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Abstract
In this paper we report basic properties of iron-based superconductors and review the latest
achievements in the fabrication of conductors based on these materials. We compare state-of-the-
art results with performances obtained with low-Tc and high-Tc technical superconductors,
evidencing in particular the most significant differences with respect to high-Tc cuprate coated
conductors. Although the optimization of preparation procedures is yet to be established, a
potential range of applications for iron-based superconductors in the high field low temperature
regime can be envisaged, where they may become competitors to RE-123 coated conductors.
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(SQ1 Some figures may appear in colour only in the online journal)

1. Introduction

Soon after the discovery of superconductivity in iron-based
superconductors (FeSCs) [1], their very high upper critical
fields, low anisotropy and large Jc values, which are only
weakly reduced by magnetic fields at low temperatures,
suggested considerable potential in large scale applications,
particularly at low temperature and high fields [2, 3]. Among
the different families, the 122 compounds with a chemical
composition of AFe2As2 (A= alkaline earth metal) appear to
be the most promising, as they are the least anisotropic, have
a fairly large Tc of up to 38 K, close to that of MgB2, and
exhibit large critical current densities. However, 122 com-
pounds contain toxic As and reactive alkaline earth metals,
which may be a problem for large scale fabrication processes.
In this respect, 1111 compounds with the chemical compo-
sition LnFeAsO (Ln=Lanthanides) present problems as
well, as they contain As as well as volatile F and O, whose
stoichiometry is hardly controlled. 11 compounds with the
chemical composition FeCh (Ch=chalcogen ion) have a
lower Tc of up to 16 K, but they contain no toxic or volatile
elements. It is worth mentioning that new iron-based super-
conducting families and compounds are regularly discovered,

such as for example the 112 compounds (Ca,RE)FeAs2
(RE=rare earth such as La,Ce,Pr,Sm,Eu,Gd) with Tc up to
∼40 K [4], the 42 214 compounds RE4Fe2As2Te1−xO4 with
Tc up to ∼45 K for RE=Gd [5], the 21 311 compounds
Sr2MO3FeAs (M=Sc, V, Cr) with Tc∼37 K [6] and [(Li,
Fe)OH]FeSe with Tc up to ∼40 K [7].

Thanks to a small coherence length of a few nanometers
[2], FeSCs are particularly sensitive to the inclusion of
nanoparticles and to local variation of stoichiometry as pin-
ning centers to enhance the critical current density. For
example, the pinning force in 122 films was enhanced above
that of optimized Nb3Sn at 4.2 K by the introduction of self-
assembled BaFeO2 nanorods [8], while similar effects were
obtained due to local variations of stoichiometry in 11 films
[9, 10]. Critical current Jc values exceeding 105 A cm−2 were
measured in FeSCs films of 11, 122 and 1111 families up to
very large magnetic fields either parallel or perpendicular to
the Fe planes. In particular a Jc above 105 A cm−2 was
achieved up to 18 T in P-doped BaFe2As2 films [11], up to
30 T in FeSe0.5Te0.5 films [9] and up to 45 T in SmFeAs(O,F)
films [12]. Record values of self-field critical current densities
up to 6MA cm−2 at 4.2 K were measured in 122 films
[11, 13] and up to 20MA cm−2 at 4.2 K in zero field in 1111
single crystals irradiated with heavy ions [14]. Furthermore,
nanometer scale disorder proved to suppress Tc only very
weakly [8, 14], suggesting that yet further improvements of
flux pinning are achievable. In the following, the basic
properties of FeSCs and the most important achievements in
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the development of practical conductors are reviewed with
respect to established results on other superconductors. An
assessment of the application potential of FeSCs is attempted,
based on properties and promising results measured on short
specimens. On the other hand, the issue of upscaling pre-
paration procedures mustcertainly be faced in the future, but
iron-based wire technology iscurrently far less mature than
other technologies such as that of YBa2Cu3O7 coated
conductors.

2. Basic properties

The basic properties set the final performance limit of a
superconducting material in terms of temperature, field and
critical current. These properties of the most relevant FeSCs
will be reviewed in this section and compared to those of
established technical superconductors.

2.1. Transition temperature

The highest transition temperature of all FeSCs was found in
the 1111 compound Tc∼58 K [15] (see table 1), which
places this compound between the cuprates and MgB2. The
transition temperature Tc is defined as the temperature up to
which superconductivity persists. However, applications are
restricted to lower temperatures, since superconductivity
becomes very weak close to Tc. As a rule of thumb, the
operation temperature Top should be about half of Tc or lower
in applications requiring high currents and/or fields. How-
ever, strong thermal fluctuations of the vortex lattice reduce
the critical currents significantly in highly anisotropic mate-
rials, restricting appropriate operation conditions to much
lower temperatures. (Bi,Pb)2Sr2Ca1Cu2Ox (Bi-2212) is an
extreme example that provides useful current densities only at
temperatures below about 20 K, despite its high transition
temperature of 85 K. The anticipated maximum operation
temperatures of the FeSCs are given in table 1 together with
values for other superconducting compounds. Note that the
higher the required magnetic field, the lower the operation
temperature must be. Since the 1111 compounds are the most
anisotropic of all considered FeSCs, the estimated value for
the maximum Top has to be confirmed when long length

conductors become available, and may be restricted to low
magnetic fields. In any case, all FeSCs discovered so far are
obviously no alternative to REBa2Cu3O7 (RE-123) coated
conductors or (Bi,Pb)2Sr2Ca2Cu3Ox (Bi-2223) tapes at high
temperature (>50 K), in particular for use with nitrogen as the
coolant.

