
February 3, 2018 3:9 WSPC/INSTRUCTION FILE BPT2016-JAA

Extremal Behaviour in Sectional Matrices

Anna Bigatti

Department of Mathematics, Università degli Studi di Genova, Via Dodecaneso 35, 16146
Genoa, Italy. bigatti@dima.unige.it

Elisa Palezzato

Department of Mathematics, Università degli Studi di Genova, Via Dodecaneso 35, 16146
Genoa, Italy. palezzato@dima.unige.it

Michele Torielli

Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo
060-0810, Japan. torielli@math.sci.hokudai.ac.jp

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxx)

In this paper we recall the object sectional matrix which encodes the Hilbert functions
of successive hyperplane sections of a homogeneous ideal. We translate and/or reprove
recent results in this language. Moreover, some new results are shown about their maxi-
mal growth, in particular a new generalization of Gotzmann’s Persistence Theorem, the
presence of a GCD for a truncation of the ideal, and applications to saturated ideals.

Keywords: Sectional Matrix, Hilbert Function, Hyperplane Section, Generic Initial Ideal,
Reduction Number, Extremal Behaviour.

2000 Mathematics Subject Classification: 13D40, 05E40, 13P99

1. Introduction

Let K be a field of characteristic 0 and let P be the polynomial ring K[x1, . . . , xn]

with n indeterminates and the standard grading. Given a finitely generated
Z-graded P -moduleM = ⊕d∈NMd, theMd’s are finite-dimensionalK-vector spaces.
The Hilbert function of M , HM : Z→ N with HM (d) := dimK(Md), is a very
frequent and powerful tool of investigation in Commutative Algebra.

From Macaulay [12], it is well known that the computation of the Hilbert func-
tion of M may be reduced to the computation of the Hilbert function of some
K-algebras of type P/J , where J is a monomial ideal. In particular, if I is a homo-
geneous ideal in P , then HP/I = HP/LT(I).

Another very common practice consists of studying generic hyperplane sections
which, in algebraic terms, means reducing modulo by a generic linear form. The
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combination of Hilbert functions and hyperplane sections lead to the result by
Green [10] (1988).

The sectional matrix of a homogenous ideal I was introduced by Bigatti and
Robbiano in [6] (1997) unifying the concepts of the Hilbert function of a homoge-
neous ideal I (along the rows) and of its hyperplane sections (along the columns).
Sectional matrices did not receive much attention, and in this paper we want to re-
vive them. We extend some results in this language, confirming the merit of this tool
and suggesting that further investigation might cast a new light on many aspects
of Commutative Algebra.

In Section 2 we set our notation and recall the definition of sectional matrix. In
Sections 3 we recall its main properties converting the results from [6] into terms
of the quotient P/I (instead of the ideal I). In particular, Theorem 3.2 shows
Macaulay’s and Green’s inequalities. In Section 4, we recall Gotzmann’s Persistence
Theorem and the sectional matrix analogue from [6]. Moreover, we generalize it into
a sectional version (Theorem 4.2).

In Section 5, we describe how to deduce information on the dimension and the
degree of a homogeneous ideal in terms of the entries of its sectional matrix. In
Section 6, we show how the extremal behaviour implies the presence of a GCD
for the truncation of homogeneous ideals. In Section 7, we apply these results to
the class of saturated ideals. Finally, in Section 8, we present several examples
comparing the information given by the sectional matrix, the generic initial ideal,
and the resolution of a homogeneous ideals.

The examples in this paper have been computed with CoCoA ([1], [3],
SectionalMatrix, PrintSectionalMatrix).

2. Definitions and notation

Let K be a field of characteristic 0 and P = K[x1, . . . , xn] be the polynomial ring
with n indeterminates with the standard grading. Let I ⊆ P be a homogeneous ideal
in P and A = P/I. Then A is a graded P -module ⊕d∈NAd, where Ad = Pd/Id.

The definition of the Hilbert function was extended in [6] to the bivariate func-
tion encoding the Hilbert functions of successive generic hyperplane sections: the
sectional matrix of a homogeneous ideal I in P . In this paper, we define, in the
obvious way, the sectional matrix for the quotient algebra P/I, and then we show
how to adapt the results given in [6] to the use of P/I.

Definition 2.1. Given a homogeneous ideal I in P = K[x1, . . . , xn], we define the
sectional matrix of I and of P/I to be the functions {1, . . . , n} × N −→ N

MI(i, d) = dimK((I + (L1, . . . , Ln−i))/(L1, . . . , Ln−i))d,

MP/I(i, d) = dimK(Pd/(I + (L1, . . . , Ln−i))d),

where L1, . . . , Ln−i are generic linear forms. Notice that MP/I(n, d) = HP/I(d)

andMP/I(i, d) =
(
d+i−1
i−1

)
−MI(i, d).
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Remark 2.1. A generic linear form is a polynomial L = a1x1 + · · · + anxn in
K(a1, . . . , an)[x1, ..., xn]. In this paper we restrict our attention to a field K of
characteristic 0, so the equalities of the Definition 2.1 hold for any L′ = α1x1 +

· · · + αnxn with (α1, . . . , αn) in a non-empty Zariski-open set in PnK . Therefore in
this case it is common practice to talk about “generic linear forms in K[x1, . . . , xn]”
instead of dealing with the explicit extension of K.

This small example will be used as a running example throughout the paper.

Example 2.1. Let P = Q[x, y, z] and I = (x4 − y2z2, xy2 − yz2 − z3) an ideal
of P . Then the sectional matrix of P/I is

0 1 2 3 4 5 6 7 . . .

HP/(I+〈L1,L2〉)(d) =MP/I(1, d) : 1 1 1 0 0 0 0 0 . . .

HP/(I+〈L1〉)(d) =MP/I(2, d) : 1 2 3 3 2 1 0 0 . . .

HP/I(d) =MP/I(3, d) : 1 3 6 9 11 12 12 12 . . .

where the continuations of the lines are obvious in this example. The general theory
about truncation and continuation of the lines will be described in Theorem 4.1 and
Remark 4.1.

