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Abstract: Reduction of NOX emissions and fuel consumption are the main topics in engine
development, forcing the adoption of complex techniques and components, whose interactions
have to be clearly understood for proper and reliable operations and management of the whole
system. The investigation presented in this paper aimed at the development of integrated control
strategies of turbocharging, high pressure (HP) and low pressure (LP) exhaust gas recirculation (EGR)
systems for better NOX emissions and fuel consumption, while analyzing their reciprocal influence
and the resulting variations of engine quantities. The study was based on an extended experimental
program in three part load engine operating conditions. In the paper a comparison of the behavior of
the main engine sub-systems (intake and exhaust circuits, turbocharger turbine and compressor, HP
and LP EGR loops) in a wide range of operating modes is presented and discussed, considering open
and closed loop approaches for variable nozzle turbine (VNT) control, and showing how these affect
engine performance and emissions. The potential of significant decrease in NOX emissions through
the integration of HP and LP EGR was confirmed, while a proper VNT management allowed for
improved fuel consumption level, if an open loop control scheme is followed. At higher engine speed
and load, further actions have to be applied to compensate for observed soot emissions increase.

Keywords: diesel engine; exhaust gas recirculation (EGR); low pressure (LP) EGR circuit; proportion
of high pressure (HP) and LP EGR; variable nozzle turbine (VNT); pollutant emissions; fuel
consumption; NOX-soot trade-off

1. Introduction

Among the different available technologies to limit NOX emissions in internal combustion engines
(ICEs), exhaust gas recirculation (EGR) has a long and consolidated history, with investigations started
about fifty years ago, both on gasoline [1] and diesel engines [2]. Since then, a number of evolution
steps were applied to EGR systems, through the fitting of electronic control and exhaust gas cooling, in
order to enhance their management while achieving higher effectiveness. In gasoline engines, EGR
can also reduce knock occurrence at high load, thus limiting mixture enrichment and improving fuel
consumption. In recent years, further developments were considered, starting from the adoption of low
pressure (LP) circuit [3,4], as an alternative or coupled to the conventional high pressure (HP) loop [5–7].
Other aspects are related to the integration of EGR circuits with the main engine sub-assemblies, such
as fuel injection equipment [8,9] and turbocharging systems [10], either in a single-stage configuration
fitted with variable nozzle turbine (VNT) [11] or according to two-stage concepts [12]. Moreover,
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other available cleaning options have to be matched to EGR, such as Miller cycle [13] or advanced
combustion processes [14,15], extending its use to the whole range of ICEs, such as in marine and
stationary applications. Finally, the growing interest in alternative fuels, is leading to further issues to
be deepened [16–18].

Current engines are therefore very complex systems, whose performance, fuel consumption,
emissions are strongly influenced by each component’s behavior and where the number of control
variables is continuously increasing. Investigations dealing with the development of suitable
management strategies to optimize engine outcomes are therefore mandatory in order to balance and
achieve different goals, taking into account the growing worldwide legislation pressure on thermal
and chemical emissions.

As broadly discussed in a previous paper [19], most of the available experimental results presented
in the literature are focused on large displacement engines [6,20,21]. On the other hand, investigations
on dual loop EGR systems were developed mainly through numerical simulations [22–24], limiting test
bench activities to model validation. Consequently, little experimental information on the application
of hybrid EGR systems in current downsized automotive diesel engines is available. Moreover, as the
integration of VNT and EGR systems is approached as in [11], the requirements and problems of control
system components and algorithms have increased, or the proper turbocharger matching issues, as
in [20]. Therefore, the study presented in this paper aimed at enlarging the knowledge on the reciprocal
interactions of turbocharging, HP and LP EGR systems when different control strategies are applied to
achieve lower NOX emissions and fuel consumption. The first goal required the optimization of HP
and LP contribution to the overall EGR rate, while the second target demanded the exploitation of the
potential offered by the VNT management, thus making experimental planning and results analysis
more complex.

Tests were made on a Euro 5 downsized diesel engine (FCA, Turin, Italy), selecting three operating
conditions belonging to the engine working area related to the Type Approval cycle. A wide number of
engine operating parameters were measured, together with fuel consumption, NOX and soot emissions.

The influence of dual-loop EGR and turbocharging systems control on intake, exhaust and
turbocharger quantities is analyzed and discussed, while showing the prevailing effects of VNT open
loop control scheme on fuel consumption, allowing to increase VNT opening, and proving that a larger
contribution from the LP loop is requested to reduce NOX.