K-doped BaFe2As2 (Ba-122) has a transition temperature
of around 38 K, nearly the same as MgB2. From this view-
point, the two materials are direct competitors for applications
at intermediate temperatures, which do not rely on liquid
helium as a coolant. P- or Co-doped Ba-122 have lower Tcs of
about 30 K and 24 K, respectively, which makes helium free
operation questionable. The 11 compounds have the lowest
Tcs, even below that of the readily available Nb3Sn, thus
helium cooling is the only option.

Although many new iron-based compounds have been
discovered, Tc has not significantly increased over the past
few years. However, superconducting-like energy gaps
between 55 K and 75 K were found by angle resolved pho-
toemission spectroscopy (ARPES) inspections in a single
layer of FeSe on top of doped SrTiO3 [16], possibly resulting
from a charge transfer between the superconducting layer and
the substrate. Unambiguous evidence of a transition to zero
resistivity and diamagnetic behavior is yet to be widely
established in this system at such high temperatures, although
a highly non-linear behavior in the I–V curves up to about
100 K was derived from a particular in situ four-point probe
technique [17], which exactly fits the expected behavior of a
superconductor. The temperature and field dependencies of
the derived Jc and resistivity are also consistent with super-
conductivity. These results fuel the hope that higher Tcs are
achievable in iron-based compounds with as yet unknown
interlayers.

2.2. Upper critical field

The upper critical field Bc2 limits the field which can be
generated using the respective superconductor; maximally
about 0.75 ·Bc2 can be effectively achieved. Since super-
conducting wires are used nowadays nearly exclusively for
magnets, Bc2 is certainly a key parameter for applications and
restricts available magnets based on conventional (niobium-
based) technology to fields below 25 T. Novel conductors for

Table 1. Relevant iron-based compounds and technical superconductors. The highest Tc found in each respective family is given. Top refers to
a typical or expected operation temperature.

Compound Code max. Tc (K) Top (K)

LnFeAsO1−xFx 1111 58 [15] �40 (?) Ln=Sm, Nd, La, Pr,K.
BaFe2As2

a 122 38 [18] �25 K, Co, or P doping
FeSe1−xTex 11 16 [19] �4.2
Nb-Ti — 10 �4.2
Nb3Sn — 18 �4.2
MgB2 — 39 �25
RE-Ba2Cu3O7−x RE-123 95 �77 RE=Y, Gd, Sm, Nd, Yb,K
Bi2Sr2CaCu2O8−x Bi-2212 85 �20
Bi2Sr2Ca2Cu3O10−x Bi-2223 110 �77

a

Ba can be replaced by Sr or Ca.
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the next generation of NMR, accelerator, research, and fusion
magnets are urgently needed. While MgB2 is unsuitable for
high field magnets, cuprates and FeSCs have upper critical
fields in the 50–100 T range (and even greater) at 4.2 K, thus
not imposing any realistic limitations for high field magnets
operating at low temperatures. On the other hand, Bc2

decreases with temperature and converges to zero at Tc, thus a
high Bc2(0 K) is, besides a high-Tc, a prerequisite for cryo-
cooled magnets operating at intermediate fields (e.g. medical
MRI magnets). In this respect, FeSCs are clearly favorable
compared to MgB2, which is already applied in low field MRI
systems.

An important point to mention is the low anisotropy of
the upper critical field Bc2

(ab)/Bc2
(c) in the FeSCs, which makes

flux pinning more efficient than in the highly anisotropic
cuprates by reducing flux cutting effects and thermal fluc-
tuations. In particular, the 11 and 122 compounds are nearly
isotropic at low temperatures [2, 20]. Although the anisotropy
increases with temperature in these compounds, reaching
values up to about 3 close to Tc, it remains well below that of
RE-123 coated conductors (≈5) and Bi-tapes (>20), also at
high temperatures.

2.3. Critical current densities

The critical current density in a superconducting wire is either
limited by flux pinning or granularity (see section 2.4). Flux
pinning is an extrinsic property, which can be tuned by
generating a suitable defect structure. The maximally
achievable loss free currents are, however, not independent
from the basic material parameters, since Jc amounts to
maximally 10–20% of the depairing current density, Jd, in
optimized materials. Jd is a material property and can be
estimated from the coherence length ξ and London penetra-
tion depth λ as Jd∼f0/3 3πμ0λ

2ξ (f0 is the flux quantum
and μ0 the vacuum permeability). Jd values in the zero tem-
perature limit can reach up to 3·108 A cm−2 in cuprates [21],
about 1.8·108 A cm−2 in Nb3Sn (assuming ξ=3.6 nm and
λ=124 nm) [22] and 2·108 A cm−2 in MgB2 [23]. It turns
out similar in SmFeAsO1−xFx and K-doped Ba-122 (about
1.7·108 A cm−2), but smaller in the P- and Co-doped 122
system (≈5 and 9·107 A cm−2, respectively) and only
around 2·107 A cm−2 in the 11 system [20]. Thus at least
some compounds can compete with the high values in cup-
rates, MgB2, and Nb3Sn.