3. Background results on sectional matrices

In this section we recall the main properties of sectional matrices from [6] translat-
ing them in terms of the quotient P/I. In particular, we describe the persistence
theorem and the connection with rgin.

Let σ be a term-ordering on P = K[x1, . . . , xn]. The leading term ideal or
initial ideal of an ideal I ⊆ P is the ideal generated by {LTσ(f) | f ∈ I\{0} },
and is denoted by LTσ(I) (or by inσ(I)). For any homogenous ideal I it is well
known that HP/I = HP/LTσ(I). This nice property does not extend toMP/I , but
only one inequality holds, as Conca proved in [7]: we write his result in sectional
matrix notation.

Theorem 3.1 (Conca, 2003). Let I be a homogeneous ideal in P = K[x1, . . . , xn]

and σ a term-ordering. Then,MP/I(i, d) ≤MP/LTσ(I)(i, d) for all i = 1, . . . , n and
d ∈ N.

Example 3.1. Recall I from Example 2.1. For σ =DegRevLex its σ-Gröbner basis
is {xy2−yz2−z3, x4−y2z2, x3yz2−y4z2+x3z3, y5z2−y4z3+x3z4−x2yz4−x2z5},
thus LTσ(I) = (xy2, x4, x3yz2, y5z2). We compareMP/I withMP/LTσ(I):

0 1 2 3 4 5 6 7 . . .

MP/LTσ(I)(1, d) : 1 1 1 0 0 0 0 0 . . .

MP/LTσ(I)(2, d) : 1 2 3 3 2 1 1 0 . . .

MP/LTσ(I)(3, d) : 1 3 6 9 11 12 12 12 . . .
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Then we observe thatMP/I(2, 6) = 0 < 1 =MP/LTσ(I)(2, 6). Notice that the third
lines are equal for all term-orderings because the Hilbert functions are the same:
HP/I = HP/LTσ(I).

In this paper we compare some of our results with the ones from [4]. In order
to make the comparison clearer to the reader we need to introduce the notion of
s-reduction number and to describe how it is stated in terms of the sectional matrix.
The definition of s-reduction number has several equivalent formulations and we
recall here the one given in [4].

Definition 3.1. Let I be a homogeneous ideal in P = K[x1, . . . , xn]. The
s-reduction number, rs(P/I), is max{d | HP/(I+(L1,...,Ls))(d) 6= 0}, where
L1, . . . , Ls are generic linear forms in P . In our language

rs(P/I) = max{d | MP/I(n−s, d)6=0}.

The reduction number r(P/I) is rdim(P/I)(P/I).
Notice that, for their definitions, the reduction number and the sectional matrix,

use “complementary” indices s and n− s.

Example 3.2. In Example 2.1 and Example 3.1 we see that I and LTσ(I) have the
same 2-reduction number, r2(P/I) = r2(P/LTσ(I)) = 2, and different 1-reduction
number: r1(P/I) = 5 and r1(P/LTσ(I)) = 6. Since dim(P/I)=dim(P/LTσ(I))=1

we have r(P/I)=5 and r(P/LTσ(I))=6.

Remark 3.1. Using Theorem 3.1 Conca in [7] proved the inequality for the reduc-
tion numbers: r(P/I) ≤ r(P/LTσ(I)).

Going back to the problem of finding a monomial ideal with the same sectional
matrix as P/I, we recall the definitions of strongly stable ideal and of gin. A mono-
mial ideal J is said to be strongly stable if for every power-product t ∈ J and
every i, j such that i < j and xj |t, the power-product xi·t/xj is in J .

In [8] Galligo proved that, given a homogeneous ideal I in the polynomial ring
K[x1, . . . , xn], with K a field of characteristic 0 and σ a term-ordering such that
x1 >σ x2 >σ · · · >σ xn, then there exists a non-empty Zariski-open set U ⊆ GL(n)

and a strongly stable ideal J such that for each g ∈ U , LTσ(g(I)) = J . This ideal
is called the generic initial ideal of I with respect to σ and it is denoted
by ginσ(I). In particular, when σ =DegRevLex, it is denoted by rgin(I).

Example 3.3. Consider the ideal I = (x4−y2z2, xy2−yz2−z3) from Example 2.1.
Then rgin(I) = (x3, x2y2, xy4, y6). See [2] for details about the computation of gin
in CoCoA.

Remark 3.2. Let I be a homogeneous ideal. If I has a minimal generator of
degree d (then so does g(I)), then also rgin(I) has a minimal generator of degree d.
The converse is not true in general: consider for example the ideal I = (z5, xyz3) in
Q[x, y, z], then rgin(I) = (x5, x4y, x3y3) has a minimal generator of degree 6, and
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I doesn’t. In particular, this shows that the highest degree of a minimal generating
set of rgin(I) may be strictly greater than that of I.

The following result represents the sectional matrix analogue of Macaulay’s The-
orem for Hilbert functions (HP/I = HP/LT(I)): it reduces the study of the sectional
matrix of a homogeneous ideal to the combinatorial behaviour of a monomial ideal.

Lemma 3.1. Let I be a homogeneous ideal in P = K[x1, . . . , xn]. Then

MP/I(i, d) =MP/rgin(I)(i, d) = dimK(Pd/(rgin(I) + (xi+1, . . . , xn))d).

Proof. See Lemma 5.5 in [6].

Remark 3.3. Lemma 3.1 shows that when we have a strongly stable ideal J in
P (and in particular rgin(I) is strongly stable) the sectional matrix of P/J is
particularly easy to compute because sectioning J by n−i generic linear forms is
the same as sectioning J by the smallest n−i indeterminates, xi+1, . . . , xn.

Using this combinatorial view, Bigatti and Robbiano in [6] proved a combina-
tion of Macaulay’s and Green’s inequalities ([12], [10]) and then an analogue of
Gotzmann’s Persistence Theorem ([9]) for sectional matrices.

We recall the definition of binomial expansion following the notation of [6]. If I
is a homogeneous ideal then the (n − 1)-binomial expansion of HI(d) corresponds
to a “description” of a lex-segment ideal L in degree d, and similarly the d-binomial
expansion of HP/I(d) corresponds to P/L. See for example [11, Proposition 5.5.13].

