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Sea ripples are small-scale bedforms which originate from the interaction of an oscillatory10

flow with an erodible sand bed. The phenomenon of sea ripple formation is investigated11

by means of direct numerical simulation in which the sediment bed is represented by12

a large number of fully-resolved spherical grains (i.e, the flow around each individual13

particle is accounted for). Two sets of parameter values (differing in the amplitude and14

frequency of fluid oscillations, among other quantities) are adopted which are motivated15

by laboratory experiments on the formation of laminar rolling-grain ripples. The knowl-16

edge on the origin of ripples is presently enriched by insights and by providing fluid- and17

sediment-related quantities that are difficult to obtain in the laboratory (e.g. particle18

forces, statistics of particle motion, bed shear stress). In particular, detailed analysis of19

flow and sediment bed evolution has confirmed that ripple wavelength is determined by20

the action of steady recirculating cells which tend to accumulate sediment grains into21

ripple crests. The ripple amplitude is observed to grow exponentially consistent with es-22

tablished linear stability analysis theories. Particles at the bed surface exhibit two kinds23

of motion depending on their position with respect to the recirculating cells: particles24

at ripple crests are significantly faster and show larger excursions than those lying on25

ripple troughs. In analogy with segregation phenomenon of polydisperse sediments the26

non-uniform distribution of the velocity field promotes the formation of ripples. The27

wider the gap between the excursion of fast and slow particles, the the larger the result-28

ing growth rate of ripples. Finally, it is revealed that, in the absence of turbulence, the29

sediment flow rate is driven by both the bed shear stress and the wave-induced pressure30

gradient, the dominance of each depending on the phase of the oscillation period. In31

phases of maximum bed shear stress, the sediment flow rate correlates more with the32

Shields number while the pressure gradient tends to drive sediment bed motion during33

phases of minimum bed shear stress.34
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1. Introduction36

Sedimentary patterns in maritime environments are typically caused by different mor-37

phogenetic phenomena and can exhibit a wide range of spatial scales varying from a38

few centimetres to hundreds of meters. The capability to predict the evolution of large-39

scale bedforms is necessary, for example, to guarantee the durability of marine structures40

and infrastructures as well as the equilibrium of sensitive benthic ecosystems, thereby41

preventing extraordinary catastrophic events. Nonetheless, the contextual presence of42

smaller bedforms cannot be neglected since morphogenetic processes occurring at differ-43

ent scales are not reciprocally independent. It is well known that small-scale bedforms,44

like ripples, modify the structure of the flow in the vicinity of the bed and they can45

significantly enhance the transport of sediments and contaminants near the bed (e.g.46

Thibodeaux & Boyle 1987). It has also been shown that model predictions of the sedi-47

ment flux due to the flow induced by wind waves on a plane bed can be affected by errors48

that easily exceed 100% of the actual measurements because turbulence diffusion models49

currently available are not able to describe the turbulent convective events which charac-50

terise an oscillatory flow during the flow reversal (Davies et al. 1997). Such discrepancies51

are enhanced by the presence of ripples which can significantly amplify the amount of52

sediment set into suspension.53

Sea ripples originate from the action of the flow induced by wind waves on a movable54

bed under certain flow and sediment conditions. For the sake of simplicity, let us con-55

sider the case of monochromatic wind waves developing over a plane bed of cohesionless56

sediments. Assuming that the linear Stokes wave theory can be used to approximate the57

irrotational flow far from the bottom, close to the bed the flow turns, at the leading or-58

der of approximation, into the oscillatory boundary layer (OBL) generated by harmonic59

oscillations of pressure gradient. In real ocean, additional streaming (boundary layer60

streaming) has its origin in the existence of vertical velocities close to the bed originated61

by the non-uniformity of the flow beneath free-surface waves. Such streaming, which may62

also play a role on morphogenetic processes, is presently not considered. Mathematically,63

the flow can be described by the incompressible Naver-Stokes equations defined in a64

domain bounded by the bed surface. If the bed is fixed, the hydrodynamic problem is65

globally stable for moderate values of the Reynolds number as long as the fluctuations66

generated by the bed roughness do not amplify and turbulence appears. However, the67

material of coastal shelves often consist of cohesionless fine- and medium-sand which68

can be easily set into motion by waves even for relatively small values of the Reynolds69

number. For a laminar OBL, when treating the sediment as a continuum, the stability70

problem can be tackled analytically. The resulting problem is globally unstable, thus we71

can expect that the amplitude of a small perturbation of the bed surface grows as the72

critical condition of sediment motion is reached.73

Sea ripples are caused by the instability of the bed surface under the action of flow74

oscillations and consist of a two-dimensional waviness of the bed surface, the third dimen-75

sion being orthogonal to flow oscillations, with wavelength ranging from a few (rolling-76

grain ripples) to some tens of centimetres (vortex ripples), even though three-dimensional77

patterns have also been observed (e.g. brick-pattern ripples, Vittori & Blondeaux 1992;78

Pedocchi & Garćıa 2009). The mechanism underlying the formation of a bottom waviness79

in a laminar OBL over a cohesionless plane bed has been fairly well understood since80

Sleath (1976) observed that the interactions of a small bottom waviness (of infinitesi-81

mal amplitude) with the oscillatory flow induces a secondary steady flow, i.e. a steady82

streaming superimposed on the principal flow oscillations, consisting of two-dimensional83

recirculating cells. If the steady streaming is strong enough to affect the motion of sedi-84
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ment particles, sediments tend to pile up where the streamlines of adjacent recirculating85

cells converge and to be eroded elsewhere. The mechanism of accumulation of sediments86

is balanced by the effect of gravitational acceleration which opposes the accretion of the87

waviness amplitude. Rolling-grain ripples are the bedfroms that can form in a laminar88

OBL and their emergence is the first indicator that a plane bed configuration is evolving89

into rippled geometry. Experimentally, it was observed that, since their first appearance,90

ripples undergo a coarsening process that can stop if a stable configuration is attained,91

when the effect of gravity on sediment particles counteracts that of the steady streaming,92

before the ripple steepness, defined as the ratio between ripple height and wavelength,93

causes flow separation (Stegner & Wesfreid 1999; Rousseaux et al. 2004a). As the slope94

of rolling-grain ripples becomes large enough to trigger the separation of the flow from95

their crests, vortex ripples form which are characterized by steeper slopes and larger96

height and wavelength than rolling-grain ripples.97

As long as the boundary layer does not separate from the bed surface, the growth rate98

of wavy bedforms may be determined through linear stability analysis. This approach99

was first adopted by Lyne (1971) and Sleath (1976) under the hypothesis of large fluid100

displacement oscillations, i.e. much larger than the wavelength of the bedforms, which101

however is not suitable for the case of ripples. Then, Blondeaux (1990) solved the ana-102

lytic problem for arbitrary ratios of the orbital excursion to the ripple wavelength while103

Vittori & Blondeaux (1990) extended the formulation of Blondeaux (1990) to the case104

of finite amplitude ripples by means of weakly-nonlinear stability analysis. Laboratory105

experiments (e.g. Blondeaux et al. 1988) show that stable rolling-grain ripples can be106

observed only for a relatively small range of values of the Stokes and particle Reynolds107

numbers and of the mobility number defined, respectively, by:108

Reδ =
U∗
0 δ

∗

ν∗
, Red =

U∗
0 d

∗

ν∗
and ψ =

U∗2
0

v∗ 2
s

, (1.1)

where U∗
0 denotes the amplitude of free-stream velocity oscillations, δ∗ =

√
2ν∗/ω∗

109

denotes the conventional thickness of a viscous oscillatory boundary layer (Sleath 1984)110

and ω∗ the angular frequency of flow oscillations. The quantity v∗s is often referred to as111

gravitational velocity of sediment particles and is defined as112

v∗s =

√(
̺∗s
̺∗

− 1

)
g∗d∗ (1.2)

where g∗ indicates the modulus of gravitational acceleration, ̺∗s and d∗ the density and113

the nominal diameter of sediment grains while ̺∗ and ν∗ are the density and the kinematic114

viscosity of the fluid. The period of the flow oscillations is denoted by T ∗ and equal to115

π/ω∗. The star superscript is used to denote dimensional quantities and distinguish116

them from dimensionless ones. The parameters (1.1), along with the specific gravity117

s = ̺∗s/̺
∗, can be chosen to determine the parameter space for sediment transport with118

spherical particles in the absence of bedforms. Alternatively, the Galilei number Ga is119

often used in the particulate flow and suspension communities, which is related to ψ and120

Red through the expression Ga = Red/
√
ψ, as well as the Keulegan-Carpenter number,121

Kc = Re2δ/(2Red), that is defined as the ratio between the semi-excursion of the fluid122

far from the bed, ℓ∗f = U∗
0 /ω

∗, and the diameter of sediment particles. As the average123

ripple steepness exceeds the threshold 0.1 identified empirically by Sleath (1984), the flow124

separates from the ripple crests and computations of the ripple evolution can only be125

made numerically. For instance, Scandura et al. (2000) studied numerically the interaction126

of an oscillatory flow with a wavy wall, characterized by steepness ∼ 0.1, for values of127
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T ∗ [s] U∗
0 [m/s] ℓ∗f [m] δ∗ [mm] d∗ [mm] ̺∗s/̺

∗

run 1 1.86 0.16 0.8 0.05 0.2± 0.06 2.65
run 2 0.95 0.13 0.6 0.02 0.2± 0.06 2.65

Table 1. Parameters for Blondeaux et al. (1988)’s experiments presently considered. From left
to right: the oscillation period (T ∗), the amplitude of free-stream velocity oscillations (U∗

0 ), the
stroke or fluid semi-excursion (ℓ∗f ), the thickness of the Stokes boundary layer (δ∗), the particle
diameter (d∗) and the particle specific gravity (̺∗s/̺

∗). The kinematic viscosity of the fluid was
approximately equal to 10−6 m2/s.

