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ABSTRACT 

 

The ability to specifically target epigenetic and molecular mechanisms involved in 

neuronal development could be an alternative therapeutic strategy for 

neuroinflammatory/neurodegenerative disorders such as Multiple Sclerosis (MS). 

The transcriptional repressor RE1-Silencing Transcription Factor (REST) regulates 

neurogenesis and neuronal identity through cell-specific gene repression, allowing 

expression of its targets in mature neurons where REST is quiescent. REST 

dysregulation has been implicated in several neurodegenerative disorders, 

including Alzheimer and Huntington diseases, tumors of the nervous system, and 

epilepsy.  

We found that REST is overexpressed in the spinal cord of mice with experimental 

autoimmune encephalomyelitis (EAE), suggesting that its dysregulation might be 

an important factor in the pathogenesis of the disease. Starting from these 

observations, we have firstly analyzed the expression of REST target genes in 

EAE and characterized the cell-specificity of REST overexpression, investigating 

the differential contribution of neuronal and glial cell populations to REST 

upregulation. Moreover, in order to mimic the inflammatory EAE scenario, we have 

analyzed REST activity in primary neuron cultures treated with various pro-

inflammatory cytokines. Altogether, this study provides the basis for understanding 

the molecular mechanisms of REST expression during brain inflammation and its 

implication in the subsequent neurodegenerative processes. 
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 INTRODUCTION 1.

1.1. The RE-1 Silencing Transcription Factor 

(REST) 

 

The specification of cell identity during central nervous system (CNS) 

development is regulated by the transcriptional machinery, made by positive 

and negative transcriptional regulators that act simultaneously to shape the cell-

specific transcriptome. Transcription factors (TFs) play a fundamental role in 

development as they ensure that the right genes are expressed in the right cells 

of the body, at the correct time. In 1995 the laboratories of Drs. Mandel and 

Anderson independently discovered the RE1-silencing transcription factor 

(REST), also known as neuron-restrictive silencer factor (NRSF)[1], a 

transcriptional repressor that binds a specific consensus sequence named 

repressor element 1 (RE-1)[2]. 

REST is a member of the Kruppel-type zinc finger transcription factor family, as 

it is characterized by the presence of nine zinc finger repetitions, eight localized 

near its N-terminal domain, and one near the C-terminus. Its repressive 

functions are mediated by two repressor domains: the N-terminal domain 

interacts with Sin3 [3], while the C-terminus recruits CoREST [4], [5]. In turn, 

each co-repressor recruits other associated proteins and chromatin remodeling 

factors, including histone deacetylases (e.g. HDAC1/2), demethylases (e.g. 

LSD1), and methyltransferases (e.g. G9a) that mediate the transcriptional 
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repression of target genes, densely packing the genomic material and ultimately 

inhibiting the activity of RNA polymerases [6] (Fig. 1). Translocation of REST 

into the nucleus is essential for its function. Several studies have highlighted 

that the nucleocytoplasmic shuttling of REST is influenced by its reversible 

association with other proteins such as RILP [7], Dynactin p150-Glued [8] and 

huntingtin (htt) [9]. In particular, wild type htt sequesters REST in the cytoplasm, 

thus preventing it from repressing its target genes, while mutated htt does not 

retain the transcription factor anymore, allowing REST translocation to the 

nucleus and the consequent pathological repression of target genes, as shown 

for BDNF in Huntington Disease [9], [10].    

 

 

 

Figure 1. REST protein structure. Diagram showing the various functional domains of 

REST. The DNA binding region encompasses eight of the nine zinc finger domains of 

the protein. The co-repressors Sin3 and CoREST bind to the N- and C-terminus of the 

protein, respectively. Both co-repressors recruit histone deacetylases (HDAC), while 

CoREST recruits also other enzymes like the histone methyltransferase G9a, the 

histone demethylase LSD1, the ATP-dependent chromatin remodeling enzyme BRG1 

and the methyl-CpG2 binding protein MeCP2. 
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REST binds its target genes at the level of RE-1, a 21 bp motif that was 

identified for the first time in the 5’ flanking region of the voltage-gated sodium 

type II channel (NaV1.2) and superior cervical ganglion 10 (SCG10) genes [11], 

[12]. Multiple genome-wide studies, including several in silico and biochemical 

analyses, have predicted the complete list of RE-1 sites and their associated 

target genes [13]–[15]. RE-1, whose computational derived sequence is 

represented in Fig. 2, is evolutionarly conserved and has been initially identified 

in 1,892, 1,894 and 554 sites within the human, mouse and pufferfish genomes, 

respectively [13]. Subsequent studies have increased this number to nearly 

2000 sites within the human genome, of which amost 900 are conserved 

between humans and mice [14], [16]. RE-1 containing genes code for proteins, 

like growth factors, ion channels, and molecules involved in intracellular 

signaling, synaptic plasticity, metabolism, and neurotransmission [13]–[15]. 

Moreover, the RE-1 sequence is present also in the promoter of non-coding 

RNAs (ncRNAs). Indeed, REST is known to control, and be controlled by, 

various classes of ncRNAs, like microRNAs (miR-124, miR-9, miR-132) [17]–

[19] and long ncRNAs [20],[21], and thus it is involved in the transcriptional and 

post-transcriptional regulatory activity of the ncRNA network [22]. 

