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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

The aim of this paper is the analysis of a turbocharged Solid Oxide Fuel Cell (SOFC) system considering the influence of fuel  
composition variation. This is an innovative system layout based on the coupling of an SOFC stack with a turbocharger. The 
SOFC pressurization carried out with a turbocharger instead of a microturbine is a solution to combine high efficiency with 
reduced-cost plant layout. Moreover, the fuel flexibility is an essential issue to operate the system with different fuel 
compositions ranging from natural gas to biogas (considering also the CO2 removal option). 
This research activity started from the development of a steady-state system model using previously validated tools. The software 
was implemented in Matlab®-Simulink® environment considering the coupling of the different plant components. The analysis 
was started considering design conditions for a system fed by biogas (50% CH4 and 50% CO2 molar composition). Then, to reach 
fuel flexibility performance (as required for applications with renewable sources), the anodic ejector was re-designed to satisfy 
the related constraint for the Steam-to-Carbon ratio. The mentioned change in fuel composition involved also the control valves 
(bypass and/or bleed) to maintain the SOFC temperature at its set-point value, taking into account all the system constraints. 
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1. Introduction 

Considering the critical issues [1] related to the energy generation (such as pollution, global warming and fossil 
fuel future termination) high efficiency systems based on renewable sources are the main perspective for future 
energy market [2]. One of the most interesting technologies for this scenario is related to the fuel cell based systems 
[3,4]. Especially the pressurized SOFC plants have significant potential perspectives for high efficiency energy 
production [5], including applications in the distributed generation paradigm [6-8]. In details, due to their 
electrochemical reactions operated at high temperature conditions (700-1000°C depending on the cell technology), 
these systems have different advantages, such as high efficiency (up to 60% or higher potential values in hybrid 
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plants), low noise, and low emissions [9]. Moreover, the application of cogeneration (heat exchangers in the exhaust 
duct) can guarantee a further 20% increase in the total first-principle efficiency value [10]. Another important aspect 
of SOFC based systems regards the possible utilization of bio-fuels (to be converted in specific reformers) [11,12]. 
This capability allows to operate these plants as renewable-source systems, obtaining significant benefits for the 
development of zero-emission technologies. So, fuel flexibility performance is an important aspect to be considered 
for operating with different composition biogases to almost pure methane (obtained removing the CO2 amount) [13]. 

Although the mentioned positive aspects, SOFC systems (especially hybrid plants) are not ready for 
commercialization due to different issues, ranging from component integration problems [14] (including control 
system aspects not completely solved [5]) to economic issues [15]. Focusing attention on cost problems, such 
systems are not competitive for the following main issues: high cost of SOFC components, SOFC degradation 
problems and costs of the turbomachine components [16]. While different works are under development on the 
mentioned topics [17-19], this paper considers a turbocharger instead of a microturbine. Turbochargers can produce 
a significantly cost decrease [20], due to the mass manufacturing of these automotive components and the removal 
of electrical generator and power electronics. 

The aim of this paper is the presentation of (I) the new plant layout with the turbocharged SOFC, (II) the steady-
state model for both design and off-design analyses, (III) the design point of the system fed by biogas, (IV) the 
design point of a flexible system for fuel composition variation and (V) the related effect on the system performance. 
The main innovative aspects of this paper are the results related to the fuel composition change for this promising 
plant. 

 
Nomenclature 
APH Air Pre-Heater      Subscripts 
FPH Fuel Pre-Heater      AN ANode 
OGB Off-Gas Burner       ave average 
REC RECuperator       CAT CAThode 
REF REFormer       in inlet 
SOFC Solid Oxide Fuel Cell     max maximum 
 
Variables 
P power [W] 
RR Recirculation Ratio [-] 
S/C Steam to Carbon ratio [-] (defined as in [5]) 
TOT Turbine Outlet Temperature [K] 
Uf fuel utilization factor [-] (defined as in [5]) 
 efficiency [-] 

2. Plant layout 

This turbocharged SOFC system is based on the coupling of a fuel cell stack with a turbocharger. Therefore, this 
layout is able to couple the cost benefit of a mass production turbomachinery with the efficiency increase related to 
the SOFC pressurization (about +11% efficiency increasing the SOFC pressure from 1 bar to 5 bar [21]). If 
compared to a micro gas turbine hybrid system, the power is lower (10%-15%) due to the turbocharger application. 
Nevertheless, this design choice is motivated by the costs reduction of the turbomachine: few hundreds of euro 
(price for the largest turbochargers) instead of more than one thousand of euro/kW (price for microturbines) [22-24]. 

