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1 Introduction

The fluctuations of the cosmological microwave background provide a deep insight into the

early history of the universe. The most successful theoretical explanation is inflationary

cosmology where a scalar field (the inflaton) is coupled to the gravitational field. Usually,

the theory is considered in linear order around a highly symmetric background, typically

the spatially flat Friedmann-Lemâıtre-Robertson-Walker spacetime.

Extending the theory to higher orders is accompanied by severe obstacles. Already

in a classical analysis the definition of gauge-invariant observables turns out to be rather

complicated; moreover, one is immediately confronted with the problem of constructing a

theory of quantum gravity. Previous treatments of higher-order cosmological perturbation

theory include [4, 6, 17–19, 21, 23, 24]; many further references on the subject can be found

e.g. in [17].

In a recent paper [2] three of us reanalysed the field theoretical construction of quantum

gravity from the view point of locally covariant quantum field theory. This analysis was

based on the methods of perturbative Algebraic Quantum Field Theory (pAQFT), see [13]

and references therein, and on an adapted version of the Batalin-Vilkovisky formalism for

the treatment of local gauge symmetries [12, 15]. The result was that a consistent theory

(in the sense of an expansion into a formal power series) exists and is independent of the

background. Due to non-renormalisability, however, in each order of perturbation theory
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new dimensionful coupling constants occur, which have to be fixed by experiments; hence

the theory should be interpreted as an effective theory that is valid at scales where these

new constants are irrelevant. One might hope that non-perturbative effects improve the sit-

uation in the sense of Weinberg’s concept of asymptotic safety, since there are encouraging

results supporting this perspective; see for example [26, 27]. Furthermore, it is difficult to

observe any effects of quantum gravity, so it seems reasonable to start from the hypothesis

that at presently accessible scales the influence of these higher order contributions is small.

One of the main questions addressed by [2] in the construction of the theory was the

existence of local observables. It was answered, in a way familiar from classical general

relativity, by using physical scalar fields, e.g. curvature scalars, as coordinates, and by

expressing other fields as functions of these coordinates. Since quantization in the frame-

work of pAQFT relies on a field theoretical version of deformation quantization of classical

theories (first introduced in [9]), the classical construction can be transferred to the quan-

tum realm.

The procedure works as follows. One selects 4 scalar fields Xa
Γ, a = 1, . . . 4, which

are functionals of the field configuration Γ which includes the spacetime metric g, the

inflaton field φ and possibly other fields. The fields Xa
Γ are supposed to transform under

diffeomorphisms χ as

Xa
χ∗Γ = Xa

Γ ◦ χ , (1.1)

where χ∗ denotes the pullback (of sections of direct sums of tensor products of the cotangent

bundle) via χ. We choose a background Γ0 such that the map

XΓ0
: x 7→ (X1

Γ0
, . . . , X4

Γ0
) (1.2)

is injective. In order to achieve injectivity on cosmological backgrounds Γ0, we shall be

forced to include the coordinates x in the construction of XΓ in a way which is compatible

with (1.1). We then consider Γ sufficiently near Γ0 and set

αΓ = X−1
Γ ◦XΓ0

. (1.3)

We observe that αΓ transforms under diffeomorphisms — which leave the background Γ0,

that is by definition fixed, invariant — as

αχ∗Γ = χ−1 ◦ αΓ . (1.4)

Let now AΓ be any other scalar field which is a local functional of Γ and transforms under

diffeomorphisms as in (1.1). Then the field

AΓ := AΓ ◦ αΓ (1.5)

is invariant under diffeomorphisms and may be considered as a local observable. Note that

invariance is obtained by shifting the argument of the field in a way which depends on

the configuration.

The physical interpretation of this construction is as follows: the fields Xa
Γ are

configuration-dependent coordinates such that [AΓ ◦ X−1
Γ ](Y ) corresponds to the value
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of the quantity AΓ provided that the quantity XΓ has the value XΓ = Y . Thus AΓ ◦X−1
Γ

is a partial or relational observable [7, 28, 30], and by considering AΓ = AΓ ◦ X−1
Γ ◦ XΓ0

we can interpret this observable as a field on the background spacetime.

Clearly, to make things precise, one also has to characterise the region in the configu-

ration space where all the maps are well defined and restrict oneself to configurations Γ in

the appropriate neighbourhood of the background Γ0, see [2, 16] for details.

Fortunately, in formal deformation quantization as well as in perturbation theory, only

the Taylor expansion of observables around some background configuration enters, hence it

is sufficient to establish the injectivity of XΓ0
in order for the expansion of AΓ0+δΓ around

Γ0 to be well-defined. As an example we compute this expansion up to the first order.

We obtain

AΓ0+δΓ = AΓ0
+

〈
δAΓ

δΓ
(Γ0), δΓ

〉
+

∂AΓ0

∂xµ

〈
δαµ

Γ

δΓ
(Γ0), δΓ

〉
+O(δΓ2) . (1.6)

The third term on the right hand side is necessary in order to get gauge-invariant fields

(up to first order). We calculate

δαµ
Γ

δΓ
(Γ0) = −

((
∂XΓ0

∂x

)−1
)µ

a

δXa
Γ

δΓ
(Γ0) . (1.7)

In this work we apply this general idea to inflationary cosmology. Unfortunately,

due to the high symmetry of a FLRW background one can find only one independent

background field which can serve as time coordinate. On the corresponding time slices

one can then use three independent coordinates which are harmonic functions for the

induced metric on the time slice and are fixed by their asymptotic behavior. Thus they

transform correctly under diffeomorphisms which vanish at infinity but depend nonlocally

on the dynamical fields. We show that these coordinates can be used for the definition

of observables. Moreover, in linear order these observables coincide with the observables

used in cosmological perturbation theory. In the quantized theory the nonlocalities induce

UV and IR problems. The UV problems seem to be harmless and we indicate a possible

solution. For the IR problems one has to investigate the decay of typical correlations, in a

similar way as already known from cosmological perturbation theory.