Definition 3.2. For h and i, two positive integers, the i-binomial expansion
of h is h =

(
h(i)
i

)
+
(
h(i−1)
i−1

)
+ · · ·+

(
h(j)
j

)
with h(i) > h(i− 1) > · · · > h(j) ≥ j ≥ 1.

Such expression exists and is unique.
Moreover we define a family of functions related to the expansion in the following

way: (hi)st :=
(
h(i)+s
i+t

)
+
(
h(i−1)+s
i−1+t

)
+ · · ·+

(
h(j)+s
j+t

)
.

For short, we will write (hi)
+
+ instead of (hi)11, and (hi)

− instead of (hi)−10 .

Here is Theorem 5.6 of [6] and again we convert the statement in terms of
the quotient P/I using the properties of the functions derived from the binomial
expansion.

Theorem 3.2 (Sectional matrices, 1997). Let I be a homogeneous ideal in the
polynomial ring P = K[x1, . . . , xn] and M :=MP/I . Then

(a) M(i, d+ 1) ≤
i∑

j=1

M(j, d) for all i = 1, . . . , n and d ∈ N.

(b) (Macaulay) M(i, d+ 1) ≤ (M(i, d)d)
+
+ for all i = 1, . . . , n and d ∈ N.

(c) M(i−1, d)−M(i−2, d) ≤ ((M(i, d)−M(i− 1, d))d)
− for all i = 3, . . . , n and

d ∈ N.
(d) (Green) M(i− 1, d) ≤ (M(i, d)d)

− for all i = 2, . . . , n and d ∈ N.
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Proof. This is Theorem 5.6 of [6], using the conversions

(HI(d)n−1)
+ = (HP/I(d)d)

+
+ and (HI(d)n−1)

−
− = (HP/I(d)d)

−

(see for example [11] Proposition 5.5.16 and Proposition 5.5.18).

For the extremal case of Bigatti, Geramita and Migliore in [5], Macaulay’s in-
equality defined the maximal growth of the Hilbert function. We analogously de-
fine maximal growth of the sectional matrix following the extremal case in Theo-
rem 3.2.a.

Definition 3.3. Let I be a homogeneous ideal in P = K[x1, . . . , xn].

• The Hilbert function HP/I has maximal growth in degree d if
“Macaulay’s equality” holds: HP/I(d+ 1) = (HP/I(d)d)

+
+.

• The sectional matrix MP/I has i-maximal growth in degree d if

“Bigatti-Robbiano’s equality” holds:MP/I(i, d+ 1) =
i∑

j=1

MP/I(j, d).

Remark 3.4. For a homogeneous ideal I in P = K[x1, . . . , xn] if MP/I has n-
maximal growth in degree d then I, and rgin(I), have no minimal generators of
degree d+1.

More precisely, for any i ∈ {1, . . . , n}, Corollary 2.7 of [6] implies that MP/I

has i-maximal growth in degree d if and only if rgin(I) has no minimal generators
of degree d+1 in x1, . . . , xi. (This is a generalization of Lemma 2.17 in [4].)

4. Sectional Persistence Theorem

Gotzmann’s Persistence Theorem [9] says that, if the generators of an ideal I have
degree ≤ δ and the Hilbert function of P/I has maximal growth in degree δ, then
it has maximal growth for all higher degrees.

This is also true for sectional matrices. Here we recall the Persistence Theo-
rem 5.8 of [6], and in Theorem 4.2 we will generalize it for i-maximal growth, for
i ≤ n.
Theorem 4.1 (Persistence Theorem, 1997).
Let I be a homogeneous ideal in P = K[x1, . . . , xn]. IfMP/I has n-maximal growth
in degree δ and I has no generators of degree >δ then it has i-maximal growth for
all i = 1, . . . , n and for all degrees >δ.

Moreover, MP/I has n-maximal growth for all degrees ≥ reg(I).

Example 4.1. Consider the ideal I = (x4 − x2yz, x5 + xy3z) in P = Q[x, y, z, t].
Then

MP/I =

0 1 2 3 4 5 6 7 8 . . .

1 1 1 1 0 0 0 0 0 . . .

1 2 3 4 4 3 2 1 1 . . .

1 3 6 10 14 17 19 20 21 . . .

1 4 10 20 34 51 70 90 111 . . .
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Therefore MP/I has 4-maximal growth starting from degree 7, whereas a direct
computation shows that HP/I has maximal growth starting from degree 49.

Remark 4.1. In particular, the regularity is used by CoCoA for truncating the
size of the sectional matrix, displaying the rows up to degree reg(I)+1, so that
the last column shows the persisting equalities. In Example 2.1, we have rgin(I) =

(x3, x2y2, xy4, y6), thus reg(I) = 6, and in degree 7 we read the persisting equalities.

Remark 4.2. We emphasize that the regularity of a homogeneous ideal I, the
highest degree of the generators of rgin(I), is usually a much lower number than
the highest degree of the generators of the lex-segment ideal with the same Hilbert
function of I, as shown in Example 4.1. This fact makes the persistence in Theo-
rem 4.1 more “practical” than Gotzmann’s.

With the next lemma we show that ifMP/I has i-maximal growth in degree δ
for some i < n, this persists in higher degrees, even if it does not have n-maximal
growth.

Lemma 4.1. Let I be a homogeneous ideal in P = K[x1, . . . , xn] generated in
degree ≤ δ+1. If there exists i ≤ n such that rgin(I) has no minimal generators of
degree δ+1 in P(i) = K[x1, . . . , xi], then rgin(I) has no minimal generators of any
degree > δ in P(i).

