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ABSTRACT
The small oscillations of an arbitrary scleronomous system subject to time-independent nondissipative forces are discussed. The linearized
equations of motion are solved by quadratures. As in the conservative case, the general integral is shown to consist of a superposition of
harmonic oscillations. A complexification of the resolving algorithm is presented.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5049438

I. INTRODUCTION
The concept of equilibrium stability and the associated theory of small oscillations are standard topics in classical analytical mechanics.
Surprisingly enough, in the literature, with a few notable exceptions, the second issue is dealt with under hypotheses definitely more

restrictive than those adopted in the study of the first one: typically, while a sufficient condition for stability is established for arbitrary, time
independent Lagrangians of the form

L = 1
2

aij q̇i q̇ j + bi q̇i + c ∶= L2 + L1 + L0, (1)

small oscillations are usually discussed under the simplifying assumption L1 = 0—more specifically, assuming constraints at rest in an iner-
tial frame of reference and conservative forces.1–5 Possible extensions to nonconservative systems are sometimes considered,6–9 mainly in
connection with the presence of dissipative or gyroscopic effects.

In this paper, we propose an approach to the study of small oscillations for scleronomous systems obeying the evolution equations

d
dt

∂L
∂q̇k − ∂L

∂qk = Qk (2)

with Lagrangian L(qh, q̇h) of the general form (1) and generalized forces Qk(qh, q̇h) fulfilling the nondissipativity condition Qk q̇k = 0 .11

The resulting linearized equations of motion, viewed as first order differential equations in R2n, are shown to be solvable by quadratures.
As expected, the general solution is a linear superposition of harmonics, determined by the spectral structure of a symmetric, negative definite
matrix, expressing the square of the evolution operator.

An alternative characterization of the harmonics based on a n-dimensional complex formalism is finally worked out. The relation of the
latter with the 2n-dimensional real approach is discussed.

II. SMALL OSCILLATIONS
Under the assumptions stated in the Introduction, every strict local maximum q∗ = (q∗1, . . ., q∗n) of the function L0 is readily seen to

represent a stable equilibrium configuration for the given system.9
In fact, in view of the condition Qr q̇r = 0 and of the consequent relation
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0 = ∂

∂q̇k (Qr q̇r) = Qk +
∂Qr

∂q̇k q̇r , (3)

the generalized forces do not play any role in the study of the equilibrium configurations, as well as in the applicability of Dirichlet’s stability
theorem.

The second-order approximation of the Lagrangian in a neighborhood of the kinetic state (q∗, 0) reads

L̃ = 1
2 Akr η̇

kη̇r + [br(q∗) + (∂br

∂qk )
q∗
ηk]η̇r − 1

2 Ckr η
kηr

with Akr = akr(q∗), Ckr = −( ∂ 2L0
∂qk∂qr )

q∗
, ηk = qk − q∗k.

From the latter, we get the expressions

d
dt

∂L̃
∂η̇k − ∂L̃

∂ηk = Akr η̈
r + [(∂bk

∂qr )
q∗
− (∂br

∂qk )
q∗
]η̇r + Ckrη

r .

In a similar way, on account of Eq. (3), the first order approximation of the generalized forces in a neighborhood of (q∗, 0) takes the form

Q̃k = (∂Qk

∂q̇r )
(q∗,0)

η̇r = −(∂Qr

∂q̇k )
(q∗,0)

η̇r .

Collecting all results and setting

Bkr ∶= (∂bk

∂qr )
q∗
− (∂br

∂qk )
q∗
− (∂Qk

∂q̇r )
(q∗,0)

,

the linearized equations of motion read
Akr η̈

r + Bkr η̇
r + Ckr η

r = 0
or, synthetically,

A
∼̈
η + B

∼̇
η + C

∼
η = 0, (4)

where A and C are symmetric, positive definite matrices, B is an antisymmetric one, and
∼
η is the column vector

⎛
⎜
⎝

η1

:
ηn

⎞
⎟
⎠

.