In 2008, Jothi and colleagues performed a genome-wide sequencing analysis 

from ChIP-seq experiments, identifying 5813 putative RE-1 sites, most of them 

lying in intergenic regions of the genome (40%), about 24% in intronic regions, 

and only 15% in promoter sequences [23]. Among the RE-1 sequences located 

in and near promoter regions, most of them are found in neuron-specific genes. 
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This is why REST was initially thought to act as an inhibitor of neuronal genes in 

non-neuronal cells. However, subsequent studies have shown that REST is a 

master regulator of neurogenesis, and has other essential functions in both 

neuronal and non-neuronal cells. REST levels are progressively downregulated 

during neuronal differentiation, from embryonic stem cells to mature neurons. 

This process is regulated both by transcriptional and post-translational 

mechanisms [6]. In order to maintain low REST levels, a degradation signal 

sequence is located near the C-terminus domain of the protein, recognized by 

the ubiquitin ligase SCFβ-TrCP, which directs the protein for proteasome-

mediated degradation [24]. More recently, REST has been identified not only as 

a repressor, but also as an activator of neuronal gene transcription, specifically 

recruiting TET3, the major methylcytosine dioxygenase expressed in neurons, 

which catalyzes the conversion of 5 methylcytosine to 5 hydroxymethylcytosine 

[25]. The interaction between REST and TET3 has been shown to activate the 

transcription of REST target genes, through the enhancement of TET3 

hydroxylase activity and the consequent remodeling of the chromatin state. 
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Figure 2. RE-1 cis site sequence. The 21 bp canonical REST binding site. The 

dimension of each nucleotide relates to the probability of that nucleotide at the 

indicated position within the transcription factor-binding site. From: Ooi, L., and Wood, 

I. C. Chromatin crosstalk in development and disease: lessons from REST. (2007) Nat 

Rev Genet 8, 544-554 [26]. 

 

The repressive function of REST is relevant for CNS physiology. As previously 

mentioned, it regulates the expression of many presynaptic and postsynaptic 

proteins, modulating membrane excitability and synaptic transmission. REST is 

well-known to repress the expression of various channels, such as Nav [2], [27], 

calcium [28], [29] and potassium channels [30]. The role of REST is not limited 

to the developmental period, but it is noteworthy also during postnatal 

development; for example, REST mediates the transcriptional downregulation of 

the KCC2 chloride transporter, which is involved in the GABAergic switch from 

excitatory to inhibitory transmission during neuronal maturation [31]. Likewise, 

REST has been shown to downregulate the expression of Grin2b and GluR2, 

which code for the NMDA and AMPA receptor subunits, respectively [32], [33], 
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[34], providing further support to its fundamental role in the modulation of genes 

involved in synaptic activity and plasticity. Another REST is also involved in the 

control of transmitter release, whereby it represses several genes involved in 

neurosecretion, like SNAREs [35], and in vesicle trafficking, like synapsin 1 [36]. 

All the above-reported functions have profound implications for the role of REST 

in a wide spectrum of disorders, as described in the following paragraphs. 

 

1.1.1. REST gene structure and isoforms 

 

The human REST gene spans 24 kb of genomic DNA; it is composed of three 

alternative 5’ non-coding exons associated with different promoters, three 

coding exons and an internal alternative exon that can be spliced into six 

alternative neuron- and disease-associated transcripts [37], [38]. At least six 

different splice variants of REST mRNA have been recognized, associated with 

neural gene expression and various pathological conditions [37], [39]. REST 1 

and REST-5FΔ code for isoform 2 and isoform 4 respectively, while the 

alternative exon present in REST-N62, REST-N4 and sNRSF introduces a 

premature stop codon, so that all the three transcripts encode isoform 3, also 

called sNRSF or REST4 (Fig. 3). 
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Figure 3. The human REST gene is characterized by three alternative 5’ 

non-coding exons (all together represented by the first white box), three 

coding exons (dark blue) and one internal alternative exon (light blue). 

Small boxes indicate the position of zinc finger domains that encompass the 

DNA binding domain (white), and the nuclear localization signal (red). The 

gene can be transcribed into 6 distinct splice isoforms, which codify for 4 

different REST protein isoforms as indicated. From: Faronato and Coulson, 

REST (RE1-silencing transcription factor), Atlas Genet. Cytogenet. Oncol. 

Haematol. vol. 3, no. 2, pp. 208–213, 2011. [40] 

 

Further studies in humans extended the amount of context-specific alternatively 

spliced isoforms, linking them to different types of cancer and providing more 

cues on the complexity of REST gene regulation [41], [42]. Among all these 

splice variants, the most studied is REST4, which encompasses the N terminal 

repressor domain and 5 of the 9 zinc fingers of the full-length REST sequence, 

thus lacking the critical domains required for REST-mediated transcriptional 

silencing of target genes. This neuron-specific isoform is conserved in human, 

mouse and rat [38], but its biological function is not completely understood. 

