO2 emission trading 18 

system. 19 

NOMENCLATURE  20 

Abbreviation 21 

CEPCI Chemical Engineering Plant Cost Index 22 
CFPP Coal-fired power plant 23 
COE Cost Of Electricity 24 
CCS Carbon Capture Unit 25 
PBP Pay Back Period 26 
EU European Union 27 
EUA European Emission Allowances 28 
ETS Emission Trading System 29 
GHG   Greenhouse gas 30 
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MEA Methyl ethylamine 31 
MPC Methanol Production Cost 32 
NPV Net Present Value 33 
PEM Proton Exchange Membrane 34 
PtF  Power to Fuel 35 
RES  Renewable Energy Sources 36 
TCC  Total Capital Cost 37 
TPG  Thermochemical Power Group 38 
 39 
 40 

1. INTRODUCTION 41 

Greenhouse gas (GHG) emissions are one of the most important environmental issues of the 21st century. The largest source 42 

of GHG is carbon dioxide (CO2), whose emissions have increased in the last decades, due to anthropogenic activities, in 43 

particular, fossil fuels combustion (i.e. for electrical energy production). In order to limit the effects related to CO2 increase, 44 

the European Union (EU), promoted the Emission Trading System (ETS): the EU ETS, set up on 1st January 2005, operates in 31 45 

Countries (28 EU Countries, plus Iceland, Lichtenstein and Norway) and represents the largest world’s platform of this kind [1]. 46 

The EU ETS works on the 'cap and trade' principle. A cap is set on the total amount of certain GHGs that can be emitted by 47 

installations covered by the system: within the cap, companies receive or buy emission allowances, which they can trade with 48 

one another as needed. After each year, a company must surrender enough allowances to cover all its emissions, otherwise 49 

heavy fines are imposed. EU ETS limits emissions for more than 10,000 energy-intensive companies and airlines operating in 50 

the above-mentioned Countries.  51 

EU energy policy targets, already defined for 2020- and 2030-time horizons [2], include also higher and higher penetration of 52 

renewable energy sources (RES) and the promotion of energy efficiency. In particular, the recent increase of RES (i.e. solar and 53 

wind) has caused significant issues in the management of traditional large size power plants (e.g. coal steam power plants and 54 

natural gas combined cycles), forcing them to operate in off-design, with frequent startup/shutdown that reduce their 55 

efficiency and lifetime. Because of the above-mentioned policies, hard coal consumptions in EU 28 in the period 1990 – 2016 56 

have reduced significantly, from around 450 Mtons up to 239 Mtons; in a similar way, also lignite’s consumption has decreased 57 

in the same period, by more than 40%, compared to 1990 levels [3]. 58 

Power-to-fuel (PtF) systems can be a worthy solution for the future energy scenarios: a PtF technology concerns a process that 59 

is able to store electrical energy (i.e. produced by large size power plants) into a chemical form, to be employed in a second 60 

time [4]. The conversion of electrical energy into more convenient forms of energy carriers can represent a way to increase the 61 

efficiency of large size power plants otherwise forced to operate at partial loads and lower efficiencies due to the presence of 62 
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new kind of production plants based on RES.  Moreover, this solution allows avoiding or at least significantly reducing, the 63 

frequent shutdowns that are affecting several large size power plants.  64 

An interesting energy carrier for the PtF systems is represented by methanol (CH3OH): it presents liquid form at atmospheric 65 

conditions, that make its storage and handling easy and economic, and it is used for the synthesis of important chemical 66 

derivatives such as formaldehyde, MTBE and acetic acid [5]. 67 

Moreover methanol has excellent combustion properties: in fact, thanks to its high octane number (108 for methanol, 95 for 68 

gasoline), it allows higher pressures in the combustion chamber, with consequent efficiency increase when used within an 69 

internal combustion engine [6][7]. Specific energy applications were developed basing on Fuel Cell focusing on portable 70 

generation: in standard applications with a reformer plus a PEMFC or SOFC [8][9][10] are adopted while when a low 71 

temperature is crucial the preferred solution is a Direct Methanol Fuel Cell [11],  72 

As already described in previous publications of the authors [12][13], methanol can be produced from a mixture of hydrogen 73 

and carbon dioxide: hydrogen is produced by water electrolysis employing electrical energy and  CO2 can be sequestrated from 74 

the flue gas of traditional power plants [14][15][16][17]. This process represents an eco-friendly solution for methanol 75 

production by mitigating CO2 emissions. The catalytic reaction takes place in ranges of temperature and pressure of 250 – 300 76 

°C and 50 -100 bar, respectively on CuO/ZnO/Al2O3 as catalyzer [18][19]:  77 

OHOHCHCOH 23223 
   (1)