2. Experimental Setup

2.1. Engine Test Facility

The experimental campaign was made on an automotive Euro 5 DI diesel engine, fitted on a steady
state eddy current dynamometer test bench. Table 1 lists engine main technical characteristics, while
Table 2 presents measured parameters, together with the relevant instrumentation. For each instrument,
range and accuracy are also shown. Pressure and temperature were acquired in selected sections of
the engine intake and exhaust, turbocharging and EGR systems. Moreover, a proper control of coolant,
lubricant and charge air temperatures was applied through thermostatic circuits or managing water
flow rate to obtain a suitable intercooler efficiency level.

Other measurements were related to the displacement S of the nozzle ring push rod, for which
a linear potentiometer was used. Comparing S with its maximum and minimum value (SMAX and
SMIN), the VNT opening degree AVNT was evaluated through the equation:

AVNT = [(SMAX − S)/(SMAX − SMIN)] × 100 [%], (1)

ranging from 0% to 100%, when varying the flow area from minimum to maximum.
For low frequency measuring process in steady-state conditions, an automatic data acquisition

system was used, including a multichannel scanner, an IEEE bus, a GPIB interface and a personal
computer. In-house developed codes in Labview® and Excel® environment allowed to collect and
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process data, calculating statistical parameters of measured quantities (average, standard deviation,
variation coefficient) and the main engine operating parameters. In-cylinder pressure diagrams were
acquired through a dedicated system, sampling different signals at high frequency rates. More details
on the measurement equipment used in this study are presented in [19].

Table 1. Characteristics of tested engine. EGR: exhaust gas recirculation; and HP: high pressure.

Engine Type Four-Stroke, Diesel

Cylinders 4 in-line
Bore (mm) × stroke (mm) 69.9 × 82

Displacement (cm3) 1248
Compression ratio 16.8:1
Valves for cylinder 4
Maximum power 70 @ 4000 rpm
Maximum torque 200 @ 1500–3000 rpm

Fuel injection system Direct injection, Multijet II common rail with solenoid injectors, maximum pressure 1650 bar
Turbocharging system Single stage, variable nozzle turbine, intercooler

EGR system HP, cooled

Table 2. Measured parameters and instrumentation. FSN: filter smoke number.

Measured Quantity Instrument Range Accuracy

Engine speed Inductive pick-up 0–5000 rpm ±10 rpm

Engine torque Eddy current dynamometer 0–250 Nm ±1.25 Nm

Fuel mass flow rate AVL 733S dynamic measuring
equipment 0–37.5 kg/h 0.81% for a measured value of 5 g,

0.42% for 10 g, 0.2% for 25 g

Air mass flow rate Hot wire air flow meter 0–1000 mg/stroke ±5 mg/stroke

Exhaust smoke AVL 415 variable sampling
smoke meter 0–10 FSN ±0.1 FSN

NOX concentration Rosemount 951 CLA analyzer
0–250 ppm ±1.25 ppm

0–1000 ppm ±5 ppm

Intake and exhaust CO2
concentration

Beckman 864 NDIR analyzers
0%–2.67% 0.0267%

0%–16% 0.16%

Turbocharger rotational speed Eddy current probe 200–400,000 rpm 36 rpm

Temperatures (intake circuit,
lubricant, coolant, etc.) 4-wire RTD 0–350 ◦C 0.15 ◦C + 0.002 × measured value

Temperatures
(exhaust and EGR circuits)

K type TC 0–1200 ◦C (class 2)
±2.5 ◦C or

±0.75% × measured value (class 2)

Pressures Strain gauge
−1–0.6 bar

<±0.2% × full scale
0–2.5 bar

In-cylinder pressure
Kistler 6125B

0–250 bar
<±0.5% × full scale

Kiag Swiss 5001 charge amplifier <±1% × full scale

Fuel pressure
Kistler 4067A2000

0–2000 bar
<±0.5% × full scale

Kistler 4618A2 amplifier <±0.2% × full scale

2.2. Engine Management System

The engine management system was based on an open electronic control unit (ECU), fitted with
an EPROM emulator module (Magneti Marelli, Bologna, Italy), and an ETAS® MAC2F interface
connecting the ETK module (ETAS, Stuttgart, Germany) to a dedicated PC. The INCA (ETAS, Stuttgart,
Germany) software was used to show engine operating parameters, to select maps stored in the ECU
and to change control variables in real time according to the experimental program.

In particular, HP EGR system was managed through a closed loop scheme, comparing the relative
air-fuel ratio (AFR) set point with the actual value, given by the measured air mass flow rate and the
calculated fuel mass flow rate. The duty-cycle (DC) of the electric HP EGR valve (DCEGR) was then
modulated according to the resulting difference, thus adapting its opening degree.
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Turbocharger turbine was controlled through open or closed loop strategies, selected by the ECU
according to the engine operating condition. The first was applied by setting proper duty-cycle values
of an electro-pneumatic valve (DCVNT), thus obtaining fixed values of AVNT. As the resulting pressure
level is below the atmospheric pressure, the maximum duty-cycle (DCVNT = 100%) corresponded to
the fully closed position (AVNT = 0). The comparison of an intake pressure set point with the measured
level allowed to apply the closed loop control scheme, resulting in proper changes of DCVNT to reduce
the calculated difference.

