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Precision Medicine is becoming the new paradigm in healthcare as it enables better resources allocation,
treatment optimization with a potential side-effects reduction and consequent impact on quality of life and
survival. This revolution is being catalyzed by liquid biopsy technologies, which provide prognostic and pre-
dictive information for advanced cancer patients, without the analytical and procedural drawbacks of tissue-
biopsy. In particular, circulating tumor DNA (ctDNA) is gaining momentum as a clinically feasible option
capable to capture both spatial and temporal tumor heterogeneity.

Several techniques are currently available for ctDNA extraction and analysis, each with its preferential case
scenarios and preanalytical implications which must be taken into consideration to effectively support clinical
decision-making and to better highlight its clinical utility.

Aim of this review is to summarize both analytical developments and clinical evidences to offer a compre-
hensive update on the deployment of ctDNA in breast cancer’s (BC) characterization and treatment.

Introduction: From the traditional biopsy to the new “liquid
biopsy” approach

Tumor biopsy is still considered the gold standard for the retrieval
of crucial diagnostic, prognostic and predictive information in diag-
nostic oncology. Notwithstanding the solid evidence supporting tradi-
tional biopsy, several caveats often limit this procedure, hindering a
precision-medicine approach. The static nature of this technique re-
presents one on the main limits since it is not able to capture both the
tumors’ inherent biological heterogeneity and the dynamic adaptations
caused by anticancer treatments [1]. Moreover, longitudinal or si-
multaneous multi-site testing is simply not feasible due to the clinical
complications associated with seriate tissue sampling and its effects on

patients’ quality of life (see Figs. 1 and 2).

Currently, liquid biopsy is an attractive approach that aims to
overcome such limitations and provide a more accurate representation
of disease biology. As body fluids can be easily obtained, liquid biopsy
is considered a non-invasive and repeatable test that allows a dynamic
assessment of specific molecular markers, capable to intercept the onset
of disease recurrence or treatment resistance and potentially predict
treatment response and prognosis [2] (see Table 1).

Tumor cells actively release several types of nucleic acids, including
DNA, i.e. cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA),
microRNAs (miRNAs), non-coding RNA, and microvesicles (such as
exosomes) as result of their spread both as single cells, i.e. Circulating
Tumor Cells (CTCs) or clusters [3-5]. Liquid biopsies rely on these
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Fig. 1. Genome sequencing vs “a priori” techniques: comparison and application summary.
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Fig. 2. Tissue vs liquid biopsy: advantages according to case scenario.

surrogate sources for a rapid and cost-effective molecular character-
ization of tumors using minimally invasive biological matrices [6,7].

The development of novel high-throughput technologies has already
brought liquid biopsy approaches to the standard treatment of solid
tumors, demonstrating their utility for a tissue-free cancer character-
ization [8].

Aim of this review is to summarize both analytical developments
and clinical evidences to offer a comprehensive update on the deploy-
ment of ctDNA in breast cancer’s (BC) characterization and treatment.

Biological role of ¢fDNA and ctDNA

The presence of circulating cell-free DNA was first described in
1948. It can be increased in patients affected by cancer, due to presence
of the additional ctDNA fraction, but also in stroke, trauma, myocardial
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infarction and autoimmune disease [9,10]. Moreover, since normal
cells such as leukocytes can actively secrete/release DNA, it is found in
small quantities also in healthy subjects [11]. In fact, cfDNA is highly
heterogeneous both in size and composition, and can be detected in
different body fluids [12].

The mechanism by which cfDNA is released by cells has yet to be
fully clarified. Electrophoresis assays demonstrated that most fragments
range between 180 and 200 base pairs (bp) and are often associated
with histone proteins that form the nucleosome, suggesting that apop-
totic cells could be one of the most important source of cfDNA [13,14].
These observations were strongly related to a rapid increase in circu-
lating nucleosomes during anticancer treatments and by a rapid de-
crease at disease progression, supporting the idea that the quantifica-
tion of nucleosome bodies can represent an efficient index of
responsiveness to the therapy [15].
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Table 1

Clinical studies assessing the impact of ctDNA analysis in breast cancer.
Study Type of study Target Results
Neoadjuvant

Magbanua et al. [76]

Sotiriou et al. [75]

Sharma et al. [77]

Takahashi et al. [78]

Adjuvant
Fiegl et al. [81]

Sharma et al. [80]

Fuyjita et al. [79]

Metastatic
Chung et al. [83]

AURORA
(NCT02102165)

plasmaMATCH trial
(NCT03182634)

Fribbens et al. [84]

Chandarlapaty et al. [85]

Mastoraki et al. [86]

Spoerke et al. [118]

Baselga et al. [89]

Retrospective-prospective
analysis of the I-SPY 2 trial
Retrospective analysis of the
NeoALTTO trial

Prospective

Prospective

Observational

Observational

Observational

Observational

Observational
Ila
Prospective-retrospective

analysis from the SoFEA and
PALOMA 3 trials

Retrospective analysis from
the BOLERO-2 trial

Observational

Retrospective analysis of the
FERGI study

BELLE-2 phase III trial

ctDNA levels and exploratory biomarkers
Copy number aberrations (CNAs)
Methylation status of BRCA1, MGMT, GSTP1,
Stratifin, and MDR1