As shown in the system layout (Fig.1), the compressed air flow rate is pre-heated by the recuperator (recovering a 
part of the exhaust thermal content) and diverted to the SOFC system. Then, after a further pre-heating, the air flow 
duct is connected to the SOFC cathode inlet. On the fuel side (where biogases of different compositions are 
considered), a pre-heating is performed (using a small amount of the system exhausts) upstream of the anodic 
ejector. This component is necessary to generate an anodic recirculation for providing both thermal content and 
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2. Plant layout 

This turbocharged SOFC system is based on the coupling of a fuel cell stack with a turbocharger. Therefore, this 
layout is able to couple the cost benefit of a mass production turbomachinery with the efficiency increase related to 
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duct is connected to the SOFC cathode inlet. On the fuel side (where biogases of different compositions are 
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steam flow for the reforming reactions. Since during all operative conditions it is necessary to avoid carbon 
deposition in the anodic loop, the ejector needs to be sized properly, as discussed in previous works [5,25,26]. The 
ejector outlet duct is connected to the reformer inlet, upstream of the SOFC anodic side. The flows discharged by 
the cathodic side and the anodic loop are mixed in the Off-Gas Burner (OGB) where the fuel not converted in the 
SOFC is burned. The OGB outlet flow is used for pre-heating the cathodic side and to supply the necessary heat to 
the reformer, upstream of the turbine of the turbocharger generating the power necessary for the compressor. 
Finally, the turbine outlet flow is used in the hot side of the recuperator and the fuel pre-heating heat exchanger. 

Moreover, Fig.1 shows additional pipe lines (bleed, recirculation, bypass and wastegate) equipped with control 
valves. These devices are necessary to control the system, satisfying all the constraints in both design and off-design 
conditions (including the fuel composition change). In details, the bleed valve is used to prevent compressor surge 
and to control the cathode inlet temperature, while the wastegate to avoid turbocharger over-speed. Moreover, the 
recirculation line generates higher temperature values at the compressor inlet, and the bypass valve is able to 
manage the cathodic air flow (and, as a consequence, the SOFC temperature) [27]. 

 

  
Figure 1. Plant layout. 

3. Model description 

The model was implemented on the basis of component tools available in Matlab®-Simulink® considering a 30 
kW size system. The model of each plant component was validated against experimental data in different previous 
works [20,28-32]. While the reformer and SOFC tools were validated mainly in [28,31,32], the reliability 
verification of the other plant component models was carried out in the following works: [29] for the recuperator, 
[30] for the ejector and [20] for the turbocharger devices. 

Global inlet-outlet balances (mass and energy equations) were considered for all the components. The OGB and 
the anodic ejector models are based on a 0-D approach. Instead, the SOFC, the reformer and the heat exchangers are 
simulated using 1-D models to correctly evaluate the not-negligible property distributions [31,32]. All the 
component tools were based on the following hypotheses: (I) air composed of nitrogen, oxygen, water, carbon 
dioxide and argon, (II) anodic flow including only the most significant species (methane, carbon monoxide, carbon 
dioxide, hydrogen, nitrogen and water), (III) equilibrium conditions for reforming and shifting reactions, and (IV) 
electrochemical reactions of carbon monoxide and methane considered negligible. The SOFC model takes into 
account the thermal losses of the fuel cell, while the other components external surfaces are considered adiabatic. 

The SOFC model was implemented considering 10 finite elements with the calculation of Nernst's, losses and 
energy equations as in the following steps: (a) the consumed hydrogen is known from the current, (b) 
product/reactant balance is used to evaluate the chemical composition, (c) energy equation to evaluate the 
temperature, (d) real voltage obtained from Nernst's potential and the losses (activation, Ohmic and mass transfer). 
More details related to the SOFC model equations and assumptions are in [27,28]. 

