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ABSTRACT ARTICLE HISTORY
We compute the volume of flushed sediments in a dam using Received 9 November 2015
photogrammetry-based multi-temporal surveys with an unmanned aerial Accepted 1 May 2016

system (UAS). Coping with sediments accumulation and erosion in reservoir KEYWORDS
is a living topic in modern hydraulics of dams, since the increase of Photogrammetry; dam; UAS;
sediment may reduce the reservoir capacity, endanger dam'’s stability, and flushing; validation
represent an economical loss. As a result, a number of remedies can be

considered, such as flushing or mechanical removal. To evaluate the

performance of these operations, measuring the volume of removed

sediments and their spatial distribution is important. Here, we show that
photogrammetry from UASs represents a suitable solution to reckon the

volume of removed sediments. The case study is the Fusino dam

(Lombardia region, Northern Italy). Two surveys were performed, before and

after sediment removal. In both cases, the flight has been planned with an

average flight height equal to 65 m, leading to a mean ground sample

distance (GSD) equal to 0.013 m. The 22 ground control points (GCP) used

to adjust the photogrammetric block were measured with both global

navigation satellite system (GNSS) and a total station. Each survey produced

a cloud of about 40 million of points. Moreover, the digital surface model

(DSM) produced by each photogrammetric flight has been validated with

sample points measured with a robotic total station. Results show high

consistency between computed DSMs and validation dataset, with a mean

height difference equal, respectively, to 0.003 and —0.004 m considering

the two different surveys, with a standard deviation around 0.05 m in both

the cases. The volume of sediments flushed was estimated to be about

26,000 m?, which represents about 2%—3% of the total reservoir capacity.

We estimated also a 6% difference in terms of reservoir capacity between

the present condition and the no-sediments condition.

1. Introduction

Dams and reservoirs represent engineering works that segment the rivers and regulate water (Graf
1999). They modify the water dynamics permitting its use for several purposes like civil use, irriga-
tion, food and energy production, or industrial activities. The importance of reservoirs is expected
to increase in the next years with the increasing of population, economic activity, and water demand.
These engineering works alter also the sediment dynamics transported by water. Sediments play a
fundamental role in the hydrological, geomorphological and ecological dynamics of rivers (Owens
et al. 2005). They also maintain fluvial environment like floodplains, wetlands, and estuaries, and
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guarantee equilibrium between processes of erosion and deposition that usually occur along the riv-
ers (Morris & Fan 1998).

The dam operates a shift in sediment dynamics of the river, accumulating the solid material
behind the dam, and preventing the sediments to supply fluvial areas downstream, thus acting as
sediment buffers (Kummu & Varis 2007). This causes an excess of sediment deposit upstream and a
lack of sediments downstream, which the river attempts to restore modifying its geometry (Annan-
dale 1987; Yang et al. 2011; Lewis et al. 2013).

Some sediment-related problems occur, both upstream and downstream the dams (Poff & Hart
2002). These problems include the reduction of the lifetime of the reservoir, obstruction of intakes,
damages to machineries (e.g. turbines), and loss of hydropower production. Sedimentation is con-
sidered the principal cause of life reduction for many dams around the world. Mahmood (1987) esti-
mated that 50 km’/yr is the sediment rate trapped by all the dams worldwide, representing around
1% of global reservoir storage capacity. Palmieri et al. (2003) found a similar result with a rate of 45
km®/yr, i.e. representing around 0.8% of global reservoir storage capacity. However, sedimentation
rates are geographically different. In China, there are 82,000 reservoirs, which have an average
annual rate of lost storage capacity of 2.3%, i.e. the highest rate of loss in the world Zhou (1993). In
the US, large reservoirs have an average rate of around 0.2%, with variations between 0.5% in Pacific
states and 0.1% in the Northeast states. Exemplary is the case of Camar reservoir in Venezuela
reported by Morris and Fan (1998), where the structure lost completely its storage capacity, in
less than 15 years. In Italy, Surian et al. (2009) reported that the dams along the Piave river (North-
Eastern Italy) have reduced the sediment load from 1.00 x 10° to 1.45 x 10°> m’/yr.

Palmieri et al. (2003) have estimated the cost of sedimentation at world scale in 13 billion USD/
yr, needed to replace the lost storage. According to Basson (2010), most of the existing reservoirs in
the world could be completely silted up in 200—300 years from now. The progressive sedimentation
behind the dam constitutes a risk of functioning failure, thus the sediment volume must be moni-
tored in order to make a proper management of the structure. These issues are paramount in condi-
tions of climate change. In fact, modifications in the stability of frozen (or thawed) soils and/or
glaciers may result in an increase of sediment production (Hallet et al. 1996; Leeder et al. 1998).
Clearly, a reduction of reservoir volume may also represent an economical loss, due to a reduction
in the regulation capability of dams.