In contrast to other systematic or covariant attempts to define gauge-invariant quan-

tities in higher-order cosmological perturbation theory, see for example [17, 19, 22, 24],

our construction works off-shell, is based on a clear and simple concept which is applicable

to general backgrounds such that cosmological perturbation theory may be viewed as a

particular application of perturbative quantum gravity [2]. Moreover, we construct non-

perturbative gauge-invariant quantities whose perturbative expansion to arbitrary orders

may be computed algorithmically without the need for additional input at each order. A

work which is similar in the latter respect, but approaches the problem from a canonical

perspective and with a stronger focus on dynamics, is [8].

This paper is organised as follows: in the second section we recall a few basic facts about

perturbation theory of the Einstein-Klein-Gordon system on cosmological backgrounds. In

the third section we describe the general method to obtain gauge invariant observables at
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all orders on generic backgrounds. We furthermore discuss how to treat the case of a FLRW

background where the large symmetry prevents us from using coordinates constructed from

the dynamical fields alone. The fourth section contains the analysis of two gauge invariant

observables at second order. The steps necessary for the construction of a full all-order

quantum theory are briefly sketched in section 5. Finally a number of conclusions are

drawn in the last section.

2 Perturbations of the Einstein-Klein-Gordon system on a FLRW space-

time

We consider the Einstein-Klein-Gordon system, namely a minimally coupled scalar field φ̃

with potential V (φ̃) propagating on a Lorentzian spacetime (M, g̃) with field equations

Rab −
1

2
Rg̃ab = Tab, −�φ̃+ V (1)(φ̃) = 0, (2.1)

where Tab is the stress tensor of φ̃, Rab the Ricci tensor and R the Ricci scalar. We discuss

perturbations of this system around a background. A linearised theory is obtained starting

from a one-parameter family of solutions λ 7→ Γλ := (g̃λ, φ̃λ) and considering

δΓ := (γ, ϕ) :=
d

dλ
(g̃λ, φ̃λ)

∣∣∣∣
λ=0

,

hence Γ0 := (g, φ) := (g̃0, φ̃0) is the background configuration while δΓ = (γ, ϕ) is the

linearised perturbation.

The background solution we choose consists of a flat Friedmann-Lemâıtre-Robertson-

Walker (FLRW) spacetime (M, g) together with a scalar field φ which is constant in space.

We recall that a flat FLRW spacetime is conformally flat and that

M = I × R
3, g = a2(τ)(−dτ ⊗ dτ +

∑

i

dxi ⊗ dxi), (2.2)

where I ⊂ R is an open interval, the scale factor a(τ) is a function of the conformal time

τ and where xi are three-dimensional Cartesian (comoving) coordinates. The background

equations of motion of the system are best displayed in terms of the auxiliary function

H :=
a′

a
,

where a′ indicates the derivative with respect to the conformal time. H is related to the

Hubble parameter H = Ha−1 and to the Ricci scalar R = 6(H′+H2)a−2. The background

equations of motion are

6H2 = (φ′)2 + 2a2V (φ) 2(2H′ +H2) = −(φ′)2 + 2a2V (φ),

φ′′ + 2Hφ′ + a2V (1)(φ) = 0.

A generic perturbation γ of the FLRWmetric g can be decomposed in the following way

γ = a(τ)2

(
−2A (−∂iB + Vi)

t

−∂iB + Vi 2(∂i∂jE + δijD + ∂(iWj) + Tij)

)
(2.3)
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where A,B,D,E are scalars, V,W are three dimensional vectors and T is a tensor on 3-

dimensional Euclidean space. The decomposition is unique if all these perturbations vanish

at infinity and if

Ti
i = 0, ∂iT

i
j = 0, ∂iV

i = 0, ∂iW
i = 0

(see e.g. Proposition 3.1 in [14]).

Under an infinitesimal first order gauge transformation the linear perturbations trans-

form in the following way

γab 7→ γab + Lξgab = γab + 2∇(aξb), ϕ 7→ ϕ+ Lξφ = ϕ+ ξ(φ).

In particular

A 7→ A+ (∂τ +H)r, B 7→ B + r − s′, D 7→ D +Hr, E 7→ E + s,

ϕ 7→ ϕ+ φ′r, Vi 7→ Vi + v′i, Wi 7→ Wi + vi, Tij 7→ Tij ,

where the generator ξ of one-parameter gauge transformations is also decomposed as

ξ0 = r, ξi = ∂is+ vi, ∂iv
i = 0. (2.4)

Notice that the gauge transformations do not mix scalar, vector or tensor perturbations at

linear order.

Furthermore, we observe that tensor perturbations are gauge-invariant and that gauge-

invariant vector perturbations can be obtained considering Xi := W ′
i − Vi. Regarding the

scalar perturbations we see that the following fields are gauge-invariant

Φ := A− (∂t +H)(B + E′), Ψ := D −H(B + E′), χ := ϕ− φ′(B + E′). (2.5)

The first two of them are called Bardeen potentials.