For the other components, the following additional assumptions were considered: 
• equilibrium conditions for reforming and shifting reactions (reformer); 
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• mass, momentum and energy global equations, necessary to calculate the recirculation on the basis of 
the Venturi effect [30] (ejector); 

• calculation based on constant isentropic efficiency (fuel compressor); 
• heat exchangers performance based on the convection and conduction heat exchange equations (REC, 

APH and FPH); 
• interpolation of the performance maps (compressor and expander of the turbocharger); 
• constant coefficient for mechanical losses (turbocharger shaft). 

A further detail has to be discussed for the turbocharger model considering that standard maps were 
implemented because commercial turbochargers were considered not optimized for such SOFC application [20]. 
Moreover, these maps were scaled in agreement with the fuel cell requirements. Since it is necessary to couple the 
compressor with a larger turbine (not available matching considering the automotive applications), a preliminary 
analysis was able to show an optimal map combination for compressor and turbine. A previous work was carried out 
to identify a suitable turbocharger for such SOFC system [20]. 

4. Results 

The first set of simulations has been performed setting the model as a plant designed to operate with a 50% CH4 -
50% CO2 (molar composition) bio-fuel and maintaining the fuel utilization factor (Uf) at 0.8 and the current density 
at 0.237 A/cm2). Since fuel flexibility is an important feature of these systems, many simulations have been carried 
out varying the bio-fuel composition from 50% CH4 - 50% CO2 to a CO2 decrease up to 100% CH4. The results of 
these simulations are shown in Fig.2. 

 

  
Figure 2. Performance of a turbocharged SOFC system designed to operate with a 50% CH4 -50% CO2 bio-fuel. 

 
Increasing the percentage of CH4 the global power and efficiency of the system are higher, because of the fuel 

higher energy content. The SOFC voltage ranges from 0.715 V to 0.758 V with the same trend of the power. The 
bypass and bleed valves (see Fig.1 for the location) openings have been determined in order to comply with the 
SOFC operational constraints (SOFC maximum temperature equal to 860°C and difference between anode and 
cathode temperature lower than 250°C). Since the TOT is always lower than 650°C, a standard heat exchanger can 
be used as REC. The main issue of this system is that, for percentages of CH4 higher than 70%, the S/C at the 
reformer inlet is too low [5] (due to a too low recirculation ratio, named RR in Fig.2, that is the ratio between the 
secondary and the primary flows of the ejector [30]). Switching from the 50% to the 100% case in CH4 
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• calculation based on constant isentropic efficiency (fuel compressor); 
• heat exchangers performance based on the convection and conduction heat exchange equations (REC, 

APH and FPH); 
• interpolation of the performance maps (compressor and expander of the turbocharger); 
• constant coefficient for mechanical losses (turbocharger shaft). 

A further detail has to be discussed for the turbocharger model considering that standard maps were 
implemented because commercial turbochargers were considered not optimized for such SOFC application [20]. 
Moreover, these maps were scaled in agreement with the fuel cell requirements. Since it is necessary to couple the 
compressor with a larger turbine (not available matching considering the automotive applications), a preliminary 
analysis was able to show an optimal map combination for compressor and turbine. A previous work was carried out 
to identify a suitable turbocharger for such SOFC system [20]. 

4. Results 

The first set of simulations has been performed setting the model as a plant designed to operate with a 50% CH4 -
50% CO2 (molar composition) bio-fuel and maintaining the fuel utilization factor (Uf) at 0.8 and the current density 
at 0.237 A/cm2). Since fuel flexibility is an important feature of these systems, many simulations have been carried 
out varying the bio-fuel composition from 50% CH4 - 50% CO2 to a CO2 decrease up to 100% CH4. The results of 
these simulations are shown in Fig.2. 

 

  
Figure 2. Performance of a turbocharged SOFC system designed to operate with a 50% CH4 -50% CO2 bio-fuel. 

 
Increasing the percentage of CH4 the global power and efficiency of the system are higher, because of the fuel 

higher energy content. The SOFC voltage ranges from 0.715 V to 0.758 V with the same trend of the power. The 
bypass and bleed valves (see Fig.1 for the location) openings have been determined in order to comply with the 
SOFC operational constraints (SOFC maximum temperature equal to 860°C and difference between anode and 
cathode temperature lower than 250°C). Since the TOT is always lower than 650°C, a standard heat exchanger can 
be used as REC. The main issue of this system is that, for percentages of CH4 higher than 70%, the S/C at the 
reformer inlet is too low [5] (due to a too low recirculation ratio, named RR in Fig.2, that is the ratio between the 
secondary and the primary flows of the ejector [30]). Switching from the 50% to the 100% case in CH4 
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concentration, the RR is decreasing due to the pressure decrease at the ejector inlet (necessary to obtain the required 
fuel mass flow rate).  Moreover, the mass fraction of CH4 at the SOFC inlet is greater with higher percentages of 
CH4 in the fuel, causing a more significant fuel cell internal reforming. Thus, the anodic ejector has been re-
designed to correctly operate with a 100% CH4 fuel and a new set of simulations, whose results are shown in Fig.3, 
has been performed (Uf always maintained at 0.8 and the current density at 0.237 A/cm2). 