Proof. Let σ be DegRevLex and g a generic change of coordinates. Suppose that
the σ-Gröbner basis of g(I) has a polynomial f2 of degree δ + 2. Then f2 comes
from a minimal syzygy of rgin(I) = LTσ(g(I)) and hence this syzygy is linear
(see Lemma 5.7 in [6]). This means that there exists a minimal generator t1 of
rgin(I) of degree δ+1, and, by the hypothesis, all minimal generators of rgin(I)must
be in the ideal (xi+1, . . . , xn). Let f1 be the Gröbner basis polynomial such that t1
is LTσ(f1). Because we are using the reverse lexicographic term-ordering, this fact
implies that f1 ∈ (xi+1, . . . , xn). As a consequence any s-polynomial constructed
with f1 is a difference of polynomials in (xi+1, . . . , xn), so f2 ∈ (xi+1, . . . , xn).
Thus any Gröbner basis element of degree δ + 2 is in (xi+1, . . . , xn), and therefore
rgin(I) has no minimal generators of degree δ + 2 in K[x1, . . . , xi]. Iterating this
reasoning, we can conclude that rgin(I) has no minimal generators of degree > δ

in K[x1, . . . , xi].

Using Lemma 4.1, we can now extend Theorem 4.1.

Theorem 4.2 (Sectional Persistence Theorem).
Let I be a homogeneous ideal in P = K[x1, . . . , xn] generated in degree ≤ δ + 1. If
there exists i ∈ {1, . . . , n} such that MP/I has i-maximal growth in degree δ then
it has j-maximal growth for all j ∈ {1, . . . , i} and for all degrees ≥ δ.

Proof. FromMP/I(i, δ+1) =
∑i
j=1MP/I(j, δ) we have that rgin(I) has no gener-

ators of degree δ+1 in K[x1, . . . , xi] (see Remark 3.4). Then, applying Lemma 4.1,
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we know that rgin(I) has no generators of degree > δ in K[x1, . . . , xi]. Hence we
can apply Theorem 4.1 to J(i) = rgin(I) ∩ K[x1, . . . , xi] and for all d > δ and
j = 1, . . . , i we getMP/rgin(I)(i, d+1) =MP/J(i)(j, d+1) =

∑j
k=1MP/J(i)(k, d) =∑j

k=1MP/rgin(I)(k, d). The conclusion now follows from Lemma 3.1.

The Sectional Persistence Theorem says that, whereas the persistence of the
n-th row starts at the regularity of the ideal, the persistence in the first rows may
be detected in degree lower than the highest degree of the generators.

Example 4.2. Consider the ideal I = (x2, xy, xz(z + w), x(z2 + w2)) in the
polynomial ring P = Q[x, y, z, w]. Then rgin(I) = (x2, xy, xz2, xzw, xw3). Notice
that I is generated in degree ≤ 3, and its regularity is 4, so from Theorem 4.1 it
follows thatMP/I has i-maximal growth in degree 4 for i = 1, . . . , 4.

MP/I =

0 1 2 3 4 5 . . .

1 1 0 0 0 0 . . .

1 2 1 1 1 1 . . .

1 3 4 4 5 6 . . .

1 4 8 11 15 21 . . .

We see that MP/I has 2-maximal growth in degree 2 and 3-maximal growth in
degree 3:
MP/I(2, 3) = 1 =MP/I(1, 2) +MP/I(2, 2)

MP/I(3, 4) = 5 =MP/I(1, 3) +MP/I(2, 3) +MP/I(3, 3).
Hence from Theorem 4.2 it follows that MP/I has 2-maximal growth for all de-
grees ≥ 2 and it has 3-maximal growth for all degrees ≥ 3.

5. Hilbert Polynomial, Hilbert Series, dimension, multiplicity

In this section, we show how to read some algebraic invariants for a homogeneous
ideal I from its sectional matrixMP/I truncated at some degree δ.

Lemma 5.1. Let I be a homogeneous ideal in P = K[x1, . . . , xn] generated in
degree ≤ δ+1. If MP/I has i-maximal growth in degree δ, then for all d ∈ N>0 we
have

MP/I(i, δ+d) =
∑i
j=1

(
i−j+d−1
i−j

)
· MP/I(j, δ)

Proof. We prove the statement by induction on d. From Theorem 4.2 it follows
that MP/I has k-maximal growth in degree δ, for all k = 1, . . . , i, thus for d = 1

we haveMP/I(k, δ+1) =
∑k
j=1MP/I(j, δ).

Let d > 1 and suppose the stated equality holds for MP/I(k, δ + d) for all
k = 1, . . . , i. Then by the i-maximal growth from Theorem 4.2,

MP/I(i, δ + d+ 1) =

i∑
k=1

MP/I(k, δ + d) =

i∑
k=1

k∑
j=1

(
k − j+d−1
k − j

)
· MP/I(j, δ)
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then we swap the sums varying j in {1, . . . , i} and t = k − j with k ∈ {j, . . . , i}:∑i
j=1

(∑i−j
t=0

(
t+d−1
t

))
· MP/I(j, δ) =

∑i
j=1

(
i−j+d−1
i−j

)
· MP/I(j, δ)

and this concludes the proof.

Proposition 5.1. Let I be a homogeneous ideal in P = K[x1, . . . , xn] generated
in degree ≤ δ + 1, and let L1, . . . , Ln be generic linear forms in P . If MP/I has
i-maximal growth in degree δ, then the Hilbert polynomial of P/(I+(L1, . . . , Ln−i))

is

pi(x) =

i∑
j=1

(
i−j+x−δ−1

i− j

)
· MP/I(j, δ)

In particular, if pi 6= 0 let k = min{j ∈ {1, . . . , i} | MP/I(j, δ) 6= 0}, then

pi(x) =
MP/I(k, δ)

(i− k)!
xi−k + ... terms of lower degree .

Proof. The first part of the corollary is trivial from Lemma 5.1: for x > δ we have
pi(x) =MP/I(i, x) =

∑i
j=1

(
i−j+(x−δ)−1

i−j
)
· MP/I(j, δ).

We conclude by observing that
(
i−k+x−δ−1

i−k
)
= (x−δ+i−k−1)...(x−δ+1)(x−δ)

(i−k)! and
therefore equal to 1

(i−k)!x
i−k + (terms of lower degree).