To cope with sedimentation and to partially restore reservoir capacity, different types of techni-
ques have been considered in the past. An example is flushing (Fruchard & Camenen 2012; Kondolf
et al. 2014), i.e. an hydraulic removal of sediments. Other examples are sediment trapping or bypass,
sluicing or mechanical excavation (see Kondolf et al. (2014) for an exhaustive review on this topic).

In order to evaluate the performance of these techniques, the volume of flushed (or removed)
sediment has to be measured. Sediment volume is generally measured using bathymetric soundings
(Kummu & Varis 2007; Furnans & Austin 2008; Yang et al. 2011), acoustic profiling (Dunbar et al.
1999), sediment cores (Van Metre et al. 1997), etc. Another source of information are measurements
of sediment discharges (Yang et al. 2011), or measurements of incoming and outcoming suspended
solids at a dam during relevant rainfall and runoff events (Lewis et al. 2013), or at pre-dam and
post-dam river sites (Kummu & Varis 2007). An alternative is the use of empirical equations esti-
mating the amount of inflowing sediment that is trapped permanently in a reservoir, the so-called
trapping efficiencies estimators (Lewis et al. 2013). Some examples are those by Churchill (1948)
and Brune (1953). However, Trimble and Bube (1990) argue that sediment yield data are often unre-
liable, unless they are not sampled continuously over a long period, while reservoirs trap efficiency
may be actually a relevant unknown. An example of work dealing with the measurement of flushing
erosion is Jansson and Erlingsson (2000). The paper focuses on a case study of flushing in Costa
Rica. In that case, the volume of eroded sediment was measured using depth surveys.

An ideal condition to measure the volume of sediments in a reservoir occurs when it is empty.
Such a condition occurs periodically during the lifetime of a reservoir due to maintenance reasons
(e.g. during sediment removal operations) and seasonality of streamflow and energy demand. In
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these situations, several survey techniques may allow a 3D reconstruction of the digital surface
model (DSM) of the existing surface of the reservoir (sediments included). By repeating this proce-
dure periodically, the volume of flushed sediment can be monitored by means of DSMs differentia-
tion. This represents a simple way to evaluate the performance and expected impacts of this
remediation strategy.

Here, we test the use of photogrammetry-based surveys by means of unmanned aerial system
(UAS) to recover the volume of flushed sediments in a dam. UASs are fast and automatic in per-
forming the surveys. Therefore, they may represent a competitive solution to obtain a precise recon-
struction of sediment dynamics.

The use of UAS photogrammetry surveys allows having a more flexible acquisition phase, with
respect to that realized from airplanes and helicopters. On the other hand, the final precisions are
lower than the ones that could be reached acquiring images at the same scale using aircrafts, even if
they are very high in absolute terms. This is mainly due to the low quality of the optics of the mass-
market cameras usually installed onboard UASs. Thanks to the use of gimbals, it is possible to vary
the inclination of the optic sensor, allowing to control in a better way the acquisition geometry and
having configurations similar to those of close-range photogrammetry. Nocerino et al. (2013) show
how it is possible to improve the final accuracy by adding oblique images to the nadir ones. The
most noticeable effect is in the height component. In recent years, Structure from Motion (SfM)
techniques have become a standard for close-range photogrammetry, allowing the combination of
the rigorous mathematical models of classical photogrammetry with the high level of automation
and matching techniques typically of computer vision (Roncella et al. 2011). SfM has introduced in
modern photogrammetry a number of algorithms capable of extracting and matching a high num-
ber of tie points, even in case of images acquired with large-scale variations or from different view-
points, expanding its use to a larger amount of users. SfM differs from traditional photogrammetry
because the camera alignment and the scene geometry are solved simultaneously in a highly redun-
dant bundle block adjustment, using a high number of automatic extracted observations and with-
out the need of a priori information (Westoby et al. 2012). It requires an image dataset with a high
level of overlapping and the solution is usually computed in free-network adjustment; the alignment
to the object space coordinate system is usually performed in a second separate step, requiring a
lower number of GCPs. A review of the differences between SfM and classical photogrammetry,
focused on DSMs creation, is discussed in Fonstad et al. (2013). In UAS acquisitions, it is frequent
to have strong variation in the number of overlapping images, because of the poor stability of the
platform itself. This can result in a failure of the SfM used to orientate the photogrammetric block.
This problem is usually overcome by increasing the longitudinal and transversal overlapping. Usu-
ally, the along-track overlapping is about 70%—90%, while the one along the cross-track direction is
about 60%—90% (Skarlatos et al. 2015).

