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Abstract. The expected value of some complex valued random vectors is computed by means
of the indicator function of a designed experiment as known in algebraic statistics. The general
theory is set-up and results are obtained for finite discrete random vectors and the Gaussian random
vector. The precision space of some cubature rules/designed experiments is determined.
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1. Introduction

Evaluations of integrals is a recurrent task in statistics and probability for exam-
ple when computing marginal distributions, in the analysis of contingency tables, when
estimating the moments of some known distribution or when evaluating the marginal like-
lihood integrals in Bayesian inference, spectral analysis of time series [1] and probability.
More than in statistics, complex valued random vectors and their integration find applica-
tion in many other fields such as electromagnetism and quantum mechanics, and largely
in digital communication [11] and signal processing (e.g. [17] and for a setting similar to
ours [16]). Interestingly the usefulness of complex random vectors has also been argued in
actuarial science [9] besides time series analysis. An introduction to the statistical analysis
based on complex Gaussian distributions is given in [8] and a recent paper on second or-
der estimation with complex-valued data focused on digital signal processing can be found
in [10].

In this paper we address the problem of computing the expected value with respect to
a generic probability measure λ, of a function g defined on Gk, for suitable space G. The
measure λ could be discrete or continuous. Specific results are given for the multivariate
complex Gaussian distributions.
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The expected value of g is approximated by an interpolatory cubature rule of the form∫
Gk
g dλ =

∑
d∈D

wdg(d) +R(g)

where D is a finite set giving the cubature nodes, the {wd}d∈D are called weights and R(g)
is the error committed when approximating the integral with the finite sum.

The algebraic statistics theory of design of experiments allows, when G = C, the ex-
ploitation of the so-called fractional factorial designs as sets of nodes. In such a framework
a suitable choice for the coordinates of the nodes is the m-th roots of the unity, m ∈ Z≥0,
see [14].

The weights {wd}d∈D are obtained from a vectorial basis of interpolator polynomials.
A special basis is the basis of the quotient space C[z1, . . . , zk]/I(D), where I(D) is the
polynomial ideal of D, see [13].

Given a set of nodes and weights, it is of interest to determine classes of functions g
for which the error is zero. This set is called the precision space of the cubature rule.
Quadrature rules (i.e. bi-dimensional cubature rules) with complex valued nodes have
been studied e.g. in [12]. Here we work in a multi-dimensional setting.

Our work unveils a connection between cubature rules and design of experiments which,
to our knowledge, has been unnoticed so far in the literature. We find this connection
somewhat natural because both in cubature rule theory and design of experiment theory
a key point is to determine a suitable finite set of points D and their weights {wd}d∈D for
achieving some specific task, although this can be different between the two theories and
also within them. Another common task to the two theories is, given D and {wd}d∈D, find
their range of applicability, e.g. power of estimation, precision space.

This paper deals with this second task and it does so by the synergic use of tools
and techniques from commutative algebra, numerical analysis and algebraic statistics. In
particular, some results in [3, 5] are generalised to the complex case. The link between the
above cubature problem and the algebraic statistics theory of fractional factorial design
of experiments is made through the representation of a fractional factorial experiment as
a polynomial indicator function [14]. This is similar to [6] which instead unearthed the
connection between Markov bases for contingency tables and design of experiments.

In Section 4.1 we focus our attention on the special case with equal weights and we
obtain some specific results for the Gaussian density in Section 4.2. While in Section 2
we provide necessary and sufficient conditions for obtaining such cubature rules and we
analyse their precision space, that is the vector space of polynomials p whose expected
value is equal to

∑
d∈D wdfp(d), namely with zero error R(p). The weights are found in

Section 3.

2. Interpolatory rules

Let λ be a measure on Ck with finite moments (at least up to a certain degree) and g
be a complex integrable function, g : Ck → C. Let D ⊂ Ck be a set with n elements and
let w ∈ Cn be the vector [wd]d∈D.
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A cubature rule (D, w) is a formula of the type∫
Ck
g dλ =

∑
d∈D

wd g(d) +RD,w(g)

where the sum provides an approximation to the integral and RD,w is the respective error.
The wd’s are called the weights and the elements of D the nodes of the cubature rule.