Efficient pinning can be realized comparatively easily in
the iron-based materials, as demonstrated by irradiation
experiments [14, 24], by the successful introduction of
nanoparticles [13] or nanorods [8, 25], by the effect of local
variation of stoichiometry [9, 10]. Moreover, irradiation with
Au ions [26] and neutrons [27] and introduction of artificial
ab plane pins [28] emphasized that the introduction of pin-
ning defects does not affect Tc appreciably. This indicates that
FeSCs tolerate a higher density of defects without a sig-
nificant decrease in Tc than cuprates, which makes them ideal
candidates for high field applications, since the number of
pinning centres is of crucial importance at high fields.

Another key property of FeSCs relevant for applications
is the small anisotropy of Jc with respect to the crystal axis.
Direct transport Jc measurements in the two main crystal-
lographic directions Jc

(ab) and Jc
(c) were carried out on Sm-

1111 single crystals with patterned micro-bridges [29] and on
Ba(Fe1−xCox)2As2 single crystals using the Montgomery
technique [30]. The obtained Jc

(ab)/Jc
(c) ratios were 2.5 and 1.5

respectively, much lower than the values of up to 10–50
found in the cuprates [31].

2.4. Grain coupling

All high-Tc superconductors are prone to magnetic granular-
ity, which limits the macroscopic currents. While secondary
phases residing at the grain boundaries and voids reduce the
cross section over which the current effectively flows in
MgB2, high angle grain boundaries intrinsically limit the
currents in untextured polycrystalline cuprates. For mis-
alignment angles between adjacent grains above Θc∼3°, Jc
drops exponentially [32]. Unfortunately, such an exponential
decay of the current as a function of the misalignment angle
between grains was measured in the FeSCs as well, namely in
122 films grown onto bicrystal substrates. However, the
suppression of Jc is not as strong as in high-Tc cuprates;
indeed it was found that the critical angle for Jc suppression is
slightly larger than in cuprates Θc∼9° and the suppression
itself is less severe, for example for Θ from 0° to 24° Jc
decreases by one order of magnitude in Ba(Fe1−xCox)2As2
and by two orders of magnitude in YBa2Cu3O7−x [33, 34].
On the other hand, it was suggested that ‘real’ grain bound-
aries can often show much better transparency than the planar
grain boundaries of the bicrystals [35], because the mis-
orientation angle is not the only parameter that determines
whether or not grain boundaries are transparent to the
supercurrent. In addition, the orientation of the field with
respect to the grain boundary has to be taken into account,
because the inter-grain Jc degrades the most when a sig-
nificant portion of the vortex lies in the grain boundary. When
the vortex obliquely crosses the grain boundary, the sup-
pression of the inter-grain Jc is much weaker.

On the whole, it can be stated that the weak link problem
is less serious in FeSCs than in cuprates [36]. The mechan-
isms that limit current flow at the grain boundaries in FeSCs
are still lacking a well-founded explanation. There are likely a
number of reasons, both intrinsic and extrinsic, such as the
larger critical angle Θc, possibly related to the higher
robustness of the superconducting s-wave symmetry as
compared to d-wave symmetry in cuprates, and the metallic
nature of underdoped phases that may be present at the grain
boundaries as compared to the insulating nature of cuprate
parent compounds.

Magnetic granularity in the cuprates was (at least partly)
overcome by texturing in the coated conductor technology. A
high degree of texture ensures a small density of high angle
grain boundaries that would reduce the macroscopic current.
The corresponding production techniques, however, involve
multiple steps with related costs.
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Texturing might not be necessary for the FeSCs. In
particular, results on K-doped 122 wires are encouraging,
since current densities that approach the requirements of
applications have been demonstrated (see section 3). A
combination of the more favorable grain coupling and nano-
sized grains enable current densities in granular iron-based
materials, which are orders of magnitude higher than the best
results achieved in untextured cuprates.

Overdoping has a beneficial effect on the inter-grain
transport in cuprates, specifically Ca doping in Y-123 [37].
Analogously, it was found that Sn addition largely improves
inter-grain connectivity and thus Jc in SmFeAs(O1−xFx),
which exceeds 1·104 A cm−2 at 5 K [38]. In addition, inter-
grain Jc of Ba(Fe1−xCox)2As2 sintered bulk is enhanced by
applying low temperature reaction and Co-overdoping up to
x=0.12, resulting in a similarly high inter-grain Jc at
5 K [39].

3. Conductor development

The fabrication of conductors for power applications has been
explored since the very beginning of the research activity on
FeSCs. The current state-of-the-art is not yet mature enough
to address the systematic fabrication of long length speci-
mens, but very encouraging results have been obtained on
short samples fabricated both by the powder-in-tube (PIT)
method and by processes which replicate the RE-123 coated
conductor technology. Both cases are reviewed in the fol-
lowing sections.