Let us recall the form of the linearised equations of motions satisfied by the gauge-

invariant perturbations. The first observation is that the equations of motion respect the

decomposition in scalar, vector and tensor perturbations. In particular, for the vector and

tensor perturbations, it holds that

∆Xi = 0, (∂t + 2H)Xi = 0,
1

a2
(∂2

t + 2H∂t −∆)Tij = 0. (2.6)

For the scalar part the equations of motion are better displayed in terms of the Mukhanov-

Sasaki variable

µ := χ−
φ′

H
Ψ = ϕ−

φ′

H
D. (2.7)

The equation of motion for this variable is decoupled also from the other scalars of the

theory, in fact (
−�+

R

6
−

z′′

za2

)
µ = 0, z :=

aφ′

H
.
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The other scalar perturbations can be obtained in terms of µ. In particular the Bardeen

potential Φ is the unique solution of

∆Φ =
φ′

2

(
µ′ +

(
H′

H
−

φ′′

φ′

)
µ

)
(2.8)

while the other scalar perturbations are given by

Ψ = −Φ, χ =
2

φ′
(∂τ +H)Φ. (2.9)

We briefly discuss the situation beyond linear order. According to [29], infinitesimal

diffeomorphisms may be approximated by so-called knight diffeomorphisms, which are of

the form expLξ with ξ = λξ1+
1
2λ

2ξ2+O(λ3). Analogously we may expand a configuration Γ

as Γ = Γ0+δΓ = Γ0+λδΓ1+
1
2λ

2δΓ2+O(λ3), and determine the transformation behaviour of

separate orders by considering expLξ Γ at fixed order in λ, see for example [4, 6, 19, 21, 23].

Assuming that ξ and δΓ vanish at spatial infinity, each order ξi and δΓi may be uniquely

decomposed as in (2.4) and (2.3). The transformation behaviour of the components of the

latter decomposition becomes more complicated than at linear order, since higher-order

gauge transformations mix scalar, vector and tensor quantities in a non-local fashion, as

do the higher-order equations of motion. We shall not be concerned with the explicit form

of higher-order gauge transformations in this work, as our constructions do not rely on

these details and the quantities we consider are manifestly all-order gauge-invariant from

the outset.

For the remainder of this work we shall use the following notation motivated by the fact

that the space of configurations is an affine space. We decompose a general configuration

Γ as Γ := (g̃, φ̃) := Γ0 + δΓ, where g̃ := g + γ, φ̃ := φ + ϕ and δΓ := (γ, ϕ) effectively

subsumes linear and higher orders of the perturbation of the background Γ0 := (g, φ). This

applies analogously to the components of the decomposition (2.3) of γ.

For later use we recall a useful observation regarding Bardeen potentials. The linear

Bardeen potentials Φ, Ψ and the gauge-invariant scalar field perturbation χ in (2.5) have

the advantage that they coincide with A, D, and ϕ respectively in the so-called longitudinal

or conformal gauge where the components B and E of the metric perturbation γ vanish.

This gauge and the definition of the gauge-invariant quantities Φ, Ψ and χ may be extended

to higher orders, such that also at higher orders Φ = A, Ψ = D, χ = ϕ if B = E = 0, see

for example [19].

3 All-order gauge-invariant observables on FLRW backgrounds

In this section we provide details on the general construction of all-order gauge-

invariant quantities on general and FLRW backgrounds before discussing examples in the

next section.

In perturbative Algebraic Quantum Field Theory (pAQFT) — the conceptual frame-

work underlying perturbative quantum gravity in [2] — observables of a field theory are

described as functionals of smooth field configurations Γ = (g̃, φ̃). For the purpose of
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cosmological perturbation theory, we need the additional restriction that configurations

vanish at spatial infinity. In order to be able to operate on the functionals, some regu-

larity is required: the functional derivatives to all orders should exist as distributions of

compact support.

Moreover, we restrict our attention to local functionals, i.e. those functionals whose

n−th order functional derivatives are supported on the diagonal of Mn for every n. Ex-

amples of objects of this form are

AΓ(f) :=

∫

M
AΓf (3.1)

where AΓ is a smooth scalar function which is a polynomial in the derivatives of the field

configuration Γ = (g̃, φ̃) (i.e. AΓ(x) = F (jx(Γ)) with F a smooth function on the appropri-

ate jet bundle) and where f is a smooth compactly supported test density. However, later

on in this work we are forced to consider also functionals which violate this locality condi-

tion as well as the condition of compact support. The diffeomorphisms χ of the spacetime

act on configurations via pullback Γ 7→ χ∗Γ, and candidates for gauge-invariant fields are

equivariant in the sense that

Aχ∗Γ = AΓ ◦ χ . (3.2)

Thus in order to exhibit gauge-invariant functionals one has to consider test densities fΓ
which depend on the field configuration Γ such that

fχ∗Γ = χ∗fΓ , (3.3)

where χ∗ is the pushforward of test densities via χ.

As described in the Introduction, in the general case we solve the problem by choosing

four scalar fields Xa
Γ which constitute a coordinate system XΓ for a given background Γ0,

and define the Γ-dependent diffeomorphism

αΓ = X−1
Γ ◦XΓ0

. (3.4)

For arbitrary test densities f , we may now consider the Γ-dependent test densities fΓ =

αΓ∗f in order to obtain gauge-invariant observables AΓ(fΓ) by means of (3.1). Equivalently,

we may directly consider the gauge-invariant field

AΓ = AΓ ◦ αΓ . (3.5)

Scalars that can be used as coordinates on generic backgrounds Γ0 are e.g. traces of

powers of the Ricci operator R

Xa
Γ := Tr(Ra), a ∈ {1, 2, 3, 4} (3.6)

(the operator which maps one forms to one forms and whose components are given in terms

of the Ricci tensor Ra
b). When other (matter) fields are present in the considered model,

also these can serve as coordinates, e.g., in the case of a Einstein-Klein-Gordon system,

the scalar field φ̃.