RASSF1A DNA methylation after neo-adjuvant
CT and 1 year after surgery

RASSF1A DNA methylation 1 year after primary
surgery

Promoter methylation of BRCA1l, MGMT and
GSTP1

Promoter methylation of GSTP1, RASSF1A, and
RARB2

Genomic alterations

Molecular aberrations
Targetable mutations

ESR1 mutations

ESR1 mutations (Y537S and D538G)

ESR1 methylation

PIK3CA and ESR1 mutations

PIK3CA mutations
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100% of ctDNA-positive pts. at T3 (n = 5) did not achieve a
pCR

Amplification of CNA regions on 6q23-24 associated with
higher pCR (p = 0.00005 and p = 0.00087)

No association with EFS detected

GSTP1 and BRCA1 hypermethylation: independent prognostic
factors of disease recurrence [HR 7.6, 95% CI (1.4-44)

p = 0.021; HR 6.2, 95% CI (1.1-35.7) p = 0.04]

Met-ctDNA significantly decreased after NAC in responders
(p = 0.006), correlating with residual tumor burden

(p = 0.008)

Of the 3/7 patients who showed an increase in met-ctDNA at
1 year after surgery developed recurrence

RR of recurrence 5.1 (p = 0.02); RR of death of 6.9
(p = 0.004)
GSTP1 and BRCA1 hypermethylation: independent prognostic
factors of disease recurrence [HR 7.6, 95% CI (1.4-44.1)
p = 0.02; HR 6.2, 95% CI (1.1-35.7) p = 0.04]
® Met-DNA +: OS rate at 100 months 78 vs. 95% (p = 0.002)
® High total DNA: OS rate at 100 months 86 vs. 97%
(p = 0.001)
® Met-DNA + /high total DNA: OS rate at 100 months 65 vs.
94% (p < 0.001)

® TP53 (38%), ESR1 (31%) and PIK3CA (31%)
® ESR1-altered co-occurring with PIK3CA (35%), FGFR1
(16%), ERBB2 (8%), BRCA1/2 (5%), and AKT1 (4%)
ongoing

ongoing with parallel assignment to targeted therapies

SoFEA (fulvestrant vs. exemestane):
® ESR1mt: PFS 5.7 vs. 2.6 months [HR 0.52, 95% CI
(0.30,0.92), p = 0.02].
® ESR1wt: PFS 5.4 vs. 8.0 months [HR 1.07, 95% CI
(0.68,1.67), p = 0.77].
PALOMA3 (fulvestrant/palbociclib vs. fulvestrant/placebo):
® ESR1mt: 9.4 vs. 3.6 months [HR 0.43, 95% CI (0.25, 0.74),
p = 0.002].
® ESR1wt: 9.5 vs. 5.4 months [HR 0.49, 95% CI (0.35, 0.70),
p < 0.001].
0OsS:
ESR1wt: 32.1 months [95% CI, 28.09-36.4 months]
ESR1mt: 20.73 months [95% CI, 17.71-28.06 months]
D538G: 25.99 months [95% CI, 19.19-32.36 months]
Y537S: 19.98 months [13.01-29.31 months]
® D538G/Y5378S: 15.15 months [95% CI, 10.87-27.43 months]
Lack of response to everolimus + exemestane (p = 0.023,
Fisher exact test).
PFS 3.7 months in fulvestrant ESR1wt vs:
® fulvestrant ESR1mt 5.4 [HR 1.056 95% CI (0.618, 1.805)
p = 0.9836]
® fulvestrant + pictilisib ESR1wt 6.7 [HR 0.700 95% CI
(0.430, 1.140) p = 0.1499]
® fulvestrant + pictilisib ESR1mt 5.8 [HR 0.925 95% CI
(0.527, 1.625) p = 0.7870]
PFS 4.4 months in fulvestrant PIK3CAwt vs:
® fulvestrant PIK3CAmt 5.4 [HR 0.994 95% CI (0.585, 1.691)
p = 0.9836]
® fulvestrant + pictilisib PIK3CAwt 8.2 [HR 0.593 95% CI
(0.358, 0.982) p = 0.0402]
® fulvestrant + pictilisib PIK3CAmt 5.5 [HR 0.991 95% CI
(0.590, 1.662) p = 0.9717]
PFS: Buparlisib + fulvestrant vs. Placebo + fulvestrant:
® PIK3CAmt: 7.0 vs. 3.2 months [HR 0.58 95% CI (0.41, 0.82)
p = 0.001]
® PIK3CAwt: 6.8 vs 6.8 months [HR 1.028 95% CI (0.79, 1.30)
p = 0.557]

(continued on next page)
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Study Type of study Target

Results

André et al. [90] Retrospective analysis from PIK3CA mutations

the SOLAR-1 trial

Moynahan et al. [92] Analysis from the BOLERO-2 PIK3CA mutations

trial

Hortobagyi et al. [96] MONALEESA-2 phase III trial

PIK3CA or TP53 mutation status, total Rb, Ki67,

PFS: Fulvestrant + alpelisib vs. Fulvestrant + placebo:
® PIK3CAmt: 11.0 vs. 5.7 months [HR 0.65; 95% CI
(0.50-0.85), P = 0.00065]
® PIK3CAwt: 7.4 vs. 5.6 months [HR 0.85; 95% CI (0.58, 1.25)]
PFS: Everolimus vs Placebo:
® PIK3CAwt: 7.36 vs. 2.96 months [HR, 0.43 (95% CI, 0.34,
0.56)]
® PIK3CAmt: 6.90 vs. 2.69 months [HR 0.37 (95% CI, 0.2,
0.51)]
No statistically significant difference in PFS detected

or p16 protein expression, and CDKN2A, CCND1,

or ESR1 mRNA levels
O’Leary et al. [97] Retrospective analysis from

the PALOMA-3 study treatment

Ma et al. [98] i cHER2™" detection

Stover et al. [100] Retrospective cohort study

and AKT3)
Vidula et al. [101] Retrospective
Fribbens et al. [107] Prospective-retrospective

analysis from the SoFEA trial

Schiavon et al. [109] Observational ESR1 mutations
Clatot et al. [119] Retrospective
mutations
PADA-1 trial il ESR1 mutations
(NCT03079011)
Juric et al. [120] b PIK3CA mutations
FINESSE trial I FGFR1 alterations