Proposition 5.2. Let I be a homogeneous ideal in P = K[x1, . . . , xn] generated
in degree ≤ δ + 1, and let L1, . . . , Ln be generic linear forms in P . If MP/I has
i-maximal growth in degree δ, then the Hilbert series of Ri = P/(I + (L1, .., Ln−i))

is

HSRi(t) =

δ∑
d=0

MP/I(i, d)t
d +

( i∑
j=1

MP/I(j, δ)

(1− t)i−j+1

)
tδ+1.

Proof. By definition HSRi(t) =
∑∞
d=0MP/I(i, d)t

d. By Lemma 5.1, we have that

∞∑
d=δ+1

MP/I(i, d)t
d =

∞∑
d=δ+1

( i∑
j=1

(
i− j+d− δ − 1

i− j

)
· MP/I(j, δ)

)
td

swapping the sums and letting k = d− δ − 1 it becomes

=
∑i
j=1

(∑∞
k=0

(
i−j+k
i−j

)
tk
)
·MP/I(j, δ)·tδ+1 =

(∑i
j=1

MP/I(j,δ)

(1−t)i−j+1

)
tδ+1. Therefore,

we can conclude by adding the first part of the series,
∑δ
d=0MP/I(i, d)t

d.

The following theorem shows that we can easily read the dimension and the
multiplicity of P/I from its sectional matrix. In particular, this information may
be found in the δ-th column with δ < reg(I) (see Example 5.1).



February 3, 2018 3:9 WSPC/INSTRUCTION FILE BPT2016-JAA

10

Theorem 5.1. Let I be a homogeneous ideal in P = K[x1, . . . , xn] generated
in degree ≤ δ + 1 such that Iδ 6= Pδ and let i = min{j | MP/I(j, δ) 6= 0}. If
MP/I(i, δ) =MP/I(i, δ + 1), then

dim(P/I) = n−i+1 and deg(P/I) =MP/I(i, δ).

Proof. The hypothesis implies thatMP/I has i-maximal growth in degree δ, so, by
Theorem 4.2, has j-maximal growth in degree d, for all d > δ and j = 1, . . . , i; this
means that i = minj{MP/I(j, d) 6= 0} for all d > δ and MP/I(i, d) =MP/I(i, δ)

for all d ≥ δ. Now, let δ′ ≥ δ such thatMP/I has n-maximal growth in degree δ′,
for example δ′ = max{δ, reg(I)}. Applying Proposition 5.2, and setting the highest
power, (1− t)n−i+1, as common denominator, it follows that

HSP/I(t) =
MP/I(i, δ

′) + f(t)(1− t)
(1− t)n−i+1

for some polynomial f(t) ∈ K[t] and the fraction above is reduced. Therefore, the
degree of its denominator, n−i+1, is dim(P/I), and the evaluation of the numerator
in 1,MP/I(i, δ), is deg(P/I).

Remark 5.1. The hypothesis of Theorem 5.1 is equivalent to the existence of an
integer i such thatMP/I(i, δ) =MP/I(i, δ + 1) for δ > rn−i+1(P/I): this kind of
formulation should look more familiar to the readers of [5] and [4].

Example 5.1. Following Example 4.2 we consider i=2, δ=2, so MP/I(1, 2) = 0

and MP/I(2, 2) = MP/I(2, 3) = 1 6= 0. We then conclude dim(P/I) = n−i+1 =

4−2+1 = 3 and deg(P/I) =MP/I(i, δ) =MP/I(2, 2) = 1.
Note that we deduced this information from the sectional matrix in degree 2,

strictly smaller than reg(I) = 4 and also smaller than 3, the maximal degree of the
generators of I.

Remark 5.2. For any homogeneous ideal I in P = K[x1, . . . , xn], MP/I has
i-maximal growth for all degrees ≥ reg(I) and for all i ∈ {1, . . . , n}. Therefore
all the results in this section hold replacing their hypotheses with “δ ≥ reg(I)”.

Example 5.2. In Example 2.1, with reg(I) = 6, we have i = 3, so it follows that
dim(P/I) = 3− 3 + 1 = 1 and deg(P/I) =MP/I(3, 6) = 12.

6. Maximal Growth and Greatest Common Divisor

Now we make a subtle change: we consider the same scenario in degree δ for an arbi-
trary homogeneous ideal I and see that the same conclusion hold on the truncation
ideal 〈I≤δ〉.

Proposition 6.1. Let I be a homogeneous ideal in P=K[x1, . . . , xn]. If there
exists a degree δ such that Iδ 6=Pδ and MP/I(i, δ)=MP/I(i, δ+1), where i is
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min{j>1 | MP/I(j, δ) 6=0}, then we have

dim(P/〈I≤δ〉) = dim(P/〈I≤δ+1〉) = n−i+1,

deg(P/〈I≤δ〉) = deg(P/〈I≤δ+1〉) =MP/I(i, δ).

Proof. By construction MP/I(j, δ) = MP/〈I≤δ〉(j, δ) and MP/I(j, δ+1) =

MP/〈I≤δ+1〉(j, δ+1) for all j = 1, . . . , n. From Remark 3.4 it follows that rgin(I)

has no minimal generators in degree δ+1 in x1, . . . , xi, and therefore nor does
rgin(〈I≤δ〉) ⊆ rgin(I). It then follows that

MP/I(j, δ+1) =MP/〈I≤δ〉(j, δ+1)

for all j = 1, . . . , i. This implies that

MP/〈I≤δ〉(i, δ+1) =MP/〈I≤δ〉(i, δ) 6= 0,

MP/〈I≤δ+1〉(i, δ+1) =MP/〈I≤δ+1〉(i, δ) 6= 0,

and i = min{j | MP/〈I≤δ〉(j, δ) 6= 0} = min{j | MP/〈I≤δ+1〉(j, δ) 6= 0}. Now we can
apply Theorem 5.1 and get the conclusions.

Corollary 6.1. Let I be a homogeneous ideal in P = K[x1, . . . , xn]. If there ex-
ists δ such that Iδ 6=Pδ and MP/I has n-maximal growth in degree δ, let i be
min{j>1 | MP/I(j, δ) 6=0}, then 〈I≤δ〉 = 〈I≤δ+1〉, dim(P/〈I≤δ〉) = n−i+1, and
deg(P/〈I≤δ〉) =MP/I(i, δ).