3.1. Powder-in-tube processed conductors

Wires and tapes of all three main FeSC families have been
fabricated so far. The quite isotropic character of Jc with
respect to the crystalline direction and better coupling
between misaligned grains suggests that texturing may not be
as stringent as in cuprates, and conductors in the form of
untextured wires may achieve the required performance. The
fabrication method is PIT, which starts by packing powders
into a metallic tube in ahigh purity Ar atmosphere and
sealing the ends. Either powders of the already reacted
superconducting phase (ex situ PIT) or powders of precursor
phases (in situ PIT) are used, however for 122 and 1111
families, the ex situ process has been used almost exclusively,
as it offers more options for optimizing the powder reaction,
even by multiple steps. Indeed, powder preparation is crucial
for the final result and involves a proper choice of stoichio-
metry to compensate for element losses during the whole
process, the use of high purity precursors, and ball-milling to
obtain a smaller grain size and enhance the packing density
[40, 41]. The metal tube forming the sheath is generally made
of Ag in the case of 122 and 1111 wires and tapes, while a
different situation occurs in the case of in situ PIT wires and
tapes of the 11 phase, where a Fe sheath is employed, as
discussed in the following. Indeed, Ag does not react sig-
nificantly with the superconducting phase at the optimized
temperatures of the final thermal treatments and is thus

preferred over Ta, Nb, Cu and Fe. Ag may be also used in
combination with an additional outer sheath made of Fe, Ni or
stainless steel [42] to reduce costs and improve the mechan-
ical strength. In this respect, very recently, copper sheathed
122 tapes were fabricated with transport Jc∼3.1·104 A cm−2

at 10 TT [43], which is noteworthy, given that the use of
copper as a sheath material is cost effective, has good
mechanical properties and provides reliable thermal stabili-
zation in a magnet during transients. This result was obtained
with a hot pressing process where the annealing time was
minimized, thus inhibiting the formation of a reaction layer at
the copper/superconductor interface. The subsequent step of
the PIT process is the deformation, carried out by drawing,
groove rolling or flat rolling. Finally, thermal treatments are
carried out to form the final phase (in situ process) or heal
cracks induced by the deformation and enhance grain con-
nectivity and density. The latter goal may be also pursued by
performing thermal treatments under high uniaxial pressures.
Numberless variations for the deformation and thermal
treatment steps are possible and a steady optimization is
currently underway.

The best transport critical current values among iron-
based superconductor wires and tapes, exceeding 105 A cm−2,
have been obtained with the 122 family so far
[40, 41, 44, 45]. A set of Jc(H) curves measured in 122 wires
and tapes, showing the best and most representative beha-
viors, is presented in figure 1.

Several routes are studied to improve Jc(H) perfor-
mances. Chemical addition is well-established for improving
grain crystallization and enhancing the metallic character of
secondary phases at grain boundaries, thus promoting inter-
grain coupling. It was shown that 10%–20% Ag substitution

Figure 1. Transport critical current densities at 4.2 K as a function of
applied magnetic field. Data refer to K-doped 122 textured tapes
with and without chemical additions, prepared by flat rolling and
different heat treatments [49, 55], uniaxially mono- and multi-
filamentary K-doped 122 tapes prepared using GPa uniaxial pressure
[44], mono- and multi-filamentary K-doped 122 tapes prepared using
hot pressing at ∼30 MPa and 850-900 °C (open symbols) [45], a
K-doped 122 untextured wire containing a high density of grain
boundaries [40] and a Co-doped untextured wire with a lower
density of grain boundaries [40].
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significantly improves inter-grain connectivity and reduces
porosity of 122 tapes, resulting in a three times increase of the
global Jc up to high fields [46, 47]. Pb addition, on the other
hand, promotes grain growth and improves grain connectivity
for a content up to 10%, yielding an enhancement of the
global Jc in the low field regime [46]. Sn addition has a
similar beneficial effect in 122 [48, 49].

Nonetheless, with respect to the role of chemical addi-
tions for promoting grain growth, it must be remarked that
grain growth is not necessarily the right method to pursue.
Indeed, it was shown that untextured polycrystalline
(Ba0.6K0.4)Fe2As2 bulks and round wires with high grain
boundary density, i.e. small grains obtained by ex situ PIT
and low temperature (600 °C) thermal treatment, have trans-
port critical current densities well above 105 A cm−2 in a self-
field at 4.2 K [40, 41]. The enhanced grain connectivity was
ascribed to significantly improved phase purity. The effec-
tiveness of high density of GBs as pinning centers was
explained in terms of low anisotropy and consequent
enhanced vortex stiffness of 122 compounds.

Densification of the superconducting core by uniaxial
pressing under a high pressure of ∼2 GPa before sintering
yielded transport Jc values above 10

5 A cm−2, still as high as
8.6·104 A cm−2 at 10 T [44]. This result can be attributed to a
change in the crack structure and a more uniform deformation
achieved by pressing rather than rolling. Indeed, as already
observed in Bi-2223 tapes, cracks run transversely to the tape
length for rolled tapes and parallel to the tape length for
pressed tapes [50]. An optimization of the cold deformation
process has to balance the improvement in density and the
initiation of microcracks, which cannot be healed by a sub-
sequent heat treatment.