– 7 –
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In view of renormalisation it is advisable to use coordinates XΓ which are local func-

tionals of the configuration Γ. As we shall discuss in the following, this does not seem to

be possible in cosmological perturbation theory on account of the symmetries of FLRW

backgrounds Γ0.

3.1 Perturbative expansion up to second order

To illustrate the general procedure we compute the second order expansion of the gauge-

invariant field AΓ which was to first order described in the Introduction.

We observe that we have to calculate the functional derivatives of the diffeomorphisms

αΓ with respect to Γ. We use the notation

〈
δn

δΓn
XΓ(Γ0), δΓ

⊗n

〉
=: Xn ,

〈
δn

δΓn
αΓ(Γ0), δΓ

⊗n

〉
=: xn (3.7)

and find up to second order

xµ0 (x) = xµ , xµ1 = −Jµ
aX

a
1 , (3.8)

where J is the inverse of the Jacobian of XΓ0
, and

xµ2 = −Jµ
aX

a
2 − Jµ

a J
ν
b J

ρ
c

∂2Xa
0

∂xν∂xρ
Xb

1X
c
1 + 2Jµ

a J
ν
b

∂Xa
1

∂xν
Xb

1 . (3.9)

We use an analogous notation for the Taylor expansions of the fields AΓ and AΓ and find

A0 = A0 , A1 = A1 +
∂A0

∂xµ
xµ1 , (3.10)

and

A2 = A2 + 2
∂A1

∂xµ
xµ1 +

∂A0

∂xµ
xµ2 +

∂2A0

∂xµ∂xν
xµ1x

ν
1 . (3.11)

3.2 Non-degenerate covariant coordinates on FLRW backgrounds

In order to obtain these expansions we need a 4-tuple of equivariant fields which define a

non-degenerate coordinate system on the background Γ0. This is possible in the generic

case, e.g. by using the ansatz (3.6), but creates problems, if the background metric possesses

non-trivial symmetries. This applies to the case of FLRW backgrounds Γ0 where only time

functions can be constructed out of the background metric g and the background scalar field

φ. In the following we present a construction of non-degenerate coordinates which solves

the above-mentioned problem at the expense of being non-local, albeit in a controlled way.

Note that introducing additional external fields as reference coordinates like in the Brown-

Kuchař model [5] is not useful in the context of cosmological perturbation theory because

these fields would appear in the final gauge-invariant expressions and thus an interpretation

of these in terms of only the fundamental dynamical fields is difficult. The construction

we present in the following does involve the asymptotic behavior of the comoving spatial

coordinates xi of the FLRW spacetime as an external input. Therefore our construction is

invariant only under diffeomorphisms which decay sufficiently fast at infinity.

– 8 –
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The simplest choice of the time coordinate is provided by the inflaton field itself, so

we set

X0
Γ = φ̃ = φ+ ϕ . (3.12)

The construction of the spatial coordinates Xi
Γ needs a bit of preparation. To this end, we

consider the unit time-like vector

nφ =
g̃−1(dφ̃, ·)√
|g̃−1(dφ̃, dφ̃)|

=
1

a
(1−A)∂τ +

1

a

(
∂iB −

∂iϕ

φ′

)
∂i +O(δΓ2) (3.13)

and the tensor

hφ = g̃ + g̃(nφ, ·)⊗ g̃(nφ, ·) , (3.14)

where ∂i := ∂i := ∂/∂xi and xi for i ∈ {1, 2, 3} are comoving spatial coordinates on the

FLRW spacetime (M, g). nφ is a unit normal on the hypersurfaces of constant φ̃ and hφ is

the induced metric on these hypersurfaces.

Let ∆φ denote the Laplacian for hφ and Gφ its inverse, which we choose by imposing

the boundary condition that the background value of Gφ is the Coulomb potential G∆ with

suitable factors of the scale factor a. We define and compute

∆φ :=∆0 + δ∆ , ∆0 :=
∆

a2
, ∆ :=

3∑

i=1

∂2
i

δ∆ = − λ

(
2(D +∆E)∆− (∂i(D −∆E))∂i

a2
+

(∆ϕ)∂τ + (∂iϕ)(2∂τ +H)∂i
a2φ′

)
+O(δΓ2)

Gφ :=G0 + δG, G0 :=a2G∆, G∆ ◦∆=1 on functions that vanish at spatial infinity ,

δG =,
∞∑

n=1

(−1)nG0 ◦ (δ∆ ◦G0)
◦n = −G0 ◦ δ∆ ◦G0 +O(δΓ2) .

Using these objects, we obtain

Y i
Γ := (1−Gφ ◦∆φ)x

i = xi + ∂i(E +G∆R) +O(δΓ2) , R :=
H

φ′
µ . (3.15)

We observe that Y i
Γ are harmonic coordinates for ∆φ that we have constructed by

means of xi, i.e. harmonic coordinates for ∆0. The construction of Y i
Γ makes sense for all

configurations Γ which vanish at spatial infinity, but not in general. The restriction to this

set of configurations from the outset is natural in the context of cosmological perturbation

theory — recall that the decomposition (2.5) is unique only in this case — and should not

create problems for the pAQFT framework. For consistency, as noted before, we have to

restrict the class of infinitesimal diffeomorphisms we consider in the same manner. In fact,

a straightforward computation reveals that the functionals Y i
Γ are equivariant with respect

to all diffeomorphisms χ that vanish at spatial infinity

χ∗Y i
Γ = Y i

χ∗Γ + (1−Gχ∗φ ◦∆χ∗φ)(χ
∗xi − xi) = Y i

χ∗Γ ,

– 9 –
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but not with respect to arbitrary diffeomorphisms. Here ∆χ∗φ denotes the Laplacian con-

structed analogous to ∆φ but with χ∗φ̃ instead of φ̃ and Gχ∗φ denotes its inverse with

the discussed boundary condition. Consequently, the observables constructed by means of

the equivariant coordinates (3.12) and (3.15) via (3.5) are gauge-invariant with respect to

diffeomorphisms which vanish at spatial infinity. As anticipated, the coordinates Y i
Γ are

non-local, but the non-locality of Gφ is relatively harmless since its worst singularity has

the same wave front set as the δ-function, and renormalisation of expressions involving

such objects is well under control, cf. section 5.