Viewed as a system of first order ordinary differential equations (ODE) in the velocity space, Eq. (4) may be written in the normal form

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
∼
η

dt
=
∼̇
η,

d
∼̇
η

dt
= −A−1 C

∼
η − A−1 B

∼̇
η

or in matrix notation

d
dt

⎛
⎝
∼
η

∼̇
η
⎞
⎠
= ( 0 I

−A−1 C −A−1 B)
⎛
⎝
∼
η

∼̇
η
⎞
⎠
∶= M

⎛
⎝
∼
η

∼̇
η
⎞
⎠

. (4’)

The nonsingular endomorphism M : R2n → R2n described by the matrix

M = ( 0 I
−A−1 C −A−1 B) (5)

will be called the linearized evolution operator.
In addition to M, another significant operator is the bilinear functional R2n ×R2n → R sending each pair of vectors

∼
u,
∼
v into the scalar

t
∼
uK
∼
v , K denoting the nonsingular, antisymmetric matrix

K ∶= ( B A
−A 0 ). (6)
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For clarity, a few comments are in order:

• linear endomorphisms and bilinear functionals are of course different mathematical objects, with different composition rules: for
example, in the present context, formally legitimate expressions like t

∼
uM

∼
v or K2 have no invariant geometrical meaning, while

t
∼
u KM

∼
v or M2 are perfectly significant;

• every symmetric positive definite bilinear functional may be used to define a scalar product ( , ) over R2n ;
• a linear endomorphism ψ : R2n → R2n is symmetric (antisymmetric) with respect to a given scalar product if and only if the expression

(
∼
u , ψ

∼
v) is symmetric (respectively, antisymmetric) in the arguments

∼
u,
∼
v . In particular, if ψ is symmetric, the space R2n admits an

orthonormal basis formed by eigenvectors of ψ.

Straightforward consequences of the previous remarks are the assertions:

• the bilinear functional associated with the matrix KM−1 is symmetric and positive definite. The conclusion follows at once from the
identities

tKM = (−B −A
A 0 )( 0 I

−A−1 C −A−1 B) = ( C 0
0 A),

KM−1 = K (tKM)−1 tK = K( C−1 0
0 A−1 ) tK,

showing that K ⋅ M−1 is congruent to a symmetric, positive definite matrix;
• the operator M is antisymmetric with respect to the scalar product defined by the prescription

(
∼
u ,
∼
v) ∶= t

∼
u KM−1

∼
v. (7)

Indeed, from Eq. (7) and the antisymmetry of K, it directly follows (
∼
u , M

∼
v) = t

∼
u K

∼
v = −(

∼
v , M

∼
u) ;

• the operator M2 is symmetric and negative definite with respect to the scalar product (7): the antisymmetry and nonsingularity of M
entail in fact the relations

(
∼
u , M2

∼
v ) = −(M

∼
u , M

∼
v ) = (M2

∼
u ,
∼
v),

(
∼
u , M2

∼
u ) = −(M

∼
u , M

∼
u ) < 0 ∀

∼
u ∈ R2n,

∼
u ≠

∼
0.

After these preliminaries, we now state the following.

Theorem 1. The vector space R2n admits a basis
∼
uk,
∼
vk , k = 1 . . .n, orthonormal with respect to the scalar product (7) and satisfying the

relations
M
∼
uk = ωk∼vk , M

∼
vk = −ωk∼uk (8)

with ω1, . . ., ωn positive, not necessarily distinct real numbers.

Proof. Let −λ 2
α , λα ∈ R+ , α = 1, . . ., r, denote the distinct eigenvalues of M2 and Sα ⊂ R2n denote the corresponding eigenspaces.

To each
∼
u ∈ Sα , we associate a “partner vector”

∼
v ∶= λ−1

α M
∼
u . The pair

∼
u ,
∼
v then satisfies the relations

M
∼
u = λα ∼v, M

∼
v = λ−1

α M2
∼
u = −λα ∼u,

M2
∼
v = −λαM

∼
u = −λ2

α∼v,

(
∼
u,
∼
v) = λ−1

α (
∼
u, M

∼
u) = 0,

(
∼
v,
∼
v) = λ−2

α (M
∼
u, M

∼
u) = −λ−2

α (
∼
u, M2

∼
u) = (

∼
u,
∼
u).