 

  
Figure 3. Performance of a turbocharged SOFC system designed to operate with a 100% CH4 bio-fuel. 

 
Re-designing the ejector to have a significant RR increase, the S/C is higher than 1.8 (operational limit reported 

in [5]) for each considered bio-fuel composition. In addition, the mass fraction of CH4 at the SOFC inlet is much 
lower than its values in the previous configuration. The RR trend of Fig.3 is the opposite in comparison of what 
reported in Fig.2, because in this case the primary nozzle is choked, differently from the subsonic behaviour 
considered for the Fig.2 case (see [30] for the momentum equation responsible of the RR trend). Like in the former 
set of simulations, the global power and efficiency of the system increase for higher percentages of CH4. However, 
their values are slightly lower. The SOFC voltage ranges from 0.713 V to 0.741 V with the same trend of the power. 
All the SOFC operative limits are respected thanks to the regulation of the bypass and bleed valves and the TOT is 
kept under 650°C.  

5. Conclusions 

The model of the turbocharged SOFC system developed by the Thermochemical Power Group of the University 
of Genoa has been used to study the plant performance varying the fuel composition. This analysis showed that, 
using an ejector designed to operate with a 50% CH4 -50% CO2 bio-fuel, the fuel flexibility of the system is limited 
(70% is the maximum CH4 acceptable molar fraction). Instead, using an ejector designed to operate with a 100% 
CH4 fuel, the system operative constraints are satisfied for each fuel composition in the range of 100-50% CH4 
molar fraction. The values of global power and efficiency, however, are slightly lower (2-3% decay). 
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concentration, the RR is decreasing due to the pressure decrease at the ejector inlet (necessary to obtain the required 
fuel mass flow rate).  Moreover, the mass fraction of CH4 at the SOFC inlet is greater with higher percentages of 
CH4 in the fuel, causing a more significant fuel cell internal reforming. Thus, the anodic ejector has been re-
designed to correctly operate with a 100% CH4 fuel and a new set of simulations, whose results are shown in Fig.3, 
has been performed (Uf always maintained at 0.8 and the current density at 0.237 A/cm2). 

 

  
Figure 3. Performance of a turbocharged SOFC system designed to operate with a 100% CH4 bio-fuel. 

 
Re-designing the ejector to have a significant RR increase, the S/C is higher than 1.8 (operational limit reported 

in [5]) for each considered bio-fuel composition. In addition, the mass fraction of CH4 at the SOFC inlet is much 
lower than its values in the previous configuration. The RR trend of Fig.3 is the opposite in comparison of what 
reported in Fig.2, because in this case the primary nozzle is choked, differently from the subsonic behaviour 
considered for the Fig.2 case (see [30] for the momentum equation responsible of the RR trend). Like in the former 
set of simulations, the global power and efficiency of the system increase for higher percentages of CH4. However, 
their values are slightly lower. The SOFC voltage ranges from 0.713 V to 0.741 V with the same trend of the power. 
All the SOFC operative limits are respected thanks to the regulation of the bypass and bleed valves and the TOT is 
kept under 650°C.  

5. Conclusions 

The model of the turbocharged SOFC system developed by the Thermochemical Power Group of the University 
of Genoa has been used to study the plant performance varying the fuel composition. This analysis showed that, 
using an ejector designed to operate with a 50% CH4 -50% CO2 bio-fuel, the fuel flexibility of the system is limited 
(70% is the maximum CH4 acceptable molar fraction). Instead, using an ejector designed to operate with a 100% 
CH4 fuel, the system operative constraints are satisfied for each fuel composition in the range of 100-50% CH4 
molar fraction. The values of global power and efficiency, however, are slightly lower (2-3% decay). 
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