The coordinates (3.15) are not entirely well-suited for practical computations because

of the fact that the rescaled Mukhanov-Sasaki variable R appears convoluted with the

Coulomb potential. In order to remedy this we use a different family of spatial hypersurfaces

and a corresponding modification of the spatial Laplacian and its inverse. To this end we

consider a number of additional quantities related to the slicing induced by the time-

function φ̃: the lapse function Nφ, the extrinsic curvature Kφ,ab, and the spatial Ricci

scalar R
(3)
φ which are defined and computed respectively as

Nφ := |g̃−1(dφ̃, dφ̃)|−1/2 =
a

φ′

(
1−

ϕ′

φ′
+A

)
+O(δΓ2) , (3.16)

Kφ,ab :=hφ,a
c∇cnφ,b , Kφ := Kφ,a

a =
3H

a
+O(δΓ) , (3.17)

R
(3)
φ :=Kφ,abK

ba
φ −K2

φ + 2

(
Rab −

1

2
Rg̃ab

)
na
φn

b
φ =

4

a2
∆R+O(δΓ2) , (3.18)

where nφ and hφ are defined respectively in (3.13) and (3.14). Using these quantities, we

define a new time function

t := φ̃−
3Nφ

4Kφ
GφR

(3)
φ = φ+

φ′

H
D +O(δΓ2) ,

If we define the spatial metric ht, the Laplacian ∆t and its inverse Gt in analogy to hφ, ∆φ

and Gφ by replacing φ̃ with t we obtain

Xi
Γ := (1−Gt ◦∆t)x

i = xi + ∂iE +O(δΓ2) , (3.19)

and the spatial coordinates Xi
Γ share the qualitative properties of the initially defined Y i

Γ.

4 Examples of gauge-invariant observables at second order

In the previous sections we have developed a principle to construct gauge-invariant per-

turbative observables from non-gauge-invariant ones. In the following we demonstrate this

principle at the example of two observables which are relevant in Cosmology. To this end

we use the covariant coordinates (3.12) and (3.19).

Despite the mild non-locality inherent in the covariant spatial coordinates (3.19), we

are interested in observables AΓ which are local functionals of the configuration Γ. The

non-locality of AΓ = AΓ ◦ αΓ implied by the non-locality of Xi
Γ in (3.19) appears only

because we consider the local functional AΓ relative to the non-local functional XΓ. Since
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the background Γ0 depends only on time the same applies to the background value of any

local functional AΓ. Consequently, at first order only the field X0
Γ (3.12) chosen as time

coordinate enters the formula for gauge-invariant fields. At second order also the fields

used as spatial coordinates Xi
Γ (3.19) enter the expression.

The inverse J of the Jacobi matrix of the coordinate transform XΓ0
on the back-

ground is

J =




1
φ′ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 .

The field dependent shifts from section 3.1 with respect to these coordinates up to second

order are

x01 = −
ϕ

φ′
, xi1 = −∂iE ,

an

x02 = −
φ′′ϕ2

(φ′)3
+

2

φ′

(
ϕ′ϕ

φ′
+ (∂iϕ)∂

iE

)
,

xi2 =
2ϕ

φ′
∂iE

′ + 2(∂i∂jE)∂jE − (Xi
Γ − xi − ∂iE) .

Thus, for a field AΓ whose value on the background depends only on time the contri-

butions up to second order for the gauge-invariant modification AΓ = AΓ ◦ αΓ are

A0 = A0 , A1 = A1 −
A′

0ϕ

φ′
,

A2 = A2 −
2A′

1ϕ

φ′
− 2(∂iA1)∂

iE +A′

0

(
−
φ′′ϕ2

(φ′)3
+

2

φ′

(
ϕ′ϕ

φ′
+ (∂iϕ)∂

iE

))
+

A′′
0ϕ

2

(φ′)2
.

If we were to use the fields Y i
Γ (3.15) as spatial coordinates rather than the fields

Xi
Γ (3.19), then the corresponding expression for A1 would remain unchanged whereas A2

would change by replacing all occurrences of ∂iE by ∂iE+G∆∂iR. This demonstrates the

dependence of the gauge-invariant constructions on the chosen covariant coordinate system.

4.1 The lapse function

The Sachs-Wolfe effect is one of the main building blocks of the current understanding of

the Cosmic Microwave Background (CMB). A rough estimate of this effect can be obtained

using the Tolman idea, see e.g. [20]. Given a spacetime with a (conformal) timelike Killing

field κ and a state in equilibrium relative to the κ-flow with absolute temperature T , an

observer with four-velocity u ∝ κ measures the temperature T̃ = T/N with N denoting

the lapse function N =
√
|g(κ, κ)|.

