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Summary statement: Inhibition of CHD4 expression impairs cell proliferation and survival 

through downregulation of ERBB2 signaling and block of autophagy. Therefore, CHD4 should be 

considered a potential target in ERBB2+ breast cancers. 
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ABSTRACT 

The chromodomain helicase DNA-binding 4 (CHD4), a member of the nucleosome remodeling and 

deacetylases (NuRD) complex, has been identified as an oncogene that modulates proliferation and 

migration of breast cancers (BC). ERBB2 is an oncogenic driver in 20-30% of BC in which its 

overexpression leads to increased chemoresistance. Here we investigated whether CHD4 depletion 

affects the ERBB2 cascade and autophagy, which represents a mechanism of resistance against 

Trastuzumab (Tz), a therapeutic anti-ERBB2 antibody. 

We show that CHD4 depletion in two ERBB2+ BC cell lines strongly inhibits cell proliferation, 

induces p27KIP1 upregulation, Tyr1248 ERBB2 phosphorylation, ERK1/2 and AKT 

dephosphorylation, and downregulation of both ERBB2 and PI3K levels. Moreover, CHD4 

silencing impairs late stages of autophagy, resulting in increased levels of LC3 II and 

SQSTM1/p62, lysosomal enlargement and accumulation of autolysosomes (ALs). Importantly, we 

show that CHD4 depletion and concomitant treatment with Tz prevent cell proliferation in vitro. 

Our results suggest that CHD4 plays a critical role in modulating cell proliferation, ERBB2 

signaling cascade and autophagy and provide new insights on CHD4 as a potential target for the 

treatment of ERBB2+ BC.  

 

 

INTRODUCTION 

Breast cancer (BC) is considered a collection of diseases showing heterogeneity at molecular, 

histopathological and clinical level, which generates variable clinical courses and responses to 

treatments (Polyak, 2011). The genetic and molecular characterization of breast tumors has allowed 

the identification of five main subtypes according to the receptor status (estrogen, progesterone or 

ERBB2)(Goldhirsch et al., 2011). Among them, the ERBB2 overexpressing (ERBB2+) subtype is 

characterized by amplification or overexpression of the ERBB2 (ERBB2/Neu) oncogene and 

accounts for approximately 20-30% of all BCs (Yarden, 2001a). ERBB2 belongs to the human 

epidermal growth factor receptor (EGFR) family, which consists of four members (ERBB1/EGFR, 

ERBB2, ERBB3 and ERBB4). Of the four ERBB receptors, only ERBB2 has no known ligand and 

is subjected to an additional layer of regulation mediated by the molecular chaperone HSP90 

(Castagnola et al., 2016; Bertelsen and Stang, 2014; Miyata et al., 2013). Several malignancies are 

associated with mutations or increased expression of members of the EGFR family, including lung, 

breast, stomach, colorectal, head and neck, thyroid, pancreatic carcinomas and glioblastoma 

(Yarden, 2001b; Li et al., 2018; Minuto et al., 2018; Sigismund et al., 2018; von Achenbach et al., 
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2018; Rodriguez-Antona et al., 2010). The ERBB receptors work as homo- or heterodimers able to 

engage different downstream signaling modules, such as Ras/Raf/MAPK and  phosphatidylinositol 

3-kinase (PI3K)/AKT pathways (Harari and Yarden, 2000; Carmona et al., 2016; Bagnato et al., 

2017). In addition, ERBB2 overexpression correlates with increased progression through the cell 

cycle by affecting CDKN1A/p21WAF1 and CDKN1B/p27KIP1 (Carmona et al., 2016). 

Trastuzumab (Tz) is an inhibitory monoclonal antibody that targets the extracellular domain of 

ERBB2 and is used as a front-line therapy for the treatment of ERBB2+ BCs. Tz downregulates the 

downstream PI3K/AKT and Ras/Raf/MEK/ERK1/2 signaling cascade, resulting in the impairment 

of cell proliferation (Yakes et al., 2002; Vu and Claret, 2012). Moreover, ERBB2 endocytic 

downregulation, cell cycle arrest in G1 phase and nuclear accumulation of the cell cycle inhibitor 

p27KIP1 have been reported (Valabrega et al., 2005; Nahta and Esteva, 2006; Le et al., 2005). 

Combinations of Tz with chemotherapeutic agents or other targeted inhibitors has reduced 

recurrence rates, improved outcome and prolonged the survival of patients; however, de novo and 

acquired resistance to Tz are still frequently observed (Nahta and Esteva, 2006; Lavaud and Andre, 

2014; Di Modica et al., 2017).  