 78 

This work has been carried out within the contest of the EU MefCO2 (methanol fuel from CO2) project (accepted in SPIRE 79 

framework of the Horizon 2020 EU Research and Innovation program)[19]. The project’s main target is the design of an 80 

innovative methanol production technology with a low carbon footprint: the concept of the MefCO2 is the capture and the 81 

sequestration of CO2 from fossil fuel plant and its use in reaction with hydrogen, produced by water electrolysis, in order to 82 

synthesize methanol. Several academic and industrial partners are involved in the project. The main activities of the research 83 

are (i) development of innovative catalyst for the methanol reaction from H2 and CO2; (ii) development of innovative PEM 84 

electrolyser for hydrogen production; (iii) design and installation of demonstrative pilot plant and grid integration; (iv) process 85 

optimization and thermo-economic analysis of the plant considering different economic scenarios. The activities of the 86 

University of Genoa as a project partner mainly deal with the thermo-economic analysis. 87 

2. METHODOLOGY 88 

 89 
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In this paper, the integration of a Carbon Capture Unit (CCS) and a power-to-fuel (PtF) plant for methanol production with a 90 

traditional coal power plant is investigated. 91 

The analysis results are presented in different sections. 92 

 Part I – Technical Analysis: the impact of the CCS integration and of a connection of a PtF plant is investigated in terms 93 

of plant average efficiency, fuel consumption, CO2 emissions. Three different configurations are investigated, 94 

considering the CCS installation, the coupling of the coal plant with a PtF plant and the combination of the two.  95 

 Part II – COE assessment: annual cost of electricity (COE) of the different configurations are compared, considering 96 

the annual fixed and variable costs; moreover, the impact of the forecasted increase of theCO2 cost was investigated 97 

to compare the COE of the proposed solutions over the years. 98 

 PtF economic sensitivity analysis: focusing on the PtF plant for methanol production, an economic feasibility analysis 99 

is performed in order to evaluate the viability of the system in terms of methanol production cost. Moreover, a 100 

sensitivity analysis is carried out to investigate the impact of some of the most affecting parameters on the Internal 101 

Rate of Return (IRR). 102 

In the following paragraphs the main technical and economic assumption are reported. 103 

2.1 Plant Layouts, main hypotheses and technical assumptions  104 

Four different cases are analyzed and compared from the energetic, economic and environmental standpoints: 105 

• CASE 1 - Reference case: 300MW coal-fired power plant without a system for the CO2 capture. 106 

• CASE 2 - 300MW coal-fired power plant with CCS integration: a system for the carbon capture is assumed to be installed 107 

and its impact in terms of plant performance, costs and emission is investigated. 108 

• CASE 3 - 300MW coal-fired power plant with PtF plant connection: the study case including the coal power plant and the 109 

methanol plant (without the CCS system). This case is considered as a basis for comparison with Case 4. 110 

• CASE 4 - 300MW coal-fired power plant with CCS integration and PtF plant connection: it is assumed to couple a methanol 111 

production plant to the coal-fired power plant equipped with the CCS system. From the energy point of view, the PtF 112 

plant is considered as an additional user of the power plant. Instead, from the CO2 management point of view, the 113 

methanol plant represents a consumer: the power plant provides the PtF plant of the necessary amount of CO2 at zero 114 

cost. 115 

 116 

In Figure 1, a scheme of the general concept of the system under investigation is reported. 117 
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 118 

Figure 1 Concept Scheme  119 

In the following, the main system components are described. 120 

Coal Fired Power Plant (CFPP) 121 

The reference case is represented by a 300MW coal-fired power plant with a nominal efficiency of 45%. The minimum load is 122 

fixed at 25% of the nominal power [21] and the specific CO2 emission rate based on fuel consumption is assumed equal to 0.35 123 

tCO2/MWth  [22]. The main technical data of the reference plant are reported in Table 1.   124 

Table 1 Coal-fired power plant main technical data [21] [22] [23] 125 

Nominal Power 300 MW 

Nominal efficiency  45 % 

Min. Load 25 %Pmax 

Plant availability 98 % 

CO2 emission factor 0.35 tCO2/MWhth 

 126 

The dimensionless off-design curve of the power plant is reported in Figure 2. On its basis, the punctual efficiency of the plant 127 

has been calculated and consequently the fuel consumption.  128 
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 129 
Figure 2 Coal-fired power plant off-design curve [21] 130 

In Figure 3, the weekly profile of the reference plant is reported. Because of the increasing RES penetration on the national 131 

grid, the fossil-fueled power plant is forced to operate in discontinuous conditions during the day; in particular, it is forced to 132 

be shut down during weekend days when the energy demand is lower, and the RES are able to cover most of the demand. As 133 

consequence, the total operating hours of the coal-fired power plant decreases significantly with a strong negative effect on 134 

the average annual electrical efficiency. In the case under investigation, the weekly profile reported in Figure 3 is replicated for 135 

51 weeks per year with one week of out of operation for scheduled maintenance. 136 

 137 
Figure 3 Coal-fired power plant weekly profile 138 

 139 

Carbon Capture Unit (CCS) 140 

The carbon capture technology considered in present work is an amine-based absorption system using a 30% MEA solvent. 141 

The CO2 capture rate is assumed equal to 90% and the thermal and electrical energy consumptions are assumed equal to 142 
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2.9GJ/ton and 100 kWhe/ton respectively. The percentage content of CO2 in the flue gas is assumed around the 15 vol% dry 143 