Reδ ranging between 42 and 89, and observed the flow separation from the crests of128

the wall and the appearance of three-dimensional vortex structures. However, Scandura129

et al. (2000) concluded that movable bed should be considered in the simulations to130

obtain results relevant for the problem of sediment transport.131

Since the evolution of the bed surface is not known a priori but results from the cou-132

pling between the fluid and sediment dynamics, a discrete approach seems more suitable133

to investigate the mechanics of sediment particles in an OBL. In order to investigate the134

origin of ripples and test the capability of the numerical approach to catch the basic135

physics of the sediment transport, Mazzuoli et al. (2016) performed Direct Numerical136

Simulations (DNSs) of an oscillatory flow both over smooth and rough walls with mov-137

able spherical beads on top of it. The values of the parameters were chosen similar to138

those of laboratory experiments where the formation either of sediment patterns (Hwang139

et al. 2008) or of rolling-grain ripples (Blondeaux et al. 1988) had been observed. Maz-140

zuoli et al. (2016) considered identical beads initially aligned along the direction of flow141

oscillations and observed that, within a few oscillation periods, they rearranged in chains142

orthogonal to the flow oscillations, equispaced by a distance comparable to that mea-143

sured in the experiments. Qualitatively, the mechanism of formation of the chains was144

not very sensitive to the number of beads or the presence of the bottom roughness con-145

sisting of beads closely packed and fixed on the bottom. Steady recirculating cells of146

different sizes initially developed, but only recirculating cells compatible with the wave-147

length of the chains of beads were promoted and could be observed at the final stages of148

the simulations.149

Since the process of formation of chains of spheres is basically different from that of150

ripples, due to gravity playing different roles in the two cases, two of the experiments of151

Blondeaux et al. (1988), where rolling-grain ripples formed, were reproduced by means152

of DNS and are presently described. The values of the relevant dimensional parameters153

characterising the experiments are reported in table 1. In particular, the present inves-154

tigation is aimed at: (i) showing that laboratory experiments of the formation of ripples155

can be reproduced by DNS, (ii) obtaining accurate values of quantities that are difficult156

to be measured in the laboratory (e.g. particle forces and trajectories, steady streaming157

intensity, bed shear stress, the sediment flow rate), (iii) investigating the dynamics of158

sediment particles, and (iv) relating the sediment transport to mean flow quantities.159

In the following, the numerical method is briefly described while the results are dis-160

cussed in §3. Finally, conclusive remarks are drawn in §4.161
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2. Formulation of the problem and numerical approach162

The OBL (over a smooth wall) can be generated in the laboratory by the harmonic163

motion of a piston which produces a uniform pressure gradient through the fluid, in a164

duct with sufficient depth and breadth to prevent undesirable boundary effects. Typically165

the axis of the duct develops along a U-shape profile in order to exploit the support of166

gravity, while only the flow field in the central section of the U-tube, in the vicinity of167

the bottom, is investigated. The time-development of the pressure gradient driving the168

flow is described by169

∂p∗f
∂x∗1

= −̺∗U∗
0ω

∗ sin(ω∗t∗);
∂p∗f
∂x∗2

= 0;
∂p∗f
∂x∗3

= 0 (2.1)

where t∗ is the time variable and (x∗1, x
∗
2, x

∗
3) is a Cartesian coordinate system with origin170

at the bottom of the domain, the x∗1-axis parallel to the flow oscillations and the x∗2-axis171

pointing the upward wall-normal (i.e. bottom-normal) direction. The total pressure can172

be expressed by the sum:173

p∗tot(x
∗
1, x

∗
2, x

∗
3, t

∗) =
Reδ
2
p∗f (t

∗) + p∗(x∗1, x
∗
2, x

∗
3, t

∗) , (2.2)

where p∗f is equal to the right hand side of the first component of (2.1) multiplied by x∗1174

and p∗ denotes the pressure in the boundary layer. Then, p∗ (as well as any other flow175

quantity) can be further split into the sum of two contributions:176

p∗(x∗1, x
∗
2, x

∗
3, t

∗) = p∗ + p′∗(x∗1, x
∗
2, x

∗
3, t

∗) , (2.3)

the flat overbar indicating the statistical average operator (the ensemble average or the177

phase average, i.e. the average computed at corresponding phases of the oscillation period,178

if the flow and bed evolution are at the equilibrium) and p′∗ the corresponding fluctuating179

part. Let the bottom (i.e. the plane x∗2 = 0) be equipped with a bed of monosized spherical180

heavy particles of diameter d∗ initially arranged in multiple superimposed plane layers.181

The dynamics of the particles is dictated by the collective influence of gravity, collision182

and hydrodynamic forces. Hydrodynamic force, in turn, results from the combination of183

pressure and viscous contributions. The pressure gradient (2.1) drives both the motion184

of the fluid and of the solid particles while the fluctuations of pressure, denoted by185

p′∗ in equation 2.3, can be associated both with turbulence and with the motion of186

particles. Since the ensemble average is not feasible with a single simulation while the187

“equilibrium state” is presently never attained, different spatial-average operators are188

adopted to estimate the average quantities. The operator 〈·〉(i)α denotes the average of189

the argument performed along the direction α ≡ x1, x2 or x3, or along two directions, e.g.190

α ≡ x1x3 indicates the horizontal plane (plane average), or over a three-dimensional sub-191

space α ≡ V (volume average). For the sake of simplicity, omitting α implicitly indicates192

that the plane average is performed. The superscript (i), if present, indicates that the193

flow field has been split into a number of bins either along the streamwise direction,194

equispaced by h∗1 = 2d∗, or along the wall-normal direction, equispaced by h∗2 = d∗,195

and that the average is computed over the i-th bin. A similar notation is adopted for196

particle-related quantities to indicate the average over a set of particles (α ≡ s) or the197

time-average over each half-period (α ≡ T/2).198

On the basis of purely dimensional considerations, for the present flow configuration, a199

generic hydrodynamic quantity F∗ can be expressed as a function F∗(x∗i , t
∗;ω∗, U∗

0 , d
∗, g∗,200

µ∗, ̺∗, ̺∗s), i = 1, 2, 3, where µ∗ = ̺∗ν∗ denotes the dynamic viscosity of the fluid. The201

present choice is to use ω∗, ̺∗ and µ∗ to reduce the number of dimensionally dependent202

arguments and obtain the corresponding dimensionless quantity F(xi, t;Reδ, Red, ψ, s)203
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Reδ Red ψ Ga Kc s

run 1 128 33.3 9.69 10.7 246 2.46
run 2 71.7 17.4 7.88 6.2 148 2.65

Table 2. Summary of flow parameters for the present runs.

run Lx1
Lx2

Lx3
nx1

nx2
nx3

∆t tfin Ns

run 1 53.2 26.6 26.6 2048 1024 1024 1.96 · 10−4 41π 257138
run 2 49.1 18.4 24.5 2048 768 1024 2.62 · 10−4 58π 223442

Table 3. Domain and time discretisation for the present runs. The final time of the
simulations is denoted by tfin while Ns is the number of spheres used in each run.

which depends on the numbers introduced in §1. The values of the numbers Reδ, Red, ψ204

and s for the present simulations are indicated in table 2. Note that the specific gravity205

between the runs differs by 7% which is not expected to play a significant role. Thus,206

the incompressible Navier-Stokes equations can be expressed in a dimensionless form by207

introducing the following variables:208

(x1, x2, x3) =
(x∗1, x

∗
2, x

∗
3)

δ∗
; t = t∗ω∗ ; (2.4)

(u1, u2, u3) =
(u∗1, u

∗
2, u

∗
3)

U∗
0

; p =
p∗

̺∗(U∗
0 )

2
; (f1, f2, f3) =

(f∗
1 , f

∗
2 , f

∗
3 )

U∗
0ω

∗
.

