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Abstract— Quadratic boundedness is a notion of stability that
is adopted to investigate the design of observers for dynamic
systems subject to bounded disturbances. We will show how
to exploit such observers for the purpose of fault detection.
Toward this end, first of all we present the naive application of
quadratic boundedness to construct state observers for linear
time-invariant systems with state augmentation, i.e., where
additional variables may be introduced to account for the
occurrence of a fault. Then a Luenberger observer is designed
to estimate the augmented state variable of the system in such
a way to detect the fault by using a convenient threshold
selection. Finally, such an approach is extended to piecewise
affine systems by presenting a hybrid Luenberger observer and
its related design based on quadratic boundedness. The design
of all the observers for both linear time-invariant and piecewise
affine systems can be done by using linear matrix inequalities.
Simulation results are provided to show the effectiveness of the
proposed approach.

I. INTRODUCTION

Reliability is a key requirement for modern systems.

Therefore, fault diagnosis is a research field that has been

in the front end of the technological evolution for a few

decades and has attracted the attention from the research and

industrial community, as testified by many important survey

papers and books (see [1]–[3] just as examples). Recent effort

has been directed at investigating solutions for monitoring

distributed, large-scale and interconnected systems [4]–[11].

When dealing with model-based approaches [2], due to

the presence of uncertainties, one of the main issues is the

definition of thresholds for some residual signals defined to

be sensitive to the presence of faults. Different solutions

have been proposed, either considering deterministic bounds

on the uncertainties so to guarantee the absence of false

alarms [12], or a stochastic characterization of noises and

disturbances in order to set bounds on the allowed false-

alarms rate [11]. A major challenge is represented by the

fact that, in order to be robust to the noises, thresholds

are often conservative, thus leading to scenarios where the

uncertainties may hide the presence of faults.
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In this paper, we propose a new design method for the

application of state estimation to the fault detection problem.

The proposed method is based on positive invariance and

quadratic boundedness (QB) [13]. Positive invariant sets have

already been exploited in the literature for the purpose of

fault detection and isolation (see, for example, [14]–[17]).

QB allows to deal with positively invariant sets in quite an

intuitive way and it provides upper bounds on the trajectories

of the state of a system subject to bounded disturbances,

which may be fruitfully exploited for the purpose of fault

diagnosis. Here we present some preliminary results on

how the QB properties can be adopted as a guidance for

the selection of suitable fault detection thresholds. Other

applications of QB are reported in the literature for both

output feedback control [18] and state estimation [19], [20].

No application of QB to fault diagnosis is known to the

authors.

Based on the availability of information on the plant and

practical experience on the possible malfunctions, one can

develop a model with additional state variables that can take

into account the occurrence of faults. The idea of enriching

the system model with new variables is pretty popular in

adaptive control and it is referred to as “state augmentation.”

For the purpose of fault detection, it can be useful as well

to monitor the system by estimating all the state variables

and especially those describing malfunctions such as sensor

bias or actuator block [21]. Estimation can be accomplished

by means of Luenberger observers and, if the modeling

framework is extended from linear time-invariant (LTI) to

piecewise affine (PWA) systems, by using hybrid observers

that account for the specific mode denoting the subset of the

state space in which the state trajectory lays. The importance

for methods aimed at performing estimation for PWA and

switched systems is motivated also by some recent results

concerning especially fault diagnosis [22]–[24].

There exists a vast literature on hybrid and switching

systems but very little can be found in estimation. The first

results are reported in [25]–[27] but, as pointed out in [28],

the problem to design state observers for such systems is

somehow still open because of the difficulty to deal with

the observability of the mode under realistic conditions.

Thus, we propose also an extension of the QB approach

to fault estimation for PWA systems by using a prediction

of the system mode and proving the boundedness of the

estimation error. Likewise for LTI systems, the design of the

fault estimators can be accomplished by using linear matrix

inequalities (LMIs), which allow for an effective design

thanks to well-established semi-definite programming (SDP)



tools [29].

The paper is organized as follows. In Section II, we

present the naive idea of applying QB to state-augmented LTI

systems for the purpose of fault diagnosis. The construction

of state observers to perform this task is described in Section

III, while Section IV is focused on a convenient design

procedure based on LMIs. Section V deals with the extension

of the proposed approach to PWA systems. Simulations

results are reported in Section VI. Finally, the conclusions

are drawn in Section VII.

Let (x, y) := [x⊤, y⊤]⊤, where x and y are column vectors.