[21]. In Table 2, the main technical assumptions related to the CCS are reported. 144 

Table 2 CCS Main technical assumption [24][25][26][27] 145 

CO2 capture rate  90% - 

Thermal energy requirement 2.9 GJ/ton 

Electrical energy requirement 100 kWhe/ton 

SOLVENT 30%   MEA 

Amine lean solvent loading 0.28 mol CO2/ mol MEA 

Solvent rate  25 m3/ton CO2 

MEA LOSS 0.5 kgMEA/ton CO2 

 146 

In the following section, the three different plant configurations are analyzed in detail, comparing them to the reference case 147 

(CASE 1) of a coal-fired power plant. The results are compared in terms of energy (throughout average efficiency, fuel 148 

consumption and equivalent operating hours), of global pollutant emissions (represented by CO2) and in economic terms 149 

(represented by COE), in order to determine the best configuration.  150 

Power to fuel (PtF) plant - Methanol synthesis unit 151 

The PtF plant is composed by a 100 MW system of PEM electrolyzers, producing oxygen and hydrogen, and a methanol 152 

synthesis unit with a capacity of about 84 kton/year of methanol. 153 

The scheme of the PtF section is shown in Figure 4. The hydrogen and the carbon dioxide captured from the exhaust gas of the 154 

power plant, are sent to the synthesis unit for the methanol production. The PtF plant is electrically connected to the power 155 

plant. The methanol reactor is assumed to operate constantly at nominal conditions throughout the whole year; therefore, 156 

when electrical energy from the power plant is not available, the required energy is purchased from the grid at industrial 157 

market price.  158 

 159 
Figure 4: PtF plant integration 160 

 161 
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The PtF plant is mainly composed by 100MW PEM electrolyzers system operating at 30 bar and with a specific energy 162 

consumption of about 4.7 kWh/Nm3 and a methanol synthesis unit, operating at 80 bar, which includes also the compression 163 

trains for CO2 and Hydrogen. PEM electrolysers are based on the solid polymer electrolyte concept for water electrolysis. The 164 

technology is less mature than alkaline electrolysers and mostly used for small-scale applications [28], even if several producers 165 

have recently started to develop larger size units (>1 MW for module). Key advantages are high power density and cell 166 

efficiency, provision of highly compressed and pure hydrogen and oxygen, fast response and low start-up time. The main 167 

drawbacks are the shorter lifetime and the higher costs, due to  platinum catalyst and to expensive materials for membrane. 168 

However, costs have reduced significantly in the last years and the future developments are aimed at lowering them further. 169 

In Table 3, the main technical assumptions for both the electrolyzers and the methanol synthesis unit are reported. 170 

 Table 3: PtF plant [29][30][31][32] 171 

100 MW PEM Electrolysers   

Electrical consumption 4.7 kWh/Nm3 di H2 

Pressure 30 bar 

Efficiency  75% 

PEM availability 98% 

Methanol Unit   

Working Pressure 80 bar 

Temperature 240 °C 

Recirculation factor of unreacted syngas 0.85 

Conversion efficiency 96% 

Molar H2: CO2 ratio 3:1 

 172 

2.2 Economic assumption for the Assessment of the Cost of Electricity  173 

The COE is used as a term of comparison for the different case studies evaluation. It is defined as the average annual value of 174 

the electrical energy production cost and it is calculated as the ratio between the annual electrical energy production and the 175 

annual overall cost comprising the TCC annual fraction, the annual fixed costs, and the annual variable costs. 176 

                             (2) 177 
In order to perform the economic analysis of the system, the fixed and variable costs of the power plant, the CCS system, and 178 

the PtF plant respectively have to be evaluated.  179 

Following the technical results, the different cases are evaluated and compared from the economic point of view.  For each 180 

case, fixed costs, variable costs and Cost Of Electricity (COE) are calculated.  181 

Fixed costs 182 

COE =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐶𝑜𝑠𝑡 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑙. 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 [€/𝑀𝑊ℎ]   
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Fixed costs refer to the capital cost, installation cost, and the fixed O&M costs of the Coal Fired Power Plant (CFPP), the CCS, 183 

and the PtF respectively. In Table 4, the capital cost functions used in the present study are reported. All the cost functions are 184 

the result of the extrapolation of several literature data updated to 2017 with the CEPCI coefficient. 185 

The cost functions for the power plant and the CCS system reference to the total capital cost (TCC) and include both the 186 

purchased equipment cost and the installation cost. Instead, the cost functions of the electrolyzer and the methanol unit refer 187 

to the purchased equipment costs. The TCC of the PtF plant is calculated considering a correction factor on PEC value, estimated 188 

as 2.22 [33], in order to take into proper account the additional costs related to installation and plant commissioning.  189 

Table 4 Capital cost functions [34][35][36][37][38][39]  190 

Coal-fired Power Plant  𝑇𝐶𝐶𝐶𝐹𝑃𝑃 = 20.67 ∗ 106 ∗ (𝑃𝑖𝑛𝑠𝑡[𝑀𝑊])
0.6

 