These show that, like
∼
u , the vector

∼
v belongs to the eigenspace Sα and that the vectors

∼
u,
∼
v are mutually orthogonal, have the same

norm, and fulfil an equation of the form (8) with ωk replaced by λα.12 Moreover, setting V ∶= Span{
∼
u ,
∼
v} , the relations

(M
∼
w,
∼
u) = −(

∼
w, M

∼
u) = −λα(∼w,

∼
v),

(M
∼
w,
∼
v) = −(

∼
w, M

∼
v) = λα(∼w,

∼
u)

show that the operator M maps the subspace V� onto itself, thereby inducing a nonsingular antisymmetric endomorphism M∣V⊥ : V⊥ → V⊥,
whose square is clearly identical to the restriction (M2)∣V⊥ .

The rest of the proof proceeds by induction: for n = 1 (namely, in R2), choosing
∼
u of unit norm, the ansatz

∼
u1 =

∼
u,
∼
v 1 =

∼
v, ω1 = λ

establishes the thesis.
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In a similar way, for n > 1, we arbitrarily select an eigenspace Sα of M2, a unit vector
∼
un ∈ Sα , and denote by

∼
vn = λ−1

α M
∼
un the associated

partner vector.
The thesis then follows setting Vn = Span{

∼
un ,

∼
vn} , ωn = λα and applying the inductive hypothesis to the (2n − 2)-dimensional subspace

V⊥n . ◽

Introducing the notation

∼
uk = ( ∼hk

∼
lk

),
∼
vk = (∼rk

∼
sk

) (9)

with
∼
hk,
∼
lk,
∼
rk,
∼
sk column vectors in ∈ Rn, Eqs. (5) and (8) imply the equalities

( 0 I
−A−1 C −A−1 B)( ∼hk

∼
lk

) = ωk(∼
rk

∼
sk

),

( 0 I
−A−1 C −A−1 B)(∼rk

∼
sk

) = −ωk( ∼
hk

∼
lk

)

summarized into the pair of expressions

∼
lk = ωk∼rk ,

∼
sk = −ωk ∼hk (10)

completed by the complex relation

(C − iωk B − ω 2
k A)(

∼
hk + i

∼
rk) = 0. (11)

Referring R2n to the basis
∼
uk,
∼
vk indicated in Theorem 1 and putting

⎛
⎝
∼
η

∼̇
η
⎞
⎠
= χk(t)

∼
uk + ψk(t)

∼
vk,

we rewrite the evolution equation (4′) in the form

χ̇k(t)
∼
uk + ψ̇k(t)

∼
vk = M[χk(t)

∼
uk + ψk(t)

∼
vk] = ωk[χk(t)

∼
vk − ψk(t)

∼
uk],

mathematically equivalent to the system

{
χ̇k = −ωk ψk

ψ̇k = ωk χk
(not summed over k).

The latter admits the general integral

χk = ak cos (ωk t + φk) , ψk = ak sin (ωk t + φk)

with ak, 'k arbitrary constants. The solution of Eq. (4′) is therefore

⎛
⎝
∼
η

∼̇
η
⎞
⎠
=

n
∑
k=1

ak[ cos(ωk t + φk) ∼uk + sin(ωk t + φk) ∼vk ].

Recalling Eq. (9) we conclude that the general integral of the linearized equations of motion (4) reads

∼
η =

n
∑
k=1

ak[ cos(ωk t + φk) ∼hk + sin(ωk t + φk)∼rk], (12)

while the expression for
∼̇
η agrees with the one obtained evaluating the time derivative of the right-hand side of Eq. (12) and taking the

identifications (10) into account.
As expected, the motion of the system consists of a linear superposition

∼
η = ∑k ak ∼νk of harmonic oscillations, henceforth called the

normal harmonics.
The determination of the general integral (12) can be simplified, replacing the 2n-dimensional real formalism with a n-dimensional

complex one.
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To this end, resuming the notations adopted in the Proof of Theorem 1, we indicate by Sα , α = 1, . . ., r, the eigenspaces of the operator
M2, by −λ 2

α (λα > 0) the corresponding eigenvalues, and by 2nα = dim(Sα) the respective multiplicities. Also, for each α, we denote by Nα
the kernel of the endomorphism (C − iλαB − λ2

αA) : Cn → Cn.
We then have the following.