2, State of the art of surveying techniques

Three-dimensional survey of a dam requires precision, accuracy, repeatability, low-cost, and easy of
usedness. Different survey methods have been developed in order to fulfil these requirements. In
Gonzalez-Aguilera et al. (2008), three methods are considered: classical topographic methods, global
navigation satellite systems (GNSS) and digital photogrammetry. Terrestrial laser scanner (TLS)
may be another possible solution, since it allows creating dense point clouds also at great distances
(Alba et al. 2006). The DSM has to be determined with a high level of detail, if the objective is the
morphology of a reservoir closed by a dam. The DSM can be determined in a multi-temporal way
by comparing different surveys at different epochs and using these data to estimate surface varia-
tions, as well as volume of eroded or deposited material. In order to repeat the survey, it is necessary
to locally monument the reference system using station points that must be located in stable areas
in case of classical topographic or GNSS methods or by placing targets that can be easily identified
in the acquired images in case of photogrammetry or in the point clouds in case of TLS. The
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material and the dimensions of the targets have to be carefully chosen considering the type of sur-
vey. For TLS, the material and the shape of the targets have to guarantee an optimal response to the
laser light source. At the same time, they have to be easily identifiable in the surveyed scene (Alba
et al. 2006). As for the photogrammetric targets, they have to be characterized by shape, colour and
dimensions that allow identifying them univocally, preferable with an automatic procedure (Clarke
1994). These ground control points (GCPs) have to be surveyed with an accuracy that is strictly
related with the expected precision of the reservoir model. Often a simple real-time kinematic
(RTK) GNSS survey may not be sufficient to reach the requested accuracy. Instead, it will be neces-
sary to measure those GCPs, including them in a network where static GNSS measurements (if the
points are not visible from one to another) and/or total station measurements are used.

The reconstruction of the morphology of a reservoir requires a huge number of points, thus some
of the methods already discussed are not feasible because it would be necessary to station on all the
surveyed points, e.g. using total station or GNSS. This problem could be overcome only using a
robotic total station featured with an electronic distance meter (EDM) that does not require a retro-
reflective prism and, practically, acquires a high precision dense point cloud.

The classical topographic method consists in the measurement of angles and distances, using a
total station. Recently, Leica released on the market the MultiStation (Leica Geosystem 2016). This
instrument is a total station that is able to acquire 1000 points/s with a precision of some millimeters
(e.g. 0.002 m at 50 m) when the distance is lower than 200 m. When distance increases beyond
200 m, the measurement frequency is rather lower, even if the level of precision is the same. This
instrument is suitable for the survey of reservoirs; usually the reservoir is not fully visible from a single
station point, thus it is necessary to create a station network that has to be reciprocally measured. The
MultiStation presents high precision in angular measurements (0.3 mgon) that allows reaching high
accuracy. Moreover, when surveying loam sediment in a water basin, laser response may be problem-
atic as well (Jaboyedoff et al. 2012; Zamecnikova et al. 2014). In fact, it is affected by the reflective
properties of the material (e.g. poorly reflecting or very rough surfaces, parallel incident angles),
weather conditions (e.g. rain, hot wind or fog) and environmental light conditions (e.g. a very bright
environment). Consequently, materials such as loam or clay decrease the measurement range of EDM
(Burton et al. 2011). This method is precise and reliable, with high repeatability if the surveying net-
work is stably materialized in correspondence of the station points. However, this kind of instruments
is quite expensive and requires specific surveying knowledge in order to be proficiently used.

A TLS is capable of acquiring precise point clouds in a short period of time. For surveying pur-
poses, laser based on time-of-flight technology is often used. These systems produce from 10,000 to
100,000 points/s, with a precision in the order of 0.01 m at distances of some hundreds of meters
(Jaboyedoff et al. 2012). The coordinates of each point are acquired, together with the near-infrared
(NIR) radiometric response. These data can be useful to extract information about the type of mate-
rial or its physical properties (e.g. humidity). In order to correctly georeference the measurements, it
is necessary to place within the surveyed scene some targets, characterized by a shape and a material
that are useful for manual or automatic marking. Like for total stations, a correct reconstruction of
the morphology of a reservoir requires to perform a number of scans from different points of view,
in order to overcome the presence of obstacles, which generate omissions in the scan. Then, the dif-
ferent scans can be merged together, creating a single 3D model, thanks to the presence of georefer-
enced targets and overlapping areas. This task is usually performed using algorithms such as the
Iterative Closest Point (ICP) (Chen & Medioni 1991; Besl & McKay 1992). However, the response
of the laser light source can be deeply affected by the presence of water and humidity, turning into a
reduction of the operative distance of the instrument. This method is less precise and reliable, with
respect to the classical topographic methods. On the other hand, it is characterized by repeatability
and easiness of use. However, the huge amount of data collected may be difficult to manage.