The catabolic process of autophagy is a protein degradation process regulated by the mTOR-

signaling pathway, which degrades cytoplasmic constituents within lysosomes (Yin et al., 2016). In 

cancer biology, autophagy has emerged as a resistance mechanism to multiple anticancer therapies 

such as kinase inhibitors or chemotherapy (Amaravadi et al., 2011). Protective autophagy might be 

induced in BC cells treated with anti-ERBB2 drugs such as Lapatinib or Tz, allowing cancer cells to 

survive (Chen et al., 2016; Vazquez-Martin et al., 2009). For these reasons, autophagy inhibitors are 

under intense investigations as novel anti-cancer agents (Amaravadi et al., 2011; Bortnik and 

Gorski, 2017). Recently, we demonstrated that the diterpene carnosic acid (CA) in combination 

with Tz impairs late autophagy, partially restoring Tz sensitivity in Tz-resistant cells (D'Alesio et 

al., 2017).  

The chromatin remodeling helicase CHD4, a component of the nucleosome remodeling and 

deacetylases (NuRD) complex, has been recently identified as an essential regulator of BC growth 

in murine and patient derived xenograft (PDX) BCs (D'Alesio et al., 2016) and correlates with poor 

prognosis in cancers (Nio et al., 2015; Xia et al., 2017). In addition to its role in transcriptional 

regulation, CHD4 is also implicated in DNA damage response, cell cycle progression 

(O'Shaughnessy and Hendrich, 2013), cell stemness in a model of hepatocellular carcinoma (Nio et 

al., 2015) and in organogenesis and postnatal organ/tissue differentiation (Gomez-Del Arco et al., 

2016). In a triple negative BC cell line, CHD4 depletion causes a significant reduction of cell 

proliferation and migration in vitro and a dramatic decrease of the tumor mass in vivo (D'Alesio et 
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al., 2016). This inhibition was also found in luminal B and triple negative PDX models and in a 

transgenic mouse model (MMTV/NeuT) having the rat ERBB2 ortholog activated (D'Alesio et al., 

2016). Moreover, CHD4 regulates BC cell cycle progression and its silencing determines the 

accumulation of cells in the G0 phase, a dramatic reduction of DNA synthesis, together with an up-

regulation of p21WAF1 (D'Alesio et al., 2016). Most importantly, the depletion of CHD4 in MCF10A 

cells, a human mammary epithelial cell line that lacks tumorigenic potential, did not affect cell 

proliferation and migration in vitro, suggesting that CHD4 targeting has the potential to become a 

novel therapeutic strategy to impair BC progression (D'Alesio et al., 2016). 

Interestingly, evidences show that the NuRD complex plays a role in the epigenetic regulation of 

autophagy. It has been demonstrated that repression of mTOR expression by SOX2 promotes 

cellular reprogramming and induction of autophagy through the recruitment of the NuRD complex 

(Wang et al., 2013). In addition, the methyltransferase EZH2 represses the expression of mTOR 

pathway-related genes via the NuRD complex component MTA2 (metastasis associated 1 family, 

member 2) (Wei et al., 2015).  

In this work, we aimed at filling the gap of knowledge about the role of CHD4 in the specific 

regulation of the ERBB2-mediated signaling cascades and autophagy in ERBB2+ BC cells. We 

have found that CHD4 depletion impairs ERBB2 molecular pathways down-regulating the 

phosphorylation status of pAKT and pERK. In addition, we demonstrated that CHD4 silencing 

impairs late stages of autophagy likely contributing to the impairment of BC cell proliferation. 

Lastly, we showed that CHD4 deprivation cooperates with Tz in zeroing ERBB2+ BC cell 

proliferation. Our work provides new insights on CHD4 as a potential target for the treatment of 

ERBB2+ BC to be used alone or in combination with traditional anticancer agents.   

RESULTS 

CHD4 regulates ERBB2+ BC cell growth 

As the helicase CHD4 is implicated in the development of murine ERBB2+ BC (D'Alesio et al., 

2016) we wanted to establish its role in a human ERBB2+ BC cell model. To this end, we used 

SKBR-3 (estrogen and progesterone receptors negative) and BT474 (estrogen and progesterone 

receptors positive) cell lines. In particular, we transduced SKBR-3 and BT474 cells with two 

pooled shRNAs targeting CHD4 (shCHD4) or control vector (shLuc) for 72 hours and evaluated 

cell survival by MTT analysis after 7 days. As shown in Fig. 1, loss of CHD4 determined a 

statistically significant inhibition of ERBB2+ BC cell proliferation in vitro, compared to control 
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population. These data confirmed that CHD4 silencing is effective in the inhibition of survival of 

ERBB2+ BC cells in vitro. 