Theorem 2. The space Cn splits into the direct sum
Cn = ⊕r

α=1 Nα (13)
with dim(Nα) = nα .

Proof. To start with, we establish the intersection property Nα ∩Nβ = {0} ∀α ≠ β . To this end, we observe that, for any
∼
z ∈ Nα ∩Nβ ,

the simultaneous validity of the conditions

(C − i λα B − λ 2
α A)

∼
z = 0, (14a)

(C − i λβ B − λ 2
β A)

∼
z = 0 (14b)

implies the equality

[i(λα − λβ)B + (λ 2
α − λ 2

β )A]
∼
z = (λα − λβ)[iB + (λα + λβ)A]

∼
z = 0,

whence dividing by λα − λβ and substituting into Eq. (14a)

[C + λα(λα + λβ)A − λ 2
α A]

∼
z = (C + λαλβA)

∼
z = 0.

At the same time, the positiveness of λα, λβ, together with the positive definiteness of A and C, entails the nonsingularity of the matrix
C + λαλβA. Therefore,

∼
z ∈ Nα ∩Nβ if and only if

∼
z = 0.

Let us now evaluate the dimension of each Nα . To this end, referred R2n to an orthonormal basis satisfying Eq. (8) we collect the basis
vectors {

∼
uk,
∼
vk} into r distinct subfamilies {

∼
u(α)iα ,

∼
v
(α)
iα , iα = 1, . . . , nα}, each one spanning a corresponding eigenspace Sα .

Restoring the notation (9), to each pair of “partner vectors”
∼
u(α)iα ,

∼
v
(α)
iα , we associate the complex vector

∼
z(α)iα =

∼
h(α)iα + i

∼
r(α)iα ∈ Cn. In view

of Eq. (11),
∼
z(α)iα belongs to the kernel Nα . Moreover, the vectors {

∼
z(α)iα , iα = 1, . . . , nα} are linearly independent: by Eq. (10), adapting the

notation (iα in place of k, λα in place of ωk), we have in fact the identifications

∼
u(α)iα + i

∼
v
(α)
iα =

⎛
⎝

∼
z(α)iα

−iλα ∼z
(α)
iα

⎞
⎠

.

In view of these, every relation of the form ∑iα (a iα + i b iα)∼z
(α)
iα = 0 implies the validity of the equations

∑
iα

(a iα ∼u
(α)
iα − b iα ∼v

(α)
iα ) = ∑

iα
(a iα ∼v

(α)
iα + b iα ∼u

(α)
iα ) = 0,

which, on account of the linear independence of the vectors
∼
u(α)iα ,

∼
v
(α)
iα , ensure the vanishing of all coefficients a iα , b iα .

The dimension of Nα is therefore not less than nα. Being ∑αnα = n, this fact, together with the intersection property, establishes the
thesis. ◽

According to Theorem 2, the space Cn admits at least one basis {
∼
z1, . . . ,

∼
zn} whose elements satisfy equations of the form

(C − i ωk B − ω 2
k A)

∼
zk = 0, (15)

ωk being n (not necessarily distinct) positive roots of the equation det(C − i ωB − ω2A) = 0.
Equation (15) implies the differential relation

(A
d2

dt2 + B
d
dt

+ C)(e−iωk t
∼
zk) = 0

as well as the complex conjugate one
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(A
d2

dt2 + B
d
dt

+ C)(eiωk t
∼
zk) = 0.