Carbon Capture Unit  𝑇𝐶𝐶𝐶𝐶𝑈 = 4.1811 ∗ 106 ∗ (𝑀𝐶𝑂2𝑛𝑜𝑚[𝑡𝑜𝑛/ℎ])
0.7

 

PEM electrolyzer 𝐶𝐶𝑃𝐸𝑀 =  1.2 ∙ 106 ∗ 𝑃[𝑀𝑊]0.85   

Methanol production unit  
𝐶𝐶𝑀𝑒𝑂𝐻 =  20.4 ∙ 103 ∗ 𝑀𝑖𝑛 [

𝑘𝑔

ℎ
]

0.65

 

 191 

As result, for the 300MW coal-fired power plant under investigation, the specific capital cost of the plant with and without the 192 

CCS resulted equal to about 2111€/kWinst and 2885 €/kWinst, respectively. 193 

The fixed O&M cost refers to costs for the plant operating that are independent by the running hours but are a function of the 194 

plant size. The Power Plant specific fixed O&M costs are assumed equal to 32€/kWinst,year, while for the CCS they are calculated 195 

as the 10% of the TCC[37]. 196 

Variable costs 197 

Variable costs are related to the operation and maintenance of the power plant (with and without the CCS) and of the PtF 198 

plant. For the power plant, they are made of the consumed fuel costs, the variable O&M costs (that depend on the operating 199 

hours and are expressed as a function of produced energy), the start-up costs (that are distinguished between cold and warm 200 

start-ups), and the costs of the CO2 emission that are evaluated as the average of the 2017 and 2018 EUA values [40].  201 

Plant lifetime 202 

In order to calculate annual costs, the TCC of the CFPP, of the CCS, and of the PtF are divided by the respective plant lifetimes, 203 

which are assumed equal to 40 years, 20 years and 20 years respectively, according to literature data. 204 

In Table 5, the main economic assumptions for the power plant and the CCS are summarized. 205 

Table 5: Main economic assumptions for CFPP and CCS [37-49] 206 
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Plant lifetime  40 years  
CCS lifetime 20  years  
Capital & Installation Costs  

Coal Plant w/o CCS 2111 €/kW_inst  
Coal Plant w CCS 2885 €/kW_inst  + 37% 

Fixed Costs    
Fixed O&M cost 32 €/kW year  
Fixed CCS cost 10% % TCICCS  

Variable Costs  
Fuel cost 12 €/MWh  
Variable O&M cost w/o CCS 3.5 €/MWh  
Variable O&M cost w CCS 8 €/MWh  + 56% 
COLD start-up (>120h of standstill) 280 €/MW   
WARM Start-up (24-120h of standstill) 160 €/MW   
CO2 emission cost 10 €/ton  

 207 

3. RESULTS 208 

3.1 Part I: Technical analysis results 209 

CASE 1 – Reference case 210 

The Coal plant capacity factor results lower than 50% and the average efficiency is about 43% (2 percentage p.ts lower than 211 

the nominal values). The weekly-shut down results in 50 warm start-ups (24-120h of standstill) while the scheduled 212 

maintenance causes one cold start-up (>120h of standstill). The “warm” and “cold” terms refer to the metal temperature of 213 

the turbine and it depends on the number of hours of the stand still period between two operating periods. The longer the 214 

standstill phase and the lower the system temperature, the higher the cost of the start-up since the start-up fuel consumption 215 

increases, the auxiliary power demand increases and also the maintenance costs grow because the thermal cycle strongly 216 

impact on the wear and tear of the components [43]. The operating cost associated to these procedures were considered in 217 

the economic assessment (Part II). In Table 4, the main performance data related to the reference plant are reported. 218 

Table 6: coal power plant main results 219 

Energy production  1302.72 GWh 

Tot fuel consumed 3015.13 GWh 

Avg. efficiency 43% % 

Capacity factor 49.8% % 

Eq. Operating hours  4343 h  

Cold start-up (>120h of standstill) 1 n. 

Warm Start-up (24-120h of 
standstill) 

50 n. 

CO2 emission 1,055,296 ton/yr 

CO2 emission rate 0.81 Ton CO2/MWhe 
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Assuming a CO2 emission factor for the hard coal-fired plant equal to 0.35 tCO2/MWhth, the average CO2 emission rate of the 220 

reference plant resulted in about 0.81 tCO2/MWhel,prod, corresponding to about 1,055 kton/year. 221 

CASE 2 – CCS integration 222 

The CCS integration entails a significant reduction in terms of nominal net power output (from 300 MW to 245 MW, about – 223 

18%) and in the nominal efficiency (from 45% to 37%, about 8 percentage points). In order to satisfy the energy demand of the 224 

CCS plant, part of the working steam is spilled from the coal plant, resulting in a reduction of the amount of electrical energy 225 

that can be produced and sold to the grid. If on the one hand, the integration of a CCS in an existing coal plant reduces the 226 

maximum power output, on the other hand, it allows for a reduction of the minimum electrical load (around 45MW) of the 227 

plant and, hence, increases the plant flexibility. 228 

Figure 5 reports the comparison between the traditional coal power plant (CASE 1) and the coal power plant equipped with 229 