In (2.4), u∗1, u
∗
2, u

∗
3 are the fluid velocity components along the x∗1-, x

∗
2- and x

∗
3-directions,

respectively, and f∗
1 , f

∗
2 , f

∗
3 are the components of the body force. Hence, the dimension-

less continuity and Navier-Stokes equations read:

∂uj
∂xj

= 0 (2.5)

∂ui
∂t

+
Reδ
2
uj
∂ui
∂xj

= −Reδ
2

∂p

∂xi
+ δi1 sin(t) +

1

2

∂2ui
∂xk∂xk

+ fi (2.6)

where Einstein’s convention on the summation is used. It can be noted that the Reynolds209

number Reδ is the only dimensionless parameter which is based upon purely hydrody-210

namic quantities and controls the momentum equation (2.6), while sediments enter the211

problem through the boundary conditions. Concerning the simulation of the particle mo-212

tion, the main dimensionless control parameters are the specific gravity of sediments s,213

the sphere Reynolds number Red and the mobility number ψ that are defined in §1.214

The domain where equations (2.5) and (2.6) are solved numerically is a cuboid space215

of dimensions Lx1
, Lx2

and Lx3
in the streamwise, wall-normal and spanwise directions,216

respectively, which are indicated in table 3. While periodic conditions are applied at the217
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x3

x1

x2

✲
✛
Ue = − cos (t)

Figure 1. Sketch of a simulation (detail of the computational domain). Different colours are
used to distinguish top-layer particles (dark grey) from crest particles (black). Most of the par-
ticles shadowed by light grey exhibit negligible displacements with respect to top-layer particles
throughout the simulation.

boundaries in the streamwise and spanwise directions, the no-slip condition is forced at218

the bottom, viz.219

(u1, u2, u3) = (0, 0, 0) at x2 = 0 (2.7)

and the free slip condition is forced at the upper boundary:220

(
∂u1
∂x2

,
∂u3
∂x2

)
= (0, 0); u2 = 0 at x2 = Lx2

. (2.8)

The dimension Lx2
of the domain is chosen large enough to guarantee a vanishing shear221

stress far from the bottom. The choice of the streamwise and spanwise dimensions of the222

computational domain, Lx1
and Lx3

, can significantly affect the process of formation of223

the bedforms. In particular, as recently pointed out by Kidanemariam & Uhlmann (2017),224

the choice of Lx1
allows the development of bedforms characterised by wavelengths equal225

to
(
1, 1

2 ,
1
3 ,

1
4 , . . .

)
Lx1

, thus the evolution of the geometrical properties of bedforms are226

expected to be markedly discontinuous with respect to time. For instance, the larger Lx1
227

the smoother the evolution of bedforms appears. Therefore, the value of Lx1
is chosen as228

large as two times the wavelength of ripples observed in the experiments of Blondeaux229

(1990) when the “equilibrium state” was reached. Also the value of Lx3
is chosen to allow230

for possible formation of three-dimensional patterns, which were however absent in the231

experiments. A sketch of the simulations is shown in figure 1.232

The hydrodynamic problem is solved throughout the whole computational domain in-233

cluding the space occupied by the solid particles. Indeed, the no-slip boundary condition234

at the surface of the spheres is forced by means of the (Eulerian) volume force f1, f2, f3235

which is simply added to the right hand side of momentum equation (2.6) via the im-236

mersed boundary approach. The flow solver consists of the semi-implicit second-order237

fractional-step method, based on the finite difference approximation of time- and space-238

derivatives, as proposed by Uhlmann (2005). The domain is discretised by a uniform239

equispaced grid of spacing ∆x∗i = d∗/10 in the i-th direction (i = 1, 2, 3). The dynamics240

of the fluid and solid phases are coupled through the immersed boundary method while241

collision forces are computed with a soft-sphere Discrete Element Model (DEM) based242

upon a linear mass-spring-damper system. A detailed description of the collision model243
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and of the validation can be found in Kidanemariam & Uhlmann (2014c). The code has244

been recently used for different investigations by Kidanemariam & Uhlmann (2014a),245

Uhlmann & Chouippe (2017) and Mazzuoli & Uhlmann (2017) and, in a context similar246

to the present one, by Mazzuoli et al. (2016).247

The start-up bed configuration was obtained by settling approximately 15 layers of248

spheres (the number of spheres, Ns, used for each run is indicated in table 3) on a flat249

smooth bottom while the fluid was at rest. One layer of spheres was preliminarily fixed on250

the bottom with a hexagonal arrangement in order to prevent the whole bed from sliding251

as a block along the bottom, which was never observed in the laboratory experiments.252

This expedient did not affect the results of the simulations because the particle velocity253

rapidly vanishes beneath the surficial layers of particles. The spheres whose centers are254

located above a distance of 15 d∗ from the bottom were removed in order to obtain a flat255

bed surface.256

For the first wave-period of each simulation all the particles were kept fixed in order to257

let the interstitial flow develop. Simulations 1 and 2 were run for 41 and 58 half-cycles,258

respectively. Hereinafter, “simulation” and “case” can be sometimes used interchangeably259

in place of “run” referring to runs 1 and 2.260

The quantities closely related to the hydrodynamic problem are normalised as in (2.4),261

while those more relevant for the evolution of the bed, which are directly affected by the262

particle dynamics, are preferably shown in terms of particle-related reference quantities263

(i.e. d∗ and v∗s ). Actually, the values of d∗/δ∗ for the two simulations are similar (0.26264

and 0.24 for runs 1 and 2, respectively), thus the choice of d∗ or δ∗ as reference length265

scales is not practically relevant in the present configuration.266

3. Results267

As mentioned above, the bed was initially leveled in order to start the simulations with268

a plane-bottom configuration. Let the spheres farthest from the bottom, i.e. whose center269

is located in the range of one diameter below the farthest one, be hereafter referred to270

as crest particles (cf. black spheres in figure 1). Initially, crest particles are distributed271

approximately randomly on the bed, as shown by the red spheres in figure 2a. Then,272

after a few oscillations, crest particles tend to group in short chains or small bunches273

during half-periods which can eventually be destroyed in the subsequent half-period or274

merge with each other (see figure 2b). Finally, clear two-dimensional patterns form which275

then accrete and form the rolling-grain ripples (figure 2c,d). A movie of the formation of276

ripples for the run 1 can be found online as supplementary material.277

For the present values of the parameters, only the surficial spheres exhibited significant278

displacements through rolling motion while no particles were observed saltating or being279

entrained into suspension. The evolution of the bed surface and the motion of the surficial280

particles are described in the following.281

3.1. Evolution of the bed surface282

The bed surface, namely the (fictitious) solid-fluid interface, can be defined on the basis283

of the sediment volume concentration, hereafter referred to as particle volume fraction284

and denoted by φs, which is zero far away from the bottom and abruptly increases at285

the bed. Hence, the bed surface is identified by points where φs reaches a threshold286

value. Similarly, in laboratory experiments, the bed-flow interface is often detected by287

means of an image analysis procedure, thresholding the sideview frames of the bed (e.g.288

Aussillous et al. 2013). In fact, the b/w intensity of pixels is highly correlated with φs.289

This approach was successfully reproduced numerically by Kidanemariam & Uhlmann290
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x3

(a)

x1

x3

(c)

(b)

x1

(d)

Figure 2. Top view of the bed at (a) t = 7.0, (b) t = 44.4, (c) t = 137.8, (d) t = 142.0 for run 1.
Crest particles are highlighted in red in panels (a− c). In panel (d) particles are highlighted by
colours according to their distance from the bottom, increasing from blue to red. The complete
time-sequence can be seen in the movie available in the supplementary material.

(2014b) who considered the threshold value φs = 0.1. Kidanemariam & Uhlmann (2014b)291

defined a sample volume of size ∆x∗1×∆x∗2×L∗
x3

over which the particle volume fraction292

was evaluated. Therefore, the dependency of φs on x∗3 was neglected and the bed profile,293

η∗φ(x
∗
1, t

∗), was obtained.294

Another approach is also presently considered which was first adopted by Mazzuoli295

et al. (2017) to detect the bed/flow interface. Since spheres are presently not set into296

suspension, they remain in enduring contact throughout their motion and the bed surface297

can be thus unambiguously identified by the centers of the spheres on top of others, which298

are hereafter referred to as top-layer particles (cf. dark-grey spheres in figure 1). The i-299

th sphere (i = 1, . . . , Ns) belongs to the top layer if no other sphere centers above the300

i-th one lie inside the solid angle of magnitude Ω = (2 −
√
3)π sr with respect to the301

bottom normal. Then, if this condition is fulfilled, the Boolean function Ei associated302

with the i-th particle is equal to 1, otherwise it is equal to 0. Therefore, the bed surface303

is defined as the function interpolating the centers of the spheres characterised by E = 1,304

and is denoted by η∗(x∗1, x
∗
3, t

∗). Such definition circumvents the matter of defining a305

threshold and allows us also to study three-dimensional patterns. The patterns observed306

for the present values of the parameters do not show an appreciable dependency on the307

spanwise coordinate. Additionally, the bed profile η∗E , defined as equal to 〈η∗〉x3
, is found308

practically to collapse on η∗φ once it is shifted vertically upward by a constant value309

∼ 0.8d∗ (cf. figure 3). Since the position of the bed profile is analogously detected by the310

two procedures, henceforth the profile η∗φ is considered.311

In the simulations, the average bed elevation 〈ηφ〉x1
initially decreases as an effect of312

the settlement and compaction of the granular bed (not shown here). Then, after a few313

oscillation periods 〈ηφ〉x1
asymptotically reaches a constant value approximately equal314

to 13.83 d∗ and 12.12 d∗ for both runs 1 and 2, respectively, superimposed only by small315

fluctuations of order O(10−2) d∗, which are related to the different phases of the wave316

cycle. Correspondingly, the solid volume fraction, φs, in the region between the bottom317

and the surface layers of particles does not show significant temporal fluctuations and318

attains the average values 0.49 for both runs. Instead, figure 4 shows the space-time319
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Figure 3. Comparison between the bed profiles ηE (red line) and ηφ (black line) at an instant
of run no. 1 when rolling-grain ripples are present.