Let C[z1, . . . , zk] be the ring of polynomials with complex coefficients in the indetermi-
nates z1, . . . , zk and let P be a set of polynomials contained in C[z1, . . . , zk]. A cubature
rule (D, w) is exact for P if for all elements p of P∫

Ck
p dλ =

∑
d∈D

wd p(d)

or, equivalently, if RD,w(p) = 0.

A cubature rules (D, w) is called interpolatory if it is exact for a set P of interpolatory
polynomials over D. This definition generalises the definition of univariate interpolatory
quadrature rules, where P is the set of univariate polynomials with degree strictly lower
than the cardinality of D, that is the set of the interpolatory polynomials over D [7].

In this paper, given a set of nodes D, we only consider sets of polynomials P such that,
for any function g : Ck → C, there exists a unique interpolatory polynomial pg,D ∈ P with
g(d) = pg,D(d) for all d ∈ D. The pair (D,P) is called correct. For instance, the pair
(D,P) is correct if D = {d1, . . . , dn} ⊂ C and P = SpanC (xα | α = 0, . . . , n− 1).

Let α ∈ Zk≥0, let zα = zα1
1 . . . zαkk be a monomial in the indeterminates z1, . . . , zk and

let T =
{
zα | α ∈ Zk≥0

}
be the set of all monomials. Let S ⊂ T be a set of monomials

such that each p ∈ P can be expressed as p =
∑

s∈S css, cs ∈ C, that is P is a vectorial
space over C with basis S. We denote P = SpanC(S).

An interpolatory polynomial pg ∈ SpanC(S) of a function g over D is such that pg(d) =
g(d), that is

∑
s∈S css(d) = g(d), for each d ∈ D. Denoting by XD,S = [s(d)]d∈D,s∈S the

evaluation matrix of the elements of S at D and by [g(d)]d∈D the evaluation vector of g
at D, the coefficient vector c = [cs]s∈S of the polynomial pg satisfies the linear system
XD,Sc = [g(d)]d∈D. If the pair (D,P) is correct, for each function g, that is for each vector
[g(d)]d∈D, there exists a unique coefficient vector c solution of this linear system, and so
the pair is correct if and only if XD,S is a square non singular matrix, that is if and only
if #S = #D and the evaluation vectors [s(d)]d∈D are linear independent vectors.

In the following we consider cubature rules (D, w) which are interpolatory with re-
spect to a polynomial set P such that the pair (D,P) is correct. A correct pair (D,P)
can be obtained considering C-vector spaces P which are isomorphic to the quotient space
C[z1, . . . , zk]/I(D), that is considering monomial sets S isomorphic to a basis of the quo-
tient space C[z1, . . . , zk]/I(D). There exist algebraic algorithms to compute monomial
bases of such a vector space, for instance the Buchberger-Möller algorithm [2].
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By definition, an interpolatory cubature rule (D, w) is exact for each polynomial in P
but, in general, there exist polynomials p /∈ P such that RD,w(p) = 0. In order to study
the set of these polynomials, we introduce the notions of precision basis and precision
space.

A finite monomial set BD,w ⊂ T is a precision basis for (D, w) if∫
Ck
zα dλ =

∑
d∈D

wdz
α(d) for all zα ∈ BD,w and

∫
Ck
zα dλ 6=

∑
d∈D

wdz
α(d) for all zα /∈ BD,w .

The precision basis is the largest set of monomials for which (D, w) is exact. The precision
space of (D, w) is the C-vector space Span(BD,w) generated by BD,w.

In the univariate case the notion of precision degree of a quadrature rule is used. It
is the maximal degree of the elements of P on which the quadrature rule is exact, see
e.g. [7]. For example, if D is a subset of R of cardinality n and if P is the interpolation
space generated by {1, x, x2, . . . , xn−1}, the precision degree is 2n−1. So that the precision
space of Gaussian quadrature rule is generated by BD,w = {1, x, x2, . . . , x2n−1}.