REST4 was first identified in 1998 by Palm and colleagues, who showed that it 
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has repressor activity even without a direct DNA binding [37]. In the following 

years, various papers were published supporting the idea of REST4 as a de-

repressor. REST4 is not able to bind the RE-1 site, as it lacks the 7th zinc finger 

domain, thought to be the responsible of DNA binding. Thus, a model was 

proposed whereby REST and REST4 interact to form an inactive heterodimer 

complex. REST4 is thus able to prevent the binding of REST to the RE-1 

sequence, causing de-repression [32]–[34]. Later, this function was also 

observed in the context of the regulation of glutamine synthase expression in 

the nervous system, where REST4 is thought to act by enhancing the hormonal 

response, while REST inhibits it in the non-neuronal tissues [47]. REST4 levels 

increase in response to a variety of stimuli in neuronal cells, such as chronic 

stressful events [48]. The REST4 sequence is formed by an insertion of 16 

nucleotides of the neural-specific N-exon, in the gene region between zinc 

fingers 5 and 6, followed by an in-frame stop codon (Fig. 4A). Its expression is 

regulated by the alternative splicing of a neural-specific Ser/Arg repeat-related 

protein of 100 kDa (nSR100/SRRM4), which mediates the inclusion of the 

above-mentioned neural-specific exon in the transcript. Moreover, REST directly 

silences the expression of nSR100, thereby preventing the expression of 

REST4 and other neural-specific AS variants in non-neural cells [45], [49] (Fig. 

4B). The presence of distinct REST isoforms is frequently overlooked in 

literature, however it has to be considered in order to avoid data 

misinterpretation [42]. 
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Figure 4. REST4 structure and activity are mediated by nSR100. (A) REST pre-

mRNA can be spliced into either the full-length form of REST protein or into its splicing 

variant REST4, lacking the C-terminal repressor-binding domain. Red box corresponds 

to the neural-specific exon (N). (B) Scheme of the reciprocal inhibition between REST 

and REST4 mediated by nSR100 in non-neuronal and neuronal cells. From: Raj B, et 

al. Cross-regulation between an alternative splicing activator and a transcription 

repressor controls neurogenesis. Mol Cell 2011;43: 843–50. [49] 
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1.1.2. Animal models to study REST function 

 

Several animal models have been developed over the years, which have been 

instrumental to better understand and define the function of REST in physiology 

and pathology. The first evidence of the requirement of REST for neuronal gene 

repression in vivo was demonstrated in 1998 by Chen and colleagues, through 

two different approaches [50]. Targeted gene deletion in mouse embryonic stem 

cells demonstrated the essential role of REST in development, as embryos 

bearing the complete deletion of REST did not survive beyond embryonic day 

11.5. At the same time, the mosaic expression of a dominant negative form of 

REST in chick embryos resulted in the alteration of the physiological pattern of 

expression of several genes, confirming the function of REST in controlling the 

proper spatial and temporal expression of neuronal genes [50], [51]. As the 

REST gene is conserved across vertebrates, its role in the acquisition of the 

neuronal phenotype has been evaluated in animal models from different 

species. REST is involved in the early ectodermal patterning in Xenopus laevis 

[52], [53], and in the proneural development of sensory neurons, through its 

homologue gene Charlatan, in Drosophila [54], [55]. The zebrafish model 

allowed studying behavior upon full deletion of REST. Mutant REST zebrafish 

presented locomotion defects and erratic swimming [56], a phenotype that was 

ascribed to maternal REST, which is involved in neurogenesis and responsible 

for the regulation of several target genes during development, including 

snap25a/b [57], [58]. 
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In more recent years, a number of REST conditional KO mouse lines have been 

generated, lacking REST in the excitatory neurons of the forebrain (CaMKII-

Cre-driven) [59] or during neurogenesis (Nestin-Cre-driven) [60]. In 2011, Hu 

and colleagues studied the progression of kindling-induced seizures in the 

CaMKII-Cre driven REST conditional mouse model. In the absence of REST, 

they observed an acceleration in the development of seizures, with a 

concomitant worsening in mossy fiber sprouting, proposing REST as a 

modulator of the epileptic phenomenon [59]. In contrast, the following year, the 

same group reported an opposite effect in a Nestin-Cre driven REST conditional 

mouse model of pentylenetetrazol (PTZ)-induced epileptogenesis. In this case, 

ablation of REST attenuated the susceptibility to seizures [61]. These conflicting 

data could be explained by the different neurochemical pathways activated by 

the different seizures model, and / or by the different cell populations where 

REST is selectively deleted (excitatory neurons of the basal forebrain in 

CaMKII-Cre mice, vs all neuronal cells in the Nestin-Cre model). This suggests 

that REST may have different functions in the signaling pathways activated by 

the various seizure-inducing treatments, and/or in the various targeted cell 

types. 

REST was demonstrated to have a central role in the determination of neuronal 

fate [62]. By using a mouse model lacking REST specifically in the neural stem 

cell population (NSC) (Nestin-Cre-driven), Gao and colleagues identified REST 

as a master negative regulator of adult neurogenesis, able to accelerate 

neuronal differentiation and the exit from the quiescent stem cells cycle [60]. 
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The following year, Aoki and colleagues confirmed the repressive role of REST 

on the expression of neuronal genes in neuronal progenitor cells in vitro, as well 

as in non-neuronal cells outside the CNS; however, they failed to identify 

significant abnormalities in the neurogenesis of the developing or adult brain in 

the absence of REST in vivo, showing that mice lacking REST in the brain grow 

into normal adults [63]. The evident discrepancy between the two studies is 

likely due to the different experimental models employed. Gao et al. deleted 

REST acutely in the adult dentate gyrus (DG), while, in the work of Aoki et al, 

REST deletion was performed at early embryonic stages, which possibly 

triggered the activation of complementary mechanisms in the brain, which would 

mask REST function in adulthood. Overall, these data support the idea that 

REST repressive function has to be studied in a cell-type, time-specific and 

tissue-specific manner. 