In the context of Cosmology we use the Klein-Gordon field φ̃ as a time coordinate and

consider the vector

κφ := Nφnφ =
1

φ′
∂τ +O(δΓ)

– 11 –
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with Nφ, nφ defined in (3.16) and (3.13) respectively as an approximate conformal Killing

vector — in the sense that Lκφ
g̃−2H/φ′g̃ = O(φ′′, δΓ). The corresponding lapse function is

Nφ = a/φ′+O(δΓ). Its background value is not vanishing and thus it is not automatically

gauge-invariant at linear order.

As described in section 3, we may obtain a non-perturbatively gauge-invariant version

of the lapse function by setting and computing

Nφ :=Nφ ◦ αΓ =
a

φ′

(
1−

(
(∂τ +H)

ϕ

φ′
−A

))
+O(δΓ2) (4.1)

=
a

φ′

(
1−

(
(∂τ +H)

χ

φ′
− Φ

))
+O(δΓ2) ,

where Φ and χ are the gauge-invariant fields reviewed in section 2. Using the on-shell

identities (2.8), (2.9) and the definition of the Mukhanov-Sasaki field µ we can rewrite the

linear term as

Nφ,1 =λ
a

φ′

(
(∂τ +H)

χ

φ′
− Φ

)
=

a

(φ′)2

(
µ′ +

(
H′

H
−

φ′′

φ′

)
µ

)

=
2a

(φ′)3
∆Φ = −

2a

(φ′)3
∆Ψ .

Using the quantities introduced in section 3.2, we may extract the Bardeen potential on-

shell from Nφ as [
1

2N3
φ

G2
φ∆φNφ

]
◦ αΓ = Φ+O(δΓ2) .

In fact, one could use the above equation as a covariant, gauge-invariant, all-order (and on

shell) definition of Φ; however, we shall refrain from doing so.

In order to display second order expressions in a readable form we omit terms contain-

ing the metric perturbation components Vi, Wj and Tij and use once more the Bardeen

potentials Φ, Ψ and the gauge-invariant scalar field perturbation χ. We stress that the

particular expressions of these fields at linear and higher order are not needed for the ac-

tual computations but just for a compact display of the result. Using this, we arrive at the

following second order form of the gauge-invariant lapse function

Nφ,2 =
a

φ′

(
−Φ2 − 2

(
Φχ

φ′

)′

− 2H
Φχ

φ′
+ 2

((
χ

φ′

)′)2

+

(
φ′′

φ′
+ 2H

)(
χ2

φ′2

)′

+

(
H2 +H′ +

φ′′′

φ′
+H

φ′′

φ′
−

φ′′2

φ′2

)
χ2

φ′2
+

3∑

i=1

(
∂i

(
χ

φ′

))2

+ 2
χ

φ′

(
χ

φ′

)′′
)
,

where, as before, we use the notation that e.g. Φ = λΦ1 +
1
2λ

2Φ2 + O(λ3) and omit the

second order terms linear in Φ, χ displayed already in (4.1).

4.2 The spatial curvature

A further observable of interest is the scalar curvature of the spatial metric induced by a

particular slicing because for a large class of slicings this quantity vanishes in the back-

ground and thus is automatically gauge-invariant at linear order. Moreover, for the slicing

– 12 –
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defined by the inflation field it is related to the Mukhanov-Sasaki field µ which has a very

simple dynamical equation.

We have already discussed the spatial curvature relative to the slicing induced by φ̃.

It may be computed as (3.18)

R
(3)
φ =

4

a2
∆R+O(δΓ2) , R =

H

φ′
µ =

H

φ′
ϕ−D .

In the literature, the quantity R is usually called the comoving curvature perturbation. This

is due to the fact that the φ̃-slicing may be equivalently characterised by the condition that

T (φ̃)abn
a
φ = −g̃abn

a
φT (φ̃)cdn

c
φn

d
φ ,

i.e. that the energy flux of φ̃ is parallel to nφ, where T (φ̃)ab is the stress tensor of φ̃.

An alternative slicing considered in the literature is the one defined by the energy

density ρ̃ of φ̃

ρ̃ := T (φ̃)abn
a
φn

b
φ = ρ+ ̺ ,

ρ :=
(φ′)2

2a2
, ̺ := V (1)(φ)ϕ+

φ′(ϕ′ − φ′A)

a2
+O(δΓ2) .

The spatial curvature R
(3)
ρ with respect to this slicing, defined in analogy to R

(3)
φ , reads

R(3)
ρ =

4

a2
∆ζ +O(δΓ) , ζ :=

H

ρ′
̺−D ,

where ζ is called uniform density perturbation because ρ̃ is by definition constant on the

hypersurfaces in the slicing relative to ρ̃. The global sign in the definition of ζ is conven-

tional.

As anticipated, the background contributions of R
(3)
φ and R

(3)
ρ vanish and thus

R
(3)
φ := R

(3)
φ ◦ αΓ = R

(3)
φ +O(δΓ2) , R(3)

ρ := R(3)
ρ ◦ αΓ = R(3)

ρ +O(δΓ2) ,

cf. (3.10), (3.11). In order to display the second order contribution to R
(3)
φ , we make the

simplifications discussed for the lapse function in section 4.1. Proceeding like this, we find

R
(3)
φ,2 =

8

a2

(
∆

(
2R2 −

χ

φ′
(∂τ + 2H)R+

1

2

(
H′ + 2H2 −

Hφ′′

φ′

)(
χ

φ′

)2
)

(4.2)

−
5(∂iR)∂i

R

2

)
.