Generalising the notion of precision degree to the multivariate case, we define the

precision degree of (D, w) as the maxzα∈BD,w

{∑k
i=1 αi

}
.

3. Weights for points in C-vector space with basis S

Let D be a set of n nodes in Ck, let S ⊂ T be a set of monomials in C[z1, . . . , zk] and
let P = SpanC(S) be the C-vector space of polynomials in C[z1, . . . , zk] generated by S
such that (D,P) is correct.

The following proposition gives the vector of weights wS that makes (D, w) exact on
P, that is the weights wS of the interpolatory cubature rule on P.

Proposition 3.1. Let P be a C-vector space with basis S with #S = #D, and let (D,P)
be correct. Let XD,S = [s(d)]d∈D,s∈S be the evaluation matrix of the elements of S over D.
The cubature rule (D, wS) is exact on P if and only if

wS =
(
Xt
D,S
)−1

[∫
Ck
s dλ

]
s∈S

.

where Xt
D,S is the transposed matrix of XD,S. Furthermore, the weights wS are unique.

Proof. Each p ∈ P can be written uniquely as

p =
∑
s∈S

css , for cs ∈ C ,

and so
[p(d)]d∈D = XD,S [cs]s∈S ,

that is
[cs]s∈S = X−1

D,S [p(d)]d∈D .
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It follows that, for each p ∈ P,∫
Ck
p dλ =

∫
Ck

∑
s∈S

cs s dλ =
∑
s∈S

cs

∫
Ck
s dλ =

[∫
Ck
s dλ

]t
s∈S

[cs]s∈S

=

[∫
Ck
s dλ

]t
s∈S

X−1
D,S [p(d)]d∈D

The cubature rule (D, wS) is exact on P if and only if
∫
Ck p dλ = wtS [p(d)]d∈D for each

p ∈ P, that is if and only if[∫
Ck
s dλ

]t
s∈S

X−1
D,S [p(d)]d∈D = wtS [p(d)]d∈D

or, equivalently,

wS =
(
Xt
D,S
)−1

[∫
Ck
s dλ

]
s∈S

+ ρ

where ρ is orthogonal to each evaluation vector [p(d)]d∈D. In particular, ρ is orthogonal
to [s(d)]d∈D, s ∈ S, that is to the columns of XD,S . Since XD,S is a square non singular
matrix, ρ is the null vector and so the vector wS of the weights of the cubature rule
(D,Span(S)) is unique.

Remark 3.2. The weights wS do not change, if a different basis T for the C-vector space
P = Span(S) is chosen. Each monomial t ∈ T can be expressed as t =

∑
s∈Smt,ss, and

so, denoting by M = [mt,s]t∈T,s∈S , we have, by linearity,[∫
Ck
t dλ

]
t∈T

= M

[∫
Ck
s dλ

]
s∈S

.

Moreover, the evaluation matrix XD,T of the elements of T over D can be written as
XD,T = XD,SM

t. Let wT be the weights computed using D and T . From Proposition 3.1
we have

wT =
(
Xt
D,T
)−1

[∫
Ck
t dλ

]
t∈T

=
(
MXt

D,S
)−1

M

[∫
Ck
s dλ

]
s∈S

=
(
Xt
D,S
)−1

[∫
Ck
s dλ

]
s∈S

= wS .

4. C-Fractional factorial designs

In this section we consider interpolatory cubature rules with set of nodes D, whose
elements are k-uple of m-th roots of the unit, and with interpolatory space P, the C-vector
space generated by a monomial set S ⊂ T, such that the pair (D,P) is correct.

We briefly recall some topics about of the roots of the unity. Let m ∈ Z≥0 and
Ωm = {ω0, . . . , ωm−1} be the set of the m-th roots of the unity, ωj = exp(−i(2π/m)j),
where i =

√
−1 is the imaginary unity.
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Denoting, for j ∈ Z, by [j]m the residue of j mod m and by j the class [m − j]m
we have that, given c ∈ Z and ωj , ωi ∈ Ωm, it holds ωcj = ω[cj]m , ωiωj = ω[i+j]m , and
the complex conjugate of ωj is ωj = ωj . Furthermore, we denote by Zm the set of all

congruence classes of the integers for a modulus m, and by Zkm its cartesian product.
We consider a set of n nodes D contained in Ωk

m ⊂ Ck. Let f be the indicator function
of D over Ωk

m, defined as f(d) = 1, for d ∈ D, and f(d) = 0, for d ∈ Ωk
m \ D.