(a)
η′∗φ /d

∗

(b)
η′∗φ /d

∗

Figure 4. Spatio-temporal development of the fluctuations of the bed profile about the
average bed elevation, η′∗φ /d

∗, for run 1 (a) and run 2 (b).

development of the fluctuations of the bed profile about the average bed elevation, i.e.320

η′φ = ηφ − 〈ηφ〉x1
, for runs 1 and 2. While bedforms emerge in the second half of run 1,321

in run 2 the presence of persistent patterns is difficult to detect by visual inspection of322

figure 4b. The root mean square (rms) of η′φ, ηrms, increases with time in both runs (cf.323

figure 5), whilst the amplitude of the fluctuations attained at the end of run 2 barely324

reach 0.1 d∗ (three times smaller than that of run 1). In run 1, the linear regression325

of ln ηrms (red solid line in figure 5a) shows that ηrms grows exponentially. Moreover,326
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Figure 5. The diagrams in panel (a) and (b) show the root mean square of the spatial fluc-
tuations of the bed profile plotted versus time for simulations 1 and 2, respectively. The thick
solid (red) lines are the regression curves a exp (b t), where a = 0.040, b = 1.46 · 10−2 for
run 1 and a = 0.046, b = 4.45 · 10−3 for run 2. Dashed (red) lines in panel (a) are obtained for
a = amin = 0.034 and a = amax = 0.050. The inset figure in panel (a) highlights the exponential
trend of ηrms using semi-logarithmic axis scale.
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Figure 6. Panels (a) and (b) show the absolute value of four Fourier modes of the bed profile
plotted versus time for simulations 1 and 2, respectively. Red, blue, black and magenta lines
correspond to the 2nd, 3rd, 4th and 5th modes of the bed profile, respectively.

the regression of relative maxima and minima of ηrms computed for each half-period327

(indicated with dashed lines in figure 5a) preserves the exponent of the mean trend.328

Thus, the amplification of half-period fluctuations of the bed surface, normalised by the329

particle diameter, can be approximated by the expression:330

Aη = (amax − amin)e
b t (3.1)

where b = 1.46 · 10−2 and the factors amax = 4.98 · 10−2 and amin = 3.38 · 10−2 refer to331

the average upper and lower bounds of ηrms. In other words, the rate of coarsening of332

ripples is directly proportional to the amplitude of ripples. On the other hand, in run 2,333

the time development of ηrms is not monotonic and the mean growth is slower than that334

observed for simulation 1 (cf. figure 5b). It is likely that, in a much larger number of335

oscillation periods, the formation of ripples could be observed more clearly also in case 2,336

but this would require formidable computational and wall-clock time which are at the337

moment out of reach.338
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Figure 7. Dominant wavelength of the bed profile computed as a function of time for runs 1
(panel (a)) and 2 (panel (b)).

To detect the wavelength of ripples as a function of time, the bed profile is expanded339

in Fourier series and the absolute value and the growth rate of each term of the series is340

investigated. It is evident that the wave numbers k∗δ∗ = 0.47 and k∗δ∗ = 0.25 dominate341

the spectra of η′φ at the end of runs 1 and 2, respectively (cf. figure 6). However, since342

modes are still evolving at the end of each run, an equilibrium condition is not reached343

and the simulation time is not sufficient to describe the complete evolution of individual344

modes. Alternatively, the dominant wavelength can be defined as two times the space345

lag, λ∗η, at which the absolute value of the two-point correlation function of η′∗φ attains346

the first maximum value (Kidanemariam & Uhlmann 2017). The result of this procedure347

is shown in figure 7. As predicted by the Fourier analysis, the dominant wavelength for348

the second half of simulation 1 corresponds to the wave number k∗δ∗ = 0.47 (λ∗η = 13δ∗)349

while for the last ∼ 6 oscillation periods of simulation 2 patterns are characterised by350

the wave number k∗δ∗ = 0.25 (λ∗η = 25δ∗). The values of λ∗η can be compared with the351

results of the experiments carried out by Blondeaux et al. (1988) for similar values of the352

parameters and with those obtained by linear stability analysis by Blondeaux (1990). It is353

found that the values of λ∗η in the current simulations are comparable to the wavelengths354

of the first emerging ripples observed in the laboratory. At this stage it is worthwhile355

to remark on the importance of this result, since a natural very complex phenomenon356

has been reproduced by a very simplified, though numerically challenging, system, which357

indicates that the basic process leading to the formation of ripples is somewhat robust. In358

particular, for the experiment reproduced by run 1, Blondeaux (1990) observed λ∗η = 25δ∗359

(96 d∗) while for the case simulated by run 2 the value of λ∗η was approximately equal360

to 26δ∗ (108 d∗). Similar results are predicted by means of the linear stability analysis361

following the approach of Blondeaux (1990) (λ∗η = 23δ∗ for run 1 and λ∗η = 22δ∗ for362

run 2). Rousseaux et al. (2004a) carried out experiments also exploring the region of363

the parameter space where runs 1 and 2 lie and observed the first measured wavelengths364

λ∗η ∼ 20 δ∗ and λ∗η ∼ 25 δ∗, respectively. Therefore, the wavelength of ripples simulated365

in run 1 is smaller than the wavelength observed experimentally. Such a discrepancy366

can be due to several reasons mostly associated with the modelling of particle-particle367

interactions. The significance of the role of sediment friction in the formation of patterns368

was emphasised by Moon et al. (2004). Indeed, sand grains can have irregular shape and,369

consequently, more than one point of contact during a binary collision, which allow them370

to transfer linear and angular momentum more efficiently than spheres. Moreover, the371

sensitivity of sediment dynamics to the contact is enhanced if particles roll over each372
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Figure 8. Bed profile, ηφ, (panel (a)) and bed slope (panel (b)) at different phases of a wave
cycle when rolling-grain ripples are formed. Black lines refer to instants t = 136.7 (solid, thick),
t = 137.4 (dashed, thin), t = 138.2 (solid, thin) and t = 139.0 (dashed, thick) while the mean
flow is directed from right to left. Red lines refer to instants t = 139.8 (solid, thick), t = 140.6
(dashed, thin), t = 141.4 (solid, thin), t = 142.2 (dashed, thick) during which the mean flow is
directed from left to right.

other (enduring contact) rather than colliding. The particles of run 1 behave like finer373

sand grains, since, based on the experimental results of Rousseaux et al. (2004a), the first374

measured wavelength tends to increase monotonically with increasing size of sediments375

and because spherical particles are statistically set into motion more easily and undergo376

larger excursions than sand grains of irregular shape. On the other hand, figure 6a shows377

that the modes associated with the wave numbers k∗δ∗ = 0.35 and k∗δ∗ = 0.24 grow at378

approximately the same rate as the dominant mode in the last periods of run 1 and it is379

possible that the four ripples of figure 2 might merge after a certain time.380

Even though the ripples of run 1 do not really drift in the streamwise direction, their381

crests migrate to and fro by several sphere diameters. Therefore, as shown in figure 8,382

ripple shape changes during the oscillation period. The profiles indicated in figure 8a by383

(black and red) thick lines are attained in the phases when the fluid far from the bed384

decelerates and then vanishes (at the flow reversal) while surficial particles are at rest. In385

these phases, ripples are asymmetric with slopes relatively mild and the lee side steeper386

than the stoss side (cf. figure 8b). In the subsequent phases, while the flow accelerates,387

the amplitude of ripples increases, along with their slope, and reaches the maximum388

value approximately 0.20 π earlier than the free-stream velocity does. Now the profile of389

each ripple is symmetric (thin dashed lines in figure 8a), but then it becomes asymmetric390

again as the crest proceeds the excursion towards the other side of the ripple. Finally, the391

opposite resting configuration is attained while the fluid is already decelerating. Hence,392

most of the bed-profile evolution is carried out during the acceleration phases. At the393

end of the present simulations the mild (lee) slope of ripples is approximately 0.02 while394

for the steep (stoss) side the slope ranges between 0.08 and 0.16. Following the empirical395
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Figure 9. Spectra of the bed profile computed at the phases indicated in figure 8 for run 1.
The solid (blue) line indicate the spectrum of the simplified configuration sketched in the small
inset of the figure with periodic (blue) straight lines.

approach of Sleath (1984), the flow separation behind the crests should occur if the ratio396

between the height and the wavelength of ripples, namely the average steepness, reaches397

the value 0.1. In the period considered in figure 8, the average slope is about 0.02 and398

the flow does not separate and rolling-grain ripples do not evolve into vortex ripples.399