CCS (CASE 2). The presence of CCS leads to a decrease in terms of energy efficiency: electrical energy production decreases of 230 

about 8% on yearly basis, while primary energy input in terms of fuel consumption is about 10% higher than in the traditional 231 

case. On the other hand, CO2 emissions are considerably reduced, allowing for a consequent saving in terms of emissions.  232 

 233 

Figure 5: Energy and environmental comparison between CASE 1 and CASE 2 234 
 235 

 236 
CASE 3 (coal plant w/o CCS + MeOH plant) 237 

CASE 3 considers the coal plant connected with the PtF plant: this study case highlights just the effect of the increase in the 238 

power plant operating hours and can be considered as a basis for comparison with Case 4: for this reason, the CO2 required by 239 

the PtF plant operation was not taken into account. The analysis shows an average efficiency of 44% (an increase of 1 240 

percentage point with respect to case 1) due to an increase of equivalent operating hours from 4343 up to 6501. Consequently, 241 

fuel consumption and CO2 emissions increase as well.  242 
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 243 
CASE 4 (coal plant with CCS + MeOH plant) 244 

Figure 6 shows the operational management of the coal-fired power plant, equipped with CCS, in case of coupling with the PtF 245 

plant for methanol synthesis: the maximum power output of the plant is 245MW due to the CCS integration; the dashed area 246 

represents the amount of electrical energy produced by the coal plant and employed to feed the electrolyzers and the other 247 

components (i.e. CCS, compressors) included in the PtF plant. Coupling the two plants represents some advantages in terms of 248 

management of the coal plant: first, weekend shutdowns and related costs are avoided; moreover, the global average 249 

efficiency increases of more than 1 percentage point. 250 

 251 

Figure 6: Week operational management of the case 4 (coal plant with CCS + MeOH plant) 252 

 253 

The annual energy production increases up to 1756 GWh and the plant operating hours increased up to 7165 hours (+47% 254 

compared to CASE 2), corresponding to a capacity factor around 82%. 255 

On the base of the above-reported assumptions, the total amount of produced methanol results 83.6 kton/year, with a carbon 256 

dioxide utilization of 119.8 kton/year and a total energy consumption of 900 GWh/year (62% from the power plant and 38% 257 

purchased from the grid). In addition, the PtF plant produces 130.6 kton/year of Oxygen that can be sold to industrial users.   258 

In Figure 7, the electrical energy management of the PtF plant is reported. 259 

 260 
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 261 

Figure 7 PtF plant electrical energy management 262 

Case comparison 263 

Figure 8 reports a comparison from both the energy and the environmental point of views of three configurations with the 264 

reference case, represented by the coal-fired power plant without CCS. In particular, the percentage variation of different 265 

parameters, such as annual average efficiency, CO2 emissions, fuel consumption and annual electrical energy production, are 266 

reported for case 2 (coal plant with CCS), case 3 (coal plant with only methanol plant), and case 4 (coal plant with CCS and 267 

methanol plant). The configuration of the case 2 results the worst option from the energy standpoint, leading to lower 268 

efficiencies and electrical energy production and to higher fuel consumption; on the other hand, it assures a significant 269 

decrease (-89%) in terms of CO2 emissions. Solution 3 (coal plant coupled to PtF plant) guarantees the best results in terms of 270 

energy production, efficiency and capacity factor, but it also implies an increase of 48% in terms of CO2 emissions, due to fuel 271 

consumption increase. The case 4 (including CCS and PtF plant coupled to the coal plant) allows for a significant reduction of 272 

CO2 emissions (-84% compared to reference case) and for an increase of energy production and therefore of the capacity factor 273 

(+35%); the annual average efficiency decreases compared to the reference case, but less than in case 2. 274 

Table 7: coal power plant main results 275 

 276 
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 277 

  Figure 8: Energy and environmental comparison, referred to CASE 1 278 
 279 

 280 

 281 

 282 

3.2 Part II: COE assessment results  283 

 284 

Figure 9 shows the costs’ distribution for the four cases. In case 1 (reference CFPP), the overall annual costs (including both 285 

fixed and variable costs) are about 79M€: the most important voice is represented by fuel costs (46%), followed by annual 286 

plant costs (20%); it is worth noting that CO2 costs are not negligible (13%), since the high amount of emissions. The warm and 287 

cold start-up costs contribution is about 3%, but, even if their direct economic impact is not so relevant, they can lead to a 288 

reduction of plant lifetime, neglected in this analysis; moreover, a cold start-up implies critical aspects in terms of management, 289 

since large size coal-fired power plants are characterized by a considerable thermal inertia [54]. In case 2 (CFPP and CCS 290 

integration), the overall annual costs increase up to around 92M€ (14%) due to the installation of the CCS that impact on both 291 

the fixed capital cost (purchase and installation) and the variable costs (O&M and fuel). On the other side, the cost of the CO2 292 

allowances decreases by about 89%, with a saving of around 9.3 M€.  293 
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 294 