Furthermore, in the last years, attention has been focused on the consequences 

of REST overexpression. In wild type mice, an increased REST expression was 

shown to have a beneficial role in ageing, further improved by physical activity 

[64]. On the other hand, in a REST conditional overexpression model 

expressing the human REST gene in neural stem cells (Nestin-Cre-driven), 

REST has been shown to repress the Drd2 gene, which encodes a nigrostriatal 

receptor involved in the regulation of motor behavior, leading to locomotion 

deficits. Moreover, the homozygous overexpression of REST is embryonically 

lethal [65]. Once again, the overexpression of REST in different cells and 

tissues leads to very different, and sometimes opposite outcomes. Both the 
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complete deletion and overexpression of REST are lethal at the embryonic 

level, suggesting a physiological amount of REST is critical during embryonic 

neurogenesis. 

In 2016, Nechiporuk and colleagues developed a novel REST transgenic mouse 

line where REST is eliminated at the transcriptional level from all the coding 

exons, in order to remove it prematurely from neural progenitors. This is 

different from the previously published models, characterized by single coding 

exons deletion, without a complete loss of REST sequence. In fact, as 

demonstrated in the same work, the use of a conditional REST KO mouse that 

target the deletion of exon 2 (as in [59] and [60]), maintains the expression of 

the C-terminal part of the protein, that can mediate gene repression itself, 

through the recruitment of HDAC molecules to the chromatin remodeling 

complex. Similarly, previous transgenic models where exon 4 is specifically 

deleted (as in [63]), leave intact the sequence which codifies for the N-terminal 

domain of the protein, suggesting that each terminal domain can maintain 

repressive function even singularly [66]. 

The Nechiporuk model carries a GT cassette between non-coding exon 1a-c 

and the first coding exon, exon 2 (RESTGT). The GT cassette includes a splicing 

acceptor site (SA), a reporter gene encoding a β-galactosidase neomycin fusion 

gene (β-geo) and a polyadenylation sequence (pA) (Fig. 5A). Researchers 

used a two-step breeding scheme: firstly they crossed RESTGT mice to mice 

expressing Flp recombinase, obtaining the inversion of the GT cassette and the 

normal splicing of REST exons (RESTGTi) (Fig. 5B). Then, mice heterozygous 
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for the inverted allele were bred with mice bearing the pan-neuronal nestin-Cre 

transgene, resulting in re-inversion of the cassette, with the introduction of a 

stop codon upstream the SA and the remaining sequence of REST, obtaining 

the conditional knock out model (Fig. 5C) [67]. Animals bearing the pan-

neuronal ablation of REST survived into adulthood, even if they show smaller 

brains, with widespread apoptosis and high levels of DNA damage during the S-

phase of the cell cycle. These features are more severe when compared to the 

other previously developed models, since in those transgenic lines the loss of 

REST was not complete, as described before. By using this more precise 

model, authors suggest a functional role for REST repressor complex during 

neurogenesis, which results in the exit from the cell cycle, and the consequent 

neuronal differentiation. 

The mice we are currently breeding are those reported in Fig. 5B, with the 

inverted GT cassette. 
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Figure 5. REST cKO model with a GT approach. (A) A floxed REST mouse model 

was generated by introducing a gene trap in the REST gene, between non-coding exon 

1a-c and the coding exon 2. The GT cassette contains a SA site, a reporter gene 

encoding a β-galactosidase neomycin fusion gene (β-geo), and a pA sequence. 

Inverted triangles indicate target sites for Flp and Cre recombinases. (B) RESTGT mice 

crossed with mice containing the Flp transgene generate RESTGTi mice, with a correct 

splicing of REST transcript. (C) Conditional mutants result from mating RESTGTi mice to 

mice bearing the Cre transgene. From: Nechiporuk T, et al. The REST remodeling 

complex protects genomic integrity during embryonic neurogenesis. eLife. 2016; 5: 

e09584. [67]. 
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1.1.3. REST associated diseases  

  

Given the well-defined role of REST in development, it is understandable how 

alterations of its expression and/or activity have been linked to several 

disorders, making REST a potential molecular target for therapeutic approaches 

[68], [69]. The expression levels of REST are altered in a number of 

neurological diseases and, depending on the tissue and the pathology, REST 

acts under some circumstances as a protective factor, and under other 

conditions as a promoter of insult-induced neuronal death or dysfunction, as 

discussed in the following paragraphs. 

In brain, increased REST levels have been observed after epileptic or ischemic 

insults. In epilepsy, the role of REST is still debated. On the one hand, it seems 

to have a protecting role as it maintains cell homeostasis by downregulating 

genes like BDNF [70]; on the other hand, it appears to participate in the 

induction of the disease, mediating epileptogenesis by inhibiting genes such as 

HCN1, a hyperpolarization-activated, cyclic nucleotide-gated channel, involved 

in synaptic transmission and neuronal excitability. In vitro and in vivo studies 

with kainate, an agonist of glutamatergic receptor, have shown the upregulation 

of REST levels in hippocampal and cortical neurons [37], [59], [71], but whether 

such increase is protective or deleterious, is still not understood. In a rat model 

of global ischemia, REST is strongly upregulated in post-ischemic CA1 neurons, 

and linked to neuronal death through the suppression of the AMPA receptor 

subunit GluR2 [34], modulation of calcium permeability and the silencing of the 
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µ-opioid receptor 1 (MOR-1), which belongs to the family of G protein-coupled 

receptors, abundantly expressed in basket cells and GABAergic inhibitory 

interneurons of the CA1 region [72]. 