Digital photogrammetry may represent a low-cost alternative (Jagt et al. 2015). It is based on
principles already codified for traditional photogrammetry (Kraus 1993) and it represents a quick
and remote 3D acquisition method. Moreover, the images provide a permanent visual recording.
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The acquisitions have to be planned carefully because each point has to be visible at least on two
frames, for both aerial and terrestrial photogrammetric blocks. The precision of tie points of photo-
grammetric blocks acquired by UASs cannot be investigated using the traditional rules that can be
derived by applying the covariance propagation law to the normal case. Because of the high level of
overlapping and the presence of oblique images, the formulas used for close-range photogrammetry
could be significant. In fact, in these cases, the number of images and their convergence are funda-
mental aspects for the computation of the final accuracy. According to Fraser (1992), the precision
of an object point o, ,, , can be expressed as

q-d-o;

Oxyz = Fn (1)
where d is the distance between the object and the camera, fis the focal length, n is the number of
overlapping images, g is a form factor and o; is the precision of the measurements on the images.
The latter depends on the measurement principle used, but in case of calibrated cameras, it can be
assumed equal to the pixel size. The form coefficient g can be considered equal to 3.5, in case of
nadir acquisitions with a standard overlapping equal to 60% of the image size. It decreases to 3 in
case of acquisition with high cross-overlapping or to value until 0.4 in case of high convergent geom-
etry. Equation (1) is completely not appropriated in case of UAS photogrammetry with non-metric
cameras. However, there is no specific formula to be used in these cases and the close-range case is
the most similar, in fact, of camera type and distances from object to camera to the UAS survey. For
this reason, the close-range case expression has been applied during the design phase to compute an
approximate flight height. This altitude has been reduced by a safety factor equal to 30% taking into
account the usage of a model that is not completely suitable for UAS photogrammetry, since it is
derived from the close-range case.

For reservoir surveys, the best solution is represented by the use of a camera mounted on aircraft,
because the distance between the camera and the object can be maintained in a limited range, avoid-
ing at the same time to have any shadow area. For this kind of surveys, it is very helpful to use UASs
(Lucieer et al. 2013; Ouédraogo et al. 2014). If the area to be surveyed is wider than 1 km?, it is prefer-
able to use fixed wing systems. On the other hand, if the area is smaller, the use of multi-rotor systems
has the advantage of vertical takeoffs and landings, which may be very useful in case of steep banks or
presence of many obstacles. The overlapping between the images and the strips has to be very high
(70%—90% along strip and 60%—90% cross strip) in order to guarantee a multiple intersection of the
homologous rays, which in turns allows a precise and reliable survey. The optical sensors installed
onboard these systems are mass-market RGB cameras, which must be calibrated in order to remove
lens distortions. The parameters recovered with a standard calibration (e.g. using a flat calibration
grid) may not be representative of the real camera conditions during the survey, mainly because of
the great distance between the sensor and the object (with respect to the one used during the calibra-
tion stage) and because of the vibration that the camera can suffer during take-off and landings. For
this reason, it is important to refine the internal orientation (IO) parameters performing a self-calibra-
tion. The tie points extraction and the measurement of the target positions on the acquired images
allow recovering the external orientation parameters of the images that compose the photogrammetric
block (Forlani et al. 2015). If the targets are permanently monumented, this last method is precise,
reliable and repeatable. Among the methods presented so far, it is the cheapest one, even if it requires
trained personnel for both surveying operations and image processing. Furthermore, it requires to
measure some GCP in order to correctly georeference the photogrammetric block (Jagt et al. 2015).

3. Fusino dam case study

The case study is the Fusino dam located in Val Grosina (Lombardia region, Northern Italy, see
Figure 1). This dam was completed in 1960 and is connected with the Grosio power production
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Figure 1. The Fusino dam in Val Grosina, Lombardia region, Northern Italy. (a) and (b) show the position of the dam, while (c)
shows the morphology of the surveyed area.