Figure 9:  Annual fixed and variable cost breakdown for case 1 (reference coal-fired power plant), case 2 (coal-295 
fired plant and CCS integration), case 3 (coal-fired plant and PtF integration), case 4 (coal-fired plant and CCS – PtF 296 

integration) 297 

 298 
As regards the power to fuel plant with a capacity of about 84 ton/yr of produced methanol, purchased equipment costs of 299 

the electrolyzers and of the MeOH synthesis unit are about 60.4M€ and 11M€, respectively. The annual rate of total capital 300 

costs (including the purchase equipment cost and the installation) results equal to about 8M€.  301 

In order to compare the different cases under analysis from the economic point of view, the COE is chosen as term of 302 

comparison. Figure 10 reports the comparison between the reference case and the other three configurations in terms of COE 303 

and total annual CO2 emission.  304 

The effects of the installation of a CCS unit in the CFPP under analysis are evident: the CCS installation leads to an increase in 305 

terms of investment and O&M costs. The resulting COE for case 2 is about 21% higher than the one of the reference case (from 306 

61 €/MWh to 77 €/MWh). Considering the actual value of the ETS CO2 emission allowances cost (10 €/ton), the reduction in 307 

terms of CO2 taxation is not sufficient to balance the above-mentioned increased costs. In a similar way, comparing the case3 308 

and case 4, the COE increases of about 19.6% (from 56 to 67 €/MWh). 309 

The integration of the electrical demand of a PtF plant for MeOH synthesis allows for an increase in terms of plant’s capacity 310 

factor and operating hours, as shown in the previous section (Figure 5). Thus, the contribution of the investment cost on the 311 

COE is reduced and the COE gets lower as well.  312 
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The effect of the capacity factor increase is highlighted comparing the reference case and case 3: the COE decreases of 8%, 313 

from 61 to 56 €/MWh. In a similar way, comparing case 2 and case 4, the COE decreases by about 13% (from 77 to 67 €/MWh). 314 

It is worth noting that the installation of the PtF plant affects the COE for only 6%. 315 

 316 
Figure 10:  Economic comparison in terms of Cost Of Electricity (COE) 317 

 318 
The best solution from the economic standpoint seems to be the case 3 (Coal plant + PtF plant without CCS) showing the lowest 319 

COE (56 €/MWh). Nevertheless, this solution presents also the highest annual CO2 emissions value (about 1564kton), on the 320 

other side without CCS the CO2 necessary would not be available. Whereas, in case 4, the COE increase is compensated by a 321 

strong reduction in the CO2 emissions (about 90%). Considering the evolution of the ETS system for CO2 emissions, in the next 322 

section a further analysis is performed, in order to evaluate a next future scenario  323 

ETS Carbon price in future scenarios 324 

The results presented in the previous section show a not negligible contribution of the voice of cost related to CO2 emissions: 325 

in fact, coal-fired power plants are characterized by important emission of this kind, thus by quite significant costs. The 326 

calculations in the previous section are performed considering the average CO2 emission cost between 2017 and 2018, as 327 

reported by the ETS [1]. However, it is worth observing that this cost is expected to increase quite significantly in the next years, 328 

considering the European policies of decarbonization for the future (after 2020).  A study of the ETS reports different forecast 329 

scenarios about the CO2 cost trend up to 2050. Based on this a sensitivity analysis is performed, analyzing the impact of the 330 

CO2 emission cost on the COE in the next future. Figure 11 reports the COE values for each analyzed cases, in different time-331 

frame: it clearly shows how the configurations without CCS would be no more feasible in the future, because of higher costs 332 

related to CO2 emissions. In particular, in case of an average cost of 31 €/ton (medium scenario for 2030), the configuration 333 
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with CCS and PtF plant would be more attractive from an economic standpoint. The break event point for which the cases 1 334 

and 4 and 3 and 4 have the same COE value, corresponds to a CO2 cost of about 18€/ton and 25€/ton, respectively.  335 

 336 
Figure 11: Economic comparison in terms of Cost Of Electricity (COE) 337 

   338 

 339 

4. POWER TO FUEL PLANT ECONOMIC FEASIBILITY STUDY AND SENSITIVITY ANALYSIS  340 

In this section, the economic viability of the investment for the installation of a PtF plant is investigated. In particular, the 341 

methanol production cost is evaluated for a reference scenario and, eventually, a sensitivity analysis is carried out in order to 342 

evaluate the impact of different parameters on the sustainability of the investment. 343 

It is assumed that the PtF plant is connected to the power plant that provides both the electrical energy, when available, and 344 

the required CO2. The main economic assumption for the reference scenario are reported below: 345 

 Electrical energy purchasing cost: the energy provided by the coal plant is assumed to be purchased at the COE value 346 

of 63 €/MWh corresponding to the case 4 without the installation cost of the PtF plant that here is considered 347 

separately; the energy from the grid is purchased at 70€/MWh; 348 

 Carbon dioxide cost: the CO2 necessary for the methanol production is purchased from the CFPP at the sequestration 349 

cost (15 €/ton); 350 

 Oxygen selling price: the oxygen co-produced by the electrolyzer is assumed to be sold at an estimated price of 150 351 