 

CHD4 depletion inhibits ERBB2 signaling pathway 

As ERBB2+ BC cells heavily depend on ERBB2 receptor signaling for their growth and survival, 

and because CHD4 depletion inhibits BC tumor development in the MMTV/NeuT model, we 

hypothesized that CHD4 silencing might impair the ERBB2 signaling pathway. To this end, we 

transduced SKBR-3 and BT474 cells with shCHD4 or shLuc and examined by immunoblot analysis 

the major players of the ERBB2 signaling cascade. Upon CHD4 silencing, we found that ERBB2 

phosphorylation is increased on Tyr1248, while ERBB2 receptor total levels are only slightly reduced 

in both cell lines (Fig. 2A and Table S1). To assess whether this decrease in ERBB2 levels was the 

result of a transcriptional regulation or mRNA degradation, we measured ERBB2 mRNA levels by 

qPCR analysis. The result suggested that the minor changes observed in ERBB2 levels are likely 

due to protein degradation, as the mRNA levels did not decrease but, instead, slightly increased 

after CHD4 silencing (Supplementary Fig. S2).  

Furthermore, the evaluation of ERBB2 downstream signaling revealed a down-regulation of PI3K 

protein levels in CHD4 silenced cells compared to shLuc cells. Remarkably, we also observed a 

strong dephosphorylation of AKT Ser473 in SKBR-3 cells, which was less pronounced in BT474 

cells, along with a dephosphorylation of ERK1/2 Thr202/Tyr204 (Fig. 2A and Table S1). In 

particular, we measured pAKT/AKT and pERK1/2/ERK ratio also by the Alphaplex assay (see 

Materials and Methods), which confirmed the immunoblot results (Fig. 2B). Next, we evaluated the 

p27kip1 protein levels, the last member of the ERBB2 signaling cascade. The immunoblot analysis 

unveiled a strong up-regulation of p27kip1 levels in CHD4 silenced cells in both cell lines (Fig. 2A 

and Table S1). Taken together, these results showed that CHD4 regulates ERBB2 levels and its 

signaling cascade in ERBB2+ BC cells. 

 

CHD4 silencing impairs late autophagy 

As previous studies showed that the NuRD complex plays a role in the epigenetic regulation of 

autophagy (Wei et al., 2015; Wang et al., 2013), we hypothesized that CHD4 silencing might 

impair this pathway, thus contributing to the growth inhibition of ERBB2+ BC cells. To evaluate 

protein levels of LC3 and p62, the hallmarks of autophagy (Bjorkoy et al., 2009; Menzies et al., 

2012), 72 hours after transduction cell lysates were prepared and processed by immunoblot 

analysis. We observed an up-regulation of LC3II/LC3I ratio and accumulation of p62 protein levels 

B
io

lo
gy

 O
pe

n 
• 

A
cc

ep
te

d 
m

an
us

cr
ip

t

 by guest on April 10, 2019http://bio.biologists.org/Downloaded from 

http://bio.biologists.org/


when CHD4 was silenced in both SKBR-3 and BT474 cells (Fig. 3 and Table S1). These results 

suggested that lack of CHD4 blocks late stages of autophagy which might impair the degradation of 

both LC3II and p62. To better characterize the effect of CHD4 inhibition on the autophagy process, 

we analyzed the autophagic and lysosomal compartments by immunofluorescence and 

ultrastructural analysis. In particular, by immunofluorescence analysis, we evaluated LAMP1 and 

LAMP2 positive lysosomes and measured their size. We found that CHD4 silencing caused a slight 

but statistically significant increase of the diameter of these organelles (Fig. 4), which is consistent 

with an increase of the size of autolysosomes due to a block of late autophagy. To gain high 

resolution information on the ultrastructure of autophagic organelles in our cell model system, we 

performed a morphological electron microscopy analysis. Importantly, we found the presence of 

double membrane autophagosomes (AP) and a significant enlargement of autolysosomal structures 

(AL) in CHD4 silenced cells compared to controls (Fig. 5).  