Only in recent years, research has focused on the involvement of REST in 

Alzheimer’s disease. Two initial studies have shown the relationship between 

REST overexpression and choline acetyltransferase (ChAT, the enzyme 

responsible for the synthesis of acetylcholine) downregulation in specific brain 

areas affected by the disease, both in patients’ brains and in a transgenic 

mouse model of AD [73], [74]. First evidences of the protective role of REST in 

neuropathologies appeared in the same year, with the work of Lu and 

colleagues, which investigated the role of REST in aging and AD. According to 

their data, REST increases during normal ageing in the brain, regulating the 

inhibition of a class of genes involved in cell death. On the contrary, in AD, 

frontotemporal dementia and dementia with Lewy bodies, REST is lost from 

neuronal nuclei and accumulates within autophagosomes in the cytoplasm, 

together with other pathological misfolded proteins, specifically in the regions 

more affected by the diseases (prefrontal cortex and hippocampus). As a 

consequence, several REST target genes are dysregulated, contributing to the 

pathogenesis of the disorder. On the basis of these observations, REST was 

presented for the first time as a neuroprotective modulator, able to protect 

neurons from oxidative stress and amyloid -induced toxicity [75]. Similar 

conclusions were also reached in the context of prion diseases. In this case, 

REST was shown to protect neurons both in vitro and in vivo, in prion-infected 
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animals. In diseased cells, REST translocates from the nucleus to the 

cytoplasm, where it is targeted by the autophagy pathway, while in healthy 

neurons REST mediates neuronal survival by regulating the Akt-mTOR and 

Wnt-β-catenin signaling pathways [76], [77]. 

The translocation of REST between nucleus and cytoplasm is therefore 

fundamental for its function, as initially shown by its involvement in Huntington’s 

disease (HD). Nuclear accumulation of REST in neurons of the striatum and 

cortex correlated with the expression of the mutant form of huntingtin (htt), the 

main protein responsible for the pathology. In this case, the nuclear 

accumulation of REST was shown to induce the repression of important target 

genes, amongst which BDNF [9], [10]. Subsequent studies have shown that the 

retention of REST into the cytoplasm is mediated by a complex between wild 

type htt, REST, RILP and Dynactin p150-Glued; in the diseased brain, instead, 

mutant htt does not support the formation of such complex, which eventually 

results in the pathogenic accumulation of REST inside the nucleus [7], [8]. 

In recent years, many studies have described alterations of REST in cancer, 

where it can act as either tumor suppressor or oncogene, depending on the 

cellular context [78]. In some cell types, such as neural tumors 

(medulloblastomas, neuroblastomas and glioblastomas), REST stimulates 

proliferation, preventing cell differentiation and acting as an oncogene [79]–[81]. 

In epithelial cells, instead, high REST levels prevent proliferation through the 

inhibition of various signaling cascades, such as the phosphoinositide 3-kinase 

(PI3K)–Akt and the inositol 1,4,5-triphosphate (IP3)-metabolizing F actin-
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bundling IP3 kinase (ITPKA), thus acting as a tumor suppressor in carcinomas 

of the lung (small-cell lung cancer [SCLC]) and breast [82]–[84]. 

Altogether, data in the literature indicate that REST plays a multifaceted role in 

the diseases of the nervous system. It is therefore mandatory to understand the 

disease-specific molecular mechanisms underlying REST malfunctioning, to 

devise novel therapeutic approaches. 
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1.2.  Neuroinflammation and Multiple sclerosis 

 

Neuroinflammation is a key process in the complex biological response of the 

brain to insults. It is a symptom of many diseases and can influence the 

outcome and the severity of the pathology itself. The overall effect of 

neuroinflammation is the result of a fine balance between a wide array of 

cytokines, chemokines and growth factors, all of which may exert either 

neuroprotective or neurotoxic effects. 

Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the 

CNS that affects approximately 2.5 million people worldwide, especially young 

adults [85]. The pathogenesis of the disease begins with the activation of 

inflammatory pathways, due to an inappropriate activation of T cells that trigger 

an immune response against myelin. T cells can penetrate into the CNS through 

the blood-brain barrier, producing cytokines and causing damage to myelin and 

surrounding tissues. The resulting demyelinated plaques in the white matter 

lead to neurodegeneration, with brain atrophy and ventricular enlargement in 

the progressive stage of the disease [86], [87]. In approximately 85% of 

patients, the disease starts with a phase of relapses and remissions (relapsing-

remitting MS, RRMS) that, in 80% of the cases, evolves and becomes chronic 

into a progressive phase after 10-15 years (secondary progressive MS, SPMS) 

[85]. Ten to fifteen percent of patients do not go through the relapsing phase 

and are affected by an acute form of the disease from the onset, the so-called 

primary progressive MS (PPMS) [88], [89]. 
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Progressive forms of MS are characterized by chronic inflammation, 

demyelination in white and gray matter, and diffuse neurodegeneration within 

the CNS associated with impaired synaptic function, loss of network connectivity 

and, ultimately, axonal loss. These changes are possibly amplified by 

pathogenic mechanisms related to brain ageing and accumulated disease 

burden. Mechanisms leading to neurodegeneration include microglia activation, 

chronic oxidative injury, altered ion channel activity, accumulation of 

mitochondrial damage in axons resulting in chronic cell stress and imbalance of 

ionic homeostasis, ultimately leading to neuronal death. Chronic inflammatory 

processes that continuously disturb neuronal homeostasis drive 

neurodegeneration, so the clinical outcome depends on the balance between 

inflammation and any remaining capacity for neuronal self-protection and repair. 