(NCT02053636)

BRCA 1 or 2 mutations

PIK3CA and ESR1 ctDNA dynamics after 15 days

Somatic Copy Number Alterations in TNBC
(chromosomal gains in drivers NOTCH2, AKT2,

ESR1 and KRAS mutations

ESR1 circulating D538G and Y537S/N/C

PIK3CA ctDNA dynamics predicts PFS on palbociclib and
fulvestrant [HR 3.94, 95% CI (1.61-9.64), log-rank
p = 0.0013] vs. ESR1 ctDNA dynamics [HR 1.68, 95% CI
(0.74-3.82), log-rank p = 0.21]
Baseline ctDNA sequencing identified the same HER2™" with a
sensitivity of 79% (90% CI, 53-%-94%) and a specificity of
100% (90% CI, 91-%-100%)
Prespecified ¢fDNA tumor fraction threshold of = 10%: worse
survival (median, 6.4 vs. 15.9 months) [HR 2.14, 95% CI
(1.4-3.8),p < 0.001]
BRCAmt: similar median PFS as compared to non-BRCA
mutant BC (HR: 1.17; p = 0.58)

® ESR1 mutations detectable median 6.7 months (95% CI

3.7-NA) before clinical progression and were sub-clonal in
72.2% (13/18) patients

©® KRAS mutations in 21.2%pts: no impact on PFS and OS
ESR1mt: shorter PFS on subsequent Al-based therapy [HR 3.1;
95% CI (1.9, 23.1) P = 0.0041]
OS: ESR1mt vs. ESR1wt 15.5 vs. 23.8 months (p = 0.0006)
PFS: ESR1mt vs. ESR1wt 5.9 vs 7 months (p = 0.002)
After Al failure, no difference in outcome for patients receiving
chemotherapy or non-AI ET in ESR1mt and ESR1wt
Ongoing with randomization to therapy according to ESR1
ctDNA levels
PFS: Alpelisib + fulvestrant:

® PIK3CAmt: 9.1 months (95% CI, 6.6-14.6 months)

® PIK3CAwt: 4.7 months (95% CI, 1.9-5.6 months)
ORR

® PIK3CAmt: 29% (95% CI, 17%--43%)

® PIK3CAwt: no objective tumor responses
Ongoing with anti-FGDR targeted therapy

On the other hand, cfDNA can also originate from necrotic cells, as
proved by large DNA fragments generated by an incomplete and
random digestion of genomic DNA or from phagocytosis by macro-
phages [16].

In cancer patients, ctDNA can derive both from CTCs, for the si-
milarity of CTCs mutational profiles and the ctDNA-detected ones, and
from primary or metastatic sites. In some cases, a high amount of ctDNA
is not directly related to a high number of CTCs [17].

¢fDNA quantification is non-cancer specific conditions

Methods for cfDNA quantification are usually based on fluorometry
such as the Picogreen assay or ultraviolet spectrometry such as the
Nanodrop, but a standard procedure is currently lacking.

The presence and the amount of cfDNA can be also evaluated
through real-time qPCR (SYBR green or Tagman assays) for the quan-
tification of ubiquitous gene sequences such as GAPDH-gene, [3-globin-
gene, [3-actin gene, hTERT or repetitive elements LINE1, ALU 115, ALU
24 and ALU 247 [18].

A different approach for the detection of circulating nucleosomes is
the enzyme-linked immunoassay [19]. In addition to quantification, the
integrity of cfDNA also seems to represent an informative marker with
respect to tumor burden. In particular, the ALU DNA integrity assay
performed in real-time qPCR, allows a measurement of the amount of
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short and long cfDNA fragments on the basis of noncoding repeat se-
quences. The cfDNA integrity index, defined as the ratio between long
and short cfDNA fragments (ALU 247 and ALU 115, respectively) differs
between healthy controls and primary breast cancer patients as well as
between primary and metastatic breast cancer patients [20,21]. More-
over, cfDNA is not strictly cancer-specific and could be also observed in
inflammatory diseases, such as lupus erythematosus, rheumatoid ar-
thritis and thrombotic microangiopathies [22,23]. Due to the low spe-
cificity of cfDNA, most of the efforts and expectations have been shifted
on circulating DNA fragments directly deriving from tumor cells (i.e.
ctDNA) by analyzing tumor-specific mutations, rearrangements and
methylation [24]. Due to a DNase impairment and as a consequence of
an active ctDNA secretion a fourfold increase of cfDNA, with a ctDNA
contribution that varies between 0.01% and =90% can be observed,
especially in the metastatic setting [9,25].