 

Loss of CHD4 cooperates with Tz in inhibiting proliferation of ERBB2+ BC cells  

Due to the occurrence of Tz resistance in ERBB2+ BC patients, combinatorial anticancer therapies 

could represent a major advance over single-molecule inhibition. Recently, it has been shown that 

depletion of CHD4 sensitizes cancer cells to therapeutic agents (e.g. PARP inhibitors and DNMT 

inhibitors) in both hematopoietic and solid tumors (Cai et al., 2014; Nio et al., 2015; Sperlazza et 

al., 2015). Therefore, we hypothesized that the depletion of CHD4 might cooperate with Tz to 

reduce proliferation of ERBB2+ BC cells. To this end, we transduced SKBR-3 and BT474 cells, 

both responsive to Tz, with shCHD4 or shLuc and then administered Tz every 48 or 72 hours for 7 

days to evaluate cell number by MTT analysis. As expected, we found that CHD4 depletion 

together with Tz significantly inhibited ERBB2+ BC cell proliferation compared to control shLuc 

(alone) in both cell lines (Fig. 6). Interestingly, in SKBR-3 cells the combined treatment is also 

more effective than the CHD4 depletion alone (Fig. 6).  Collectively, these data suggest that in 

some ERBB2+ expressing cells the depletion of CHD4 may cooperates with Tz in the inhibition of 

cell proliferation.  

DISCUSSION 

The catalytic core component of the NuRD complex CHD4 has been recently implicated in BC 

growth and suggested as a novel pharmacological target to block tumor progression (D'Alesio et al., 

2016). Moreover, the NuRD complex is implicated in the epigenetic regulation of autophagy (Wang 

et al., 2013; Wei et al., 2015), which is recognized as a pro-survival process in ERBB2+ BC cells 
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resistant to Tz (Vazquez-Martin et al., 2009). In this study, we specifically addressed whether 

CHD4 depletion has an impact on ERBB2 signaling pathway and autophagy using two human 

ERBB2+ BC cell lines.  

In the present work, as expected on the basis of a previous report (D'Alesio et al., 2016), we found 

that CHD4 depletion effectively inhibits cell proliferation of both SKBR-3 and BT474 cells, as 

evaluated by MTT analysis. Furthermore, we showed by immunoblot analysis that ERBB2 levels 

are slightly down-regulated in CHD4 silenced cells, likely due to a post-translational mechanism. 

We also found in these cells an enhancement of ERBB2 Tyr1248 phosphorylation. Interestingly, 

ERBB2 Tyr1248 phosphorylation is also induced by Tz and mediates cell growth inhibition 

(Dokmanovic et al., 2014). Therefore, we suggest that ERBB2 Tyr1248 phosphorylation induced by 

CHD4 silencing might have an inhibitory effect on the downstream ERBB2 signaling cascade. 

Consistently, we also found that CHD4 depletion downregulates PI3K protein levels and the 

phosphorylation of two key pro-survival and proliferation kinases, AKT and ERK, respectively, by 

immunoblot analysis. The inhibition of AKT and ERK phosphorylation was further confirmed by a 

liquid-phase immunoassay-based method. As expected from these results, we found the CDK 

inhibitor p27KIP1, which also mediates cell cycle arrest in Tz-treated cells (Valabrega et al., 2005; 

Nahta and Esteva, 2006; Le et al., 2005), was dramatically up-regulated in CHD4 silenced cells, as 

revealed by western blot analysis. Overall, these data point to a growth inhibitory effect of CHD4 

depletion via down-regulation of the ERBB2 signaling cascade. However, further studies are 

needed to reveal how mechanistically loss of CHD4 affects this cascade.  

The role of epigenetic mechanisms in regulating autophagy is an emerging field of study (Baek and 

Kim, 2017). Interestingly, a body of evidences shows that the NuRD complex plays an important 

role in the transcriptional regulation of autophagy players (Wang et al., 2013; Wei et al., 2015). 

Thus, to better understand the relationships between CHD4 and autophagy in ERBB2+ BC cells, we 

evaluated the expression of two hallmarks of this pathway, LC3 and p62 by immunoblot analysis. 

We found that CHD4 silencing caused accumulation of p62, along with a strong increase of the 

LC3 II/I ratio, suggesting a block of autophagy at late stages. Lysosomes represent the final stage of 

both the endocytic and autophagic pathways, resulting in the release of breakdown products into the 

cytosol for subsequent reuse (Pu et al., 2016; Yin et al., 2016). As dysregulated autophagy affects 

lysosomal functions, we performed immunofluorescence and ultrastructural analysis of CHD4 

depleted and control cells. We demonstrated by immunofluorescence analysis a modest but 

significant increase of the size of LAMP1 and LAMP2 labeled lysosomes, which suggested an 

impaired function (Bandyopadhyay et al., 2014). Consistently, transmission electron microscopy 

analysis showed a striking enlargement of bona fide autolysosomal structures. These findings 
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support our hypothesis of a block in late autophagy resulting from CHD4 inhibition. We suggest 

that the repression of autophagy caused by CHD4 depletion contributes to growth arrest observed in 

these cells, which is in line with our very recent report though obtained in a different experimental 

context (D'Alesio et al., 2017). 