In the space Cn, the second order differential equation A
∼̈
z + B

∼̇
z + C

∼
z = 0 for the unknown

∼
z =

∼
z(t) admits therefore the general

integral

∼
z =

n
∑
k=1

(γk e− iωk t
∼
zk + δk eiωk t

∼
zk), (16)

γk, δk being arbitrary complex constants.
The right-hand side of (16) is real if and only if δk = γk . Setting γk = ak e−iφk and restoring the notation

∼
zk = ∼hk + i

∼
rk , we obtain in this

way the general integral of Eq. (4) in the form

∼
η(t) = Re

n
∑
k=1

[ ak e−i(ωk t+φk)(
∼
hk + i

∼
rk) ]

clearly identical to Eq. (12).
Although not directly relevant to the implementation of the algorithm, it may be noticed that, unlike what happens in R2n, the

characterization of the bases {
∼
z1, . . . ,

∼
zn} of Cn fulfilling the requirements (15) does not involve any concept of orthonormality.

This lack of symmetry between the real and the complex formalism may be disposed of by endowing each subspace Nα ⊂ Cn with a
sesquilinear scalar product, based on the prescription

(
∼
z,
∼
w) = t

∼
z (A +

iB
2λ 2

α
)
∼
w. (17)

By the very definition of Nα , Eq. (17) entails the relation

t
∼
z(A +

iB
2λα

)
∼
w = 1

2λ 2
α

t
∼
z (2λ 2

α A + λα iB)
∼
w = 1

2λ 2
α

t
∼
z (λ 2

α A + C)
∼
w,

ensuring the positiveness of (
∼
z,
∼
z) ∀

∼
z ∈ Nα .

The prescriptions (17)—one for each subspace Nα—can be glued into a single scalar product in Cn, by adding the requirement of
orthogonality between different subspaces.

Denoting by Pα : Cn → Nα the family of projections associated with the direct sum decomposition (13), this leads to the expression

(
∼
z,
∼
w) =

r
∑
α=1

t(Pα ∼z )(A +
iB

2λ 2
α
)Pα∼w ∀

∼
z,
∼
w ∈ Cn.

We then have the following.

Theorem 3. The orthonormal bases of R2n fulfilling the requirement (8) are in 1–1 correspondence with the orthonormal bases of Cn

fulfilling the requirement (15).

Proof. Due to the orthogonal character of both direct sum decompositions R2n = ⊕αSα , Cn = ⊕αNα , it is sufficient to discuss the relation
between bases in Sα and bases in Nα .

To this end, recalling Eqs. (9) and (10) and adapting once again the notation, we represent each pair of partner vectors of the basis
{
∼
u(α)iα ,

∼
v
(α)
iα , α = 1, . . . , nα} in the form

∼
u(α)iα =

⎛
⎝

∼
x(α)iα

λα
∼
y(α)iα

⎞
⎠

,
∼
v
(α)
iα =

⎛
⎝

∼
y(α)iα

−λα∼x
(α)
iα

⎞
⎠

. (18)

From the Proof of Theorem 2, we know that the complex vectors
∼
z(α)iα =

∼
x(α)iα + i

∼
y(α)iα span Nα : all we have to do is therefore to check

that the correspondence
∼
u(α)iα ,

∼
v
(α)
iα → ∼

z(α)iα preserves the orthonormality relations. And, in fact,

● the definition of Nα as the kernel of the operator C − iλαB − λ2
αA implies the identities

t
∼
z(α)iα (C − iλαB − λ 2

α A)
∼
z(α)jα = 0 ∀ iα, jα = 1, . . . , nα.
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Due to the symmetry properties of the matrices A, B, C, the latter split into the pair of expressions

t
∼
z(α)iα (C − λ 2

α A)
∼
z(α)jα = 0 , t

∼
z(α)iα B

∼
z(α)jα = 0.

From the second one, setting
∼
z(α)iα =

∼
x(α)iα + i

∼
y(α)iα , we get the equalities

t
∼
x(α)iα B

∼
x(α)jα = t

∼
y(α)iα B

∼
y(α)jα ,

t
∼
x(α)iα B

∼
y(α)jα + t

∼
y(α)iα B

∼
x(α)jα = 0.