We omit the result for R
(3)
ρ,2 computed with the coordinate system XΓ defined in (3.12)

and (3.19), because it is rather long due to the “mismatch” between the time coordinate

φ̃ used in X0
Γ and the time coordinate ρ̃ used in the definition of R

(3)
ρ . Clearly, using ρ̃ as

a time coordinate in both aspects we would obtain a second order expression R
(3)
ρ,2 which

is of the form (4.2) up to the replacements

R 7→ ζ , φ 7→ ρ , χ 7→ π := V (1)(φ)χ+
φ′(χ′ − φ′Φ)

a2
, (4.3)

where π is gauge-invariant with π = ̺+O(δΓ2) in the longitudinal gauge.
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On shell and at first order, µ, and thus R, are preferred observables because they have

canonical equal-time Poisson brackets and thus in the quantized theory they commute at

spacelike separations, in contrast to Ψ, Φ and χ [10, 14]. Moreover, again on shell and at

first order, one may compute

ζ = R−
2∆Φ

3(φ′)2
= R−

R
′

3H
.

Consequently, ζ shares the causality properties of µ and R.

Apart from the phenomenological relevance of an all-order definition of R, µ and ζ, it

is interesting on conceptual grounds to investigate whether the causality property of these

fields persists at higher orders. To this end, we need a fully covariant and gauge-invariant

all-order definition of R, µ and ζ. Such a definition may be given by means of covariant

quantities introduced in section 3.2:
[
1

4
GφR

(3)
φ

]
◦ αΓ =

a2

4
G∆R

(3)
φ − a2G∆δ∆R+O(δΓ3)

= H
χ

φ′
−Ψ+R

2 − 2H
χ

φ′
R+

1

2

(
H′ + 2H2 −

Hφ′′

φ′

)(
χ

φ′

)2

(4.4)

+G∆

(
(∂iR)∂i

R

2

)
+O(δΓ3) ,

[
3Nφ

4Kφ
GφR

(3)
φ

]
◦ αΓ = µ+O(δΓ2) ,

[
1

4
GφR

(3)
ρ

]
◦ αΓ = ζ +O(δΓ2) . (4.5)

In (4.4) we wrote the O(δΓ) term as Hχ/φ′ −Ψ instead of R because the fields χ, Ψ

are defined in such a way that they are invariant also with respect to second order gauge

transformations (cf. the end of section 2), whereas R = Hϕ/φ′ −D is only gauge-invariant

up to the first order.

In analogy to our discussion of R
(3)
ρ , using ρ̃ rather than φ̃ both as the time coordinate

X0
Γ and as the time function defining a foliation of spacetime, we obtain a higher order

definition of ζ which is of the form (4.4) up to the replacements in (4.3) (whereby a second

order generalisation of π, which can be constructed in analogy to the second order Bardeen

potentials, is needed).

In the literature, several possible second order gauge-invariant corrections to R are

considered. One often encounters constructions where in a gauge with ϕ = 0 (or D = 0),

the second order corrections to R vanish — at least in situations where spatial derivatives

can be neglected in comparison to temporal ones, see e.g. [18, 19, 25, 31]. In fact R is often

defined by the condition R = −D in a gauge where ϕ = 0. A quick analysis reveals that

this is not the case in our construction (4.4). In [31] it is argued that expressions for R valid

up to second order that are not of this form, e.g. the one in [1], are potentially physically

ill-behaved because they are not conserved on “super-Hubble scales”. Here, conservation

of a function f(τ, ~x) on “super-Hubble scales” means that the Fourier transform f̂(τ,~k)

of f with respect to ~x satisfies ∂τ f̂(τ,~k) = O(|~k|/H). This property, whose relevance is

explained e.g. in [18, 31], usually holds only on-shell. It would be interesting to check

whether our result for R as given in (4.4) (and the analogous result for ζ) is conserved in

this sense; however, this is beyond the scope of the present work.
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5 Quantization

In the previous sections we have prepared the ground for an all-order perturbative quanti-

zation of the Einstein-Klein-Gordon system on FLRW backgrounds, i.e. for a conceptually

clear higher-order generalisation of quantized cosmological perturbation theory. In this

section we would like to sketch the steps necessary for a full construction of the quantum

theory. A detailed account will be given in a future work [3].

5.1 BRST quantization

It is known that a direct quantization of non-linear gauge-invariant observables in a theory

with local gauge symmetries is difficult. The standard way out is to perform a gauge fixing

in the sense of the BRST method, or more generally, the BV formalism, as treated in [11,

12, 15]. There one adds a Fermionic vector field cµ (the ghost field), which describes the

infinitesimal gauge transformations, auxiliary scalar fields bµ, c̄µ, where bµ (the Nakanishi-

Lautrup field) is Bosonic and c̄µ (antighost) is Fermionic, µ = 0, . . . , 3. Infinitesimal

coordinate transformations are described by the BRST operator s, which acts on scalar

local functionals A of the metric, the inflaton and the b fields by

s(A)(x) = cµ(x)∂µA(x) ,

on the components of the ghost field by

s(cµ)(x) = cν(x)∂νc
µ(x) ,

on antighosts by

s(c̄µ)(x) = ibµ(x)− cν(x)∂ν c̄µ(x)

and satisfies on products the graded Leibniz rule so that s2 = 0. One can characterise the

classical observables as functionals in the kernel of s modulo those in the image of s (i.e.

classical observables belong to the 0-th cohomology group of s).

The field equations for the extended system are the usual field equation for φ̃ as well as

Rµν = T (φ̃)µν −
1

2
T (φ̃)g̃µν + s(i∂(µc̄ν))

�g̃c
µ = 0

�g̃ c̄µ = 0

|detg̃|−
1

2∂µ|detg̃|
1

2 g̃µν = κµνbµ .

Here κ is a non-degenerate fixed tensor.