Let Sm = {zα : α ∈ Zkm} be the monomial basis of the C-vector space which is iso-
morphic to the quotient space C[z1, . . . , zk]/I(Ωk

m). As presented in [14], by interpolating
the values [f(d)]d∈Ωkm

with polynomials in Span(Sm), we obtain a representation of the
indicator function f as follows

f =
∑
α∈Zkm

bαz
α where bα =

1

mk

∑
d∈D

zα(d) (1)

and, since α = [α1, . . . , αk] ∈ Zkm, α = [m− α1, . . . ,m− αk].
Special subsets D of Ωk

m are the regular fractions, where the evaluation of two mono-
mials zα and zβ, α and β in Zkm, are orthogonal vectors or proportional to 1n vectors. The
absolute values of the non-null coefficients of the indicator function of a regular fraction
are all equal to #D/mk.

Let (D, wS) be the cubature rule with nodes D ⊂ Ωk
m, S ⊂ Sm and weights wS =

(Xt
D,S)−1

[∫
Ck s dλ

]
s∈S .

In the next we consider non-negative and normalized weights, i.e. such that wtS1n = 1,
where 1n is a n-vector with elements equal to 1, and the weights are all equal, that is
wS = 1

n1n.

4.1. Equal weights

If the weights are non-negative, normalized and all equal, then w = 1
n1n. The following

theorem characterises a cubature rule with equal weights using the indicator function of
D.

Theorem 4.1. Let D ⊂ Ωk
m be a set of n nodes and let f its indicator function, as in Eq.

(1). Let S ⊂ Sm be a monomial set such that the pair (D, Span(S)) is correct and let wS
as in Proposition 3.1.

Let A be the set:

A =

{
zα ∈ T, α ∈ Zk≥0

∣∣∣∣ ∫
Ck
zα dλ =

mk

n
bα

}
.

Then wS = 1
n1n if and only if S ⊆ A.

Proof. From Proposition 3.1 and Eq. (1) (restricted to the α such that zα ∈ S) it
holds:

wS =
(
Xt
D,S
)−1

[∫
Ck
zα dλ

]
zα∈S

and [bα]zα∈S =
1

mk
Xt
D,S 1n
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If wS = 1
n1n then [∫

Ck
zα dλ

]
zα∈S

=
1

n
Xt
D,S 1n =

mk

n
[bα]zα∈S

so that S ⊆ A.
Vice-versa, if S ⊆ A, for zα ∈ S, it holds:

[bα]zα∈S =
n

mk

[∫
Ck
zα dλ

]
zα∈S

=
n

mk
Xt
D,SwS

and, from [bα]zα∈S = 1
mk
Xt
D,S 1n, it follows wS = 1

n1n, being XD,S invertible.

Given a set D ⊆ Ωk
m with n points, Theorem 4.1 suggests an algorithm for finding, if

there exists, a cubature rule with nodes D and equal weights. Fix X(0) = 1n and S = {1}.
At the r-th step an element zα of A ∩

{
zα ∈ T, α ∈ Zkm

}
is considered. If the vector

v = [zα(d)]d∈D is such that the matrix
[
X(r−1), v

]
has full rank, then v is added to the

matrix X(r−1) for obtaining the new matrix X(r) =
[
X(r−1), v

]
and zα is added to S.

Otherwise a different element of A ∩
{
zα ∈ T, α ∈ Zkm

}
is considered.

The algorithm stops when a square non singular matrix X(n−1) is computed or if all
the elements of A∩

{
zα ∈ T, α ∈ Zkm

}
are analysed. In the former case the basis S is such

that the cubature rule (D, wS) has equal weights. In the latter case there not exists any
basis such that the associated cubature rule with node D has equal weights. Notice that
the algorithm stops because the elements of A ∩

{
zα ∈ T, α ∈ Zkm

}
are finite.