Combinatorial treatment of ERBB2+ BC with Tz and other inhibitors appears as a beneficial 

approach to improve survival of patients who have failed to previous treatment strategies. 

Therefore, we wanted to investigate the potential of a combinatorial approach with Tz treatment and 

CHD4 depletion in ERBB2+ BC cells. When CHD4 depletion was combined with Tz treatment, we 

observed a complete block in cell proliferation, while the single inhibition/treatment only achieved 

a decrease of cell proliferation, evaluated by MTT analysis. In particular, the combined treatment 

resulted in a statistically significant reduction of cell proliferation versus the Tz treatment alone in 

both cell types, whereas significance was reached by the combined treatment versus CHD4 

depletion only in SKBR-3 cells.  

In conclusion, these results warrant further studies in animal models with the aim to evaluate the 

effectiveness of the combinatorial treatment of Tz with putative pharmacological inhibitors of 

CHD4 in the inhibition of ERBB2+ BC development and/or progression.  

MATERIALS AND METHODS 

Cell culture and CHD4 silencing 

BC cell lines SKBR-3 and BT474 were obtained from Banca Biologica and Cell Factory in IRCCS 

Ospedale Policlinico San Martino belonging to the European Culture Collection’s Organization. 

Cells were cultured in complete medium (DMEM high glucose supplemented with 10% heat 

inactivated fetal bovine serum, 1% glutamine and penicillin and streptomycin (Euroclone s.p.a., 

Milan, Italy), at 37°C in a humidified atmosphere containing 5% CO2.  

CHD4 silencing was performed as recently described (D'Alesio et al., 2016). The shRNAs targeting 

CHD4 were used as pools of two distinct shRNAs. An shRNA targeting the firefly Luciferase (Luc) 

mRNA was used as negative control. Complete sequences of CHD4 and Luc shRNAs are provided 

in Supplementary Table S2. Silencing efficacy was measured using Real Time (RT) quantitative 

PCR (qPCR). This analysis demonstrated that ERBB2+ BC cells transduced with shCHD4 

expressed significantly less than 45% and 30% CHD4 mRNA compared to shLuc controls in both 

SKBR-3 and BT474 cell lines up to 7 days after transduction, respectively (Supplementary Fig. S1). 
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Cell proliferation assay 

SKBR-3 and BT474 cells were plated in 24-well plates in complete medium (triplicate of SKBR-3 

35000 cells/well and BT474 55000 cells/well). Cell proliferation was measured at different time 

points using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric 

assay. 

Tz (Genentech-Roche, South San Francisco, CA, USA) was dissolved with saline solution with 

0.9% NaCl in a stock concentration of 21 mg/ml, donated by the pharmacy (UFA-Unità Farmaci 

Antiblastici) of the IRCCS Ospedale Policlinico San Martino. Tz was used at a concentration of 5 

µg/ml for SKBR-3 and 0.21 µg/ml for BT474. Control cells were cultured with human IgGs at the 

same concentrations used for Tz. Both Tz and IgGs were administered every 48 or 72 hours for 7 

days.  

 

Antibodies 

All primary antibodies used in this study are listed in Supplementary Table S3. 

 

Western blot analysis 

Transduced SKBR-3 and BT474 cells were cultured for 48 hours and lysed using lysis buffer 

(Hepes pH 7.4 20 mM, NaCl 150 mM, 10% Glycerol, 1% Triton X-100) with protease inhibitors 

cocktail Complete (Roche Applied Science, Penzberg, Germany) and sodium orthovanadate or 

Phostop (Roche) used both as phosphatase inhibitors. Protein quantification was performed using 

Bradford protein assay (BioRad) and protein extracts were resolved on SDS-polyacrylamide gel 

electrophoresis (Invitrogen). Gels were then blotted onto nitrocellulose (GE Healthcare, Little 

Chalfont, UK) membranes and probed with appropriate primary antibodies (Supplementary Table 

S1). Secondary antibodies were horseradish peroxidase-conjugated: anti- mouse or rabbit (Thermo 

Fisher Scientific, Waltham, MA) and anti-goat (Santa Cruz Biotechnology Inc., Dallas, TX, USA) 

and proteins detection was performed with ECL Detection Reagent (GE Healthcare) according to 

manufacturer’s protocol. ECL signals were detected and measured by the Uvitec 

Chemiluminescence Imaging System and NineAlliance software (Uvitec Ltd., Cambridge, UK). 