In recent years, tremendous progress has been made in identifying novel 

mechanisms and new medications that regulate immune cell function in MS. 

However, a significant unmet need is the identification of the mechanisms 

underlying neurodegeneration that associates with the progressive form of MS, 

as patients continue to manifest brain atrophy and disability despite current 

therapies. Due to the complexity and the large spectrum of symptoms of MS, 

various models have been established in order to experimentally recreate the 

clinical course, immunology and pathology of the disease. 
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1.2.1. MS in vivo models: the EAE mouse models 

 

Different in vivo models are currently being used to study MS to confirm the 

efficacy and safety of pharmacological treatments tested in vitro. Since many 

human and animal inflammatory diseases are caused by viral infection, several 

models have been developed using viral agents like the Semliki Forest virus, 

the Theiler’s murine encephalomyelitis virus or the mouse hepatitis virus [90], 

[91]. Viruses either have a direct effect on neurons, with the myelin damage as 

a secondary event, or attack directly myelin causing neuronal loss as a 

consequence. Models based on the delivery of toxins induce demyelination by 

focal application of specific substances (like ethidium bromide or 

lysopvhosphatidylcholine, [92], [93]) or by systemic administration of the toxin 

(such as the cuprizone model [94]). They present some limitations, but remain 

one of the most useful tools to study human demyelinating diseases. In order to 

understand the pathogenic mechanisms of MS, several transgenic mice have 

also been generated with deletion or overexpression of pathogenically relevant 

genes, such as those encoding T cell receptors, major histocompatibility 

complex molecules, cytokines and neurotrophic factors and their receptors [95], 

[96]. Although these mice spontaneously develop the disease, their use has 

remained limited. Last but not least, immunization of susceptible animals with 

CNS antigens gives rise to a spectrum of inflammatory disorders collectively 

named EAE (Experimental autoimmune encephalomyelitis). 
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EAE is the most common animal model for MS, sharing many clinical and 

physiopathological features with the human disease. Most of the current 

knowledge about MS originates from this model. Various types of EAE models 

have been developed to analyze the pathological features of the human 

disease. In particular, two approaches can be distinguished: actively-induced 

EAE (aEAE; active immunization) or passively transferred EAE (pEAE; transfer 

of encephalitogenic cells from an immunized animal). The easiest inducible 

model is aEAE in mice, considered as the "gold standard" of 

neuroimmunological animal models by many researchers in the field [97]. In the 

aEAE, the animal is immunized with an intraperitoneal injection of the selected 

antigen, dissolved in complete Freund’s adjuvant and injected with pertussis 

toxin, on the day of immunization and two days later. The immunogenic 

complex induces the activation of myelin-specific T lymphocytes, which can 

cross the blood brain barrier and migrate into the CNS, activating the 

inflammatory processes. Symptoms usually appear 10 - 14 days after 

immunization, with an ascending flaccid paralysis (Fig. 6). The phenotype of 

EAE varies depending on the genetic background of the animals, the source of 

the antigenic material and the mode of application of the antigen. Currently, the 

most used and validated models are based on the injection of proteolipid protein 

(PLP)139-151, which induces a relapsing-remitted form of the disease in SJL 

mice, or myelin oligodendrocyte glycoprotein (MOG)35-55 that triggers chronic-

progressive EAE in C57BL mice [96], [98]. 
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Figure 6. Clinical course of a MOG35-55 EAE mouse model. Clinical scoring system 

(A) and representative disease course (B) of EAE induced by MOG35-55 immunization 

protocol [99]. 

 

1.2.2. MS in vitro models  

   

A more specific approach to study the cellular and molecular pathways involved 

in neuroinflammation, concerns the use of single cells or mixed cell cultures. 

Distinct primary cell cultures are used according to the feature that has to be 

investigated: microglia cells are key factors to study the inflammatory response 

against several types of insults, such as trauma, ischemia, and 

neurodegeneration [100], while oligodendrocyte cultures are used to study the 

re-myelination process [101]. The contribution of astrocytes to MS remains not 

fully elucidated, although recent literature indicates they are active players 

during neurodegeneration, inflammation and re-myelination [102], [103]. Indeed, 

astrocytes play a role in the evolution of the pathology, contributing to tissue 

damage on the one side, and confining inflammation on the other side, with the 

formation of glial scars typical of chronic MS lesions [104]. 
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Neuronal cultures are used to analyze axonal damage and neurodegeneration 

in MS. When treated with cytokines, which mimic the typical inflammatory milieu 

of the neuro-inflammation process, they provide a useful acute model of 

inflammation [105]–[108]. In order to go closer to the physiological scenario, 

various co-cultures systems have been established, such as dorsal root ganglia 

cultured together with Schwann cells or neuronal-glia mixed cultures, in direct 

contact or separated by special inserts, in order to determine whether direct 

cell-cell contacts are a prerequisite for the observed effects [89], [95], [96]. 
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 AIM OF THE STUDY 2.