Proof. By hypothesis MP/I has n-maximal growth in degree δ, hence by Re-
mark 3.4 it follows that I has no minimal generators in degree δ+1, and therefore
〈I≤δ〉 = 〈I≤δ+1〉. Moreover, from Theorem 4.1 it has i-maximal growth in degree δ.
Hence we have the equality MP/I(i, δ+1) =

∑i
j=1MP/I(j, δ) = MP/I(i, δ) 6= 0

and the conclusion follows from Proposition 6.1.

Example 6.1. Consider the ideal I = (x3, x2y, xy2, xyz2, xyzt3) in the polynomial
ring P = Q[x, y, z, t]. Then

MP/I =

0 1 2 3 4 5 6 7 . . .

1 1 1 0 0 0 0 0 . . .

1 2 3 1 1 1 1 1 . . .

1 3 6 7 7 8 9 10 . . .

1 4 10 17 24 32 40 50 . . .

MP/I≤3
=

0 1 2 3 4 . . .

1 1 1 0 0 . . .

1 2 3 1 1 . . .

1 3 6 7 8 . . .

1 4 10 17 25 . . .

MP/I≤4
=

0 1 2 3 4 5 . . .

1 1 1 0 0 0 . . .

1 2 3 1 1 1 . . .

1 3 6 7 7 8 . . .

1 4 10 17 24 32 . . .
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We see that MP/I has i = 2-maximal growth in degree δ = 3. Then by Propo-
sition 6.1, we have that dim(P/〈I≤3〉) = dim(P/〈I≤4〉) = 3, and deg(P/〈I≤3〉) =

deg(P/〈I≤4〉) = 1, regardless what happens inMP/I(j, δ) for j > i = 2.

The following proposition is the generalization of Proposition 1.6 of [5].

Proposition 6.2. Let I be a homogeneous ideal in P = K[x1, . . . , xn]. If MP/I

has n-maximal growth in degree δ, then reg(〈I≤δ〉) ≤ δ.

Proof. Let I = 〈I≤δ〉. By constructionMP/I(j, d) =MP/I(j, d) for all j=1, . . . , n

and 0 ≤ d ≤ δ. By Remark 3.4, I has no minimal generators in degree δ+1, and
henceMP/I(j, δ+1) =MP/I(j, δ+1) for all j = 1, . . . , n. This implies thatMP/I

has n-maximal growth in degree δ, and then, by the Persistence Theorem 4.1, it
has n-maximal growth in all degrees > δ. By Lemma 3.1,MP/I =MP/rgin(I) and
hence by Lemma 4.1, rgin(I) has no minimal generators of degree > δ, and then
reg(I) ≤ δ.

In the rest of this section, we generalize some results of [5] and [4] about the
existence a common factor when there is a certain kind of maximal growth.

Corollary 6.2. Let I be a homogeneous ideal in P = K[x1, . . . , xn]. If there exists δ
such that Iδ 6= {0} and MP/I(2, δ) =MP/I(2, δ+1) (i.e. has 2-maximal growth in
degree δ) then 〈I≤δ〉 has a GCD of degreeMP/I(2, δ). Furthermore, 〈I≤δ+1〉 shares
the same GCD.

Proof. From Iδ 6={0} it follows that xδ1 ∈ rgin(I), and then MP/I(1, δ) = 0.
If MP/I(2, δ) = 0 then Iδ = Pδ has GCD = 1 of degree 0. Otherwise, by
Proposition 6.1 dim(P/〈I≤δ〉) = dim(P/〈I≤δ+1〉) = n−1 and deg(P/〈I≤δ〉) =

deg(P/〈I≤δ+1
〉) = k = MP/I(2, δ). This means that 〈I≤δ〉 defines a hypersurface

of degree k, i.e. 〈I≤δ〉 = (F ) ∩ J with dim(J) < n−1 and deg(F ) = k. Therefore
〈I≤δ〉 ⊆ (F ) as claimed. Similarly for 〈I≤δ+1

〉.

Following the statement of Corollary 6.2, and along the line of ideas in [5], we
give a new definition for the potential GCD, based on the sectional matrix instead
of the Hilbert function.

Definition 6.1. Let I be a homogeneous ideal in P = K[x1, . . . , xn] such that
Iδ 6= {0}. TheM-potential degree of the GCD of Iδ is k =MP/I(2, δ).

The following corollary is the generalization of Proposition 2.7 of [5] and of
Corollary 5.2 of [4].

Corollary 6.3. Let I be a homogeneous ideal in P = K[x1, . . . , xn] and let δ be
such that Iδ 6= {0}. Let k be the M-potential degree of the GCD of Iδ. If MP/I

has i-maximal growth in degree δ for some i ≥ 2, then 〈I≤δ〉 and 〈I≤δ+1〉 share the
same GCD, F , of degree k.
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Proof. By Theorem 4.2, if MP/I has i-maximal growth in degree δ, then it has
2-maximal growth in degree δ. Therefore we conclude by Corollary 6.2.

Let us see this result in action on an example.

Example 6.2. Consider the polynomial ring P = Q[x, y, z] and the ideal
I = (x3 + y3, x2 + 3xy + 2y2 − xz − yz, x4 + x3y, xy4 − 16xyz3,

y5 − 3xy3z − 4y4z + 12xyz3 − 25y3z2 + 100yz4) of P . Then

MP/I =

0 1 2 3 4 5 6 7 8 9 . . .

1 1 0 0 0 0 0 0 0 0 . . .

1 2 2 1 1 0 0 0 0 0 . . .

1 3 5 6 6 4 3 2 1 1 . . .

We see thatMP/I has 2-maximal growth in degree 3 and indeed both I3 and I4 have
a GCD of degree k =MP/I(2, 3) =MP/I(2, 4) = 1. Indeed, a direct computation
shows that the GCD is x+ y.