A further improvement in this direction was achieved by
a hot pressing technique, which makes the grains more flex-
ible to couple with each other without producing a large
number of crashed grains, thus significantly reducing the
voids and cracks and leading to a denser superconducting
core of PIT tape. More specifically, by pressing K-doped 122
tapes at ∼30MPa and high temperature THP, better homo-
geneity, texture and grain connectivity were obtained, yield-
ing a transport Jc above 10

5 A cm−2 at 10 T for THP=850 °C
[45] and even above 105 A cm−2 at 14 T for THP=900 °C
[51]. However, it should be pointed out that the practical
application of uniaxial pressing for the manufacture of long
length wires requires specialized machines for continuous
pressing of the tape. An easy and simple process is required to
balance the high performance and the production cost of the
superconducting tapes. So far, through scalable and cheap
processes, ∼12 cm long iron-based superconducting tapes
with high transport Jc (∼5.4·104 A cm−2 [52]–7.7·104 A cm−2

[42] at 10 T and 4.2 K) have been obtained. In addition, the
fabrication by rolling of a remarkable 11 m long 122 tape,
exhibiting fairly uniform Jc throughout the sample, always
above 1.5·104 A cm−2 at 10 T and 4.2 K, has been reported
[53]. In scalable processes, mechanical deformation by
groove and flat rolling is critical, as its beneficial role in
densifying the conductor core and aligning the grains is
counterbalanced by the detrimental effect of current blocking

transverse cracks generated in the microstructure. Annealing
treatments only partially heal microcracks, so that an opti-
mized procedure may require multiple incremental steps of
repeated rolling and heat treatment [54].

Improved texture in general improves transport Jc, with
values above 104 A cm−2 [48, 54, 56] up to fields as high as
14 T [49]. Indeed, at high fields, textured tapes perform better
than the best untextured wires [49] (figure 1). The beneficial
effect of texturing fuelled the idea of preparing iron-based
superconductor coated conductors (see section 3.2). Texturing
certainly helps to overcome the problems related to aniso-
tropy, but these problems should not be as severe as for high-
Tc cuprates, given the smaller values of Jc

(ab)/Jc
(c) and Bc2

(ab)/
Bc2
(c) anisotropies found in FeSCs. In addition, the problems

related to the current blocking effect resulting from the
depressed superconducting order parameter at large angle
grain boundaries may have a less important role in FeSCs
than in the cuprates. Indeed, as mentioned above, granular
iron-based materials exhibit better grain coupling than
untextured cuprates, demonstrated by their current densities,
which are higher by orders of magnitude than the best results
in untextured cuprates. This may be explained also by the
clean nature of grain boundaries obtained by an optimized
thermal treatment, which drastically reduces FexAsy second-
ary phases in the 122 compounds [55].

In fact, a great effort has been carried out with the goal of
finding the optimized temperature of thermal treatment Ttt to
enhance the transport critical current. In general, for tapes, Ttt
values in the range 700–900 °C are used, while in the case of
wires a temperature Ttt=600 °C has allowed the best trans-
port Jc(H=0) values so far [40]. By comparing the pre-
paration conditions of the tapes exhibiting the best self-field
and high field transport critical current density, it turns out
that with increasing thermal treatment temperature c-axis
texture, crystallinity and grain connectivity are improved, but
eventually secondary FexAsy phases appear and, in the case of
hot uniaxial pressing, transverse microcracksalso develop
[51]. As a consequence, an optimal Ttt can be identified. From
the data collection shown in figure 2, it can be gathered that,
in terms of maximum self-field transport Jc, such an opti-
mized Ttt is 850 °C, regardless of the fabrication either by
simple flat rolling or by further application of ∼GPa uniaxial
pressure. On the other hand, by assessing the high field
Jc(H∼10 T) as a quality parameter, Ttt=850 °C is again the
best Ttt value if the fabrication is carried out with no external
applied pressure, while if the process involves application of
∼GPa uniaxial pressure the best Jc(H∼10 T) results are
obtained using Ttt=900 °C [51]. This difference likely arises
from the thermodynamic conditions for secondary phase
formation and from the lower volatility of elements under
high pressure, which preserves the correct stoichiometry up to
higher temperatures. It must be remarked that in some cases,
even if no external pressure is applied, the thermal treatment
is carried out in sealed stainless steel tubes, which also
inhibits the loss of volatile elements [42, 44, 50]. On the other
hand, if the thermal treatment is carried out in flowing Ar,
following a truly scalable process, the optimal Ttt is found to
be slightly smaller, namely Ttt=800 °C [55]. Note that Tc
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and Jc are not exactly optimized in the same range of Ttt
values. The Tc of Sr0.6K0.4Fe2As2 tapes increases with
increasing heat treatment temperature, while maintaining a
narrow transition width, up to 900 °C [57]. This behavior is
explained by improved crystallinity while approaching the
synthesis temperature of precursors, before secondary pha-
seseventually form at Ttt>900 °C.

Another key parameter to optimize is the applied pres-
sure, either applied via deformation processes or via isostatic
∼GPa uniaxial pressing techniques. Indeed, increasing pres-
sure favors densification and grain connectivity, however it
eventually yields to the formation of current blocking
microcracks. This parameter does not show a clear tendency
in the literature.

As for multi-filamentary 122 iron-pnictide wires and
tapes, the highest transport Jc values reached so far are
6.1·104 A cm−2 and 3.5·104 A cm−2 at 4.2 K and 10 T,
respectively for hot pressed 7- and 19-core Sr-122 tapes [45].