Pre-analytical factors affecting ctDNA analysis

The achievement of high specificity and sensitivity, contribute to
the current status of molecular diagnostics considering ctDNA a pro-
mising tool both in early cancer screening and in advanced disease
monitoring, including BC [1,26]. On the other hand, different factors
can influence the standardization and the quality of cfDNA extraction
and ctDNA analysis.


http://clinicaltrials.gov/show/NCT03079011
http://clinicaltrials.gov/show/NCT02053636

G. Buono, et al.

Determining the most appropriate matrix for cfDNA extraction, re-
presents the first crucial step. It has been demonstrated that plasma
samples are the best source of cfDNA, since the lysis of white blood cells
during the coagulation process generates a large background of DNA
fragments, increasing the concentration of genomic DNA about 20-fold
in serum [2,27].

Another critical point is represented by the anticoagulant used in
the blood collection tubes. Ethylenediaminetetraacetic acid (EDTA) is
still considered the best option to ensure the stability and quality of
cfDNA, since heparin could inhibit the PCR reaction necessary for
ctDNA quantification and analysis [27]. The storage temperature and
the time-around-time are two other crucial variables. Blood sample
processing within 6h and preservation at either 4 °C or room tem-
perature do not affect the final concentration of cfDNA, while a longer
time of conservation and hemolysis can determine an increase in cfDNA
quantity, in particular of the nucleosome fraction levels. [28]. After
blood processing, plasma samples can be stored at —80°C for two
weeks, while isolated cfDNA can be stored for a maximum of three
months [29]. Parameters that negatively affect cfDNA integrity are
repeatedly freeze-thaw cycles both of plasma and enriched cfDNA.
Because of the small amount and the highly fragmented nature of the
cfDNA, an efficient and reliable isolation is not always easy to perform.
Commercially available kits have been optimized to increase cfDNA
detection and show different grades of efficiency in terms of extraction
rates [30].

The comparison of their performance is highly variable in terms of
quality, quantity and contamination of cfDNA.

To date, the inability to obtain consistent and reproducible results is
often caused by the lack of standardized procedures, rather than by
analytical variabilities [31]. Any future application of ctDNA for diag-
nostic purposes should be therefore based on defined protocols in order
to ensure the reproducibility of the results [2].

Current technologies for ctDNA analysis

Main PCR strategies: Droplet digital PCR (ddPCR) and “Beads, Emulsion,
Amplification, Magnetics digital PCR” (BEAMing)

The deployment of traditional PCR-based liquid-biopsy techniques
has been limited by several intrinsic constrains, such as limited sensi-
tivity and the need of “a priori” knowledge of the investigated genomic
aberrations. Last generation digital PCR (dPCR) methods, have deeply
enhanced their sensitivity enabling the detection of point mutations at
low allele fractions (0.01% vs 5% of the previous techniques)
[20,32-37]. The most common dPCR method is the droplet digital PCR
(ddPCR), characterized by the discretization and amplification of each
DNA template in single emulsion droplets [38].

The separation of DNA molecules in a large number of compart-
ments through a microfluidic system, enables high throughput analyses
by reducing the reaction volume for each compartment to nano/pico-
liter scale. By creating individual reaction chambers, the cross-con-
tamination between neighboring compartments could be avoided to
achieve precise quantification of targets in each sample [39,40].

“Beads, Emulsion, Amplification, Magnetics digital PCR” (BEAMing)
is an alternative sensitive approach which provides molecular in-
formation about mutations with a frequency of 1 over 10000. It com-
bines emulsion PCR with magnetic beads and flow cytometry for the
detection and quantification of target DNA copies. After the amplifi-
cation step, each droplet contains a bead that is coated with thousands
of copies of the single DNA molecule. Then, the beads are magnetically
recovered and analyzed within minutes using flow cytometry or optical
scanning instruments. In this way, the DNA diversity present in the
template population can be accurately characterized and used to de-
termine the fraction of mutated DNA [32,33,41].
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Other PCR techniques

Currently, other high-sensitivity PCR assays suitable for ctDNA
analysis are employed besides ddPCR and BEAMing. These include real
time quantitative PCR (RT Q-PCR)-based techniques, such as the Intplex
Q-PCR method, the amplification-refractory mutation system (ARMS),
the Peptide Nucleic Acid (PNA) or the Locked Nucleic Acid (LNA)
clamping PCR, pyrophosphorolysis-activated polymerization (PAP/
biPAP), co-amplification at lower denaturation temperature (COLD-
PCR), differential strand at critical temperature (DISSECT).

The Inplex assay is a particular Q-PCR-based method where ctDNA
can be measured in terms of concentration and presence/absence of
mutations through a multi-marker analysis of short fragments [42-44].

Another system useful for single nucleotide polymorphisms (SNPs)
identification is ARMS. This assay is based on the use of sequence-
specific PCR primers to identify single base changes or small deletion.
Since the primers only work when they are complementary to a given
DNA sequence, except for a mismatched 3’-terminus, amplification is
observed only if the target allele is contained within the sample
[45,46].

As an alternative approach, PNA clamping PCR consists of a simple
and inexpensive protocol to detect low-level mutations without using
fluorescent probes. The PNA/LNA has been used to improve mutation
detection by suppressing wild-type allele amplification using a specific
sequence that blocks its PCR. A single base mismatch is enough to
discriminate amplification of mutant type from wild type. The melting
curve analysis identifies single nucleotide polymorphisms or mutations
[47,48]. On the basis of specific thermal denaturation of DNA hetero-
duplexes, the DISSECT assay enriches mutations on target DNA without
an enzymatic reaction. The discrimination is purely temperature-de-
pendent [49]. Identification of mutated fragments can also be per-
formed with the COLD PCR protocol. The amplification of heteroduplex
DNA is preferentially carried out during PCR thermal cycling. The se-
quences with the target alterations are enriched from a background of
mutated and wild type fragments using a low denaturation temperature
[50].