The minimum and maximum eigenvalues of a real, sym-

metric matrix P are denoted by λmin(P ) and λmax(P ),
respectively. Moreover, P > 0 (P < 0) means that it

is also positive (negative) definite. Given a generic matrix

M , |M | :=
(
λmax(M

⊤M)
)1/2

=
(
λmax(MM⊤)

)1/2
and

hence, for a vector v, |v| := (v⊤v)1/2 is its Euclidean norm.

II. PROBLEM FORMULATION

Let us consider the dynamic system

ẋ = Ax+B u+Dw (1a)

y = C x+ E w (1b)

where x ∈ R
n is the state, u ∈ R

p is the control input,

y ∈ R
m is the output; w ∈ R

q is a vector that collects all

the noises that may affect both dynamics and measurements.

Without loss of generality, we assume that such noises are

bounded as follows.

Assumption 1: The disturbance t 7→ w(t) ∈ R
q is such

that |wi(t)| ≤ 1, i = 1, . . . , r for all t ≥ 0.

For the sake of simplicity, in this first part of the paper, we

assume that system (1) accounts for both the dynamics of the

process to monitor and additional variables that model the

occurrence of faults. This can be obtained by augmenting

the state vector with some variables describing the fault

dynamics. With this formulation we can model both process

and sensors‘ bias faults as well as additive faults with known

linear dynamical structure. In the following we give an

example.

Example 1: Consider a SISO plant described by

ξ̇ = Ā ξ + B̄ u

y = C̄ ξ

where ξ ∈ R
n, u ∈ R, and y ∈ R. If such a system is

subject to sensor bias faults [30] so that the output equation

becomes y = C̄ξ + θ, where θ(t) ∈ R can be considered an

additional state variable with a simple augmented dynamics

given by θ̇ = 0. Thus, one may refer to system (1) with

x = (ξ, θ) ∈ R
n+1 and

A =

(
Ā 0n
0⊤n 0

)

B =

(
B̄
0

)

C = (C̄ 1) .

where 0n is a column vector made of n zeros. Note also that

the pair (A,C) is observable if (Ā, C̄) is observable.

In the following, we will present an approach to fault

detection based on the idea to estimate the state of (1), which

includes state variables belonging to the original model of

the plant and additional variables introduced to account for

faults. The decision about the occurrence of a fault may be

taken by comparing the estimate of such additional variables

with their nominal values. In the case of Example 1, one can

detect the presence of a sensor bias fault by analyzing the

estimate of θ. Clearly, it is crucial to design a convenient

observer together with a reliable decision scheme by taking

into account the information available on the disturbances.

Quadratic boundedness turns out to be well-suited to dealing

with this problem. A bound on the estimation error will be

properly found out, by exploiting the notion of quadratic

boundedness. This property can be used for the selection of

less conservative thresholds for fault detection, by accepting

the possible presence of false alarms.

III. ESTIMATION FOR LTI SYSTEMS AND QUADRATIC

BOUNDEDNESS

A simple Luenberger observer for (1) is described by

˙̂x = A x̂+B u+ L (y − C x̂) (2)

where x̂(t) ∈ R
n is the estimate of x(t) and L ∈ R

n×m

is the observer gain to be chosen. Thus, we need to assume

the following.

Assumption 2: The pair (A,C) is detectable.

The assumption above allows one to construct an observer

with an asymptotically stable dynamics of the estimation er-

ror e(t) :=x(t)− x̂(t) ∈ R
n in a noise-free setting. However,

in the presence of disturbances, it is important to reject their

effect in general and, in our specific context, to devise a

decision scheme able to detect faults or malfunctions.

Concerning the state-augmented framework, the estima-

tion error after the transient keeps staying in an invariant

set in the absence of fault, and the bigger the noises, the

larger such a set. Among the various choices, we will rely

on ellipsoidal invariant sets related to quadratic boundedness

[13], [18]–[20].

Using (1) and (2), the dynamics of the estimation error

reads

ė = (A− LC) e+ (D − LE) w (3)

Let define quadratic boundedness as follows [13].