€/ton, which is the minimum value of high purity oxygen for medical application[12][56]; 352 

 353 
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The aim of the economic analysis is to determine the methanol production cost (MPC), in order to evaluate if the investigated 354 

solution can be viable from the economic standpoint. Two different MPCs are calculated: the first one does not consider 355 

additional revenues from O2 sale, while the second one is corrected taking into account the revenues associated with O2: 356 

𝑀𝑃𝐶 =  
𝑎𝑛𝑛𝑢𝑎𝑙 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 + 𝑎𝑛𝑛𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠

𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
    [€/𝑡𝑜𝑛]                 (3) 357 

 𝑀𝑃𝐶𝑂2𝑠𝑎𝑙𝑒 =  
𝑎𝑛𝑛𝑢𝑎𝑙 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 + 𝑎𝑛𝑛𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠 − 𝑂2 𝑠𝑎𝑙𝑒 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠

𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
    [€/𝑡𝑜𝑛]           (4) 358 

The main economic results are reported in Table 7. As far as capital costs are concerned, it is worth noting that most of the 359 

costs are due to PEM electrolyzers. Regarding variable costs, the most important voice is due to electrical energy, while CO2 360 

annual cost is considerably lower.  361 

Table 7: economic results for PtF plant 362 

Purchased equipment cost  71.3 M€ 
  Methanol unit 10.9 M€ 
  Electrolyzers 60.4 M€ 
Total Capital Investment  158.3 M€ 
  
PtF plant lifetime 20 years 
  
Fixed Annual Costs 8 M€ 
Annual Variable Costs 61 M€  

Electrical energy from Plant 35.3 M€ 
Electrical energy from Grid 23.8 M€ 
CO2purchased from plant 1.8 M€ 

  
Annual Methanol production  83.6 kton/yr 
Methanol production cost  823  €/ton  
Methanol Production Cost O2 sale 589  €/ton  

 363 

The resulting MPC is around 823 €/ton; considering selling the oxygen at 150€/ton, it decreases by about 30%. Nevertheless, 364 

considering that the actual methanol market price is 400 - 450 €/ton, the investigated solution does not seem economically 365 

viable from the PtF standpoint in the actual economic scenario. On the other hand, the advantages from the environmental 366 

point of view are not negligible: the PtF allows for an increase in the average efficiency of the power plant and recycling about 367 

120,000 ton/yr of CO2. 368 

Sensitivity Analysis 369 

In order to investigate the economic viability of PtF in some possible short-to-midterm future scenarios, a sensitivity analysis 370 

is performed considering the variation of some economic parameters that are likely to change in the next future. In particular: 371 
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 Methanol selling price: considering the use of the methanol as a fuel in automotive transportation, it is reasonable to 372 

assume that its market price at refueling station will be higher than the actual market price (around 400 €/ton as 2018 373 

average [57]). A range of variation from 400 up to 1000 €/ton is chosen. 374 

 Oxygen selling price: considering the actual price of 150€/ton [12][56]an increment of the actual value up to 200 and 375 

250 €/ton is considered. 376 

 El. Energy cost from the grid: in order to take into account different future economic scenarios, a variation of +/- 30 377 

€/MWh compared to the reference value of 70€/MWh is considered (considered range: 40 – 100 €/MWh). 378 

 PEM electrolyzers capital cost: the electrolyzers resulted in the most expensive components, but considering that it 379 

is a rather new technology, it seems likely that its development in the next future will lead to a reduction in the 380 

production cost. For this reason, a percentage reduction in the PEM electrolyzers capital cost of 30% up to 50% is 381 

considered. 382 

For each parameters’ values combination, the Internal Rate of Return (IRR) is calculated as follow: 383 

𝐼𝑅𝑅 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑛𝑒𝑡 𝑐𝑎𝑠ℎ 𝑓𝑙𝑜𝑤

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
𝑥 100 =

1

𝑃𝐵𝑃
𝑥100     [%]         (5) 384 

The IRR is an economic indicator useful to evaluate the economic viability of a plant (at a pre-feasibility level): IRR equal to 10% 385 

is considered the threshold value for the economic viability of the plant. Below, the results of the sensitivity analysis are 386 

presented and discussed. 387 

Figure 12 reports a matrix of contour graphs reporting the IRR values as a function of the methanol selling price and the 388 

electricity cost for different values of the oxygen selling price and of the percentage reduction in the PEM electrolyzers capital 389 

cost. In particular, 4 different areas are outlined: (i) the light blue area corresponding to IRR values greater than 20%; the green 390 

area corresponding to IRR values greater than 10%;(ii) the orange area corresponding to IRR values greater than 5% and 391 

represents the limit for the system viability; (iii)the red area corresponding to IRR values lower than 5% and the system results 392 

not feasible;(iv) in the end, the grey area represents “no-existing area” including the cases where the costs are greater than 393 

the revenues. 394 

Thanks to these maps, it is possible to define the minimum methanol selling price that allows a target IRR value to be achieved. 395 