The spectra of the bed profile, S∗
ηη, are computed as functions of wave numbers at the400

phases of the oscillation period shown in figure 8 and are plotted in figure 9. Previous401

research has shown that for wave numbers much smaller than the smallest flow scale which402

do not affect the stability of the bed and much larger than the grain size, the spectrum403

was proportional to k∗−3 (Hino 1968; Jain & Kennedy 1974; Nikora et al. 1997; Coleman404

& Nikora 2011; Kidanemariam & Uhlmann 2017). Hino (1968) showed that, when the405

equilibrium configuration of the bed profile is reached, the spectrum of the bed slope406

depends linearly on the wave number, whence the exponent −3 for the spectrum of the407

bed profile is obtained by purely dimensional reasoning. From the geometrical point of408

view, the −3 power law indicates that the bed profile is self-similar, i.e. the shape of409

the profile is independent of the length scale (Nikora et al. 1997), in the range of length410

scales between d∗ and λ∗η. Presently, the flow is unsteady and a comparison to bedforms411

that reached the equilibrium configuration is not possible. However, in the range of wave412

numbers indicated by Hino (1968), i.e. 0.02 . k∗d∗ . 0.1 in figure 9, the spectrum of413

ripple profiles is observed proportional to k∗−3. The same trend can be obtained, in this414

range of wave numbers, by considering the spectrum of streamwise-periodic ramps (see415

the inset in figure 9). Therefore, the so called “−3 power-law” is associated with the fact416

the the stoss side of the ripples is mostly straight. In the laboratory or in the field, it417

is difficult to compute the spectra for large wave numbers because the measurements of418

the bed surface do not typically reach such high accuracy. For values of k∗d∗ ranging419

between 0.1 and 1 (i.e. for length scales of order O(d∗)), the slope of the spectrum is420

approximately equal to −1.2, which suggests that the fluctuations of the bed profile421

at these scales are nearly random (i.e. the scales in this range are uniformly present).422

Consequently, in this range the spectrum of the bed slope, which is equal to 2πk∗ 2S∗
ηη,423

increases with increasing values of k∗ and reaches a relative maximum at k∗d∗ ∼ 0.5. In424
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(a)

(b)

Figure 10. Steady streaming visualised by means of streamlines of the spanwise and time
averaged flow field. The thick solid (red) lines indicates the average bed profile. Panels (a) and
(b) refer to runs 1 and 2.

other words, most of the fluctuations of the bed slope in such range of wave numbers are425

characterised by the length scale 2 d∗. Nikora et al. (1997) showed that such “bulges”426

of the bed profile spectra are associated with scale transitions, for instance between the427

meso- and micro-scales. Finally, for values of k∗d∗ larger than 1 the spectrum decreases428

with slope −4.3, which was also observed by Kidanemariam & Uhlmann (2017). The429

latter range is not relevant for the characterization of the bedform geometry and the430

trend of the spectrum is possibly related to the shape of sediment particles.431

Mazzuoli et al. (2016) showed that the interaction between a few spheres rolling over a432

plane bottom and the oscillatory flow, promoted the growth of certain disturbances and433

the decay of others, independently of the presence of roughness elements. Indeed, the434

formation of ripples is strictly related to the development of steady streaming. Presently,435

two-dimensional recirculating cells originated over the bed surface after a few oscillation436

periods. In the final part of the simulations, the steady streaming appears as in figure 10437

which was obtained by averaging the flow field in the spanwise direction and over the last438

3 periods of run 1 and the last 5 periods of run 2. Figure 10 appears similar to figure 19439

of Rousseaux et al. (2004b) that was obtained on the basis of experimental results for440

comparable values of the parameters. Let the intensity of the steady streaming, ũ∗(t), be441

defined as the magnitude of the average in the interval [t−T, t] and in the spanwise direc-442

tion of the flow field, namely ũ∗ =
〈
(ũ∗21 + ũ∗22 )1/2

〉
x1x2

, where ũ∗i ≡ 〈ui〉∗T,x3
is the i-th443

component of the period-and-spanwise averaged fluid velocity and i = 1, 2. Figure 11a444

shows that, in run 1, the value of ũ∗/U∗
0 initially decreases, then starts to increase and445

attains an exponential growth from approximately the 10th oscillation period on, simi-446

larly to ripples of wavelength λη. Moreover, the evolution of dominant wavelength of the447

bed profile in figure 7a matches closely the evolution of λũi
, namely the dominant spatial448

periodicity of ũ1 and ũ2 in the vicinity of the bed, which is shown in figure 11b. Hence it449

is evident that the formation of ripples is coupled with the development of recirculating450

cells. The maximum velocity of the steady streaming is attained in the vicinity of the451

bed surface and is approximately equal to 1.5 · 10−2 U∗
0 and 0.6 · 10−2 U∗

0 for runs 1452

and 2, respectively. Close to the bed, the spatial periodicity and the flow direction of453

recirculating cells promote the accretion of the ripples characterised by wavelength equal454

to λ∗η. In particular, 4 pairs of recirculating cells can be observed for run 1 and 2 pairs for455
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Figure 11. Panel (a) shows the magnitude of the steady streaming averaged over the
x1x2-plane, ũ

∗, normalised by U∗
0 and plotted versus time with the vertical axis in logarith-

mic scale. In panel (b) the dominant wavelength of the streamwise (thick line) and wall-normal
(thin line) components (i = 1, 2) of the steady streaming velocity at x∗

2 = 3.90δ∗. Ripples appear
nearly when the growth rate attains an exponential trend with constant rate. Each point of the
curve is referred to the time-averaged value computed over the previous period for run 1.

run 2. However, figure 10a, which refers to run 1, shows that recirculating cells with dif-456

ferent periodicity superimpose above the bed and at x2 = 13 only 2 pairs of recirculating457

cells can be detected. This is compatible with the evolution of the bed profile described458

above, in particular with the growth of the mode characterised by k∗δ∗ = 0.24, as shown459

in figure 6a. In run 2, contrarily, recirculating cells do not merge far from the bed (cf.460

figure 10b).461

3.2. Dynamics of surficial particles462

The process generating the ripples has been described as primarily being driven by the463

steady secondary flow arising in the boundary layer. In this section, we will evaluate464

the role that moving particles play in the coupled problem of the bed surface evolution.465

Blondeaux (1990) found that the first observable (often called critical) wave number of466

ripples plotted versus Reδ (for fixed values of the other parameters) exhibited disconti-467

nuities whenever particles in motion interacted with a different number of recirculating468

cells. Indeed, the selection of the critical wave number is closely related to the ratio469

between the sediment semi-excursion, ℓ∗s, namely the amplitude of particle oscillations470

in the streamwise direction, and the wavelength of ripples, λ∗η. However, ℓ
∗
s is difficult471

to measure in the laboratory and Blondeaux (1990) replaced it in his study with the472

fluid semi-excursion, ℓ∗f , since the two quantities are well correlated. Mazzuoli et al.473

(2016), who investigated by DNS the dynamics of a small number of spherical particles474

in an oscillatory boundary layer, computed the particle semi-excursion and found that it475

tended to increase almost linearly during the first oscillation periods, independently of476

the presence of bottom roughness, as long as particle-particle interactions were relatively477

unimportant (tests 2, 3 and 4 of Mazzuoli et al. 2016). The evolution of ℓ∗s was more478

complex when many particles were considered. Presently, the motion of the top-layer479

particles, i.e. the spheres at the bed surface, is investigated. Top-layer particles consist480

of O(2 · 104) spheres. Approximately 12% of these particles in run 1, and 15% in run 2,481

are crest particles, i.e. lay within a distance d∗ from the sphere on top of the bed. The482

top-layer particles are tracked during each half-period starting from the phase, χ, when483

particle motion ceases and then restarts in the opposite direction.484
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x1

x2

Figure 12. Trajectories of crest particles during the time interval 126.3 < t < 138.9 (2
oscillation periods) of simulation 1. The trajectory of one particle is highlighted by a thick red

line.
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Figure 13. Probability that top-layer particles located at the instants t = t(in) (for the last 5 os-
cillation periods of each run) in a certain position x1 experience semi-excursion α ≡ |ℓ∗s | > 0.5 λ∗

η

(black lines) or time-maximum (over each half-period) drag force α ≡ maxT 〈F ∗
1s〉 > +0.1 F ∗

ref

(red lines) or α ≡ minT 〈F ∗
1s〉 < −0.1 F ∗

ref (blue lines). Dashed lines are equispaced by λ∗
η/δ

∗.

The reference drag is defined as F ∗

ref = 1
2
̺∗U∗

0 ω
∗δ∗ 3. Probabilities are computed over the last

periods of run 1 (panel(a)) and run 2 (panel(b)).