plant. It receives the water from Roasco d’Eita stream and from the penstocks of Roasco di Sanno
and Premadio. The dam has a maximum height from ground of 51.50 m, and a total storage of
1.2 x 10° m®. Tt is interested by sediment deposition, and the manager authority makes yearly opera-
tion of flushing to control the sedimentation and to maintain the storage capacity. In order to evalu-
ate the amount of deposit sediment flushed throughout the dam during the 2015 operations, two
different flights have been performed before and after the cleaning operations. The area of the dam
was surveyed with a hexacopter UAS by MicroCopter. The system installs onboard a low-cost GPS
receiver (Ublox LEA GH), and a triaxial magnetometer and has a maximum payload of 500 g. The
case study here presented should be classified in the context of non-critical operations, conducted in
Visual Line of Sight (VLoS). For these situations, the regulations of the Italian Civil Aviation
Authority (ENAC) require that the pilot is able to maintain a direct eye contact with the UAS. This
is necessary to monitor the flight with respect to other aircraft, boats, infrastructure and people in
order to avoid collisions. Therefore, the operations in VLoS are allowed up to a maximum horizontal
distance of 500 m and a maximum height of 150 m above ground level. Moreover, all the operations
must be conducted safely and without harm to third parties. The flights realized at the Fusino dam
have been designed following all these regulations.
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A very important task for photogrammetry is to carefully plan the survey, considering that it is
usually requested to determine the volume of the removed sediments with a tolerance of about
5%—10%, respect to the estimated volume. In the case study, the area interested by flushing is about
45,000 m* and during design phase, we estimated a volume of removed sediments of the order of
20,000—30,000 m?, so the maximum admissible error in the measurement of the height coordinate
is about 0.04 m. Consequently, the flight has to be planned in order to obtain an error in the height
determination compatible with the requested tolerance. Considering Equation (1), the approximated
expected flight height z can be computed. The images have been acquired using a Canon EOS M
camera, with a fixed focal length equal to 22 mm. The sensor size is equal to 22.3 x 14.9 mm?, with
a resolution of 18 Mpixel. We considered o, equal to 1 pixel (4.384 x 10® m), which is a precau-
tionary value considering that the images are processed using automatic algorithm capable of sup-
pixel accuracies. Using this data and a form factor g equal to 3, the resulting flight height z is equal
to about 140 m, leading to a ground sample distance (GSD) equal to 0.03 m. The value of the form
factor has been selected taking into account the high overlapping of the images and the pseudo-
nadiral geometry with low intersection angles, which is usually requested from commercial software
packages that process images acquired with UASs.

The flight was designed with a maximum height equal to 90 m over the deepest points of the res-
ervoir, which are near the dam. This choice has been performed in order to have a safety factor of
30%, considering that Equation (1) is not completely suitable for UAS surveys. However, the level of
the sediment increases going upstream, so the average flight height was equal to 65 m, resulting in
an average GSD equal to 0.013 m. Flight plans were organized in 11 strips, with variable length in
order to better follow the shape of the basin (see Figure 2). The longest strip was composed of
26 images, while the shortest one (located upstream in correspondence of the tributary inflow) was
composed of 11 images. The photogrammetric block has been georeferenced using 22 GCPs.
In Figure 3(a), it is possible to see that the distribution of point is not the optimal one. In fact, at
the centre of the reservoir, no GCP is available. Unfortunately, this area cannot be reached to
put targets because of the presence of mud. Each point has been marked with a square target of
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Figure 2. Camera locations (white dots) and image overlapping (colour bar) for each of the two surveys. To view this figure in col-
our, see the online version of the journal.
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Figure 3. (a) GCPs distribution in the surveyed area. (b) Example of target used for GCPs monumentation and their measurement
with RTK-GNSS.

size 0.30 x 0.30 m* made of alternative black and white triangles, as shown in Figure 3(b). Each GCP
has been materialized and measured both with RTK-GNSS and classical topographic methods. In
the first case, each point was surveyed with a dual-frequency GNSS receiver with the antenna
mounted on a pole. The receiver is able to work in RTK mode, using the differential correction send
by NETGEO permanent network (Topcon Positioning Italy S.r.1. 2015). Each point is the average of
three measurement epochs acquired on it, leading to an accuracy of some centimetres (standard
deviation of 0.02 m in the horizontal directions and 0.05 cm in the vertical coordinate). In the sec-
ond case, a geodetic network composed of three stations located on three GCPs was built. From
each station, all the visible GCPs were measured, thus guarantying high redundancy and precision
in the final adjustment. The accuracy of estimated coordinates was about 0.01 m in all the directions.
Moreover, some stations of the geodetic network used in the validation phase (that will be explained
in the following) was observed, thus ensuring to have the same global reference frame. The images
were processed using the Agisoft Photoscan software (version 1.2.2). The first block was acquired
on 21st September before flushing operations, and it is composed by 324 images. The second block
was acquired on 30th September and is composed by 369 frames. The images of each flight have
been processed separately, following the standard workflow proposed by the software. The marker
accuracy has been imposed equal to 1 pixel, considering this value representative of the operator’s
accuracy, while the tie points accuracy has been left equal to the default value of 4 pixels. The accu-
racy of each GCP was specified, in accordance to the precision reached during the surveying phase.
Due to the fact that the software allows inserting a single value for the accuracy of a point (instead
of specifying it for each coordinate), a 3D accuracy was computed. For RTK-GNSS network, the val-
ues of the precisions directly computed by the receiver have been used, while for the geodetic net-
work, we have used the precisions computed during the adjustment of the network. These
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Table 1 RMSE between the GCP measured coordinates and the estimated ones.