The following theorem characterises the precision basis of cubature rules with equal
weights.

Theorem 4.2. Let D ⊂ Ωk
m be a set of n nodes and let f its indicator function, as in Eq.

(1). Let S ⊂ Sm be a monomial set such that the pair (D, Span(S)) is correct and let wS
as in Proposition 3.1.

If wS =
1

n
1n then the set A defined in Theorem 4.1 is the precision basis B for (D, wS).

Proof. From Eq. (1), for each α ∈ [0, . . . ,m − 1 ]k, bα =
1

mk

∑
d∈D

zα(d), that is∑
d∈D z

α(d) = mkbα.

For each α ∈ Zk≥0 it holds zα(d) = z[α]m(d). Then:∑
d∈D

zα(d) =
∑
d∈D

z[α]m(d) = mk bα

Let w = 1
n1n be the weights. Then the precision space for (D, 1

n1n) is the largest set of
monomials for which∫

Ck
zα dλ =

1

n

∑
d∈D

zα(d) i.e.

∫
Ck
zα dλ =

mk

n
bα
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that is A.

The following result describes the behaviour of a cubature rule with equal weights,
when it is applied to the integral of monomials of the form zαzβ. The connection to
evaluation of moments of a distribution is evident.

Theorem 4.3. Let (D, ws) be a cubature rule with ws = 1
n1n. The cubature rule (D, ws)

is exact for zα

1. if and only if (D, ws) is exact for zα.

2. if and only if (D, ws) is exact for zα+γ zγ for each γ ∈ Zk such that
∫
Ck z

α+γ zγ dλ =∫
Ck z

α dλ.

Proof.

1. If (D, ws) is exact for zα, then∫
Ck
zαdλ =

1

n

∑
d∈D

zα(d) ,

and so∫
Ck
zα dλ =

∫
Ck
zα dλ =

∫
Ck
zα dλ =

1

n

∑
d∈D

zα(d) =
1

n

∑
d∈D

zα(d) =
1

n

∑
d∈D

zα(d)

and we conclude that (D, ws) is exact for zα. The vice-versa is analogous.

2. Let (D, ws) be exact for zα. By assumptions
∫
Ck z

α+γzγ dλ =
∫
Ck z

α dλ and so∫
Ck
zα+γzγ dλ =

∫
Ck
zα dλ =

1

n

∑
d∈D

zα(d) =
1

n

∑
d∈D
|zγ(d)|2zα(d)

=
1

n

∑
d∈D

zα+γ(d) zγ(d) ,

where the third equality is due to the fact that |zγ(d)|2 = 1. We conclude that
(D, ws) is exact for zα+γzγ . Furthermore, from item 1 it follows that, since the
cubature rule is exact for zα+γzγ , it is also exact for zα+γzγ , that is for zα+γzγ .

The vice-versa is analogous.

4.2. Gaussian distribution

In this section we characterise the cubature rules (D, S) with equal weights and the
Gaussian distribution. First of all, we present some results about integration with respect
to the Gaussian measure.
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4.2.1. Gaussian measure

Let Zt = (Z1, . . . , Zp) be a p-variate Gaussian complex random variable. Let Zk =
Xk + iYk, k = 1, . . . , p, then the vector of real and imaginary parts (X1, Y1, . . . , Xp, Yp) is
a 2p-variate Gaussian real random vector. We assume the following relations among the
expected values of the real and imaginary parts of the Z variables.

E(Xk) = E(Yk) = 0

E(XjXj) = E(YjYj) =
σ2
j

2
E(XjYj) = 0

E(XjXk) = E(YjYk) =
αjk
2

for j 6= k E(XjYk) = −E(XkYj) = −
βjk
2

for j > k

for j, k = 1, . . . , p.
We denote by Σ the matrix E(ZZ

t
) = [E(ZjZk)]j,k=1,...,p. Then, from the previous

conditions,

Σjk = E(ZjZk) =


σ2
k if j = k

αjk + iβjk if j < k

αjk − iβjk if j > k .