In particular, the particles that at time t
(in)
j = π(j + χ), j = 0, 1, 2, . . . are top-layer485

particles, are tracked for a half-period, χ being equal to 0.2 for both run 1 and run 2. Crest486

particles are more exposed to the flow, which gives them higher mobility than those lying487

in the troughs between the ripples. The trajectories of crest particles obtained for two488

periods of simulation 1 (when four ripples are present) are marked in figure 12. Figure 12489

shows that, at the end of an oscillation, most of the particles recover almost the initial490

position except a few particles which can escape a ripple and reach the neighbouring one.491

492

Figure 13a shows the probability that the semi-excursion, the time-maximum drag493

force and time-minimum drag force acting on the top-layer particles selected at the494

instants t
(in)
j , j = 36, 38, . . . , 41, of run 1 and located within [x1−D, x1+D], exceed the495

threshold values 0.5 λ∗η, +0.1 F ∗
ref and −0.1 F ∗

ref , respectively, with F
∗
ref = 1

2̺
∗U∗

0ω
∗δ∗ 3.496

Similarly, figure 13b refers to the interval between the t
(in)
54 and t

(in)
59 , which is in the final497

part of simulation 2. For run 1, the values of the particle semi-excursion range between498

0 and about 0.7 λ∗η. Figure 13a illustrates that the probability to observe large values499

of ℓ∗s increases in the vicinity of the ripple crests while it is approximately halved in500
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Figure 14. Probability density functions of particle semi-excursion (a), drag (b) and velocity
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the troughs. In fact, the drag force acting on crest particles is significantly larger than501

the drag force acting on other particles, which causes crest particles to move longer502

(and farther) in the flow direction. Crest particles, at time t = t
(in)
j , are not aligned503

along the center line between the ripple troughs where the streamlines of recirculating504

cells converge (cf. figure 10), instead, as described in § 3.1, they are mostly piled on505

the side of each ripple opposite to the flow direction. Therefore, the probability curves506

related to the drag in figure 13a are asymmetric with respect to the the center line of507

ripples. Another consequence of the asymmetric shape of ripple profile is that only a small508

amount of crest particles reach the neighbouring ripple during a half-period, although509

visualisations show that several crest particles display values of ℓ∗s larger than 0.5 λ∗η,510

because at t = t
(in)
j most of them are located farther than 0.5 λ∗η from the downstream511

boundary between adjacent ripples. As a result, we observe the ripple crests moving to512

and fro over the span of λ∗η. Similar dynamics can not be detected for run 2 by visual513

inspection of figure 13b. In this case, the variability of the drag force acting on top-layer514

particles is not as pronounced as in run 1 and, as shown in the following, results in515

the slower evolution of ripples. Also the semi-excursion of top-layer particles is almost516

independent of the streamwise coordinate and exhibits large values because the average517

(viscous) drag acts uniformly on the top-layer particles and is relatively strong. The drag518

coefficient for an isolated particle of run 2, i.e. the drag force normalized by the reference519

quantity 1
2̺

∗U∗ 2
0 d∗ 2, is approximately two times larger than in run 1). This is shown520

more clearly in section 3.3 where the sediment flux is related to the shear stress acting521

on the bed surface.522

In order to understand why the formation of ripples in run 1 occurs significantly ear-523

lier than in run 2, three quantities are presently considered for each top-layer particle524

throughout the simulations: the particle semi-excursion, the particle velocity and the525

drag force. Results are first shown in the following for the last simulated half-period,526

where the differences between the motion of crest particles and of other top-layer parti-527

cles are pronounced. The probability density function (pdf) of ℓs was computed for the528

top-layer particles of both run 1 and run 2, which shows that approximately 88% of top-529

layer particles set into motion stop within a distance equal to 4 d∗ from their (previous)530

rest position (see figure 14a). Among these sluggish particles there are also crest parti-531

cles that, however, predominately exhibit large mobility, in particular for run 1. In fact,532

the core of the pdfs of ℓ∗s, normalised by λ∗η, is found nearly coincident between run 1533

and run 2 (d∗, δ∗ and ℓ∗f are found to not be relevant scales of the pdf core), while the534
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Figure 15. Probability density functions of particle semi-excursion (a), drag (b) and velocity
(c) of crest particles for the 41st and 58th half-periods of run 1 (red lines) and run 2 (black
lines), respectively. Drag force is normalised by F ∗

ref = 1
2
̺∗U∗

0ω
∗δ∗ 3. Quantities are normalised

by the standard deviation of each sample.

tail of the curves, which is representative of the most mobile particles, deviates because535

crest particles behave differently in the two simulations and differently from the other536

top-layer particles. Such behaviour of crest particles reflects also on the particle velocity537

and drag, as can be understood from figures 14b,c. However, by restricting the sample538

to crest particles and scaling the quantities presently considered by their standard devi-539

ation, a fair matching of the pdfs can be obtained, as shown in figure 15. This strategy is540

not relevant for non-crest particles. The existence of two separated scales suggests that541

(at least) two types of particle motion coexist: a “regular motion” dominated by viscous542

forces (slow particles) and an “erratic motion” affected by particle-particle interactions543

that manifest themselves in random fluctuations of particle forces (crest particles): about544

50% of crest particles of run 1 show a wide range of values of ℓ∗s (between 0.10 λ∗η and545

0.45 λ∗η) with a nearly constant distribution of probability. Instead, the values of ℓ∗s for546

run 2 are more accumulated around the mean value (0.08 λ∗η) than in the other simula-547

tion. This is also emphasized by the ratio between the standard deviation, σ∗
ℓs
, and the548

mean value, 〈ℓ∗s〉s, being equal to 0.88 and 0.67 for runs 1 and 2, respectively. The fact549

that λ∗η is not a relevant scale for the semi-excursion of crest particles appears from the550

values of the statistics shown in table 4. The standard deviation σ∗
ℓs

computed for run 2551

appears significantly smaller than that of run 1 when normalised by λ∗η. However, the552

value for each run is about 0.03 when normalised by ℓ∗f , which is actually a relevant scale553

for the semi-excursion of crest-particles. The values of 〈ℓ∗s〉s for crest particles are equal554

to 3.6 ·10−2ℓ∗f and 5.7 ·10−2ℓ∗f for runs 1 and 2, respectively, which are smaller but of the555

same order (approximately half) of the value obtained by Mazzuoli et al. (2016) at the556

end of test no. 6. Actually, in the present case there are factors that contribute to increase557

the friction between sediments, among them the bed surface is not macroscopically flat558

as in the cases investigated by Mazzuoli et al. (2016) and the number of moving particles559

(and, consequently, of collisions) is much larger. The maximum value of particle excur-560

sion, maxs ℓ
∗
s, for run 1 is approximately equal to 0.15 ℓ∗f and is comparable with those561

computed from one of the experiments of Rousseaux et al. (2004a) (Reδ ≃ Red = 135,562

s = 2.5) which fell in the range [0.15, 0.25] ℓ∗f .563

The discrepancies between the pdfs of the two simulations are not strictly associated564

with the presence of ripples, as one could be tempted to presume, because the same565

differences were present since the initial wave cycles when bedforms were not yet devel-566

oped. Instead, they can be attributed to the different values of the Keulegan-Carpenter567

number, Kc. In fact, large values of ℓs are associated with large values of ℓf . Moreover,568
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run
λ∗
η

ℓ∗f

〈ℓ∗s〉s
λ∗
η

〈F ∗
1s〉T/2,s

F ∗

ref

〈|u∗
1s|〉T/2,s

ω∗δ∗

σ∗

ℓs

λ∗
η

σ∗

F1s

F ∗

ref

σ∗
u1s

ω∗δ∗

1 0.208 0.173 0.156 0.953 0.152 0.042 0.626
2 0.693 0.082 0.111 0.677 0.055 0.032 0.410

Table 4. Statistics of crest particles.
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Figure 16. Statistics of the motion of top-layer (solid lines) and crest (dashed lines) particles:
(a) mean particle semi-excursion, (b) maximum velocity, (c) mean time-maximum drag. The
values are computed for each half-period of simulation 1 (red lines/squares) and simulation 2
(black lines/circles). Particle semi-excursion for run 1 increases approximately with a linear
trend: similar trend was observed by Mazzuoli et al. (2016) in their tests no. 2,3,4.

the contribution to the average drag force acting on the particles due to the presence of569

recirculation cells is smaller in run 2 than in run 1 which leads to more homogeneous570

distribution of drag over the bed surface. Note that most frequently (in the sense of prob-571

ability) top-layer particles exhibit a creeping velocity, in particular in the case of run 1572

which shows a wider gap between very slow and fast moving particles than run 2 (cf.573

figure 14c). Analogous to the process of segregation for poly-dispersed particulate flows,574

which occurs because of particle inertia when sediment particles differ in size and/or575

density, here the growth of bed surface perturbations is promoted by the non-uniform576

distribution of drag over top-layer particles (due to the steady streaming) and is faster577

if the non-homogeneity is more pronounced.578

In principle, the mechanism at the origin of the patterns of spheres on the surface of579

a movable bed is similar to that observed by Mazzuoli et al. (2016) for beads rolling on580

a rough plane bottom (tests 4 and 6). In test no. 6 of Mazzuoli et al. (2016), several581

movable beads were initially aligned in the direction of flow oscillations and rapidly582

spread laterally until, in a few oscillations, they were randomly scattered over the whole583

bottom. The latter is approximately the initial configuration of the present simulations.584