 

Modifications of molecular pathways involved in neuronal development is an 

appealing strategy towards therapy for neurodegenerative diseases like chronic 

MS. REST controls a large cluster of genes regulating neurogenesis and is 

involved in several neurodegenerative disorders. In a pilot study, we have 

observed that REST was overexpressed in the spinal cord of mice affected by 

EAE, suggesting that its dysregulation might be an important factor in the 

disease. Whether elevated REST levels are pathogenic or the expression of an 

endogenous protective response to disease is unclear. In both cases, REST 

appears to be a very promising target to interfere with neuronal fate during 

neurodegeneration. 

Starting from these observations, our overall goal has been to characterize the 

role of REST overexpression in the CNS of mice with EAE, by assessing (i) the 

expression levels of different REST isoforms and REST target genes in the 

spinal cord of EAE-affected mice, (ii) the cell-specificity of REST overexpression 

in EAE, investigating whether it is attributable to either neuronal overexpression 

or proliferation of REST-expressing glial cells, (iii) REST activity under 

inflammatory conditions in vitro, testing the hypothesis that neurotoxic pro-

inflammatory molecules might trigger an activation of REST in injured neurons. 

 

 



 

28 

 

 MATERIALS AND METHODS 3.

3.1. Primary cultures of neurons 

 

Primary cortical neurons were prepared from C57BL/6J mice (Charles River 

Laboratories, Calco, Italy) at embryonic day 17, dissected in ice-cold Hank’s 

Balanced Salt Solution (HBSS), incubated with trypsin 0.25% (#25050-014, 

Gibco) for 30 min at 37°C, and mechanically dissociated. Postnatal cortical 

neurons were prepared from REST lox/lox mice [67] at postnatal day 0, 

dissected in ice-cold HBSS, incubated with trypsin EDTA 0.25% (#25200-056, 

Gibco) for 6 min at 37°C and mechanically dissociated. Neurons stained with a 

vital dye (Trypan blue; Sigma-Aldrich) were counted by using a Burker chamber. 

Neurons were plated on poly-L-lysine (0.1 mg/ml; Sigma-Aldrich)-treated 18 mm 

glass coverslips at a density of 50,000 cells per well, or on poly-D-lysine 6-well 

Petri dishes (0.1 mg/ml in H2O, #P6407-5mg, Sigma-Aldrich) at a density of 

500,000 cells per well. Cells were grown in Neurobasal Medium for embryonic 

neurons (#21103049, Gibco) or Neurobasal A Medium for postnatal neurons 

(#10888022, Gibco) plus B-27 2% (#17504044, Gibco), Glutamax 1% 

(#35050038, Gibco) and penicillin-streptomycin 1% (#15140122, Gibco). 
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3.2. Pharmacological treatments 

  

Neuronal cultures were treated with pro-inflammatory cytokines, singularly or in 

combination: IL-6 (20 ng/ml), TNF-α (20 ng/ml), IL-1β, (20 ng/ml), IFN-γ (20 

ng/ml) (PeproTech Inc., Rocky Hill, NJ, USA) or with the same volume of BSA 

0.1% in H2O as control. Drugs were added at different time points and cells 

collected at 7 DIV or 14 DIV. 

 

3.3. RNA preparation and qRT-PCR 

 

Total cellular RNA was extracted using Trizol (Qiagen) and RNeasy MinElute 

Cleanup Kit (#74204, Qiagen), and cDNA was synthesized starting from 0.5 µg 

of RNA, using the SuperScript IV Reverse Transcriptase kit (Invitrogen) and 

following manufacturer’s instructions. The cDNA was amplified and quantified 

by quantitative real-time PCR with the SYBR Green Master Mix (Qiagen) and 

Bio-Rad CFX96 Real-Time PCR Detection System. Transcript levels from each 

sample were normalized to the following housekeeping genes: 18S, β-actin, 

GAPDH, HPRT1 and Tubulin2. The sequences of the primers used are the 

following: 

 

18S-Fw  5’-CGGACAGGATTGACAGATTGAT-3’ 

18S-Rv  5’-CCAGAGTCTCGTTCGTTATCG-3’ 
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β-Actin-Fw  5’-AAGTGGTTACAGGAAGTCC-3’ 

β-Actin -Rv  5’-ATAATTTACACAGAAGCAATGC-3’ 

GAPDH-Fw  5’-GAACATCATCCCTGCATCCA-3’ 

GAPDH-Rv  5’-CCAGTGAGCTTCCCGTTCA-3’ 

HPRT1-Fw  5’-AAGCTTGCTGGTGAAAAGGA-3’ 

HPRT1-Rv  5’-TTGCGCTCATCTTAGGCTTT -3’ 

Tubulin2-Fw  5’-CAAGGCTTTCCTGCACTGGT-3’ 

Tubulin2-Rv  5’-AACTCCATCTCGTCCATGCC-3’ 

REST-Fw  5’-ACCACTGGAGGAAACACCTG-3’ 

REST-Rv  5’-ATGGCTTCTCACCTGAATGAGTC-3’ 

REST4-Fw  5’-ACCACTGGAGGAAACACCTG-3’ 

REST4-Rv  5’-CTCACCCAGCTAGATCACACTC-3’ 

  

For the Nanostring analysis of REST target and non-target genes, fluorescently 

labeled probes were designed and synthesized by Nanostring Technologies Inc. 