Aside from mutational alterations, ctDNA can be a crucial instru-
ment to measure also epigenetic alterations, such as promoter/en-
hancers methylation. Methylation-specific PCR (MS-PCR) is the most
common technique for gene-specific detection of DNA methylation. To
identify methylated CpG sites, a bisulfite conversion is performed as a
first step. As a consequence, non-methylated cytosines are converted to
uracils, while methylated sites remain unaffected. After conversion,
methylated sequences are selectively amplified with methylation-spe-
cific primers [51].

Targeted deep sequencing

Targeted deep-sequencing has been used to identify specific
genomic regions or new somatic variants in a number of genes si-
multaneously, through both a pure Next Generation Sequencing (NGS)
approach and a combination of PCR and NGS. A hybrid technique al-
lows to circumvent both the sensitivity limits of NGS (1-2%) and the
inherent need for “a priori” knowledge of the target in PCR. [52]. With
this in mind, a technique called synchronous coefficient of drag al-
teration (SCODA) has been developed [53]. This method firstly enriches
the mutant alleles and subsequently analyzes them by means of NGS.
[54]. Other approaches of PCR-based targeted deep sequencing are
tagged-amplicon deep sequencing (TamSeq), the Safe Sequencing
System (SafeSeqS) and CAncer Personalized Profiling by deep Sequen-
cing (CAPP-Seq).

TAm-Seq is useful for de-novo identification of rare cancer mutations
and is capable to detect cancer-specific alterations at an allele fre-
quency as low as 2% [55]. The SafeSeqsS is a sequencing strategy which
uses single molecule barcoding before PCR amplification to reduce se-
quencing error and increase accuracy [1,34,35]. Its theoretical
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sensitivity is about 0.001%. This approach allowed to detect single
somatic mutations on ctDNA in colorectal cancer patients at different
stages, using plasma samples obtained at varied time points [56].

Based on a different principle, CAPP-seq, is focused on the detection
and quantification of ctDNA through a probe panel consisting of bio-
tinylated DNA oligonucleotides that target recurrently mutated regions.
It is an effective way to enrich and quantify ctDNA libraries with high
specificity and ultra-low detection limits [57].

Another ultrasensitive method, called targeted error correction se-
quencing (TEC-Seq), allow to detect low-abundance sequence altera-
tions using NGS. Based on a panel of 58 cancer-associated genes is used
to screen blood samples and analyze the most common cancer altera-
tions in c¢fDNA [56].

Whole-genome sequencing methods

Novel opportunities for a comprehensive ctDNA profiling are based
on detecting genome-wide rearrangements using Whole Genome
Sequencing (WGS) and Whole Exome Sequencing (WES) technologies,
especially for the characterization of somatic chromosomal aberrations
and Copy Number Variations.

Personalized analysis of rearranged ends (PARE) and digital kar-
yotyping, represent the two technologies applicable to liquid biopsy.
PARE is a method capable to identify translocations and other somatic
rearrangements by taking advantage of a next-generation mate-paired
analysis. It is based on short tag pairs to the ends of the template se-
quences followed by analysis of mate pairs to identify inter- and intra-
chromosomal rearrangements [58,59].

Digital karyotyping is a technique used to quantify the CNV in
ctDNA on a genome-wide scale. It does not require any prior knowledge
of the molecular alteration and its LOD is about 0.001%. It is useful for
detecting exogenous sequences in order to understand the depth of the
intratumor heterogeneity [60].

Utility of ctDNA analysis in BC as a basis for personalized medicine

In the recent years, increasing efforts have been made to develop
innovative targeted therapies in breast cancer as the detection of tumor-
initiating and secondary alterations responsible for treatment resistance
and tumor progression is crucial in predicting outcomes and in selecting
effective treatments and reduce empiricism. Simultaneous analysis of
multiple rare mutations through high-quality genome sequencing
technologies provides a real-time tool in assessing the development of
tumors’ genetic alterations [61,62]. Tissue-based next-generation se-
quencing remains the gold-standard technique to obtain initial in-
formation on tumor features; however, liquid biopsy represents an
appealing non-invasive alternative for the characterization of the tu-
mor’s molecular heterogeneity and its evolving biology. Being still in its
infancyi, it is crucial to refine its common practice applications to better
highlight its clinical utility [63,64].

CTCs have already been demonstrated to independently impact on
outcome in prospective trials and, notably, the presence of detectable
CTGCs is associated with worse disease free survival (DFS) and overall
survival (OS) also in patients defined as non-metastatic by conventional
means [65]. In the metastatic setting, CTCs enumeration =5 at baseline
and at any subsequent follow up time point, have also been associated
with shorter progression free survival (PFS) and OS [66].

On the other hand, the role of ctDNA levels as a prognostic factor
has not been investigated in prospective studies yet, although quanti-
fication of tumor-specific alterations in ctDNA has already been asso-
ciated with tumor burden and possible clinical progression or relapse.
High levels of ctDNA are associated with a more aggressive, potentially
resistant disease and have been detected both in early and later stages
of breast cancer [20,67]. A combined CTCs and cfDNA analysis of 5
patients with CTCs = 100/7.5 mL blood showed that cfDNA sequencing
is more sensitive in detecting mutation than single CTCs and primary
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tumor-tissue [68].