In view of these, taking Eq. (17) into account, it is readily seen that the conditions (
∼
z iα ,

∼
z jα) = δ iαjα are expressed by the equations

t
∼
x iαA

∼
x jα + t

∼
y iαA

∼
y jα −

1
λα

t
∼
x iαB

∼
y jα = δ iαjα , (19a)

t
∼
x iαA

∼
y jα − t

∼
y iαA

∼
x jα +

1
λα

t
∼
x iαB

∼
x jα = 0. (19b)

● Taking Eq. (8) and the properties of the operator M into account, the scalar products between the basis vectors in Sα read

(
∼
u(α)iα ,

∼
u(α)jα ) = − 1

λα
(
∼
u(α)iα , M

∼
v
(α)
jα ) = − 1

λα
t
∼
u(α)iα K

∼
v
(α)
jα ,

(
∼
u(α)iα ,

∼
v
(α)
jα ) = 1

λα
(
∼
u(α)iα , M

∼
u(α)jα ) = 1

λα
t
∼
u(α)iα K

∼
u(α)jα ,

(
∼
v
(α)
iα ,

∼
v
(α)
jα ) = 1

λ2
α
(M

∼
u(α)iα , M

∼
u(α)jα ) = (

∼
u(α)iα ,

∼
u(α)jα )

In view of Eqs. (7) and (18), the orthonormality relations therefore have the form

− 1
λα

( t
∼
x iα ,λα t

∼
y jα)(

B A
−A 0 )( ∼

y jα

−λα∼x jα
) = δiαjα ,

1
λα

( t
∼
x iα ,λα t

∼
y jα)(

B A
−A 0 )( ∼

x jα
λα
∼
y jα

) = 0

identical to Eqs. (19a) and (19b). ◽

Remark 1. A deeper insight into the geometrical content of Theorem 3 is gained by considering the totality of 2-dimensional subspaces
Σ ⊂ Sα invariant under the action of the operator M. Each such 2-space is completely determined by the knowledge of any of its nonzero elements
∼
u , through the identification Σ = Span{

∼
u, M

∼
u} .

Keeping the same notation as in Theorem 3, let us now denote by ψα : Sα → Nα the correspondence sending each vector
∼
u = ( ∼

x
λα
∼
y) into

the image ψα(∼u) = ∼x + i
∼
y. On account of the relation M

∼
u = λα( ∼

y
−λα∼x

), we have then ψα(M
∼
u) = λα(

∼
y− i

∼
x) = −iλαψα(∼u) : the image ψα(Σ)

of an invariant 2-plane in Sα is therefore a direction in Nα .
In this connection, Theorems 1 and 3 point out the following facts:

• the map ψα sets up a 1-1 correspondence between mutually orthogonal invariant 2-planes and mutually orthogonal directions;
• each invariant 2-plane Σ ⊂ Sα admits a 1-parameter family of orthonormal bases

∼
u,
∼
v , defined up to an arbitrary rotation

⎧⎪⎪⎨⎪⎪⎩
∼
u′ =

∼
u cosφ −

∼
v sinφ,

∼
v′ =

∼
u sinφ +

∼
v cosφ.

The resulting direction ψ(Σ) ⊂ Nα is similarly generated by a unit vector
∼
z = ψ(

∼
u) , defined up to a phase factor

∼
z′ = e iφ

∼
z .

Remark 2. The kth normal harmonic involved in the representation (12) of the solutions of the linearized equations of motion coincides
with the traditional one if and only if the vectors

∼
hk and

∼
rk are parallel, i.e., if and only if the sum

∼
zk = ∼hk + i

∼
rk is proportional to a real vector.

In view of Eq. (11), this is possible if and only if the system
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⎧⎪⎪⎨⎪⎪⎩

(C − ω2 A)
∼
z = 0,

B
∼
z = 0

admits nontrivial solutions. The simplest instance occurs in the case B = 0, corresponding to the ordinary theory of small oscillations.
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