GNSS GCP Total station GCP
Flight date East (m) North (m) Up (m) East (m) North (m) Up (m)
21st September 0.022 0.019 0.022 0.003 0.003 0.004
30th September 0.023 0.019 0.021 0.005 0.004 0.007

accuracies have been used in the bundle block adjustment to correctly weigh the different observa-
tions. Each photogrammetric block has been oriented considering the coordinates of GCPs mea-
sured both with GNSS-RTK and total station. The corresponding empirical accuracies are reported
in Table 1. They represent the root mean square error (RMSE) between the measured and the esti-
mated coordinates. After recovering the external orientation parameters, we used the ‘optimize
stage’ of PhotoScan to perform the camera self-calibration. This step is fundamental in case of image
blocks acquired from UAS, because the lens are suffering impacts during the take-off and landing
operations, that could modify the IO parameters estimated during a standard calibration step. Then,
the two dense point clouds have been reconstructed using a medium point density, which corre-
sponds to downscaling the input image size by a factor of 16. The output dense point clouds are
approximatively composed of 40 million points.

The DSM reckoned with the use of photogrammetry was validated by comparing it with some
sample points measured with the robotic total station Leica TS-30. This technique guarantees high
accuracy and relatively automatized observations. In fact, the instrument has an onboard software
that allows automatic scan of a surface on a regular angular grid. Leica TS-30 has high accuracy in
angle measurement (0.3 mgon of std.) as well as a very precise EDM that is able to measure without
the use of a reflector. Thus, it was possible to measure points on the bottom of the reservoir without
having direct access. Due to the presence of sunlight reflection on water in the mud, it was not possi-
ble to measure distances greater than 150—200 m, although the EDM is designed for 1000 m distan-
ces. This limitation leads to observe the reservoir from different points of view and so it was
required to build a network and then adjust all the observations together. In particular, a network of
five stations was built, but only four of them were used to measure grids of points (see Figure 4).
The same stations were used for both the surveys, allowing consistency between the two epochs.
Moreover, two stations were observed with GPS static measurements in order to ensure the same
North direction in adjustment of the two surveys. The final coordinates of points have been
computed with the open-source GeoNet software (Rossi et al. 2012; GeoNet 2015), developed at
Politecnico di Milano. It is able to perform rigorous least square adjustment of integrated geodetic
network (GPS and Total Station) directly in the global reference frame, considering vertical deflec-
tion from the geoid model ITALGEO2005 (Albertella et al. 2008). The estimated coordinates of sta-
tion points of the network and the residuals between the two epochs are shown in Tables 2—4.
In order to verify that the reference system was stably materialized, a statistical test on the position
of network stations has been performed. The hypothesis is that each coordinate of each station is
the same for the two different epochs. According to Albertella et al. (2006), the statistic of the test is

1Xi — X
texp = B e i tn—mas (2)
0x1 — 0x2

where X, and X, represent a generic coordinate at the two different epochs, 0”x; and 0y, their vari-
ance, and n — m the redundancy of least squares adjustment, performed using the GeoNet software.
Due to the fact that the design of the two networks is slightly different (but we consider it the same),
as a safety factor, the maximum between the two redundancy is used, thus the ¢, _ ,,, o, value is 1.99,
assuming the significance level @ = 5% . Columns 5, 6, and 7 of Table 4 report the computed empir-
ical value of t,,, that results always smaller than the threshold value. This means that the hypothesis
of consistency between the reference frame of the two epochs is verified.
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Figure 4. Design of network used to determine the coordinates of station points. Notice that validation points are measured from
station S200, S300, S400, and S500, while S100 is used only in order to add redundancy to the adjustment of this network.

Table 2 Estimated coordinates of the station points on 21st September.

Point East (m) North (m) Up (m) Sd. East (mm) Sd. North (mm) Sd. Up (mm)
S100 —22.412 —108.964 10.397 5.7 43 10.0
$200 —99.093 —8.190 —8.609 9.6 4.7 11.0
S300 76.244 —28.298 —7.172 43 35 10.2
S400 65.264 49.123 —4.887 4.6 74 10.6
S500 —69.075 66.534 —7.785 8.1 8.4 10.8
Table 3 Estimated coordinates of the station points on 30th September.
Point East (m) North (m) Up (m) Sd. East (mm) Sd. North (mm) Sd. Up (mm)
S100 —22.412 —108.964 10.399 4.6 3.6 8.1
$200 —99.093 —8.191 —8.603 7.6 35 8.1
S300 76.244 —28.298 —7.174 35 29 8.1
S400 65.265 49.123 —4.883 35 55 8.1
5500 —69.083 66.531 —7.782 6.4 6.2 8.2
Table 4 Differences between the coordinates of the station points estimated at the two epochs.
Point AEast (mm) ANorth (mm) AUp (mm) fexp EaSt texp North tewp Up
$100 —0.2 0.0 1.5 0.027 0.002 0.116
$200 0.2 —-0.4 58 0.014 0.062 0.428
S300 0.2 0.2 -21 0.035 0.033 0.158
S400 0.2 —0.2 4.5 0.039 0.019 0.336
S500 —8.0 —-29 25 0.773 0.274 0.187
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Figure 5. Differences between the DSM estimated with the photogrammetric survey and the validation dataset on 21st September
2015. The circle size increases with the difference between the two measurements. (a) refers to the entire reservoir, while (b)
focuses on an example of an area with suddenly DSM variations.