Genomic rearrangements responsible for tumors’ chromosomal in-
stability in breast cancer were investigated by Leary et al. through
PARE. Rearrangements were associated with amplification of the cell
cycle regulatory gene cyclin-dependent kinase 6 (CDK6) and ERBB2
(HER2/neu) [69].

Currently, there is an unmet clinical need for biomarkers that could
identify patients who are likely responders to targeted therapies or
immunotherapy. Chromosomal instability, as reflected by copy number
variation in cfDNA and a high mutational tumor burden, influences BC
immunogenicity, thus potentially allowing the use of immunotherapy
when liquid biopsy supports a hypermutated state of ctDNA. High
number of genomic alterations in variants of unknown significance
(VUS) and tumor mutational burden have been independently asso-
ciated to improved rates of stable disease (SD), PFS and OS especially in
NSCLC and melanoma; however, few data are currently available for
breast cancer patients [70,71]. Moreover, only retrospective studies on
small sample sizes have investigated the role of ctDNA as a predictive
marker of response to immunotherapy in BC, and further studies are
needed to corroborate these findings.

Minimal residual disease (MRD) and early detection of BC
recurrence

Adjuvant chemotherapy and endocrine therapy represent the
mainstay strategies for recurrence risk reduction in early breast cancer.
As matter of fact, while a large number of patients will benefit from
adjuvant therapies, a small subgroup does not and could be therefore
exposed to unnecessary severe adverse events. Based on these premises,
the identification of useful biomarkers to detect micrometastatic dis-
ease is crucial, and ctDNA analysis might play a key role in this sce-
nario. Mostly due to ctDNA undetectable levels in micrometastatic
disease, limited data are available on ctDNA in early BC. Few studies
have been performed in this setting, using high sensitivity dPCR. In a
prospective cohort of 55 women with early breast cancer, who had
received neoadjuvant chemotherapy before surgery, detection of ctDNA
with serial follow-up plasma samples was able to identify quite accu-
rately patients at risk of distant recurrence [72]. Consistently, post-
surgical levels of ctDNA were also found to be quantitatively predictive
of both poor prognosis and risk of relapse [73]. Therefore, liquid biopsy
is a promising option for detecting driver somatic mutations, and the
inherently low ctDNA levels found in early stages represent a challenge
for WGS and WES techniques. The CancerSEEK multi-analyte blood test
was designed to combine the evaluation of genetic alterations in ctDNA
and protein biomarkers in order to identify solid tumors at relatively
early stage before distant metastases could occur. CancerSEEK pre-
sented a median sensitivity of 73% for stage II, 78% for stage III and
43% for stage I cancers (ranging from 98% in ovarian cancers to 33% in
breast cancers) and specificity > 99%. Most importantly, concordance
between tumor tissue biopsy and ctDNA, when levels were significant,
was evident in 90% of cases among all tumors [74]. However, the
implementation of tools like CancerSEEK in larger prospective studies is
required for further validation.

Neo-/adjuvant setting

Because of the curative intent of the neoadjuvant and adjuvant
settings, monitoring and detecting minimal disease is of pivotal im-
portance to assess treatment response, and potentially guide ther-
apeutic adaptations. An ancillary ctDNA analysis of the NeoALTTO trial
showed that the detection of PIK3CA or TP53 mutations before neo-
adjuvant therapy was associated with a decreased probability of pCR
but not with event-free survival (EFS). On the other hand, ctDNA pre-
sence was not significantly associated with pCR or EFS neither at
2 weeks after the treatment start, nor before surgery [75]. Consistent
results were reported by a translational sub-study of the I-SPY 2 trial,
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where high ctDNA at the pre-neoadjuvant time point was associated
with tumor burden, aggressive biology and subtype, while the presence
of ctDNA at post treatment time point was associated with low pCR
[76].

The detection and characterization of epigenetic ctDNA alterations
is a promising biomarker also in early breast cancer, since the methy-
lation of genes or transcription regulating regions was associated with
treatment response and outcome [77-81]. Notably, a drop of the
BRCA1 methylated fraction was associated with tumor burden only in
patients responding to the neoadjuvant treatment, while no associations
were observed in the non-responder group [77]. Consistent results were
observed by analyzing the methylated fraction of RASSFI1A promoter
(p = 0.006), which was furthermore found to be more sensitive than
CEA and CA15.3 (23%, 8.6% and 7.4%, respectively, p < 0.05 [78]. In
the adjuvant setting, the methylation of tumor suppressor genes was
associated with worse clinical outcome [79-81]. In a cohort of 336
early-stage (I--II) BC patients, the methylation of GSTP1, RASSF1A and
RARPB2 promoter region before surgery was associated with a sig-
nificantly worse OS rate at 100 months, with respect to patients where
these promoters were all unmethylated (78% vs. 95%; p = 0.002) [79].
Consistently, in a prospective study on 100 BCE patients, the hyper-
methylation of GSTP1 and BRCA1 was an independent prognostic factor
in terms of disease recurrence (HR:7.6, p = 0.02 for GSTP1 and HR: 6.2,
p = 0.04 for BRCA1), while the detection of RASSF1A methylation in
samples collected 1 year after surgery was also associated with worse
survival (relative risk of recurrence of 5.1, p = 0.02 and of death of 6.9,
p = 0.004) [80,81].