2.3. High and Low Pressure Exhaust Gas Recirculation Circuits

Figure 1 shows engine scheme, displaying the standard HP EGR system and the prototype
LP EGR circuit, added for the investigations on the integrated control of EGR and turbocharging
systems according to a widely adopted solution [20,21]. A selection of engine operating parameters
is also presented in the figure, referring to those discussed in Section 3. A diesel oxidation catalyst
and particulate filter were not fitted on the engine during the tests, to evaluate the influence of the
hybrid EGR system on raw soot emissions, even if compressor rotor and blades were more stressed
by particles.
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oxidation catalyst; DPF: diesel particulate filter; and ICE: internal combustion engine.

On the other hand, engine management and tests development were simplified, due to the absence
of the required periodic filter regeneration phases. In order to reproduce suitable pressure levels along
the exhaust circuit and in the LP EGR loop, a throttle valve (TV) was fitted at its terminal (Figure 1),
whose settings will be analyzed when discussing Table 3. The LP EGR valve was manually controlled
through a vacuum signal, while the EGR mass flow rate in the long route loop depended also on the
opening position of the above mentioned TV.

EGR rate (f EGR) is expressed as the ratio between recirculated gas and total engine mass flow rate
(Equation (2)):

f EGR = [MEGR/(MEGR + Ma + Mf)] × 100 [%]. (2)

Following a common approach [21,25], f EGR was evaluated through measurements of ambient,
intake and exhaust carbon dioxide concentrations, allowing to apply Equation (3):

f EGR = [(XCO2 i − XCO2 a )/(XCO2 e − XCO2 a )] × 100 [%]. (3)
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Estimated levels of MEGR corresponded to the total mass of recirculated gases when both circuits
were used or to the mass flowing in the activated circuit when only one was operated. In the first
case, the contribution from each loop was calculated through a simplified energy balance between the
intake air and the recirculated gases from the two circuits, considering measured temperature levels
for each flow, neglecting heat losses and variations of constant pressure specific heat with temperature.

It is well known that one of the consequences of EGR technique application is the reduction of
oxygen concentration at the engine intake (XO2 i ), representing the dilution effect [1,2,18]. Therefore,
the maximum EGR rate, which can be applied without unacceptable penalties in soot emission
and in engine performance, depends on AFR corresponding to the requested engine load, being
higher at low brake mean effective pressure (bmep) values. At the same time, oxygen content in the
exhaust/recirculated gases (XO2 e ) depends on the same parameter. Useful relationship to link intake
and exhaust oxygen concentrations, EGR level and engine load were demonstrated in [25], where
a charge dilution index (CDI) was also introduced according to Equation (4):

CDI = EGR level/Load level = [(XO2 a − XO2 i )/(XO2 i − XO2 e )], (4)

to normalize the effect of load on EGR and to allow the comparison of EGR rate in different engine
operating conditions [25].

In this investigation, intake and exhaust oxygen concentrations and CDI values were estimated
according to the measured levels of air and EGR mass flow rates and to the calculation of in-cylinder
relative AFR following the relationship presented in [25,26].

Table 3. Schedule of experimental activities. ID: identification number; bmep: brake mean effective
pressure; AFR: air-fuel ratio; TV: throttle valve; and pos.: position.

Operating Condition Control Variables
(Fixed in Each Test Set)

Control Variables (LP
EGR and VNT Control) Test Sets 2

ID = n × bmep (rpm × bar)

No. 1 = 1500 × 2
Relative AFR

Exhaust TV position
LP EGR valve opening
VNT opening degree

Rel.AFR = 3.01 − TV pos. 1

Rel.AFR = 2.90 1 − TV pos. 1 1/2/3

Rel.AFR = 2.77 − TV pos. 1/2

Rel.AFR = 2.62 −TV pos. 1/2

No. 2 = 2000 × 5
Relative AFR

Exhaust TV position
LP EGR valve opening
VNT opening degree

Rel.AFR = 1.94 − TV pos. 1

Rel.AFR = 1.80 1 − TV pos. 1/2/3

Rel.AFR = 1.67 − TV pos. 1/2

No. 3 = 2500 × 8

Relative AFR

LP EGR valve opening

Rel.AFR = 1.60 − Intake pressure
= 1.48 bar − TV pos. 1

Exhaust TV position Rel.AFR = 1.60 1 − Intake pressure
= 1.52 1/1.57 bar − TV pos. 0/1 1

Intake pressure Rel.AFR = 1.47 − Intake pressure
= 1.52 bar − TV pos. 1

1 Standard/reference values shown in bold; 2 Constant operating parameters (ECU standard calibration levels):
pilot, pre and main start of injection. Pilot and pre injected quantity. Rail pressure.