Less work has been carried out for the fabrication of
1111 wires and tapes, due to the difficulty in controlling O
and F stoichiometry during heat treatments at high tempera-
tures. The commonly used sintering temperature for 1111
wires is 1200 °C, but sintering at 850 °C–900 °C yielded
similarly high-Tc and transport Jc up to 1300 A cm−2 [58].
Low temperature sintering allows one to prevent FeAs liquid
phases from forming. On the other hand, many unreacted
precursors remain in the 1111 bulks even after long sintering,

as the reaction rate at low temperatures is relatively small.
Moreover, tapes cannot endure long sintering without fluorine
loss. In addition, in the case of 1111 wires and tapes, Ag was
found to be the best sheath material and metal additions were
found to be beneficial. Indeed, the loss of fluorine is reduced
and the intergranular coupling enhanced in Sn-added tapes
prepared by ex situ PIT, exhibiting transport Jc as large as
2.2·104 A cm−2 at 4.2 K in a self-field [59]. Pre-sintering of
Sn-added powders allows one to reduce the FeAs wetting
phase and fill the voids between Sm-1111 grains, yielding
improved grain connectivity and transport Jc up to
3.45·104 A cm−2 at 4.2 K in a self-field [60]. However, Jc
rapidly decreases with increasing magnetic field, dropping to
around 102 A cm−2 at 8 T [60, 61], possibly as a consequence
of the larger anisotropy of the 1111 compounds as compared
to the 122 family.

Wires and tapes of the 11 family are appealing for
applications as well. Indeed the 11 family, despite its lower
Tc, exhibits high Jc and Hc2 and does not contain toxic ele-
ments. Fe(Te,Se) polycrystals prepared by combined melting
and annealing processes exhibit a highly homogeneous and
dense microstructure, characterized by large and well inter-
connected grains [62]. A global critical current density,
reaching about 103 A cm−2, was measured in these samples.
Despite this encouraging starting point, several difficulties
were encountered in the fabrication of 11 wires and tapes, due
to chemical reactions between the superconductor and the
sheath during thermal treatments and difficulties in obtaining
a high density of powder inside the tube. For this reason, Fe
turned out to be the best choice for the sheath, as it allows a
diffusion process, where Fe-free precursors are sealed inside
Fe tubes and the final 11 phase is formed by the supply of Fe
from the sheath during the thermal treatment [63]. This dif-
fusion process yielded a significant improvement in the
transport Jc reaching values up to 103 A cm−2 in FeSe wires
[64]. As compared to FeSe, the FeTe0.5Se0.5 compound
exhibits better superconducting properties in terms of Tc, Jc
and Hc2. However, only transport Jc values around
220 A cm−2 [65] and 400 A cm−2 [66] were measured in
FeTe0.5Se0.5 wires. Indeed, the preparation of Fe(Te,Se) wires
and tapes is more difficult [67–69]. It was found that the
starting powders de-compose to a Fe1+y(Se,Te) phase with
Se/Te≈1 and excess Fe plus a FeSe1−y phase [66] after the
heat treatment. The former phase is not superconducting, due
to the excess Fe which is detrimental to superconductivity,
while the latter phase is superconducting with Tc ∼8 K,
much smaller than the Tc ∼16 K of FeTe0.5Se0.5. Regarding
the optimization of the thermal treatment, it was found that
the superconducting properties of FeSe wires improve with
increasing annealing temperature up to 1000 °C, where the
phase formation is complete [70]. A proper thermal treatment
of ex situ PIT Fe(Te,Se) wires allows one to enhance the
packing density of the core inside the sheath, thanks to the
expansion of the lattice volume during the transformation
from high density hexagonal Fe(Te0.4Se0.6)1.4 to low-density
tetragonal FeTe0.4Se0.6, thus yielding enhanced magnetic Jc
up to 3·103 A cm−2 at 4.2 K in self-field [71].

Figure 2. Transport critical current densities of 122 tapes at 4.2 K in
zero (upper panel) and 10 T (lower panel) magnetic field plotted as a
function of the thermal treatment temperature Ttt. Data in zero and
high field of samples prepared with no applied external pressure are
taken from [42, 49, 50, 56, 78, 84]. Data in zero field of samples
prepared at high pressure are taken from [42, 44, 85]. Data at 10T of
samples prepared at high pressure are taken from
[42, 45, 50, 51, 85].
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… hot pressed 7- and 19-core Sr-122 tapes [45]. A very recent work on 7- , 19- and 114-filament Sr1-xKxFe2As2 wires and tapes indicated that Jc is enhanced by improving densification and filament microstructural uniformity along the longitudinal direction. Both these targets can be pursued by optimizing the cold deformation process in thinner tapes with a lower number of filaments [58].
Less work has…



[58] C. Yao, H. Lin, Q. Zhang, X. Zhang, D. Wang, C. Dong, Y. Ma, S. Awaji, K. Watanabe, "Critical current density and microstructure of iron sheathed multifilamentary Sr1-xKxFe2As2/Ag composite conductors", arXiv:1508.05781 (2015)