Detection of predictive ctDNA alterations in the metastatic disease

Liquid biopsy has the potential to overcome several practical issues
such as hardly accessible primary and metastatic lesions, patients’ re-
fusal to invasive procedures, not feasible serial sampling or inadequate
material for molecular analysis [82,83].

With this in mind, several studies, such as the Aiming to Understand
the Molecular Aberrations in Metastatic Breast Cancer “AURORA” trial
(NCT02102165), the UK Plasma Based Molecular Profiling of Advanced
Breast Cancerto Inform Therapeutic CHoices “plasmaMATCH” trial
(NCT03182634), and the Study of the Molecular Features of
Postmenopausal Women With HR + HER2-negative aBC on First-line
Treatment With Ribociclib and Letrozole “BioltaLEE” (NCT03439046),
have been designed to further explore the clinical utility and feasibility
of this approach.

Acquired ESR1 missense alterations occur in about 30% of patients
who have received prior endocrine therapies (ET) and is associated with
an aggressive clinical phenotype and ER-positive breast cancer recur-
rence. The prospective-retrospective analysis of the SOFEA trial showed
a differential impact of ESRI mutations according to ET agent (fulves-
trant vs. exemestane, HR:0.52; p = 0.02) [84]. A secondary analysis of
the BOLERO 2 trial on 541 evaluable patients, showed that the presence
of ESRIP>38S and/or ESR1Y°%"S was associated with worse OS (wild-
type: 32.1 vs. ESR1°°%8C; 25,99 vs. ESR1Y°7%: 19.98 vs. both mutations:
15.15 months). Interestingly, those patients with a ESR1>*¢ mutant
MBC experienced a similar PFS benefit to the wild-type counterpart
when everolimus was associated to exemestane, while a lack of re-
sponse to the everolimus/exemestane association was observed as a
consequence of ESR1’s epigenetic silencing [85,86]. Similarly, a retro-
spective analysis from the EFECT trial demonstrated that the baseline
detection of ESRI mutations was associated with a shorter time to
progression (TTP) (HR:2.03, p = 0.004) in the overall study population
[871.

Together with ESR1, PIK3CA is a promising biomarker for the
management of MBC. Its mutations can be detected in about 40% of
HR + MBC and are associated with a hyper-activation of the PI3K
pathway, which stimulates an estrogen-independent growth.
Intriguingly, it has been shown that its detection through ctDNA has a
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greater predictive potential with respect to the archival counterpart
[88-91]. On the other hand, PIK3CA was not found to be predictive of
response to everolimus-based regimens [92].

ET in HR+/HER2-MBC has been recently revolutionized by the
introduction of the CDK4/6 inhibitors (i.e. palbociclib, ribociclib and
abemaciclib), but a dedicated predictive biomarker is currently lacking
[93-96].

The ctDNA dynamics’ analysis of the PALOMA-3 study is an ex-
ample of the manifold ramifications of longitudinal ctDNA assessments
[97]. A drop in PIK3CA ctDNA levels after 15days of therapy with
fulvestrant and palbociclib strongly predicted PFS (HR 3.94, 95% CI
1.61-9.64, log-rank p = 0.0013), while on the other hand, ESR1 ctDNA
trend was not associated with outcome. These apparently counter-
intuitive results are linked to the different role of these mutations in
treatment response and disease progression.

PIK3CA is commonly mutated in breast cancer and is mainly asso-
ciated with tumor burden. Its variation, therefore, reflects the dynamic
response to treatment. In contrast, ESR1 mutations are commonly sub
clonal and thus do not predict outcome overall, but rather highlight the
clonal selection induced by therapy [97].

Notably, ctDNA is currently gaining momentum not only in the ET
setting. In a phase II study by Ma et al., which aimed to assess clinical
benefit rate of neratinib in HER2 mutant (HER2™") non-amplified
MBC, ctDNA analysis for HER2™" demonstrated a sensitivity of 79%
and a specificity of 100%, when compared to tumor tissue analysis.
Interestingly, ctDNA HER2™" variant allele frequency demonstrated to
be predictive of response to neratinib, as it decreased in patients re-
sponding to the treatment at week 4 and increased upon progression
[98]. In triple negative MBC patients, a =10% ctDNA fraction, com-
puted through the IchorCNA software, was associated with significantly
worse outcomes, with a median survival of 6.4vs.15.9 months
[99,100]. Interestingly, the presence of copy number gain or amplifi-
cation at specific loci (18q11 and 19p13) was associated with re-
markably poorer prognosis, independently from clinico-pathological
factors and ctDNA fraction [100]. The BRCA-mutant disease represents
also an intriguing case scenario, as ctDNA-based assessment of somatic
BRCA mutations could potentially expand the cohort of patients trea-
table with poly ADP-ribose polymerase (PARP) inhibitors and platinum
salts [101,102]. Finally, Micro Satellite Instability (MSI) and Loss of
heterozygosity (LOH) are being studied through PCR and sequencing
approaches, as promising markers of response for targeted agents and
immunotherapy [103].

Treatment response monitoring in the metastatic setting

The ctDNA levels are associated with tumor burden, therefore
longitudinal plasma-based assessments may represent an indirect
measure of treatment response and could potentially predict long-term
clinical outcome.