ECL signals were detected and measured by the Uvitec Chemiluminescence Imaging System and 

ImageJ software (Bandyopadhyay et al., 2014). 
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Alphaplex Assay 

Transduced SKBR-3 and BT474 cells were cultured for 48 hours and lysed with Lysis Buffer 

(PerkinElmer, Waltham, MA). Samples were then processed using the Alpha SureFIre Ultra 

Multiplex kits (PerkinElmer) for phospho AKT and ERK1/2. Protein levels were measured with 

EnVision 2105 Multimode Plate Reader (PerkinElmer) and analyzed according to manufacturer’s 

protocol (https://www.perkinelmer.com/lab-

solutions/resources/docs/MAN_Alpha_SureFire_Multiplex_HV_pAKT_SingleKit.pdf).  

 

Immunofluorescence analysis 

Transduced SKBR-3 and BT474 cells were cultured for 48 hours, fixed in 3% paraformaldheyde 

(PFA) in phosphate-buffered saline (PBS) pH 7.4 and then quenced with 30mM NH4Cl. 

Subsequently, cells were permeabilized with 0.2% saponin and incubated for 1 hour at room 

temperature with anti-LAMP1 and anti-LAMP2 antibodies to reveal lysosomes. The secondary 

antibodies were incubated for 30 minutes in 0.2% saponin/PBS: Alexa488-conjugated donkey anti-

mouse or Alexa456-conjugated donkey anti-mouse (Thermo Fisher Scientific). The coverslips were 

mounted using Prolong Gold with DAPI and anti-fading reagent (Thermo Fisher Scientific). Image 

acquisition and real time deconvolution was performed with an Axio Imager A2M microscope 

equipped with an Apotome module for structured illumination epifluorescence (Carl Zeiss, Jena, 

Germany). Quantification of LAMP1 and LAMP2 lysosome size was performed by using the object 

analyzer advanced tool of Huygens Professional version X11 (http://svi.nl) (Scientific Volume 

Imaging, The Netherlands).  

 

Transmission Electron Microscopy 

Transduced SKBR-3 and BT474 cells were seeded and cultured on glass chamber slides (Lab-Tek 

177380, Nalge Nunc int., Rochester, NY, USA). Cells were washed out in 0.1M cacodylate buffer 

and fixed in 0.1M cacodylate buffer containing 2.5% glutaraldehyde (Electron Microscopy Science, 

Hatfield, PA, USA), for 1 hour at room temperature. Samples were postfixed in osmium tetroxide 

for 2 hours and 1% uranyl acetate for 1 hour. Cells were next dehydrated through a graded ethanol 

series and flat embedded in resin (Poly-Bed; Polysciences, Inc., Warrington, PA, USA) for 24 hours 

at 60°C. Ultrathin sections (50 nm) were cut parallel to the substrate, stained with 5% uranyl acetate 

in 50% ethanol and observed with a CM10 electron microscope (Philips, Eindhoven, The 

Netherlands). Digital images were captured with a Megaview II camera. Analysis of the size of 

morphologically AL was assessed in 10 cells for each treatment, as recently reported (D'Alesio et 
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al., 2017; Thellung et al., 2018). The diameter of each organelle was measured with the iTEM 

software package (Olympus-SYS; Olympus Corporation, Shinjuku, Tokyo, Japan) and plotted as 

box plot.  

 

RNA extraction and real-time qPCR 

RNA was extracted using Trizol reagent (Thermo Fisher Scientific), cDNA was synthesized and RT 

qPCR) was performed in quadruplicate using 1 × IQTM SybrGreen SuperMix and CFX apparatus 

(Biorad). The relative quantity of target mRNA was calculated by the comparative Cq method using 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as housekeeping gene (Fwd: 5’-

ACCCACTCCTCCACCTTTGACG-3’; Rev 5’- CTCTTGTGCTCTTGCTGGGGCTG-3’), and 

expressed as fold induction with respect to controls (Pfaffl, 2001). CHD4 primer pairs (Fwd 5’- 

TGGCCCAGTATGTGGTACG -3’; Rev 5’- CCTGTTTAATGATTTCCCGTTC -3’) were 

purchased from Sigma-Aldrich. ERBB2 primer pairs (Fwd 5’- CAACTGCACCCACTCCTGT -3’; 

Rev 5’- GCAGAGATGATGGACGTCAG -3’) were synthesized by Tib MolBiol s.r.l. custom 

oligonucleotides synthesis service (Genova, Italy). Amplification conditions were 3 minutes at 

95°C followed by 5 seconds at 95°C and 30 seconds at 60°C for 40 cycles.  