The probability density function of the zero mean p-variate complex Gaussian distribution
is given by (see e.g. [8])

p(z) =
1

πp det(Σ)
exp(−ztΣ−1z) (2)

where z = [z1, . . . , zp]
t.

We consider the complex measure ν such that dν = p(z) dµ, where µ is the σ-finite mea-
sure of Cp identifiable with the Lebesgue measure of R2p, and so from the results presented
in Appendix A, since zk = xk + iyk, k = 1 . . . p, we have

∫
Cp f(z) dν =

∫
Cp f(z)p(z) dµ =∫

R2p f(x, y)p(x, y) dx dy, where x = [x1, . . . , xp]
t and y = [y1, . . . , yp]

t.
We denote by ν(n1,m1, . . . , np,mp) the moment:

ν(n1,m1, . . . , np,mp) =
1

πp det(Σ)

∫
Cp
zn1

1 zm1
1 zn2

2 zm2
2 · · · z

np
p z

mp
p exp(−ztΣ−1z) dz1 · · · dzp

In the vector (n1,m1, . . . , np,mp), consisting of the exponents of the moments, the nj
indices are in odd entries and refer to Zj while the mj indices are in even entries and refer
to Zj .

In [4] the following theorem on the null moments is shown.

Theorem 4.4 (Null moments). If no variable Zj, j = 1, . . . , p, is independent from all
the others, then ν(α) is null if:

p∑
j=1

nj 6=
p∑
j=1

mj .
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From Theorem 4.4 we obtain the value of the integral of the monomials in T with
respect to the Gaussian distribution.

Corollary 4.5. Let zα = zn1
1 · · · z

np
p a monomial in T. Then

∫
Cp z

αp(z) dz = 0 if there exists r ∈ {1, . . . , p} s.t. nr 6= 0

∫
Cp z

αp(z) dz = 1 if n1 = · · · = np = 0

Proof. In this case m1 = · · · = mp = 0, and so, if there exists an exponent nr 6= 0, from

Theorem 4.4 we have ν(n1, 0, . . . , np, 0) =
1

πp det(Σ)

∫
Cp
zn1

1 · · · znpp p(z) dz1 · · · dzp = 0

and the first part of the thesis follows. The second part is an obvious result.

4.2.2. Cubature rules with equal weights for Gaussian distribution

Let ν be the Gaussian distribution. Since, in this case
∫
Ck z

α dν = 0, if α 6= (0, . . . , 0),
Theorem 4.1 can be reformulated as follows.

Theorem 4.6. Let ν be the Gaussian distribution. Let D ⊂ Ωk
m be a set of n nodes and

let f its indicator function, as in Eq. (1). Let S ⊂ Sm be a monomial set such that the
pair (D,Span(S)) is correct and let wS as in Proposition 3.1. Then wS = 1

n1n if and only
if S ∩ Supp(f) = {1}.

Proof. From Theorem 4.1 we have that wS = 1
n1n if and only if S ⊂ A, where

A =

{
zα ∈ T, α ∈ Zk≥0

∣∣∣∣ ∫
Ck
zα dν =

mk

n
bα

}
,

and so we first describe A for the Gaussian distribution.
When α = [0, . . . , 0] we have that

∫
zαdν = 1 and bα = n

mk
and so 1 belongs to A.

Furthermore, if α 6= [0, . . . , 0], then
∫
Ck z

αdν = 0, and so the set A is given by

A = {1} ∪
{
zα ∈ T, α ∈ Zk>0 | bα = 0

}
= {1} ∪

{
zα ∈ T, α ∈ Zk>0

∣∣ b[α]m = 0
}

since b[α]m = bα. From Equation (1), we have that b[α]m = 0 if and only if z[α]m /∈ Supp(f),
and thus

A = {1} ∪
{
zα ∈ T, α ∈ Zk>0, z

[α]m /∈ Supp(f)
}
.