2.4. Testing Procedure

Selection of engine operating conditions was referred to low and medium levels of bmep and
rotational speed n, as they are prevailing when dealing with type approval and real world operations
in the automotive field. Moreover, different interactions between EGR and turbocharging systems
were outlined in these conditions, allowing to analyze a wide range of relationship between the engine
operating quantities. The first column of Table 3 presents the identification number of each selected
working point, together with the relevant values of n and bmep. Considering the mass and gearbox
ratios of cars belonging to the B and C-segment equipped with the tested engine, conditions can be
referred to the new European driving cycle (NEDC). In particular, points No. 1 and 2 represent the
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average operations related to speed levels between 30 and 90 km/h, while point No. 3 is related to the
extra-urban acceleration from 100 to 120 km/h.

Tests aimed at the assessment of the potential in NOX reduction resulting from the application of
a LP EGR system, used either simultaneously with the standard short route circuit or as a stand-alone
option. To compensate the negative influence of long route loop on fuel consumption, VNT control
was added in order to reduce engine pressure gradient and pumping losses.

To achieve these objectives, four different control variables were considered in all the working
points. In operating conditions No. 1 and 2, each set of test was defined according to a fixed value
of relative AFR and to the position of the throttle valve at the end of the exhaust circuit. For every
experimental set, the HP EGR circuit was used in the first operating mode. Then, LP EGR loop
was activated, gradually increasing the relevant valve opening degree. In these modes, AVNT was
maintained at its standard value by fixing the corresponding duty-cycle in the ECU map. At the
maximum LP EGR valve opening level, the VNT control was added, increasing AVNT.

In operating condition No. 3, turbine was controlled by the ECU according to the closed loop
scheme based on the intake pressure set point. Therefore, experimental sets were identified through
fixed levels of three control variables (i.e., relative AFR, exhaust TV position and intake pressure).
The first mode was again related to recirculation from the short route loop only, while a growing
contribution from the LP circuit was then added by managing the relevant valve.

Table 3 summarizes the schedule of the experimental campaign, showing selected values of
relative AFR, valve settings for exhaust throttle and, for condition No. 3, intake pressure. In the
first case, standard levels stored in the ECU represented the reference condition when exhaust gas
were recirculated only through the HP circuit. As regards the different settings of the exhaust throttle
valve, position 1 corresponded to the pressure level at the turbine exit when a regenerated diesel
particulate filter (DPF) was considered. More closed settings were actuated in positions 2 and 3, leading
to an increase in recirculated gases from long route loop, while position 0 corresponded to a more
opened setting.

3. Results and Discussion

Results are presented and discussed in this section considering selected parameters, which
outline the most significant interactions between EGR and turbocharging systems. Graphs are built as
a function of LP proportion, which is the ratio between LP and total mass flow rates of recirculated
gases. Based on the definition of each test set, the analysis of every curves has to be made starting
from the left hand side (MLPEGR/MEGR = 0, HP EGR loop activated). Moving towards the right side,
contribution from the LP loop grows, until the HP EGR circuit is deactivated (MLPEGR/MEGR = 1).
To obtain this operating mode, suitable AVNT control was applied in points No. 1 and 2 [19], while
just increasing LP contribution in point No. 3 forced the ECU to close the HP EGR valve. In this
testing condition, it was also possible to obtain different modes characterized by the null level of HP
proportion, by changing AVNT value until a threshold limit of exhaust smoke (i.e., 3 FSN) was reached.

Each graph shows results for selected sets of the three operating conditions, in order to highlight
differences in observed trends. For points No. 1 and 2, continuous lines are associated to standard
levels of VNT opening degree, while dotted lines are referred to AVNT control with increased values.
In each figure, reference values are shown, corresponding to observed levels when applying the
standard HP EGR setting fixed by the engine manufacturer.

Discussion is developed considering the behavior of engine quantities referred to the intake circuit
(Section 3.1), EGR circuits (Section 3.2), turbocharger (Section 3.3) and exhaust circuit (Section 3.4).
Finally, trade-offs between fuel consumption, NOX and soot emissions are analyzed (Section 3.5).