Definition 1: The estimation error is said to be quadrati-

cally bounded with Lyapunov matrix P > 0 if

e⊤Pe > 1 ⇒ 2 e⊤P ((A− LC) e

+ (D − LE)w) < 0 , ∀w ∈ [−1, 1]q . (4)

Owing to (4), the set Ep :=
{
e ∈ R

n : e⊤Pe ≤ 1
}

turns

out to be positively invariant, it contains the reachable set

from the origin, and it is attractive (i.e., if the error is out of

Ep, it approaches Ep asymptotically). Moreover, the error is

upper bounded as follows:

|e(t)|2 ≤
1

λmin(P )
max

{
e(0)⊤Pe(0), 1

}
(5)



for all t ≥ 0. Clearly, such a bound combines the transient

and steady conditions. After the transient, we have

|e(t)| ≤ 1/
√

λmin(P ). (6)

Based on the aforesaid, we can state the following.

Theorem 1: The estimation error is quadratically bounded

if and only if there exist P > 0, Y ∈ R
n×m, α ∈ R

q
>0, and

β > 0 such that
(

A⊤P − C⊤Y ⊤ + PA− Y C + βP PD − Y E
⋆ −diag(α)

)

<0

(7a)
q

∑

i=1

αi − β ≤ 0 (7b)

with L = P−1Y .

Proof: Let V (e) := e⊤Pe a Lyapunov function. Clearly,

the condition of quadratic boundedness can be reformulated

as follows

V (e) > 1 ⇒
dV (e)

dt
< 0

for all wi ∈ R s.t. w2
i ≤ 1. Moreover, since

dV (e)

dt
= e⊤

[
(A− LC)⊤P + P (A− LC)

]
e

+ w⊤(D⊤ − E⊤L⊤)Pe+ e⊤P (D − LE)w < 0

and −e⊤Pe+1 < 0, using [29, S-procedure, p. 23] it follows

that there exist αi > 0 and β > 0 s.t.

e⊤
[
(A− LC)⊤P + P (A− LC)

]
e+ w⊤(D⊤

− E⊤L⊤)Pe+ e⊤P (D − LE)w + e⊤βPe−

q
∑

i=1

αiw
2
i

+

q
∑

i=1

αi − β ≤ 0

and hence, using some well-known LMI technicality with

Y = PL, we get (7a) and (7b).

The proof of Theorem 1 shows that (7a) can be satisfied

if and only if A− LC is Hurwitz.

IV. FAULT DETECTION LOGIC AND THRESHOLDING

Fault detection may be accomplished by analyzing the es-

timated state variables and especially the additional variables,

introduced to model the fault. The steady-state bound (6) can

be used for estimator design and both threshold selection.

To illustrate the motivation, consider Example 1 with the

last state variable accounting for the bias. Thus, in fault-

free conditions at steady state, the error associated with the

estimate of the bias with respect to its nominal value is not

larger than 1/
√

λmin(P ). Thus, a sufficiently high variation

of the bias may be estimated by the observer and detected

by the derived bound, that is, if in steady-state

|e(t)| > 1/
√

λmin(P ), (8)

then we have fault detection without false alarms.

Input: A, C, D, E, ∆β > 0, and ε > 0
Output: L, ρmax

1: solve maxβ w.r.t. P > 0, Y, β > 0 s.t. (10) holds and
denote by βo its solution

2: β0 ← βo

3: k ← 0
4: do
5: solve maxλ w.r.t. P > 0, λ > 0, diag(α) > 0, Y

s.t. P > λI , (7a) and (7b) with β = βk hold

6: Lk ← P−1Y
7: Pk ← P
8: βk+1 ← βk −∆β
9: k ← k + 1
10: while

((

k == 1
)

OR
(

|Lk − Lk−1| > ε
))

AND βk+1 > 0
11: L← Lk

12: ρmax ← 1/
√

λmin(Pk)

TABLE I

DESIGN PROCEDURE

Owing to uncertainty the selection of a too tight detection

threshold may cause false alarms, whereas, in the case the

threshold is too large, this may lead to fault misdetection. The

bound in (8) guarantees the absence of false alarms in steady

state but may be conservative. Since this bound depends on

the choice of the matrix P , the goal of the design may consist

in maximizing λmin(P ) in order to reduce it. This can be

obtained by maximizing λ subject to the LMI P > λI as

follows:

maxP,Y,α,β λ
s.t. P > 0, λ > 0, diag(α) > 0, β > 0,

P > λI , (7a), and (7b) hold.

(9)

Such a problem is not in an LMI form that can be solved

by using standard SDP tools. Toward this end, note that the

stability conditions require the satisfaction of the inequality

A⊤P − C⊤Y ⊤ + PA− Y C + βP < 0 (10)

if w = 0. Such a condition is not an LMI in P , Y , and

β; however, one can solve a generalized eigenvalue (GEV)

problem by maximizing β to ensure a transient as fast as

possible [29] . Based on the solution of such a problem,

we may take the resulting maximum β as a starting upper

bound to be reduced so as to get the satisfaction of (7)

while maximizing λmin(P ). The proposed design approach is

summarized in Table I, where ε > 0 is the admitted tolerance

and the gain L is the final result of the procedure together

with the steady-state QB bounds ρmax.