In summary, the highest transport critical current in iron-
based superconducting wires and tapes have so far been
obtained with the 122 family, namely up to 104–105 A cm−2.
Moreover, in 122 wires the Jc field dependence is quite flat,
with a decrease of one order of magnitude from a self-field to
a field well above 10 T. For the 1111 family, the transport Jc
values found in wires and tapes prepared by ex situ PIT reach
3.45·104 A cm−2 [60], but the field dependence of Jc is
steeper as compared to 122 wires and tapes [61]. Wires and
tapes of the 11 compounds obtained by in situ PIT exhibit the
lowest transport Jc values, up to 3·103 A cm−2 [65, 71], but
they have the advantages of containing no toxic arsenic and
having the simplest crystal structure. The results achieved so
far seem to indicate that among the key targets to pursue are
(i) improving densification and (ii) inducing a certain degree
of texture. Simultaneously, key issues to avoid, not unique to
FeSCs, are the segregation of large precipitates at the grain
boundaries and the formation of cracks during the deforma-
tion process. The best Jc performances are obtained with
thermal treatments under high uniaxial pressures, which result
in both enhanced density and texture. Hence a finely tuned
multi-step protocol of mechanical deformation plus thermal
treatment could be set up for tape fabrication, whose effects
mimic those of thermal treatments under high uniaxial pres-
sures, minimizing the presence of cracks and fulfilling the
further requirement of scalability. However, this would be at
the expense of a less favorable geometry, namely tapes
instead of wires, the latter being much more favored by
engineers. As no evidence of local texture in round con-
ductors, as in the case of melt textured Bi-2212 wires, has
ever been detected in FeSCs so far, a possible route could be
restacking the tapes into a tube and drawing a wire, similar to
the Bi-2212 ROSAT wires [72]. Alternatively, the perfor-
mances of untextured wires could be improved by grain size

refinement, which effectively enhances inter-grain cou-
pling [73].

From the state-of-the art results, it can be envisaged that
iron-based superconductor (122) wires and tapes are pro-
mising for magnet applications at 20–30 K, where the nio-
bium-based superconductors cannot play a role owing to their
lower Tcs, and Jc being rapidly suppressed by the applied field
in MgB2. Moreover, the steady improvements of Jc values
achieved in wires and tapes based on 11, 122 and 1111 iron-
based superconductors during recent years hardly seem to be
saturating yet (figure 3). This positive trend suggests, on one
han,d that the inter-grain current in real conductors may
behave better than that in epitaxially grown bicrystals, as
mentioned above [35]. On the other hand, there exists a
considerable potential for future improvements of these
materials.

3.2. Coated conductors

As mentioned above, the evidence of weak-linked behavior in
122 thin films grown onto bicrystals suggested the application
of the coated conductor technology to iron-based super-
conductors, i.e. depositing iron-based superconductor films
on textured metal substrates with buffer layers, by the tech-
niques successfully developed for second-generation cuprate
wires [86, 87]. Ion-beam assisted deposition (IBAD) coated
conductor templates are manufactured in two steps. First, an
Y2O3 layer is made on unpolished Hastelloy by sequential
solution deposition to reduce the roughness of the tape sur-
face. Then a biaxially textured MgO layer is deposited on top
by IBAD. Through this technique, biaxial texture is achieved
by means of a secondary ion gun that orients the oxide film
buffer layer while it is being deposited onto the polycrystal-
line metallic substrate. Alternatively, the RABiTS process for

Figure 3. Transport Jc values obtained in iron-based polycrystals, wires and tapes versus the year of publication. In the left panel, data at
T=4–5 K and self-field are reported while data at T=4–5 K and a field of 8–10 T are shown in the right panel. References for the left panel
are [67] (2009), [20] (2010), [65, 74] (2011), [64] (2012) for the 11 family; [75] (2009), [76] (2010), [48, 77] (2011), [40, 78] (2012), [41, 56]
(2013), [42, 44] (2014) for the 122 family; [79] (2009), [58] (2010), [80] (2011), [61] (2012), [59, 81] (2013), [60] (2014) for the 1111
family. for the right panel are [88] (2009), [65, 82] (2011), [62, 64] (2012) for the 11 family; [67] (2009), [83] (2010), [47, 48] (2011),
[40, 49] (2012), [41, 50, 54, 56, 84, 85] (2013), [42, 44, 45, 51, 52] (2014) for the 122 family; [58] (2010), [61] (2012), [81] (2013), [60]
(2014) for the 1111 family.

7

Supercond. Sci. Technol. 00 (2015) 000000 I Pallecchi et al

Ilaria
Evidenzia
hand instead of han,d



coated conductor templates achieves texture by mechanical
rolling of a face-centered cubic Ni–W alloy and subsequent
heat treatment. A series of biaxially textured buffer oxides,
such as Y2O3, YSZ and CeO2 is grown on such metal
substrates.

122 films have been grown on IBAD substrates [88–92].
In-plane misorientation of 3°–5° was measured and, most
importantly, Jc values of 10

5
–106 A cm−2 were achieved. This

route turned out to be encouraging for the 11 family as well.
Fe(Se,Te) thin films deposited on IBAD-MgO-buffered
Hastelloy substrates were able to carry transport critical cur-
rent up to 2·105 A cm−2 at low temperature and self-field, still
as high as 104 A cm−2 at a field of 25 T [93]. Even more
remarkable results were obtained for Fe(Se,Te) thin films
deposited on RABiTS substrates, namely critical currents up
to 2·106 A cm−2 at low temperature and self-field, still as high
as 105 A cm−2 at a field of 30 T [9]. The fabrication of coated
conductors with 1111 FeSCs was also attempted [94].
NdFeAs(O,F) thin films grown by molecular beam epitaxy on
IBAD-MgO-Y2O3 Hastelloy substrates showed a high c-axis
texture, but not complete in-plane texture. A magnetic Jc of
7·104 A cm−2 was measured in a self-field at 5 K , which is
larger by one order of magnitude than the Jc of 1111 PIT
tapes, but significantly smaller than the Jc of 122 and 11
coated conductors. In addition, the field and temperature
dependence of Jc is much stronger than that of coated con-
ductors of the other families, as a consequence of the weak
link behavior related to incomplete biaxial texture and the
higher anisotropy of this compound. Record data of Jc values
measured in coated conductors are reported in table 2.