3.1. Intake Circuit

Levels of compressor mass flow rate Mc are shown in Figure 2. This quantity is given by the sum
of air and LP EGR rate mass flow rates. Taking into account that the first parameter (not shown) is



Energies 2017, 10, 47 7 of 18

constant in operating conditions No. 1 and 2 for the standard level of AVNT, while presented slight
reduction in point No. 3, trends show the increasing contribution from the LP circuit when opening the
relevant valve. Variations are apparent when changing relative AFR (in particular for operating modes
with HP EGR only). When higher values of AVNT were applied in points No. 1 and 2, reductions of
both contributions were observed. Due to the different VNT control in 2500 × 8 condition, a rising
trend is observed in the whole range of LP proportion.Energies 2017, 10, 47 7 of 18 
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Figure 2. Compressor mass flow rate as a function of LP proportion in different operating modes.

Figure 3 presents the behavior of intake mass flow rate Mi, given by the sum of air and recirculated
gases from both the EGR loops. This parameter can also be evaluated as the sum of compressor and HP
EGR mass flow rates. Changes between points No. 1 and 2 on one hand and point No. 3 on the other
are shown, always due to the alternative VNT control schemes. In the first case, the increase proves that
LP EGR overcomes the reduction in HP EGR for constant AVNT values, while in the second, observed
levels are almost constant, as variations in contribution from the two EGR circuits are balanced.
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Figure 3. Engine intake mass flow rate as a function of LP proportion in different operating modes.

Opening the VNT leads to a reduction in intake mass flow rates, but with different effects to
LP proportion, which may decrease (one set of point No. 1), increase (second set of point No. 1, all
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sets of point No. 2) or remain at level = 1.0 (point No. 3). Measured values of intake pressure pi are
displayed in Figure 4. The constant trend in 2500 × 8 condition is obviously due to the VNT closed
loop control scheme. In points No. 1 and 2, the activation of LP loop and the growth of its contribution
leads to an increase in this quantity, outlining one of the effects of the different interaction between this
circuit and the turbocharging system, which is more remarkable at intermediate level of n and bmep.
When controlling VNT opening degree, a significant reduction in pi is obviously observed, with final
levels going below the reference values for the adopted AVNT settings.
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Values of compressor exit temperature T2 are presented in Figure 5. Major variations are observed
for experimental points No. 1 and 2, as compressor exit temperature is influenced by the rise in
compressor inlet temperature T1 (as a consequence of LP EGR activation and ranging between 5 and
20 ◦C) and pi.
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Figure 5. Compressor exit temperature as a function of LP proportion in different operating modes.

When opening AVNT, the strong decrease in intake pressure overcame the influence of T1, leading
to reduced T2 levels. In point No. 3, as boost pressure is kept constant, only the temperature increase
at the compressor inlet influenced T2, resulting in a lower growth.
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Following the engine intake circuit (Figure 1), after the compressor two main components affects
charge flow, modifying mass rate, pressure and temperature, i.e., the intercooler and the HP EGR valve.
Values of intake temperature are depicted in Figure 6, showing the beneficial influence of LP EGR [7].
When its contribution increased (in particular up to a level around 70%), a significant reduction in ti

was observed, due to the cooling effect of intercooler on this share of recirculated gas.Energies 2017, 10, 47 9 of 18 
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Figure 6. Engine intake temperature as a function of LP proportion in different operating modes.

3.2. Exhaust Gas Recirculation Circuits

Analysis of the EGR circuits’ behavior is a fundamental aspect of the investigation, as they
influence engine and turbocharger performance, aside from determining emission levels. Considering
the overall operation of the two loops, trends of total EGR mass flow rate are presented in Figure 7.
Increasing levels are apparent when adding LP contribution, with similar slope in the different
operating conditions, with a few exception (especially for the 2000 × 5 point when applying a high
HP EGR rate). When opening VNT, observed values show significant differences according to the
experimental points, as MEGR remained quite constant in 1500 × 2, while reducing in 2000 × 5, due to
the prevailing effect of HP EGR decrease. For 2500 × 8, the whole curve corresponded to an increase
in AVNT, leading MLPEGR and MEGR to rise, while MHPEGR reduced up to its complete exclusion.
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Figure 7. Total EGR mass flow rate as a function of LP proportion in different operating modes.
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Non-dimensional parameters are usually adopted to evaluate EGR levels, comparing it to intake
charge through the EGR rate. As previously stated (Section 2.3), a Charge Dilution Index was recently
introduced in [25], to normalize the effect of load on EGR while comparing EGR rate in different engine
operating conditions. The relationship between EGR rate and CDI is presented in Figure 8, identifying
observed/calculated values according to the experimental points.
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Figure 8. Relationship between EGR rate and charge dilution index in tested operating modes.

Notwithstanding CDI was obtained through the estimation of intake and exhaust oxygen
concentrations, a good correlation with EGR rate is shown, which is in line with trend presented
in [25]. Therefore, this parameter will be further investigated, taking into account its potential to
develop general correlation with combustion parameters derived by in-cylinder pressure diagrams
processing (pressure derivative and rate of heat release) for modeling purposes.