Note that all the results have been roto-translated in a local Cartesian coordinate system
whose origin is in the point with ETRF2000 coordinates equal to X = 4342471.390 m,
Y = 785056.528 m, Z = 4591427.410 m. This has been done because it allows obtaining better
results during the photogrammetric processing, even if all the networks were adjusted directly in the
global reference frame, as already explained. In order to validate the DSM estimated with the photo-
grammetric survey, it has been compared with the point cloud measured with the total station. The
differences between the total station point cloud and the photogrammetric-based DSM, computed
for the 21st September survey, are shown in Figure 5(a), where it is possible to see that there are
some high inconsistencies located where there are abrupt variations in the DSM. If the absolute
value of the difference in a point was greater than 0.40 m, we assumed that the point measured with
the total station was not the same represented in the DSM as shown in Figure 5(b) (e.g. in case of a
wall, DSM could represent the base and total station could observe the top, or vice versa ). These
points were considered outliers and removed from the validation dataset. In total, we measured
1148 points during the survey of 21st September and 440 points for the survey of 30th September.
However, according to this criterion, less than 1% of points were classified as outliers in both cases.
Figure 6 shows the histograms of the results of the validation for the two different epochs, once out-
liers were removed. Both the cases had an almost zero mean and a standard deviation of about
0.05 m as shown in Table 5. The volume of sediments that has been flushed away from the reservoir
can be easily computed according to Equation (3):

N
AV = ZAi(zfl —z?), 3)
i=1

where N is the number of DSM cell (about 262 milions), z"*; and z*; are the height associated to each
cell of the DSM at the two different epochs, respectively. Overall, about 2.6 x 10°> m® were removed
during the week between 21st and 30th September.
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Figure 6. Histograms of the residuals between DSMs and validation dataset. (a) 21st September 2015 (1109/1148 points used for
the histogram), (b) 30th September 2015 (435/440 points used for the histogram).

In Figure 7, the differences between the DSMs of the two epochs are represented. This figure
highlights the area where sediments were removed. In order to compute the accuracy of volume
determination, the field of residual between the total station point cloud and the DSM was used also
to model empirically the covariance of the error of DSM (Papoulis 1977; De Gaetani et al. 2015),
assuming that the error is spatially isotropic and homogeneous at each epoch. Thus, two covariance
matrices C; and C, can be computed for the DSM at each time and the variance of the volume dif-
ference can be computed as

C 0
oy = [ —et][ 01 CJ [_ee} =e'Cie+ e'Cye, (4)

where e is a vector with all components equal to 1 and length equal to the number of pixel N of the
DSM at one epoch. The characteristic of C; and C, is to be spatially invariant and, according to the
data, C; = C, = C, thus each product e'Ce can be seen as a convolution integral. Using the 2D Four-
ier transform, it is easy to reckon the result applying the convolution theorem (Papoulis 1977), that
allows to compute this huge matrix product in less than 10 s, on a common personal computer. The
final estimated standard deviation of the volume difference is about 280 m”, that is, about the 1% of
the removed volume.

The UAS-based survey allows to reconstruct the elevation—volume curve for the reservoir. We
have determined this curve before and after the sediments removal (reported in Figure 8), together
with a previous estimation of the same curve realized in 1974 by the company managing the dam.
From Figure 8, it is possible to see that sedimentation has a strong impact on the total volume of
water stored in the reservoir. In fact, the volume of water that can be stored nowadays is less than
the one that could be stored in 1974, at a given height. As expected, sediments effect is stronger for
low water elevations. This is clearly due to the fact that sediments occupy the base of the reservoir.
We quantify the effect of sediments on the reservoir capacity by calculating the absolute difference

Table 5 Mean and standard deviation of the residuals between each DSM and validation dataset.
Date Mean Std. Dev.