Remark 1: It is important to note that the proposed ap-

proach may be useful to design residual generators even in

case a model of the fault is not available. Based on the nom-

inal model, we can define the residual signal r(t) := y(t) −
Cx̂(t) and, by noting that r(t) = Ce(t) + Ew(t), at each

time step we compare such a residual with a suitable fault

detection threshold, where the fault-free condition is

|r(t)| ≤ |Ce(t)|+ |Ew(t)| ≤ |C|/
√

λmin(P ) + |E||w|

≤ |C|/
√

λmin(P ) + q|E|=: rmax , (11)



Thus, in case |r(t)| > rmax, we can detect the fault

guaranteeing the absence of false alarms. Moreover, the goal

of maximizing λmin(P ) according to (9) allows to get a

threshold less conservative as much as possible.

Remark 2: The proposed QB bound ρmax, designed using

the procedure in Table I, represents the least conservative

threshold in the form of (6) able to guarantee the absence of

false alarms in steady state. In some real-world applications,

it may be anyway conservative, but it can be used as a

guidance for the definition of suitable less conservative fault

detection thresholds at the cost of accepting the possible

presence of false alarms.

V. EXTENSION OF FAULT ESTIMATION TO PWA SYSTEMS

In this section, we will address the same problem of

Section II for a class of PWA systems described by

ẋ = Aσ x+B u+Dw (12a)

y = Cσ x+ E w (12b)

σ(t+) = F
(
x(t−), u(t−)

)
(12c)

where u ∈ U ⊂ R
p bounded and σ ∈ Σ := {1, . . . , s}

represents a discrete state, which will be denoted as “mode”

of the system. The matrices Ai and Ci, i ∈ Σ, are known

as well as the impulsive mapping (x, t) 7→ F (x, u) ∈ Σ but,

since only y(t) is available though subject to measurement

noises and the continuous and discrete states are unknown

at any t ≥ 0 in general.

The PWA (12) allows to extend the applicability of the

proposed approach in such a way to deal with a more

general class of faults that may change the system dynamics.

In practice, we implicitly assume to know anyway all the

possible nominal and faulty dynamics.

Assumption 3: There exists a bounded set X ⊂ R
n s.t.

x(t) ∈ X for all t ≥ 0, u ∈ U , and w ∈ [−1, 1]q.

To perform estimation for (12), we use the following

hybrid Luenberger observer:

˙̂x = Aσ̂ x̂+B u+ Lσ̂ (y − Cσ̂ x̂) (13a)

σ̂(t+) = F
(
x̂(t−), u(t−)

)
(13b)

where x̂(t) ∈ R
n is the state estimate of x(t) at any t ≥ 0.

The mode is predicted according to the impulsive law (13b).

The gain matrices Li associated with each estimated mode

can be determined by applying the same approach of Section

II. More specifically, the following theorem holds.

Theorem 2: If there exist P > 0 and Yi ∈ R
n×m for

i = 1, . . . , s, α ∈ R
q
>0, and β > 0 such that

(
A⊤

i P − C⊤
i Y ⊤

i + PAi − YiCi + βP PD − YiE
⋆ −diag(α)

)

<0

i = 1, . . . , s (14a)
q

∑

i=1

αi − β ≤ 0 (14b)

with Li = P−1Yi, i = 1, . . . , s, the estimation error is

bounded.

Proof: Let us decompose the estimation error as follows

e = x− x̂ = x− x̂p
︸ ︷︷ ︸

ep

+ x̂p − x̂
︸ ︷︷ ︸

êp

where x̂p(t) ∈ R
n is the state of the “perfect” Luenberger

observer, namely an observer based on the instantaneous

knowledge of the mode σ(t). More specifically, such an

observer is given by

˙̂xp = Aσ x̂p +B u+ Lσ (y − Cσ x̂)

and provides an error ep(t) that is quadratically bounded

owing to (14). As a consequence, using Assumption 3 it

follows that also x̂p(t) is bounded. Since we can easily find

that

˙̂ep = (Aσ̂ − Lσ̂Cσ̂)êp + (Aσ −Aσ̂ + Lσ̂Cσ̂ − LσCσ) x̂p

+ (Lσ − Lσ̂)(Cσx+ Ew) ,

it is straightforward to conclude about the boundedness of

ep(t) and hence of e(t).