For example, for the actual condition, with electricity cost fixed at 70€/MWh and the oxygen selling price equal to 150€/ton, 396 

considering the 100% of the PEM electrolyzers capital cost, the minimum price of the methanol to achieve the 10% of IRR is 397 
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about 683€/ton. However, if the capital cost was reduced by 30% or 50% (by technological development), the methanol price 398 

would decrease to 635€/MWh (-7%) and 603€/MWh (-12%) respectively. On the other hand, for 100% of PEM electrolysers 399 

capital cost and for the same value of the electricity cost from grid (70€/MWh), if the oxygen selling price increased up to 200 400 

or 250 €/ton, the minimum methanol selling price would be reduced by 11% (605 €/ton) and 23% (527€/ton), respectively. 401 

Instead, if the electricity cost increased or decreased by 30€/MWh (40€/MWh and 100€/MWh), the MeOH price would be 402 

561€/ton (-18%) and 765€/ton (+18%), respectively. 403 

The sensitivity analysis showed that the most affecting factor in terms of methanol selling price variation is the electrical energy 404 

cost, followed by the oxygen price and the percentage reduction of PEM electrolyzers capital cost; in fact, for a variation of 405 

30% of these three parameters, the MeOH price varies in a range of 13%, 10%, and 7%. 406 

 407 

Figure 12 Sensitivity analysis results 408 

 409 
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5. CONCLUSIONS 410 

In this paper, the integration of a CCS and of a PtF system for methanol production with a coal power plant was investigated 411 

from the technical, environmental and economic point of view. The study was carried out in three different steps: firstly, the 412 

impact of the CCS installation and PtF plant coupling on the coal power plant performances was analyzed comparing four 413 

different configurations. In the second part,  the annual cost of electricity (COE) of the different configurations has been 414 

assessed and compared; moreover, an analysis considering the forecasted increase of theCO2 allowances cost was investigated 415 

to compare the COE of the proposed solutions over the years. Finally, a feasibility economic analysis of the methanol plant was 416 

performed, including a sensitivity analysis to evaluate the impact of the most affecting parameters (Purchasing cors t of the 417 

electrical energy, selling price of oxygen and methanol, capital cost reduction of PEM Electrolyser driven by a further 418 

technology development). 419 

From the obtained results, the following conclusions can be drawn: 420 

 The integration of the PtF plant (cases 3 and 4) allows for an increase in terms of the capacity factor (+50% and +35% 421 

respectively), avoiding weekend shutdowns and the related operating costs; 422 

 Considering the average energy efficiency of the coal plant, the best solution is represented by case 3 (+1% thanks to 423 

the coupling with the PtF plant which increase the coal plant’s capacity factor). Cases 2 and 4 show a decrease in terms 424 

of average efficiency due to the energy consumption of the CCS (-18% and -15% respectively); 425 

 Considering the environmental aspect, cases 2 and 4 are worthy solutions, thanks to the presence of CCS that allows 426 

for a reduction of more than 80% of CO2 emissions; Instead, the case 3 come out to be the worst option in terms of 427 

carbon footprint; 428 

 In terms of COE, the integration of the CCS brings to an increase of about 21% compared to re Reference case. The 429 

lowest COE value is related to the Case 3 (56 €/MWh); however, considering the expected increase in CO2 emission 430 

cost for the next decades, the CCS’s presence will be fundamental in order to avoid an increase in terms of COE. 431 

Considering the forecasted increase in the cost of EU ETS CO2 emission allowances, since 2025 the price is expected 432 

to overcome 25 €/ton and case 4 becomes the option with the lowest COE; 433 

 Thanks to the PtF integration, the capacity factor of case 4 increases of about 47%, compared to the case 2, leading 434 

to a decrease in COE of about 13% (from 77 to 67 €/MWh). It is worth noting that the installation cost of the PtF plant 435 

affects the COE of Case 4 for only 6%.  436 
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 As regards the PtF economic feasibility analysis, the results showed that, in the actual scenario, the methanol 437 

production cost would be not fully competitive, being higher than the actual market price (around 400 €/ton); 438 

 The sensitivity analysis on the IRR of the PtF showed that the most affecting parameter is the purchasing electrical 439 

energy cost, followed by the oxygen selling cost and the reduction in the electrolyzer capital cost. 440 

 On the other hand, in a future scenario, considering a potential reduction of electrolyzers’ capital cost and of electrical 441 

energy cost, methanol production cost would be significantly reduced, up to values very close to the actual market 442 

ones. Nevertheless, assuming to employ the so produced methanol for automotive transportation, the target value 443 

should be compared to the actual diesel and gasoline costs (1.27 €/l and 1.34 €/l, respectively in Germany at refuelling 444 

station [58]) considering also the benefit in terms of emission related to the methanol combustion in ICE 445 

Finally, it is worth observing that in this study methanol is produced by recycling a significant amount of the carbon dioxide 446 

emitted by a coal-fired power plant, avoiding at the same time CO2 emissions related to traditional methods for methanol 447 

synthesis. 448 
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