We conclude that S ⊂ A if and only if S ∩ Supp(f) = {1}.
The following theorem characterises the precision basis of a cubature rule with equal

weights, with respect to the gaussian distribution.

Corollary 4.7. Let ν be the Gaussian distribution. Let D ⊂ Ωk
m be a set of n nodes

and let f its indicator function, as in Eq. (1). Let S ⊂ Sm be a monomial set such
that the pair (D,Span(S)) is correct and let wS as in Proposition 3.1. If wS = 1

n1n then

{1} ∪
{
zα ∈ T | z[α]m /∈ Supp(f)

}
is the precision basis B for (D, wS).



Claudia Fassino, Eva Riccomagno, Maria Piera Rogantin / J. Alg. Stat., 10, No.1 (2019), pp.115-127 124

Given a set of nodes D, it is possible to check if there exists a basis S so that the corre-
sponding cubature rule (D, S) has equal weights in an easier way than in the general case,
since it is sufficient to consider only monomials t ∈ Zkm \ Supp(f), as Corollary 4.7 shows
that S ∩ Supp(f) = {1} in order to have equal weights.

Proposition 4.8. Let ν be the Gaussian distribution. If D is a regular fraction, for each
basis S such that the pair (D,Span(S)) is correct, the corresponding cubature rule has
equal weights.

Proof. If D is a regular fraction, for each monomial s ∈ T, the vector [s(d)]d∈D is
equal to γ1n, for a given γ ∈ C, or orthogonal to 1n. Since XD,S is a non singular matrix
whose first column is the vector 1n, for each monomial basis S = {zα}, the columns
of XD,S , except the first one, are orthogonal to 1n. It follows that Σd∈Dz

α(d) = 0 for
each zα ∈ S \ {1} and so zα /∈ Supp(f). We conclude that, if D is a regular fraction,
S ∩ Supp(f) = {1} for each possible basis S and so the corresponding cubature rule has
equal weights.

The following example shows that a cubature rule can have equal weights even if D is
not a regular fraction of Ωk

m.

Example 4.9. Let C[z1, . . . , z4] be the polynomial ring with indeterminates z1, . . . , z4 and
let D be the set of nodes contained in Ω4

2,

D = {(1, 1, 1, 1), (1, 1,−1, 1), (1,−1, 1,−1), (1,−1,−1,−1),

(−1, 1, 1, 1), (−1,−1,−1, 1), (−1,−1,−1,−1), (−1, 1, 1,−1)}

whose indicator function is f = (2 + z2z3 + z2z4 − z1z2z3 + z1z2z4)/4. The set D is not a
regular fraction since the coefficients of its indicator function are not all equal.

Given the monomial set S = {1, z1, z2, z3, z4, z1z2, z3z4, z1z3z4}, the weights wS are
the solution of the linear system Xt

D,SwS = [
∫
sdν]s∈S , where

∫
s dν = 0 if s 6= 1 and∫

s dν = 1 if s = 1. Since the columns of the matrix XD,S , except the first one, are
orthogonal to 18, the vector wS = 1

818 is the solution of the previous linear system, even
if the set of nodes is not a regular fraction. However, we observe that D is the union of
two disjoint regular fractions of indicator functions f1 = (1 − z1 + z2z3 − z1z2z3)/4 and
f2 = (1 + z1 + z2z4 + z1z2z4)/4 respectively.

The following example illustrates a cubature rule with equal weights and its precision
basis.

Example 4.10. Let k = 2, m = 4 and let ω0 = 1, ω1 = i, ω2 = −1 and ω3 = −i be the
fourth root of the unit. In this case. Let D = {(1, 1), (i,−i), (−1, i), (−i,−1)} ⊂ Ω2

4 be the
set of nodes with indicator function

f =
1

8

(
2 + z1z2 + (1 + i)z1z

2
2 + (1− i)z2

1z2 − iz1z
3
2 + iz3

1z2 + (1 + i)z2
1z

3
2 + (1− i)z3

1z
2
2 + z3

1z
3
2

)
.
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Given the monomial set S = {1, z2, z1, z
3
2}, we have S ∩Supp(f) = {1} and so the weights

of the cubature rule (D, S) are wd = 1
4 , for all d ∈ D. From Corollary 4.7 it follows that

the precision basis is

BD,S = {1} ∪ {zα ∈ T, [α]4 ∈ {(0, 1), (1, 0), (0, 2), (2, 0), (0, 3), (3, 0), (2, 2)}} .