The evolution of the values of ℓs, F1s and u1s, averaged over top-layer or crest particles585

and over each half-cycle, are shown in figure 16. The values of the considered quantities586

for top-layer particles are approximately constant throughout simulation 2, except a short587

initial transient, while a slight monotonic decrease of the three quantities can be noted588

relative to crest particles. During the transient, both the semi-excursion and the velocity589

of top-layer particles decrease because the spheres attain a closely packed configuration.590
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Conversely, crest particles of run 1 manifest increasing mobility since the beginning of the591

simulation and show an approximately linear growth of the average ℓs and u1s, while drag592

seems to asymptotically reach a constant value after the initial transient. The increase593

of mobility of crest particles is due to the emergence of ripples which push crest particles594

towards regions of the boundary layer characterized by higher velocity. The effect of the595

exponential growth of the ripple amplitudes is partly opposed by that of increasing inter-596

particle collisions. Since the inertia of particles is relatively small in both runs 1 and 2 (as597

indicated by the large values of Kc), the drag force reaches a limit as it balances the bed598

friction. Thus, the relative particle velocity, on which the viscous drag depends, remains599

constant while the absolute particle velocity increases. In fact, as will be clarified in the600

following section, the viscous drag dominates the other force contributions in the phases601

when the bed shear stress is at a maximum.602

3.3. Bed shear stress, incipient particle motion and sediment flow rate603

The wall-normal dependent total shear stress is a sum of the fluid shear stress τ∗f and604

the contribution stemming from the fluid-particle interaction τ∗p , viz.605

τ∗tot = τ∗f + τ∗p (3.2)

where the fluid shear stress (under a turbulent flow condition) is comprised of the viscous606

and Reynolds shear stress contributions:607

τ∗f (x
∗
2) = ̺∗ν∗

∂ 〈u∗1〉
∂x∗2

(x∗2)− ̺∗ 〈u′∗1 u′∗2 〉 (x∗2) , (3.3)

where the dependence on t∗ is omitted for the sake of clarity. Although the total shear608

stress in the presence of two-dimensional ripples is homogeneous in the spanwise direction,609

relatively small fluctuations about τ∗tot can be observed in the streamwise direction when610

the rolling-grain ripples form. Thus, τ∗tot is the average total shear stress acting on the611

bed. It is expected that, in the present configuration, the Reynolds shear stress has612

negligible contribution as the flow is essentially laminar. In the context of the immersed613

boundary method, the stress exerted by the particles is given by614

τ∗p (x
∗
2) = ̺∗

∫ L∗

x2

x∗

2

〈f∗
1 〉dx∗2 (3.4)

where f∗
1 is the streamwise component of the immersed boundary method volume forcing615

exerted on the fluid, transferred to the Eulerian grid (cf. §2). In a stationary channel616

flow scenario, the total shear stress varies linearly in the wall-normal direction with a617

slope equal to the value of the imposed driving pressure gradient. In the present OBL618

configuration however, as a result of the non-stationarity, τ∗tot responds to the pressure619

gradient in a complex non-linear behavior. Figure 17 shows sample wall-normal profiles620

of the different contributions to the total shear stress, non-dimensionalised by τ∗ref =621

1
2̺

∗U∗
0ω

∗δ∗, at different time instants. As is expected, the contribution from the Reynolds622

shear stress is negligibly small across the entire wall-normal interval which is a further623

indication that the flow has not separated behind the ripple crests. In the clear fluid624

region, that is, in the region which is essentially devoid of sediment particles, only the fluid625

viscous shear stress contributes to τtot. On the other hand, deep inside the sediment bed626

sufficiently below the fluid-bed interface, τf vanishes and τtot entirely is comprised of the627

stress exerted by the sediment particles. It is worth noting that, in this region, τtot exhibits628

a linear variation with a slope equal to the imposed pressure gradient. This means that629

the particle shear resistance, which is proportional to the submerged weight of sediment630
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Figure 17. Sample wall-normal profile of the fluid viscous shear stress (blue line), Reynolds
shear stress (magenta line), stress stemming from the fluid-particle interaction (red line) as well
as the total shear stress τtot (black line). The profiles correspond to selected times which are
indicated in bottom panel. Data corresponds to run 1.

bed, is instantaneously in equilibrium with the oscillating driving force (neglecting the631

small particle velocities in this region). In between these two regions, there exists a632

third “active layer” region, hereafter referred to as mobile layer, where both τf and τp633

contribute to the total shear stress and where the particle erosion-deposition processes634

take place. Although there is no clear demarcation of these regions, it is observed that635

the thickness of the mobile layer varies depending on different phases of the oscillation636

period.637

For modeling purposes, it is common practice to relate the non-dimensional boundary638

shear stress τ∗b = τ∗tot(x
∗
2 = y∗0), i.e. the Shields number639

θ =
τ∗b

(̺∗s − ̺∗)g∗d∗
(3.5)

to the sediment flow rate. The value of y∗0 is chosen as the distance from the bottom at640

which the average particle volume fraction 〈φs〉 reaches 0.1. The instantaneous volumetric641

flow rate of the particle phase (per unit span), q∗s , is given by642

q∗s (t
∗) =

πd∗ 3

6L∗
x1
L∗
x3

Np∑

l=1

u
∗(l)
1s (t∗) , (3.6)

where u
∗(l)
1s (t∗) is the streamwise component of the velocity of the l-th mobile particle at643

time t∗. Since spherical particles do not gear to each other and can slide more easily than644

sand grains, many particles experience non-zero velocities, even if they are located below645

the bed surface. Thus, in order to exclude all particles which do not contribute to the shear646

induced particle flux, a streamwise velocity threshold is set at 1% of the gravitational647

velocity of particles, v∗s (similar results are obtained even considering the threshold at648

a small percentage of ω∗δ∗). The particle selected with such criterion approximately649

coincide with those constituting the mobile layer (cf. figure 18).650

Figure 19 shows the absolute value of the particle flow rate, normalised by d∗v∗s , as a651
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Figure 18. In the main panel, the streamwise component of the particle velocity is plotted as
a function of the wall-normal coordinate of run 1. Shaded by grey dots are the velocity of each
particle at the instants t = 36.75π (I), t = 37.00π (II) and t = 37.25π (III) (phases are indicated
in the small inset), while thin solid, thick solid and dashed lines indicate the respective (binned)
average values.
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Figure 19. Instantaneous dimensionless particle flow rate, normalized by the inertial scaling
d∗v∗s , as a function of the Shields number θ during the last four cycles of the simulation interval.
Run 1 (red line); run 2 (black line). The dashed-line represents the the Meyer-Peter & Müller
formula (Wong & Parker 2006) for steady turbulent flow conditions qs = 4.93(θ − θc)

1.6. The
symbols △, ©, � indicate phases t = 1

8
π, t = 9

32
π and t = 6

8
π, while small circle-cross and

circle-plus symbols mark the instants at which the velocity far from the bottom vanishes (t = 4
8
π)

and reaches U∗
0 (t = π), respectively. Gray circles indicate the experimental observations of

Gilbert and Meyer-Peter (Nielsen 1992).
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function of the absolute value of the Shields number for the last four periods of run 1 and652

run 2. The arrows indicate the time-development along the loop swept in a half-period.653

Following the loop, the particle flow rate exhibits a minimum in the early deceleration654

phase (see phase t ≃ 1
8π in figure 19). Then, while the free-stream velocity is still de-655

celerating and the Shields number decreasing, the particle flow rate increases under the656

action of the imposed driving pressure gradient (between phases t ≃ 1
8π and t ≃ 5

8π in657

figure 19). Subsequently, the next acceleration phase starts and the Shields number rises.658

Finally, approximately at the phase 3
4π (i.e. 1

4π after the flow reversal), both the Shields659

number (i.e. the boundary shear stress) and the sediment flow rate are maximum. It660

can be noted that, except for two or three instants, each value of |θ| correspond to two661

values of the dimensionless sediment flow rate. It is therefore clear, by comparing the662

diagrams of figure 19 obtained for the present runs with the experimental measurements663

of Gilbert and Meyer-Peter (grey symbols, Nielsen 1992) and with the Meyer-Peter &664

Müller formula (dashed line, Wong & Parker 2006) obtained for stationary channel flows,665

that the effects of the flow unsteadiness reflect strongly on the motion of particles and666

should be taken into account in the models of sediment transport. Indeed, during the667

flow reversal, which is characterised by large values of the forcing pressure gradient and668

relatively small values of the bed shear stress, the sediment flow rate is not negligible.669

Hence, coarse prediction errors could be avoided by relating the sediment flow rate to670

a combination of the Shields number and some dimensionless expression of the pressure671

gradient such as the instantaneous Sleath parameter (Foster et al. 2006; Frank et al.672

2015), defined as:673

S = − d∗

̺∗v∗2s

dp∗f
dx∗1

=
ψ

Kc
sin (t) , (3.7)

where the expression (2.1) was substituted in the second equality. Since the values of the674