The quantization of the extended system now proceeds largely analogous to the pure

gravity treatment in [2]. The main idea is to use deformation quantization to deform the

algebra of functionals as well as the BRST operator s. The observables we discussed in

the previous sections are invariant under diffeomorphisms whose action decays sufficiently

fast at spatial infinity. Since the BRST transformation on these fields are just infinitesimal

diffeomorphisms the only point to check is whether they have the right decay properties.

This can be verified by direct inspection of the correlation functions of the ghost fields.

Hence, the quantized versions of the gauge-invariant fields discussed in the previous sections

are elements of the cohomology of the quantized BRST operator s.
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5.2 Renormalisation

A conceptual and technical difference to the case of generic backgrounds treated in [2] arises

because we were forced to introduce a mild non-locality for observables via the non-local

spatial coordinates Xi
Γ (3.19). Despite of this fact, the interaction Lagrangean remains

a local field. Therefore only the external vertices in a graph expansion of perturbation

theory are affected. In [2] renormalisation was treated in the Epstein-Glaser framework

which is initially only suitable for local functionals. As we have to deal with non-local

expressions, we need to extend this framework from local quantities to certain non-local

ones. The first step in this procedure is to expand the non-local coordinates in terms of its

local components. To this end, recall that

Xi
Γ = (1−Gφ∆φ)x

i =
∞∑

k=0

(−G0 δ∆)kxi ,

where ∆φ = ∆0+δ∆ is the Laplacian relative to the φ̃-slicing and Gφ =
∑

∞

k=0(−G0 δ∆)kG0

is its Green’s function for suitable boundary conditions, cf. section 3.2. Notice that the

previous expression has the form of the perturbative expansion of a local field induced by

a quadratic interaction Lagrangean and the most severe divergence present in G0 is local.

Our gauge-invariant observables can be expanded as Taylor series in Xa
Γ. Inserting the

series written above for the coordinates into the perturbative expansion of the observables

one obtains an expansion with only local vertices and two types of propagators. Hence,

the renormalisation can be performed as in the standard case, in particular the arising

non-localities originate from local counter terms at lower order.

As an example, let us consider the time ordered product of a local observable expanded

as described above with several interaction Lagrangeans. In the graphical expansion one

findds as a simple but typical contribution the graph

The vertices denote the interaction Lagrangean, the vertex the observable under consid-

eration and the vertices δ∆ terms in the expansion of coordinates. The external vertex

represents the action of δ∆ on the background coordinate xi.

To see that such graphs can be renormalised, consider the simplest divergent case,

namely

The kernel of G0 considered as a distribution on M2 is of the form

G0(x, y) = c(τx)δ(τx, τy)
1

|~x− ~y|
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with a smooth function c. The wave front set of G0(x, y) at coinciding points is the

one of δ(x, y) and its scaling degree there is 2. For non-coinciding spatial coordinates no

divergences occur. The vertex operators δ∆ are differential operators of at most second

order. By direct inspection we thus see that the only singularity of the loop in the above

example is at the total diagonal and by power counting we find that the degree of divergence

of this loop is at most 2, so that the appropriately renormalised expression is unique up to

at most two derivatives of δ distributions of the three loop vertices. In general the degree

of divergence of a loop containing “internal” propagators may be higher or lower than in

the above example depending on the number of Feynman propagators appearing in the

loop; the same applies to the renormalisation freedom of general loops.

These arguments indicate that the new types of graphs do not create new problems in

the UV regime. We briefly sketch why we do not expect additional IR problems. We have

already pointed out that our setup is only meaningful if we restrict the admissible classical

configurations to those which vanish at spatial infinity. By consistency we need the same be-

haviour for the correlation functions of the quantized theory, in particular for the Feynman

propagators of the linearised model. Provided quantum states (or more general Hadamard

parametrices) with this property exist — this is not obvious and needs to be proven — we

expect that the integrals corresponding to the “internal” vertices will converge.

The remaining problem is to deal with the combinatorics of such graphs and ensure

that the renormalisation can be performed systematically order by order. This can be done

by a slight generalisation of the standard framework and will be discussed in detail in our

forthcoming paper [3]. In the same publication we will also prove the validity of Ward

identities analogous to the ones proven by Hollands for the Yang-Mills theory [15].

6 Conclusions

We described how cosmological perturbation theory may be derived from a full theory

of perturbative quantum gravity. This demonstrates that perturbative quantum gravity

can already be tested by present observations. Moreover, on a more practical side, our

definition of gauge-invariant observables provides a conceptually simple way of extending

the observables which are relevant for the interpretation of cosmological observations to

arbitrary high orders.

However, even in linear order, our discussion clarifies the choice of good observables,

as we have indicated at the example of the lapse function Nφ with respect to the spa-

tial hypersurfaces of constant inflaton field. Initially Nφ is not gauge-invariant, but our

construction yields a gauge-invariant version which at linear order and on shell may be ex-

pressed in terms of the Bardeen potential Φ that is related to the temperature fluctuations

of the CMB via the Sachs-Wolfe effect.

We computed examples of gauge-invariant observables beyond linear order and found

a second-order expression for the comoving curvature perturbation which seems to differ

from constructions in other works. As in the literature there is some debate about whether

some constructions are physically well-behaved, see. e.g. [31], it would be interesting to
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investigate the physical properties of our result, even though it is clear from the outset

that it has a transparent geometric interpretation.

Finally we have sketched the details of the quantization of the Einstein-Klein-Gordon

system on cosmological backgrounds beyond linear order. We believe that the strategy

outlined here leads to a full renormalised all-order theory of cosmological perturbations by

means of which higher order corrections to standard results in cosmology may be computed.
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