On the other hand, an extended range for the two parameters is apparent for 1500 × 2, progressively
reduced when considering condition No. 2 (2000 × 5) and No. 3 (2500 × 8), as it could be anticipated
by the corresponding levels of engine load and relative AFR. Reference values are always at the lower
hand side of the intervals, confirming the significant increase in EGR rate allowed by the prototype
LP circuit. Taking into account this outcome, it can be concluded that the prototype LP loop present
a satisfactory sizing, balancing the request of recirculated flow rate in the low-medium range of engine
speed and load and reproducing proper levels of pressure losses in the circuit.

3.3. Turbocharger

Turbocharging systems are key elements to define engine performance and operations, while
their control is a fundamental aspect to achieve satisfactory levels of fuel consumption and emissions,
while obtaining acceptable engine transient response.

Being strictly related, the first two parameters discussed in this section are engine pressure
gradient, whose behavior is represented in Figure 9, and VNT opening degree, shown in Figure 10.

Engine pressure gradient has probably the strongest relations with all the involved sub-systems
and components, interacting with HP EGR mass flow rate, engine pumping losses and fuel
consumption, compressor and turbine operating points and nozzle turbine control strategies.

At constant AVNT level and when only HP EGR loop is activated (LP proportion = 0), its value
depended on HP EGR valve opening, that is, on relative AFR level. Introducing and increasing LP
EGR contribution, observed trends depended on VNT control scheme. In open loop (i.e., in points No.
1 and 2), a significant increase of pressure gradient was apparent when rising LP proportion, until the
VNT opening compensate for this effect (dotted lines in Figures 9 and 10), leading its values below the
reference ones, with positive influence on fuel consumption.
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In closed loop (condition No. 3), ECU opened nozzle turbine (Figure 10) when LP EGR circuit was
activated, in order to keep the intake pressure at set point level, compensating for its contribution to
compressor mass flow rate and modifying compressor working point. Consequently, AVNT shows an
increasing trend (Figure 10), leading to slight decrease of exhaust pressure (i.e., turbine inlet pressure).Energies 2017, 10, 47 11 of 18 
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Figure 10. VNT opening degree as a function of LP proportion in different operating modes.

Measured levels of turbocharger rotational speed nTC are presented in Figure 11. Trends confirm
the influence of LP EGR contribution and AVNT control in operating points No. 1 and 2. It is
interesting to note that levels attained at higher VNT settings are anyway higher than the reference
ones, which should help in transient operations starting from these part load conditions. In point
No. 3, increase of turbine mass flow rate (which differs from compressor one, Figure 2, only for fuel
mass flow rate) overcame VNT opening at reduced values of HP proportion, resulting in a slight rise
in turbocharger speed.
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Figure 11. Turbocharger rotational speed as a function of LP proportion in different operating modes.

3.4. Exhaust Circuit

Trends of turbine inlet pressure p3 are shown in Figure 12. In points No. 1 and 2, again LP EGR
effect and AVNT control play a major role in determining the observed behavior. In point No. 3, VNT
control, jointly with the almost constant trends in Mi, led to a slight reduction in p3.
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Figure 12. Turbine inlet pressure as a function of LP proportion in different operating modes.

Temperature levels at turbine inlet and exit (T3 and T4) show minor variations in the different
operating modes. As an example, values at the turbine exit are presented in Figure 13, showing
slight reductions in points No. 2 and 3 when increasing LP contribution and a different influence of
VNT opening in conditions 1 and 2. Taking into account the position of the DPF, it can be concluded
that DPF regeneration would not be significantly affected by the integrated control of EGR and
turbocharging systems.



Energies 2017, 10, 47 13 of 18
Energies 2017, 10, 47 13 of 18 

 

 
Figure 13. Turbine exit temperature as a function of LP proportion in different operating modes. 

3.5. Fuel Consumption and Emissions Trade-Off 

In the previous sections, an extended analysis of the influence of control strategies for both the 
EGR circuits and the turbocharger on engine operating parameters was developed, in order to outline 
the potential of LP EGR circuit fitted to a state-of-the-art diesel engine while showing the strong 
interactions with controlled systems. 

As energy consumption and pollution issues are the main driving forces of engine development, 
it is mandatory to conclude the results discussion summarizing the main achievements in these fields, 
reporting the main important trade-offs between brake specific fuel consumption (bsfc), NOX 
emission (bsNOX) and soot emission (bsS). 

Figure 14 shown a selection of these curves for fuel consumption and nitrogen oxides emission, 
confirming the different behavior of some engine quantities in the tested operating conditions. 

 
Figure 14. Trade-off between brake specific NOX emissions and fuel consumption in different 
operating modes. 