Remarkably, the challenging fabrication of long (>1 m)
coated conductors using a pulsed laser deposition system
equipped with a reel-to-reel tape feeding mechanism has
already been undertaken [95]. P substituted Ba-122 films
were deposited on IBAD-MgO-buffered Hastelloy tapes. Jc
measurements on 5 cm and 10 cm pieces yielded
1.1·105 A cm−2 and 4.7·104 A cm−2, respectively. Pro-
blems of P loss in the film and inhomogeneity over long
lengths were identified.

In the assessment of the potential of coated conductors, it
must be pointed out that the thickness of the superconducting
layers in coated conductors is currently less than 150 nm.
Thicker layers have not been attempted so far but are not
expected to be difficult to achieve. Considering the very low
engineering critical current density Je (ratio of critical current
Ic to the whole cross-sectional area of conductor), no
advantageous points can be found for the iron-based coated
conductors compared to the PIT processed tapes and wires at
the present stage. Moreover, higher production cost and low

production rates of coated conductor technology must be
taken into account when assessing the application potential of
this process as compared to that of the PIT technology.
However, the elaborated oxide buffer structure, partially
designed to protect the metal template from oxidation for
cuprates wires may not be needed at all for Fe(Se,Te) wires
deposited in a vacuum. Growing a Fe(Se,Te) coating directly
on textured metal tapes may be possible, thus greatly sim-
plifying the synthesis procedure, reducing production costs
and avoiding possible uncontrolled oxygen diffusion into the
intermetallic superconductor.

4. Application prospects

From the basic properties discussed above, it could appear
that the FeSC can hardly compete with the superior properties
of the cuprates. The transition temperature, the upper critical
field, and the depairing current density are higher in RE-123,
on which the coated conductor technology is currently based,
than in any iron-based compound. However, the smaller Jd
may be balanced by the higher tolerance of the FeSC against a
high defect concentration, their smaller anisotropy and the
cleaner nature of grain boudaries, all favoring high critical
currents at high fields. Thus they may become an alternative
for high field conductors at low temperatures.

From an economical point of view, FeSCs have a great
potential if the grain coupling can be enhanced further in
polycrystalline materials, thus enabling a cheap PIT wire
production. Such wires could outperform MgB2, Nb-Ti and
Nb3Sn conductors at a comparable or even lower price and
enable a cost efficient magnet technology operating in the
temperature range between 20 K and 30 K, where cryocoolers
can be used for cooling instead of liquid helium. If texture is
eventually proved to be necessary, the conductors will be
more expensive but possibly cheaper than cuprate-based
coated conductors, due to the relaxed requirements on texture
quality. In addition, a much simpler conductor architecture,
with only one buffer layer, has been demonstrated (see
subsection 3.2).

The possible operation conditions for applications
requiring an engineering current density Je>104 A cm−2 are
summarized in figure 4. The performance of the FeSC is
extrapolated to thick coated conductors or well-connected
polycrystalline wires and has not been demonstrated yet. It
however shows the potential of the iron-based compounds to
replace other materials and to push the current limit of
superconducting high field magnets. If the coated conductor
technology were necessary for high performance FeSCs – the

Table 2. Jc record values of iron-based superconductors coated conductors of different families, measured at low temperature (2.5–5 K) in
self-field and high magnetic field, either parallel (H||ab) or perpendicular (H⊥ab) to the crystalline ab planes (Fe planes).

FeSC family self-field Jc (A cm-2) in-field H⊥ab Jc (A cm-2) in-field H||ab Jc (A cm-2) Type of measurement References

122 3.5·106 1.0·105 at μ0H⊥ab=10 T 2.0·105 at μ0H||ab=10 T transport [89]
1111 7·104 5.0·103 at μ0H⊥ab=4 T magnetic [94]
11 2.0·106 9.0·105 at μ0H⊥ab=10 T 1.0·106 at μ0H||ab=10 T transport [9]

8

Supercond. Sci. Technol. 00 (2015) 000000 I Pallecchi et al



range of interest (for economic reasons) is marked by the red
area – and if PIT wires reached this performance, these
conductors would presumably be favorable in the entire
region below the red line.

5. Conclusions

The performance of the FeSCs in terms of the highest possible
operating temperature as well as achievable fields and cur-
rents is between those of the cuprate superconductors and the
conventional superconductors (Nb3Sn, MgB2 and Nb-Ti);
thus they have to be either cheaper than the coated conductors
or outperform the conventional wire technology to be of
interest for applications. Both scenarios do seem to be rea-
listic. The performance of inexpensive PIT wires and tapes
steadily increases and iron-based wires might be applicable at
higher temperatures as compared to Nb3Sn and Nb-Ti or at
higher fields as compared to MgB2. Ultrahigh field magnets
on the other hand may be made of iron-based coated con-
ductors, since they could be cheaper than their cuprate
counterparts, thanks to a simpler architecture and less strin-
gent texture requirements.
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