 

Statistical Analyses 

Statistical analyses were performed using Prism (GraphPad Software, La Jolla, CA, USA). 

All measurements here reported are presented as mean ± standard deviations (s.d.). For cell survival 

assay (shLuc vs shCHD4), for Alphaplex analysis, and qPCR analysis we used a two-tailed 

distribution Student’s t-test. For ultrastructural studies, we used t Student test plus post-hoc Mann-

Whitney comparison test. For cell survival assay (shLuc vs shCHD4 +/- Tz administration), we used 

one-way ANOVA plus post-hoc Newman-Keuls multiple comparison test. Mean differences were 

considered statistically significant (P value) at P<0.05.  
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Fig. 1. CHD4 depletion inhibits in vitro proliferation of ERBB2+ breast cancer cells. SKBR-3 

and BT474 cells transduced with shCHD4 or control shLuc were cultured for 7 days. Cell 

proliferation is expressed as percentage of the maximum absorbance (at 570 nm) value obtained 

after exposure of cultures to MTT for 4 hours.  Mean values and s.d. (indicated as vertical bars) 

from three independent replicates are shown. P<0.01 (**). 
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Fig. 2. Loss of CHD4 inhibits HER2 signaling in SKBR-3 and BT474 cells. ERBB2+ BC cells 

transduced with shCHD4 or control shLuc were cultured for 48 hours and subsequently lysed. A) 

The immunoblot analysis was performed with anti CHD4, anti ERBB2, anti phospho-Tyr1248 

ERBB2, anti phospho-Ser473 AKT, anti AKT, anti phospho-Thr202/Tyr204 ERK1/2, anti ERK1/2, 

anti p27kip1 and anti Vinculin. Vinculin is used as loading controls. Representative immunoblot 

images from three independent replicates. B) Histograms represent the ratios of phospho-Ser473 

AKT/AKT and anti phspho-Thr202/Tyr204 ERK1/2/ ERK1/2 performed with Alphaplex assay.  Mean 

values and s.d. (indicated as vertical bars) from three replicates are shown. P<0.05 (*), P<0.01 (**), 

P<0.001 (***). 
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Fig. 3. CHD4 silencing up-regulates p62 levels and LC3II/LC3I ratios in ERBB2+ BC cells. 

SKBR-3 and BT474 cells infected with shCHD4 or control shLuc were cultured for 48 hours and 

subsequently lysed. The immunoblot analysis was performed with anti p62, anti LC3 and anti 

Vinculin (used as loading control). Representative immunoblot images from three independent 

replicates. 
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Fig. 4. CHD4 silencing affects lysosomal morphology in SKBR-3 and BT474 cells 

Representative deconvoluted images of shLuc and shCHD4 depleted SKBR-3 (A) and BT474 (B) 

cells. Cells were fixed, permeabilized and incubated with anti-LAMP1 and anti-LAMP2 antibodies 

to detect lysosomes and Alexa488-conjugated anti-mouse secondary antibody (green signal, 

LAMP1) and Alexa546-conjugated anti-mouse secondary antibody (red signal, LAMP2). Nuclei 

were stained with DAPI (blue signal). In CHD4 silenced cells, lysosomes (LAMP-1 and LAMP-2 

positive) appear larger compared to control, shLuc cells. Bar=20µm. Analysis of LAMP1 and 

LAMP2 lysosome size was performed on three independent experiments measuring 50 cells in 

shLuc and shCHD4 SKBR-3 and BT474 cells by using Huygens Professional software. Mean 

values and s.d. of LAMP1 and LAMP2 lysosomes are shown as histograms.  
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Fig. 5. CHD4 silencing impairs late autophagy accumulating autolysosomes in SKBR-3 and 