Considering the reference values shown in Figure 14 (Euro 5 settings), significant reduction were 
achieved for bsNOX, ranging between −51% (point No. 2) and −64% (point No. 3), that is, around the 
requested improvement from Euro 5 to Euro 6 limits. Table 4 lists the corresponding values for 

150

200

250

300

350

400

450

0.0 0.2 0.4 0.6 0.8 1.0

T
ur

bi
ne

 e
xi

t 
te

m
pe

ra
tu

re
 [
°C

]

LP proportion

1500x2 Rel.AFR = 2.90 - TV pos. 1 1500x2 Rel.AFR = 2.77 - TV pos. 2

1500x2 Rel.AFR = 2.62 - TV pos. 1 2000x5 Rel.AFR = 1.8 - TV pos. 1

2000x5 Rel.AFR = 1.8 - TV pos. 2 2500x8 Rel.AFR=1.6, pi=1.52 bar, TV pos.1

2500x8 Rel.AFR=1.47, pi=1.52 bar, TV pos.1

1500x2 reference value

2000x5 reference value

2500x8 reference value

230

260

290

320

350

380

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

B
ra

ke
 s

pe
ci

fic
 f

ue
l c

on
su

m
pt

io
n 

[g
/k

W
h]

Brake specific NOX emission [g/kWh]

1500x2 Rel.AFR = 2.90 - TV pos. 1 1500x2 Rel.AFR = 2.77 - TV pos. 2

2000x5 Rel.AFR = 1.8 - TV pos. 1 2000x5 Rel.AFR = 1.8 - TV pos. 3

2500x8 Rel.AFR=1.6, pi=1.52 bar, TV pos.1 2500x8 Rel.AFR=1.6, pi=1.57 bar, TV pos.0

2500x8 reference value

2000x5 reference value

1500x2 reference value

Figure 13. Turbine exit temperature as a function of LP proportion in different operating modes.

3.5. Fuel Consumption and Emissions Trade-Off

In the previous sections, an extended analysis of the influence of control strategies for both the
EGR circuits and the turbocharger on engine operating parameters was developed, in order to outline
the potential of LP EGR circuit fitted to a state-of-the-art diesel engine while showing the strong
interactions with controlled systems.

As energy consumption and pollution issues are the main driving forces of engine development,
it is mandatory to conclude the results discussion summarizing the main achievements in these fields,
reporting the main important trade-offs between brake specific fuel consumption (bsfc), NOX emission
(bsNOX) and soot emission (bsS).

Figure 14 shown a selection of these curves for fuel consumption and nitrogen oxides emission,
confirming the different behavior of some engine quantities in the tested operating conditions.
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Figure 14. Trade-off between brake specific NOX emissions and fuel consumption in different
operating modes.

Considering the reference values shown in Figure 14 (Euro 5 settings), significant reduction were
achieved for bsNOX, ranging between −51% (point No. 2) and −64% (point No. 3), that is, around



Energies 2017, 10, 47 14 of 18

the requested improvement from Euro 5 to Euro 6 limits. Table 4 lists the corresponding values
for controlled parameters: it is interesting to note the prevailing effect of LP contribution to NOX
decrease in the three tested points to achieve the mentioned variations. It has also to be outlined
that proposed strategies are referred to steady state operating conditions, as the available test bench
doesn’t allow to perform dynamic tests. In real world operations, transient corrections will probably
be requested [27,28], to take into account different time delays of high and LP EGR circuits, mainly
related to their length.

Table 4. Optimal control strategies for NOX and fuel consumption reduction in tested steady state
operating conditions.

Operating Condition
Relative AFR Exhaust TV

Position
VNT Opening

Degree (%) LP Proportion
ID = n × bmep (rpm × bar)

No. 1 = 1500 × 2 2.77 2 17.7 0.884
No. 2 = 2000 × 5 1.8 3 17.3 0.935
No. 3 = 2500 × 8 1.6 1 35 (1.52 bar 1) 1.0

1 Intake pressure set-point.

Referring to fuel consumption, a significant decrease can be observed in the corresponding modes
of operating conditions 1 (−4.6%) and 2 (even if at a lower extent, −2.1%), obtained with AVNT levels
around 17% (Table 4), i.e., higher than the reference ones (Figure 10). In the third condition, no
variations were attained due to the different VNT control.

The comparison of bsfc trends with those presented in Figure 9 for engine pressure gradient
confirms the strict relationship between these parameters, outlining the prevailing effect of pumping
losses over every variations on combustion development induced by EGR activation and control.