21st September 0.003 m 0.054 m
30th September —0.004 m 0.053 m
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Figure 7. Excavated volume computed as difference between the two estimated DSMs.
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Figure 8. Elevation—volume curves for the reservoir, derived from the estimated DSMs (before and after sediment excavation),

compared to the elevation—volume curve corresponding to 1974.
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between the maximum volume that can be stored nowadays (after the sediment removal, V5,5) and
the volume that could be stored in 1974 (V1474), as a relative quantity with respect to Vig74 (AV'):

Vaors — Viers

AV = (5)

V1974

is equal to 6% (calculated in correspondence of 1205 m a.s.1.).

4. Conclusions and final remarks

Here, we have estimated the volume of flushed sediments in an alpine reservoir (the Fusino dam,
located in Lombardia region, Northern Italy) using two UAS-based photogrammetric surveys. This
volume was evaluated comparing two DSMs, before and after flushing operations, calculated from
images acquired with UAS surveys. The two flights were realized at an average flight height of 65 m.
This leads to a mean GSD of 0.013 m. The RMSE between the measured and the estimated GCP
coordinates are coherent with the results obtained by other authors using multi-temporal images
collected from UAS for DSM estimation (e.g. Rosnell et al. (2011)). In case of GCP measured with
the total station, the results are comparable with those obtained by Nocerino et al. (2013), even if in
that case they used a professional full-frame reflex camera, and thus GSD was smaller. The perform-
ances of digital photogrammetry were validated using the data collected with a robotic total station.
The validation dataset has almost zero mean and a standard deviation of about 0.05 m, which can-
not be considered a purely white noise, and thus the correlation is modelled empirically. Our valida-
tion results are similar to those obtained by Dall’Asta et al. (2015). In their case, the elevation
discrepancies between GCPs measurements and photogrammetric surface reconstruction were in
the order of 0.10—0.15 m, but the GSD was wider. This validation supports the volume of sediments
obtained using two UAS surveys.

Digital photogrammetry with UAS allowed reconstructing the surface of the reservoir with a high
level of detail: 40 million of points, which correspond to about 500 points/m>. Each flight required
about 6 hours for the survey and almost 1.5 days for data post-processing. Clearly, the duration of
post-processing is dependent on the number of images composing the photogrammetric block, as
well as on the performances of the computer used. Anyway, these requests prove that digital photo-
grammetry from UAS is a fast and cheap way to retrieve the data needed by these applications.
Nevertheless, the method presents some problematic issues. In fact, from the regulatory point of
view, the authorization required to fly are more and more restrictive. In Europe, there are strong
constraints on the maximum relative flight height (that usually does not exceed 150 m) and on the
maximum action range, namely the maximum distance of the UAS from the takeoff point (usually
maximum 500 m, depending on the kind of UAS). Furthermore, piloting the UAS requires a partic-
ular flying license, issued by national civil aviation authorities (e.g. in Italy, ENAC). The orography
of the surveyed area could represent a further limitation. In fact, if the basin lies in a mountain area
where steep slopes are present, only multirotor UAS can be used, because of their capability to take-
off and landing vertically, thus minimizing the space required for these operations. On the other
hand, this kind of UAS has a scarce flight autonomy with respect to fixed-wing UAS that, instead,
requires a wider area to land, takeoff and to change direction, not always available in alpine scenar-
ios. It is worth to notice that, in order to perform the flight planning and the photogrammetric data
processing, an expert operator is required, and that in any case, a traditional or GNSS topographic
survey of the GCP is required.

Each photogrammetric block has been processed twice, using as coordinates of the GCPs those
estimated using RTK-GNSS, and those computed from the classical topographic measurements.
The differences in the photogrammetric bundle block adjustment are negligible showing that even a
RTK-GNSS survey may be sufficient to reach the requested tolerance. Clearly, satellite visibility is an
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important requirement that must be considered when planning the GNSS measurements. Main
advantages of a RTK-GNSS survey with respect to classical topographic methods are during survey-
ing phase: it is faster, cheaper and easier to use than classical topographic survey.

From a hydrological point of view, sedimentation represents a key issue for alpine reservoirs,
since it reduces the regulation capacity and the volume of the reservoir. Thus, the flushing of sedi-
ments is a practice used to restore the capacity of reservoir. The volume of flushed sediments was
estimated to be about 26,000 m®, which represents about 2%—3% of the total capacity. The impact
of sediments on the reservoir capacity was assessed calculating the absolute difference between the
maximum volume that can be stored nowadays within the reservoir (after the sediments removal),
and the volume that could be stored about 40 years ago (i.e. reservoir practically without sediments).
For this case study, we found that this difference is equal to 6% (at 1205 m a.s.l.). The reduction of
available volume in a reservoir is a living topic that constitutes an economical and environmental
risk. This is particularly true in conditions of soil degradation due to climate change.
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