Keulegan-Carpenter number, Kc, are large in both the present simulations, the contri-675

bution of the viscous drag is expected to dominate over that induced on the spheres by676

the pressure gradient. Besides the direct contribution on the particle force, the pressure677

gradient also causes the acceleration of the interstitial fluid which, due to its small in-678

ertia, responds much earlier than the clear fluid above the bed. Thus, such viscous pore679

flow develops and can mobilize the sediment particles much earlier than the bed shear680

stress becomes appreciable. Even though the velocity of the particles set into motion681

during the flow reversal is small, the thickness of the mobile layer is relatively large in682

these phases because the pressure gradient acts uniformly on the entire bed. Finally, as683

the values of |θ| become large, crest particles, which are more exposed to the flow in the684

boundary layer and exhibit values of streamwise (particle) velocity of order O(0.1) U∗
0 ,685

mostly contribute to the sediment flow rate.686

Figure 19 also shows that, at corresponding phases, the Shields number and, therefore,687

the sediment flow rate normalised by d∗v∗s , are larger in run 2 than in run 1. To understand688

such difference it is useful to compare the Shields number to that we would observe in689

absence of sediments, i.e. in a Stokes boundary layer:690

θ(St) =
ψ

Reδ
[sin (ω∗t∗)− cos (ω∗t∗)] . (3.8)

Figure 20 shows that, scaling the Shields number by the maximum value of θ(St), the691

resulting curves of runs 1 and 2 almost overlap and the amplitude of oscillations is nearly692

equal to unity, because the bed shear stress approaches that of a Stokes boundary layer693

in both runs. Consequently, the quantity 1
2̺

∗U∗
0ω

∗δ∗ is a relevant scale for the bed shear694

stress. Hence, for a given value of ψ, by increasing the value of Re∗δ the Shields param-695
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Figure 20. Evolution of the Shields number for run 1 (red line) and run 2 (black line) during the
last simulated periods. In panel (b) the Shields number is normalized by the maximum Shields
number attained in the absence of particles, i.e. in a Stokes boundary layer.

eter decreases (like in the present case) until turbulence appears and further modes of696

sediment transport occur (e.g. saltation). Moreover, it can be noted that the maximum697

value max
(
θ(St)

)
=

√
2 ψ
Reδ

equals the maximum value of the Sleath number, i.e. approx-698

imately the maximum effect of the imposed pressure gradient on an isolated particle,699

max (S) = ψ
Kc

= 2 d
∗

δ∗
ψ
Reδ

, if d∗/δ∗ ∼ 0.7. Therefore, even though the maximum shear700

stress and the maximum imposed pressure gradient are reached at different phases of the701

oscillation period, in the present cases (and in most of the experiments made by Blon-702

deaux et al. 1988) viscous effects prevail. It can be useful to point out that typically, in703

the field, the ratio d∗/δ∗ does not significantly vary with respect to the other parameters704

(e.g. for 0.2 mm< d∗ < 1 mm and T ∼ 10 s, 0.1 < d∗/δ∗ < 0.6), thus the ratio ψ
Reδ

can705

be practically used as the only parameter driving the sediment flow rate (as long as the706

flow is not turbulent). It can be inferred from the present results that the growth rate707

of ripples is related to the maximum sediment flow rate. In particular, the growth rate708

of ripples increases if the maximum bed shear stress is not much larger than the critical709

value of incipient sediment motion, sediments being more sensitive to the effect of the710

steady streaming. Consequently, if the ratio ψ
Reδ

is close to θcr/
√
2 ∼ 0.035 ripples form711

more rapidly. In fact, for runs 1 and 2, ψ
Reδ

is equal to 0.076 and 0.110, respectively, and712

ripples form much more slowly in case 2. The relevance of ψ
Reδ

for the prediction of ripple713

genesis was also emphasized by Blondeaux (1990) (see figure 11) because it is related to714

the ratio
〈ℓ∗s〉s
λ∗

η
. In particular, the dimensionless parameter used by Blondeaux (1990) and715

by other authors before was d∗

(s−1)g∗T∗2 which is equal to 1
π2

ψ
Re2δ

d∗2

δ∗2 and was empirically716

found controlling the ripple wavelength.717

4. Conclusions718

The origin and development of ripples in an oscillatory flow was investigated by means719

of direct numerical simulations. Two experiments were reproduced which were carried720

out by using medium sand at moderate values of the Reynolds number. The experi-721

ments significantly differed in the frequency and amplitude of the free-stream velocity722

oscillations (i.e. both in the Stokes and particle Reynolds numbers, Reδ and Red). Af-723

ter approximately ten oscillations, two-dimensional patterns arose which then coarsened724

turning into rolling-grain ripples. The wavelengths characterizing the ripples in the sim-725

ulations, in the limits set by the domain size, are comparable with those observed in the726
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experiments and with the predictions obtained by linear stability analysis. The bed sur-727

face is identified for each discrete instant. The Fourier analysis of the bed profile shows728

that, after an initial transient where patterns form then merge or disappear, a few wave729

numbers grow in amplitude and finally one wave number becomes dominant. Ripples730

form clearly in one of the two simulations (run 1) while two-dimensional patterns are731

observed in the second simulation (run 2), since the dynamics of the bed are somewhat732

slower in the latter case. In run 1 the growth of the bed-surface fluctuation amplitude733

normalised by the particle diameter is found to follow an exponential trend with exponent734

equal to 1.46 · 10−2 ω∗t∗. The secondary flow arising from the flow instability consists of735

steady recirculating cells which are responsible for the formation of ripples, since they736

tend to pile up the sediment particles at the nodes where streamlines converge and to737

scour where streamlines diverge close to the bed surface. The evolution of ripples and738

the development of recirculating cells are strictly related. Ripples of run 1 exhibit an739

asymmetric shape for most of the oscillation period, with the lee side steeper than the740

stoss side, except in the phases characterised by the largest bed shear stress when the741

ripple crests migrates in the direction of the mean flow.742

The sediment particles at the flow-bed interface (top-layer particles) are tracked during743

the wave cycles and the velocity and the drag force are computed. Two distinct kinds of744

particle motion are identified: most of the top-layer particles, in particular those lying745

in the troughs of ripples, roll for O(1) d∗ in the flow direction then they stop. The746

excursion of these particles, i.e. the displacement in the streamwise direction that they747

experience for each half cycle, is found to scale with the wavelength of ripples for the748

present simulations. Similarly, the drag force and, more weakly, the velocity of these749

“slow” particles scale with reference quantities obtained as combinations of ω∗, U∗
0 and750

δ∗. However, the sediment particles lying on the crest of ripples (crest particles) are751

subjected to stronger drag force which causes large excursions in some cases of O(0.1) ℓ∗f ,752

i.e. comparable with the fluid excursion far from the bed. Therefore, such particles are753

provided with larger momentum than others. These “fast” particles, though they do not754

saltate, encounter several collisions with other particles that contribute to increase the755

variance of quantities associated with their motion. It is found for the present cases that756

the wider the difference of motion between “slow” and “fast” particles, the more rapid the757

growth of bedforms is. In this sense the origin of ripples can be seen in analogy with the758

phenomenon of segregation of sediments of different size or density, since in both cases a759

non-uniform distribution of momentum is transferred from the flow to the sediments, in760

one case because of the non-uniform distribution of the mass of sediment grains, while761

in the present case because of the non-uniform distribution of the velocity field (due to762

the presence of the recirculation cells).763

Finally, the sediment flow rate is computed and compared with global quantities char-764

acterising the fluid-sediment interaction. The Shields number and the dimensionless (ex-765

ternal) pressure gradient are considered. A fair correlation between the sediment flow766

rate and the Shields number is found in the phases of the oscillation period when the767

bed shear stress reaches the maximum value. In such phases the predictions obtained768

by means of the Meyer-Peter & Müller formula, i.e. based on steady flow regime and769

uniquely on the value of the Shields number, are approached. However, in the phases770

of the oscillation period characterised by small values of the bed shear stress and large771

values of the (external) pressure gradient, a significant sediment flow rate was observed772

which cannot be explained on the basis of the instantaneous Shields number, which is773

actually vanishing. Thus, the Shields number should be combined with the dimensionless774

pressure gradient to improve the accuracy of prediction of the sediment flow rate. In775

conclusion, for the purpose of modelling the formation of bedforms under sea waves, the776
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effect of the unsteadiness on the transport of sediments is remarkable in the absence of777

turbulent events as in the present cases. For the range of values of d∗/δ∗ that typically778

characterise a sandy seafloor, the parameter ψ/Reδ controls the growth rate of ripples.779

In particular, the closer ψ/Reδ is to θcr/
√
2, the more rapid the formation of ripples780

results.781

An extension of the present investigation aimed at exploring the regions of the pa-782

rameter space characterised by the turbulent flow regime would be of immense help for783

the development of reliable sediment transport models and for the estimation of the784

bed evolution. Considering the high computational cost and the formidable simulation785

time required by the present simulations, which exceeded the 10 million CPU hours and786

approximately 1 million time steps (i.e. running for ∼ 480 days on 64 “Ivy Bridge”787

computing nodes), the direct numerical simulation of the formation of bedforms in a788

turbulent oscillatory flow is not yet feasible as it would require much larger domain and789

finer spatial and temporal resolutions than the present ones. Nonetheless, fundamental790

insights on the mechanics of sediment transport in a turbulent oscillatory boundary layer791

could be obtained by reducing the size of the computational domain to that required by792

turbulence to develop, namely to the minimal flow unit.793
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