BT474 cells. Representative TEM images of SKBR-3 (A) and BT474 cells (B) transduced with 

shLuc or shCHD4 for 72 hours. Four major categories of structures were identified by 

morphological criteria in both shLuc and shCHD4 cells: multivescicular bodies (MVBs), double-

membrane autophagosomes (AP), autolysosomes (AL). Nuclei (N), mitochondria (mit), plasma 

membrane (PM). Scale bar: 500 nm. Box plots (C) showing the AL diameter measured for each 

experimental condition. For this analysis, 10 whole cells were scored and measured for AL with the 

iTEM imaging software. Note that in CHD4 depleted cells the diameter of ALs is significantly 

increased with respect to shLuc control cells, P<0.01 (**), P<0.001 (***) for BT474 and SKBR-3, 

respectively.  
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Fig. 6. CHD4 silencing cooperates with Trastuzumab (Tz) in inhibiting survival of ERBB2+ 

breast cancer cells. SKBR-3 and BT474 cells infected with shCHD4 or control shLuc were 

cultured for 7 days and Tz was administered every 48-72 hours. Cell proliferation is expressed as 

percentage of the maximum absorbance (570nm) value obtained after exposure of cultures to MTT 

for 4 hours. Mean values and s.d. (indicated as vertical bars) from three independent replicates are 

shown. P<0.05 (*), P<0.01 (**), P<0.001 (***).  
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Figure S1. CHD4 silencing efficacy in ERBB2+ BC cells. SKBR-3 and BT474 cells transduced 

with shCHD4 or control shLuc were cultured for 48 hours (2 days) or 7 days and subsequently RNA 

was extracted. CHD4 mRNA expression levels were detected by qPCR analysis and are expressed 

as arbitrary units (A.U.). Mean values and s.d. (indicated as vertical bars) from three independent 

replicates are shown. P<0.05 (*), P<0.01 (**), P<0.001 (***). 

Figure S2. ERBB2 mRNA expression levels in SKBR-3 and BT474 cells. ERBB2+ BC cells 

infected with shCHD4 or control shLuc were cultured for 48 hours and subsequently RNA was 

extracted. ERBB2 mRNA expression levels were detected by qPCR analysis and are expressed as 

arbitrary units (A.U.). Mean values and s.d. (indicated as vertical bars) from three independent 

replicates are shown. P<0.01 (**). 
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shLUC
shCHD4 1
shCHD4 2

Table S2. shRNAs sequences used to transduce 
ERBB2+ breast cancer cells 

Sequences 5' -> 3'
CAAATCACAGAATCGTTGTAT
GCGGGAGTTTAGTACTAATAA
CCTCGAGTGAGGGTGATGATT

Protein or ratio 
of protein 
isoforms

SKBR-3 BT474 SKBR-3 BT474 SKBR-3 BT474 SKBR-3 BT474
CHD4 0.4 0.4 0.3 0.1 0.2 0.5 0.8 0.6
pERBB2 7.9 2.8 1.8 1.6 17.6 5.3 4.4 1.5
ERBB2 0.8 0.6 0.6 0.7 0.9 0.2 0.9 0.8
PI3K 0.6 0.5 0.7 0.7 0.5 0.1 0.6 0.7
pAKT/AKT 0.3 0.7 0.1 0.6 0.7 0.7 0.1 0.9
pERK/ERK 0.7 0.8 0.8 0.8 0.9 0.9 0.5 0.8
P27 9.1 6 13 12 3.3 3.1 11 2.8
P62 3.6 3.1 3 5.5 6.2 2 1.5 1.7
LC3II/LC3I 6.6 4.1 2.4 6 15.7 4.7 1.6 1.7

Table S1. Relative expression levels of the indicated proteins, or ratio between the indicated phosphorylated/total protein isoforms, expressed in 
arbitrary units after immunoblot analysis as indicated in materials and methods. 

Average shCHD4 vs shLuc Experiment #1 shCHD4 vs shLuc Experiment #2 shCHD4 vs shLuc Experiment #3 shCHD4 vs shLuc

Biology Open (2019): doi:10.1242/bio.038323: Supplementary information
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Target protein Source Catalog number
AKT Cell Signaling 9272
CHD4 Abcam ab70469
ERK 1/2 Santa Cruz Biotechnology sc-135900
ERBB2 Santa Cruz Biotechnology sc-284

LAMP1
Developmental Studies Hybridoma 
Bank H4A3

LAMP2
Developmental Studies Hybridoma 
Bank H5C6

LC3 Novus Biologicals NB100-2220
p27kip1 Cell Signaling 3686
p62 Novus Biologicals H00008878-M01
PI3K Cell Signaling C73F8
phospho-AKT (Ser473) Cell Signaling 9271
phospho-ERK1/2 (Thr 202/Tyr 204) Santa Cruz Biotechnology sc-16982
phospho-ERBB2 (Tyr 1248) Cell Signaling 2247
Tubulin Sigma T5168
Vinculin Sigma V9131

Table S3. Antibodies used in the study*.

* All antibodies were used at the final concentration recommended by the supplier.
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