Note that the pairs (Ai, Ci), i = 1, . . . , s, must be

detectable to admit the existence of some solution to (14a).

VI. SIMULATION RESULTS

For the sake of space limitation, only one case study

concerning a PWA autonomous system will be presented. It

is inspired by the simple model presented in [31] about two

cascaded interconnected systems subject to mutual functional

dependencies. Such a model is an autonomous PWA system

with Σ = {1, 2, 3}, where the first mode corresponds to a

“safe” plant, while an anomalous behavior occurs in the other

two discrete states. Specifically, we have chosen

A1=







−0.5 0 1 0
0 −0.5 0 1
0 0 0 0
0 0 0 0







A2=







−0.5 0 1 0
0 −1 0 1
0 0 0 0
0 0 0 0







A3=







−1 0 1 0
0 −0.5 0 1
0 0 0 0
0 0 0 0







C1 = C2 = C3 =

(
1 0 0 0
0 1 0 0

)

D =







0 0 0.1 0
0 0 0 0.1
0 0 0 0
0 0 0 0







E =

(
0.01 0 0 0

0 0.01 0 0

)

and

F (x, u) =







1 if x1 ≤ σ̄ and x2 ≤ σ̄
2 if x1 ≤ σ̄ and x2 > σ̄
3 if x1 > σ̄ and x2 ≤ σ̄

(15)

with σ̄ = 0.4.



The design of the observer (13) has been accomplished by

using the design procedure in Table I. We have obtained the

following results:

P =







94.1508 0 −20.9304 0
0 94.1508 0 −20.9304

−20.9304 0 40.5391 0
0 −20.9304 0 40.5391







L1 =







3.6486 0
0 3.6486

2.1926 0
0 2.1926







L2 =







2.7647 0
0 4.4939

1.74 0
0 2.1946







L3 =







4.4939 0
0 2.7647

2.1946 0
0 1.74







α =







0.0404
0.0404
0.2026
0.2026







β = 0.486

and hence ρmax = 0.1732. We have designed a hybrid

Kalman filter with a careful tuning of the covariance matrices

in such a way to provide the best trade between transient and

steady-state behavior. Likewise for the hybrid observer, we

have applied the same mode estimator based on (15) with

the corresponding state estimate as input.

0 10 20 30 40 50 60 70 80 90 100

time

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 y
1

 y
2

Fig. 1. Time behavior of y1 and y2 in a simulation run.

ρ KF QB obs.

≥ 0.20 0 0
0.15 70.0 0
0.10 75.7 0
0.05 100 59.6
≤ 0.01 100 100

TABLE II

PERCENTAGE OF FALSE ALARMS FOR KF AND QB OBSERVER OVER

1000 RANDOM RUNS WITH THRESHOLD EQUAL TO ρ ρmax .

Fig.s 1-5 show the result of a simulation run, in which the

proposed hybrid observer provides a quick reaction to the

occurrence of the fault. To achieve a similar result, the tuning

of the hybrid KF turns out to be quite difficult. Depending

on the selection of covariance matrix of the measurement
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1

KF est. of  x
1

Fig. 2. Time behavior of x1 and its estimates in a simulation run.
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2

KF est. of  x
2

Fig. 3. Time behavior of x2 and its estimates in a simulation run.

noises, on one hand the response to the fault may be rapid

but with an estimation error very sensitive to the noises or,

on the other hand, slow but more robust to noises. Table II

shows that the proposed QB approach performs better also in

terms of false alarms. In practice, for the proposed approach

lower thresholds can be chosen that provide a much smaller

false alarm rate as compared with the KF.

VII. CONCLUSIONS

Fault detection has been addressed by using QB for both

LTI and PWA systems. The design of the proposed estimators

is accomplished by minimizing a steady-state upper bound

in order to make the detection threshold less conservative as

much as possible. Such a design is accomplished by means of

SDP tools since the QB conditions can be expressed by using

LMIs. As a future work we aim at extending our approach

to a wider class of plants, especially those usually referred

to as distributed systems as well as to nonlinear systems in

the presence of non-Gaussian, anomalous noises [32], [33].
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Fig. 4. Time behavior of x3 and its estimates in a simulation run.
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Fig. 5. Time behavior of x4 and its estimates in a simulation run.
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