7. Saturated ideals

A homogeneous ideal I in P = K[x1, . . . , xn] is saturated if the irrelevant maximal
ideal m = (x1, . . . , xn) is not an associated prime ideal, i.e. (I : m) = I. For
any homogeneous ideal I of P , the saturation of I, denoted Isat, is defined by
Isat := {f ∈ P | fm` ⊆ I for some integer `}.

In this section we apply the results we obtained to the case of saturated ideals.

Remark 7.1. It is well known that for any homogeneous ideal J there exists ` ∈ N
such that J sat = J : m` and therefore Jd = (J sat)d for all d� 0.

Remark 7.2. (Bayer-Stillman) Let I be a homogeneous ideal of P . Then
rgin(Isat) = rgin(I)xn→0. This shows that if I is saturated, then rgin(I) has no
minimal generators involving xn.

Lemma 7.1. Let I be a saturated ideal in P = K[x1, . . . , xn]. Then MP/I has
n-maximal growth in degree δ if and only if it has (n−1)-maximal growth in degree δ.

Proof. By Theorem 3.2.(a) n-maximal growth implies (n−1)-maximal growth.
Suppose nowMP/I has (n−1)-maximal growth. By Remark 3.3 this implies that

rgin(I) has no minimal generators in x1, . . . , xn−1 in degree δ+1. Moreover, since
rgin(I) is saturated, from Remark 7.2 there are no minimal generators divisible
by xn. With no minimal generators in degree δ+1MP/rgin(I), and thereforeMP/I ,
has also n-maximal growth.

In general the truncation of a saturated ideal is not saturated, as the following
example shows. To guarantee that also the truncation is saturated we need some
additional hypothesis, see Lemma 7.2.
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Example 7.1. Consider the polynomial ring P = Q[x, y, z, t] and the ideal I =

(yz−xt, z3− yt2, xz2− y2t, y3−x2z, x3, x2y2). This ideal is saturated, however,
a direct computation shows that the truncation I≤3 is not saturated.

The following lemma is the generalization of Lemma 1.4 of [5].

Lemma 7.2. Let I be a saturated ideal in P = K[x1, . . . , xn]. IfMP/I has (n−1)-
maximal growth in degree δ then the ideal 〈I≤δ〉 is saturated.

Proof. From Lemma 7.1 it follows thatMP/I has n-maximal growth in degree δ.
Let I = 〈I≤δ〉 and Ĩ = I

sat
. Notice that we have that Id ⊆ Ĩd for all d ∈ N. We

want to prove that our hypotheses imply Id = Ĩd for all d ∈ N.
By Remark 7.1 we have that Id = Ĩd for all d� 0.
Let f ∈ Ĩd be an element with d ≤ δ. Then fm` ⊆ I for some integer `. Since

I ⊆ I, we have fm` ⊆ I, and, by hypothesis, I is saturated, therefore f ∈ I. Now,
I and I coincide in degree ≤ δ, hence f ∈ I. This shows Id = Ĩd for all d ≤ δ.

By Lemma 4.1, I has no minimal generators in degree δ+1, so Id = Id = Ĩd also
for d = δ+1.

By contradiction, let d > δ+1 be the biggest integer such that Id ( Ĩd. This
means that in degree d+1

MP/I(n, d+1) =MP/Ĩ(n, d+1)

and in degree d

MP/I(n, d) >MP/Ĩ(n, d)

and MP/I(j, d) ≥MP/Ĩ(j, d), for j = 1, . . . , n−1.

By definition I is generated in degree δ < d, hence, by Theorem 4.1, we have that

MP/I(n, d+1) =

n∑
j=1

MP/I(j, d).

Now, using the equalities and inequalities above, we get

MP/Ĩ(n, d+1) =MP/I(n, d+1) =

n∑
j=1

MP/I(j, d) >

n∑
j=1

MP/Ĩ(j, d).

This is impossible by the inequalities in Theorem 3.2.(a).

Extending Corollary 6.1 to the case of saturated ideals, we can generalize The-
orem 3.6 of [4] and Theorem 3.6 of [5].

Corollary 7.1. Let I be a saturated ideal in P = K[x1, . . . , xn]. If there exists δ
such that Iδ 6=Pδ and MP/I has (n−1)-maximal or n-maximal growth in degree δ,
let i = min{j>1 | MP/I(j, δ) 6=0}, then 〈I≤δ〉 is a saturated ideal of dimension n−i,
of degree MP/I(i, δ) and it is δ-regular. Moreover, dim(P/I) ≤ n−i.
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Proof. By Lemma 7.1, since I is saturated, having (n−1)-maximal or n-maximal
growth is equivalent. By Lemma 7.2, 〈I≤δ〉 is a saturated ideal. The conclusions
then follows from Corollary 6.1 and Proposition 6.2.

Now we can generalize Corollary 5.2 of [4] and Corollary 2.9 of [5].

Corollary 7.2. Let I be a saturated ideal in P = K[x1, . . . , xn]. If MP/I has
(n−1)-maximal growth in degree δ and potential degree of the GCD = k ≥ 1. Then
〈I≤δ〉 = 〈I≤δ+1〉 is saturated and it has a GCD of degree k.

Proof. From Lemma 7.1 it follows thatMP/I has n-maximal growth in degree δ.
Hence Corollary 6.3 and Lemma 7.2 apply.

Similarly to Corollary 7.1, we might be tempted to extend Proposition 6.1 to
the case of saturated ideals, or, equivalently, Corollary 7.1 to the case of 2-maximal
growth. The example below shows that this is not possible.

Example 7.2. As in [4], under the assumption of Proposition 6.1, if I is saturated
we can not conclude that 〈I≤δ〉 is saturated. For this example, we consider a first
set of 98 points on the conic Q with equation (z−3t)(z+3t) = 0 in P3 and a second
set of 16 points outside Q. In this way we obtain a saturated homogeneous ideal I
in P = Q[x, y, z, t] andMP/I is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 . . .

1 2 3 4 5 2 2 0 0 0 0 0 0 0 0 . . .

1 3 6 10 15 17 13 13 11 9 7 5 3 1 0 . . .

1 4 10 20 35 52 65 78 89 98 105 110 113 114 114 . . .