Soot and NOX emissions trade-off is presented in Figure 15. In this case, penalties in soot are
probably acceptable in point No. 1 (+23.3%, referring to the mode with the best NOX reduction) and
No. 2 (+48.4%), while in condition No. 3 bsS is more than doubled, requiring further actions to limit
this increase, such as a change in fuel injection pressure. The different order of magnitude of measured
bsS variations are related to relative AFR levels (Table 3).
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Figure 15. Trade-off between brake specific NOX and soot emissions in different operating modes.

From a more general point of view, observed trends confirm that it is possible to move trade-off
curves towards lower values, while modifying their trend through VNT control. In operating condition
No. 3, a more conventional behavior is apparent, while control variables (in particular, engine intake
pressure) have to be varied in a more significant way in order to modify the position of trade-off curves.



Energies 2017, 10, 47 15 of 18

Trends of NOX and soot emissions can be related to measurement and processing of in-cylinder
pressure diagrams, referring their values to maximum pressure and heat release, respectively.

Figure 16 shows bsNOX values as a function of maximum in-cylinder pressure. In points No. 1
and 2, observed complex behavior is related to EGR fraction and VNT opening degree, influencing
intake pressure and mass flow rate and the development of combustion process. In point No. 3, a more
expected trend is apparent, with NOX reduction corresponding to lower levels of pMAX for each set.
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different operating modes.

Figure 17 presents bsS values as a function of heat released in premixed mode of combustion
referred to the main injection, calculated from heat release curves as defined in [29]. It is well
known [30], that a lower soot emission is associated to a more intense premixed combustion. Therefore,
an inverse relationship is expected between these parameters, as shown in [29] and is apparent in
Figure 17 for one test set for each working point. Moreover, the same correlation was verified for all the
operating modes of point No. 3, allowing to assess the linear link for a wider range of soot emissions
and premixed heat release values, as proved by the high level of determination coefficient.
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4. Conclusions

The experimental study on the development of integrated control strategies of turbocharging
and high and LP EGR systems in an automotive diesel engine allowed us to study in depth different
aspects referring to the reciprocal interactions between the different subsystems and to the influence
on engine behavior. Among the achieved outcomes, some major points can be summarized:

• Results are strongly influenced by the applied VNT management scheme: among the selected
operating conditions, open loop control is applied at low levels of speed and bmep (i.e., in 1500 × 2
and 2000 × 5 test point), while boost pressure is closed loop controlled when increasing these
parameters (i.e., in 2500 × 8 condition).

• When activating and increasing LP EGR contribution, intake and exhaust parameters (mass flow
rate, temperature and pressure levels) are significantly modified. In particular, the increase of
engine pressure gradient and compressor/intake mass flow rate leads engine and turbocharger to
work in conditions similar to those without EGR.

• With VNT open loop control, fuel consumption is strongly influenced by engine pressure gradient,
representing an approximate index of pumping losses. Applying proper settings of VNT position,
significant benefit can be achieved for this quantity (−4.6% and −2.1% in operating condition
No. 1 and 2, respectively).

• Referring to the standard engine behavior (levels measured in Euro 5 configuration), reduction
between 51% and 64% for NOX emission was obtained, through the increase of EGR rate
and a prevailing (points No. 1 and 2) or complete (point No. 3) contribution from LP loop.
As a consequence, soot emission was increased, but while a reasonable rise was observed in
points No. 1 and 2 (with significant benefits obtained through VNT opening), excessive penalties
affected point No. 3, therefore requiring the adoption of further measures to compensate for this
negative aspect.

• EGR technique can be enhanced through the integration of HP and LP circuits. As the second
option has different interactions with turbocharger compressor and turbine, a wide potential is
offered by the integrated control of these systems, not only to improve fuel consumption and
NOX emissions, but also to help engine in transient conditions.
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Abbreviations

bmep Brake mean effective pressure
bsfc Brake specific fuel consumption
bsNOX Brake specific nitrogen oxides emission
bsS Brake specific soot emission
f Mass flow fraction
n Rotational speed
p Pressure
T Temperature (◦C)
A Opening degree
AFR Air-fuel ratio
CDI Charge dilution index
DC Duty-cycle
DI Direct injection
ECU Electronic control unit
EGR Exhaust gas recirculation
FSN Filter smoke number
HP High pressure
LP Low pressure
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M Mass flow rate
NEDC New European Driving Cycle
S Nozzle ring push rod displacement
TV Throttle valve
VNT Variable nozzle turbine
X Volumetric concentration

Subscripts

a Air
c Compressor
f Fuel
i Intake
e Exhaust
CO2 Carbon dioxide
EGR Exhaust gas recirculation
HP High pressure
LP Low pressure
MAX Maximum
MIN Minimum
O2 Oxygen
VNT Variable nozzle turbine
TC Turbocharger
1 Compressor inlet
2 Compressor exit
3 Turbine inlet
4 Turbine exit
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