The inhibition of specific genetic and molecular drivers is generally
clinically effective translating in objective response or benefit, although
at some point target therapies may cease to obtain successful responses.
Drug resistance is most likely due to the heterogeneous mechanisms
underlying cancer development and sub-clones arising spontaneously
or as a consequence of selection-pressure over time.

Being released into the bloodstream from multiple tumor regions,
ctDNA reflects both intra-tumor heterogeneity and clonal evolution. By
potentially detecting secondary alterations responsible for treatment
resistance months earlier than traditional instrumental assessments,
longitudinal assessment of ctDNA could offer a real time opportunity to
optimize treatment options and clinical decision making in breast
cancer.

Moreover, ctDNA dynamics not only has a significant prognostic
impact but also has higher sensitivity with respect to tumor markers,
and is capable to anticipate imaging-based disease progression
[104,105].
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A multiparametric longitudinal assessment, therefore, could enable
the clinician to keep track of both the overall tumor burden and ac-
quired mutations with intriguing perspectives on a clinical decision-
making standpoint.

Deep-sequencing analysis of 70 cancer genes of 21,807 patients
with > 50 treated, advanced cancer types was conducted to explore
quantitatively and qualitatively the evolution of actionable resistance
alterations having arisen along targeted therapy. ESRI-536/Y537/D538
was the most common in patients with MBC compared with early stage,
treatment naive tumor tissue, likely reflecting therapy pressure by ar-
omatase inhibitors (AI) [106].

Acquired ESRI mutations at first relapse are about 5% but range
from 30% to 50% in patients who previously received Al in the first-line
metastatic setting. [107,108]. As recently demonstrated, these muta-
tions are sub-clonal in 72.2% of patients and often associated with the
onset of other mutations such as RAS [107]. These results were con-
firmed in the SoFEA trial, where KRAS mutations were detected in
21.2% of patients, although no impact on PFS or OS was demonstrated
[84].

Consistently, ESRI mutations were associated to shorter PFS when
Als were administered beyond disease progression (HR = 3.7;
p = 0.008) or as maintenance therapy after chemotherapy (HR = 3.1;
p = 0.0041) [109].

The ongoing PAlbociclib and Circulating Tumor DNA for ESRI
Mutation Detection “PADA-1” trial (NCT03079011) was designed to
assess whether switching the ET backbone from AI to fulvestrant,
maintaining palbociclib after the onset of ctDNA ESRI mutations, could
translate into a benefit for MBC patients. Preliminary results showed a
detection rate of 2.1% at baseline, with an allelic frequency ranging
from 0.3% to 47% (median = 3.5%). Notably, among the 17 patients
with baseline ESR1 mutations, only 4 had detectable ESR1 mutations
after 1 month of therapy [110].

The ESR1 p-D538G mutation determines ligand-independent acti-
vation of ERa and it is acquired in patients who have received ar-
omatase inhibitors. The p-E380Q mutation has been observed to remain
sensitive to antiestrogens [68]. The use of ctDNA to detect ESRI mu-
tations and predict future resistance have been validated by Chu et al
[67]; however, the sensitivity of detection of ESRI mutations through
ctDNA varies among different studies ranging from 57% to 75%
[109,111], probably due to sample size and different techniques (di-
gital PCR in the first and ultra-high-sensitivity multiplex digital PCR
assay in the latter).

Recently, a ligand-independent and hyperactive ESR1 fusion protein
was detected in recurrent BC through a ctDNA-based assay; suggesting
additional secondary resistance mechanisms to endocrine therapies
[112]. IchonCNA highlighted alterations in ESR1 (D538G and L536P) in
a MBC patient previously treated with aromatase inhibitors at t; (0.12
and 0.45 cancer cell fraction) while their clonal fractions resulted in-
verted at ty (0.73 and 0.12) after 51 days of therapy with a selective
estrogen receptor degrader (SERD). This clonal shift may indicate that
different ESR1 mutations could show different response to SERDs [99].

It has been also showed that higher doses of fulvestrant and ta-
moxifen or more potent ER antagonist, are able to fully antagonize
mutant ER signaling, suggesting that effective strategies to overcome
resistance are possible and knowing the causal mutation could be of
pivotal importance [113,114].

The onset of genetic alterations after CDK 4/6 inhibition is currently
under the spotlight. The emergence of somatic RB1 mutations was re-
ported in 3 patients after exposure to palbociclib or ribociclib and
consistent data were presented in an extended ctDNA analysis of 194
paired PALOMA-3 plasma samples using a custom 87-gene NGS assay
[115,116].

Notably, the FGFR1 pathway was also investigated both in endo-
crine and CDK4/6 inhibition resistance. It has been shown that FGFR1
amplifications or activating mutations were present in 29% of post-
progression specimens, suggesting that a FGRF1 alterations could have
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a role both as biomarker and therapeutic target [117].
Conclusions

Several techniques are comprised under the umbrella-term of “li-
quid biopsy”, each with its strengths and peculiarities. Among them,
ctDNA sequencing analysis is a crucial option to assess time-dependent
variables, such as tumor mutational burden and molecular features.
Therefore, ctDNA could be used to detect and characterize early stage
disease but also to longitudinally monitor tumors’ genomic profile and
detect the emergence of genetic alterations in the advanced setting
before clinical symptoms or radiological evidence of progression. As a
result, ctDNA analysis may guide clinical decision-making and through
the integration with other solid and liquid biopsy techniques, will ul-
timately lead to a growingly cancer care personalization.
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