FromMP/I we can read that 〈I≤5〉 has a GCD of degree 2 (Corollary 6.2), however
MP/I does not have 3-maximal growth in degree 5 (so Corollary 7.2 does not
apply), indeed a direct computation shows that I≤5 is not saturated.

Example 7.3. Consider the polynomial ring P = Q[x, y, z, t, h] and the strongly
stable ideal

I = (x5, x4y, x3y2, x2y3, xy4, x4z, x3yz, x2y2z, x4t, xy3z3).

The ideal I is saturated and

MP/I =

0 1 2 3 4 5 6 7 8 . . .

1 1 1 1 1 0 0 0 0 . . .

1 2 3 4 5 1 1 1 1 . . .

1 3 6 10 15 13 14 14 15 . . .

1 4 10 20 35 47 61 75 90 . . .

1 5 15 35 70 117 178 253 343 . . .
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We can now apply Corollary 7.2 and see that 〈I≤5〉 and 〈I≤6〉 are saturated and
have GCD of degree 1 (we can check that the GCD is x). For this example the
result in [4, Corollary 5.2], for detecting a GCD, do not apply.

8. Sectional matrices, GIN, and resolutions

In this section, we will present some examples in order to compare the sectional
matrix with other algebraic invariants, such as the Hilbert function H, the generic
initial ideal and the minimal resolution.

We start from two homogeneous ideals with same Hilbert function but different
rgin, sectional matrix and Betti numbers.

Example 8.1. Consider P = Q[x, y, z] and let

I = (x2, xy, xz, y3, y2z, yz2, z3) and J = (x2, xy, y2, xz2, yz2, z3)

be two ideals in P . Both ideals are strongly stable and hence, they coincide with
their own rgin. These two ideals clearly have distinct rgin, but they have the same
Hilbert function (the last row in the sectional matrices). They have different sec-
tional matrix and different graded Betti numbers.

MP/I =

0 1 2 3 4 . . .

1 1 0 0 0 . . .

1 2 1 0 0 . . .

1 3 3 0 0 . . .

MP/J =

0 1 2 3 4 . . .

1 1 0 0 0 . . .

1 2 0 0 0 . . .

1 3 3 0 0 . . .

The resolutions of P/I and P/J are respectively

0→ P (−4)⊕ P (−5)3 → P (−3)3 ⊕ P (−4)7 → P (−2)3 ⊕ P (−3)4 → P → P/I → 0.

0→ P (−5)3 → P (−3)2 ⊕ P (−4)6 → P (−2)3 ⊕ P (−3)3 → P → P/J → 0.

In the following example, we show two ideals with the same sectional matrix
and same Betti numbers, but different generic initial ideal.

Example 8.2. Consider the polynomial ring P = Q[x, y, z] and the ideals

I = (x5, x4y, x3y2, x2y3, xy4, x4z, x3yz, x2y2z, x3z2, x2yz2)

J = (x5, x4y, x3y2, x2y3, xy4, x4z, x3yz, x2y2z, x3z2, xy3z).

Both the ideals are strongly stable and hence, they coincide with their own rgin.
These two ideals clearly have distinct rgin, but they have the same Hilbert function,
the same sectional matrix and the same Betti numbers.

MP/I =MP/J =

0 1 2 3 4 5 6 . . .

1 1 1 1 1 0 0 . . .

1 2 3 4 5 1 1 . . .

1 3 6 10 15 11 12 . . .
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The resolution of P/I and P/J is

0→ P (−7)5 → P (−6)14 → P (−5)10 → P.

In the following example we show two ideals with the same sectional matrix,
but different generic initial ideal and different Betti numbers.

Example 8.3. Consider the polynomial ring P = Q[x, y, z] and the ideals

I = (x5, x4y, x3y2, x2y3, xy4, x4z, x2y2z, x3z2, x2yz2)

J = (x5, x4y, x3y2, x2y3, xy4, x4z, x2y2z, x3z2, xy3z).

We have that

rgin(I) = (x5, x4y, x3y2, x2y3, xy4, x4z, x3yz, x2y2z, x3z2, x2yz3),

rgin(J) = (x5, x4y, x3y2, x2y3, xy4, x4z, x3yz, x2y2z, xy3z, x3z3).

MP/I =MP/J =

0 1 2 3 4 5 6 7 . . .

1 1 1 1 1 0 0 0 . . .

1 2 3 4 5 1 1 1 . . .

1 3 6 10 15 12 12 13 . . .

The resolution of P/I is

0→ P (−7)2 ⊕ P (−8)→ P (−6)11 → P (−5)9 → P → P/I → 0.

The resolution of P/J is

0→ P (−7)3 ⊕ P (−8)→ P (−6)11 ⊕ P (−7)→ P (−5)9 → P → P/J → 0.

In the following example we show two ideals with the same rgin, therefore the
same sectional matrix and Hilbert function, but different Betti numbers.

Example 8.4. Consider the polynomial ring P = Q[x, y, z], and the ideals of P

I = (x4, y4, z4, xy2z3, x3yz2, x2y3z) and J = rgin(I).

These two ideals clearly have the same rgin, therefore the same sectional matrix.
However, J has more minimal generators than I, so they have different resolutions.

MP/I =MP/J =

0 1 2 3 4 5 6 7 8 . . .

1 1 1 1 0 0 0 0 0 . . .

1 2 3 4 2 0 0 0 0 . . .

1 3 6 10 12 12 7 0 0 . . .

The resolution of P/I is

0→ P (−9)7 → P (−7)3 ⊕ P (−8)9 → P (−4)3 ⊕ P (−6)3 → P → P/I → 0.

The resolution of P/J is

0→ P (−8)5 ⊕ P (−9)7 → P (−5)2 ⊕ P (−6)2 ⊕ P (−7)10 ⊕ P (−8)14 →
→ P (−4)3 ⊕ P (−5)2 ⊕ P (−6)5 ⊕ P (−7)7 → P → P/J → 0.
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In summary:

Example rgin Sec. Mat. Betti n.
8.1 6= 6= 6=
8.2 6= = =

8.3 6= = 6=
8.4 = = 6=
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