From Theorem 4.3 it follows that the cubature rule is also exact for {zα, zα ∈ BD,S}.
Furthermore, since for each α 6= (0, . . . , 0) and for each γ ∈ Z4

≥0 we have
∫
Ck z

αdν = 0 =∫
Ck z

α+γ zγ dν , the cubature rule is also exact for
{
zα+γzγ , zα+γzγ , zα ∈ BD,S , γ ∈ Z4

≥0

}
.

The following example shows the case of a set of nodes D which does not generate any
cubature rule with equal weights.

Example 4.11. Let k = 2, m = 3 and let ω0 = 1, ω1 = cos(2π/3) + i sin(2π/3) and
ω2 = ω1 be the third root of the unit.

Let D = {(1, ω2), (ω2, ω1)} be the set of nodes with indicator function

f =
1

9

(
2− z2 − ω2z1 − z2

2 − ω2z1z2 − ω1z
2
1 + 2ω2z1z

2
2 + 2ω1z

2
1z2 − ω1z

2
1z

2
2

)
.

Since Supp(f) = {zα ∈ T, α ∈ Z2
3}, there not exist a monomial basis S ⊂

{
zα ∈ T, α ∈ Z2

3

}
such that S ∩ Supp(f) = {1} and so there not exist a cubature rule (D, S) with equal
weights.

The previous examples seem to suggest that the existence of a cubature rule with equal
weights is highly related to some partition of the set of nodes in regular fractions. This
topic is subject of ongoing research.

Appendix A. Complex integration

Let M be a σ-algebra in a set X and let {Ek} be a countable partition of E, that is
E = ∪kEk and Ek ∩ Ej = ∅, if k 6= j. A complex measure λ on M is a complex-valued
function on M such that

λ(E) =
∞∑
k=1

λ(Ek) < +∞.

The total variation |λ| of λ is a real positive measure defined as

|λ|(E) = sup
{Ek}∞k=1

∞∑
k=1

|λ(Ek)| for all E ∈M

where {Ek}∞k=1 is a generic partition of E.
The following theorem is the Lebesgue-Radon-Nikodym Theorem presented in [15, Th.

6.10].

Theorem 4.12. Let µ be a positive σ-finite measure on a σ algebra M in a set X, and
let λ be a complex measure on M.
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(a) There is then a unique pair of complex measures λa and λs on M such that

λ = λa + λs λa�µ λs⊥µ .

(b) There is a unique h ∈ L1(µ), called the Radon-Nikodym derivative w.r.t. µ, such that

λa(E) =

∫
E
h dµ .

The choice µ = |λ| gives the following theorem [15, th. 6.12].

Theorem 4.13. Let λ be a complex measure on a σ-algebra M in X. Then there is a
function h ∈ L1(|λ|), called the Radon-Nikodym derivative w.r.t. |λ|, such that |h(x)| = 1
for all x ∈ X and such that λ(E) =

∫
E h d|λ| or, equivalently, that dλ = h d|λ|.

From Theorem 4.13 it follows that λ(X) =
∫
X hd|λ|; furthermore, it is possible to

define ∫
X
f dλ

def
=

∫
X
fh d|λ| .

We consider a special case. Let µ be a positive real measure on M and let g : X → C be
a function in L1(µ). We can define a complex measure λ on M in the set X as follows:

λ(E) =

∫
E
g dµ for all E ∈M .

Since in this case dλ = g dµ, from Theorem 4.13 we have g dµ = dλ = h d|λ|, with |h| = 1,
and so hg dµ = hhd|λ| = d|λ|. We conclude that, in this case,∫

X
f dλ =

∫
X
fh d|λ| =

∫
X
fhhg dµ =

∫
X
fg|h|2 dµ =

∫
X
fg dµ . (3)
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