(Seattle, WA). One hundred ng of total RNA per sample, prepared as described 

above, was processed in the Center for Genomic Science, Istituto Italiano di 

Tecnologia, Milano (Italy), following standard procedures. For the sequence of 

the probes refer to Paonessa et al. 2016. Data were analyzed by using the 

nSolverTM Analysis Software Version 2.5. 
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3.4. Immunoblotting 

 

Dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

immunoblotting were performed according to standard procedures. Both tissues 

and neuronal cells were lysed in RIPA buffer (10 mM Tris-HCl pH 7.4, 140 mM 

NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium 

deoxycholate) supplemented with proteases and phosphatases inhibitors 

(complete EDTA-free protease inhibitors, #4693116001, Roche Diagnostic; 

serine/threonine phosphatase inhibitor and tyrosine phosphatase inhibitor, 

#P5726, #P0044, Sigma) and equal amounts of proteins were loaded, as 

determined by BCA assay (#23225, Thermo Scientific). Samples were 

separated on 6-10% SDS polyacrylamide gels and proteins transferred to a 

nitrocellulose membrane with 0.2 μm pore size (#10600001, GE Healthcare). 

Membranes were washed in TBS containing 0.1% Tween (TBST) and blocked 

with 5% BSA in TBST buffer for 1 h at room temperature (RT). Primary 

antibodies were diluted in blocking solution and incubated overnight at 4°C in a 

humidified chamber. Primary antibodies used: anti-REST 1:1000 (#07-579, 

Millipore), anti-Calnexin 1:70000 (#ADI-SPA-860, Enzo Life Sciences), anti-

REST4 1:1000 (homemade, kindly gifted by Dr. Uchida, Yamaguchi University 

Graduate School of Medicine), anti-pCREB 1:500 (#87G3, Cell Signaling), anti-

CREB 1:1000 (#86B10, Cell Signaling). Membranes were washed 3 times in 

TBST to eliminate primary antibody in excess. Appropriate secondary 

horseradish peroxidase (HRP)-conjugated antibodies were diluted in blocking 
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solution and incubated for 1 h at RT. Membranes were washed 3 times in TBST 

to remove secondary antibodies in excess and detected using the ECL™ 

Western Blotting Detection Reagents (#GEHRPN2106, GE Healthcare 

BioSciences, Buckinghamshire, UK). Images were acquired via the ChemiDoc 

MP System (BioRad). 

 

3.5. EAE induction and scoring 

 

Chronic EAE was induced in female mice (6–8 weeks of age, weighing 18.5 ± 

1.5 g) by subcutaneous injection at two different sites in the right and left flanks 

with an emulsion (200 µl total) containing 200 µg myelin oligodendrocyte 

glycoprotein peptide spanning amino acids 35–55 (MOG35–55) (Espikem) in 

incomplete Freund’s adjuvant (Sigma-Aldrich) supplemented with 1200 µg 

Mycobacterium tuberculosis (strain H37RA; Difco). Mice were injected in the tail 

vein with 400 ng pertussis toxin (Sigma-Aldrich) in 100 µl of phosphate buffer 

saline solution (PBS, pH 7.6) immediately, and 48 h after the immunization. The 

mice were scored daily for clinical manifestations of EAE on a scale of 0–5 

[110]. Body weight and clinical score (0, healthy; 1, limp tail; 2, ataxia and/or 

paresis of hind limbs; 3, paralysis of hind limbs and/or paresis of forelimbs; 4, 

tetra paralysis; 5, moribund or death) were recorded daily. 
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3.6. Immunohistochemistry and microscopy 

 

Different immunostaining protocols have been followed to label cells cultured in 

vitro and sections of tissue samples. 

Brains and spinal cords were obtained from transcardially perfused naïve and 

EAE adult animals and used for immunohistochemistry. Tissues were fixed in 

4% PFA in PBS at 4°C overnight, equilibrated in 30% sucrose and embedded in 

OCT tissue frozen medium. Coronal sections (14 μm) were cut with a cryostat 

and stored at −20°C before immunostaining. Sections were rehydrated in PBS 

for 5 min and incubated in the antigen retrieval solution (10 mM sodium citrate, 

pH 6.0, 0.1% Tween-20) at 95°C for 10 min. Slices were subsequently blocked 

with 5% BSA in PBS and incubated overnight at 4°C in the following primary 

antibodies: anti-REST 1:300 (homemade, kindly gifted by Prof. Gail Mandel, 

Howard Hughes Medical Institute), anti-NeuN 1:1000 (#DAB377, Millipore), anti-

s100β 1:200 (#287003, Synaptic Systems), anti-Iba-1 1:1000 (#019-19741, 

Wako). Sections were then stained with secondary species-specific antibodies 

conjugated to Alexa-488 or Alexa-647 (Invitrogen, Waltham, MA), and 

counterstained with DAPI to reveal nuclei. After washes, sections were mounted 

on glass coverslips with Mowiol. Images were acquired at an SP8 confocal 

microscope (Leica Microsystems GmbH, Wetzlar, Germany) equipped with 63x 

and 40x objectives. Images were visualized and processed by using the Leica 

LAS X, ImageJ and Photoshop software programs. 
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3.7. Patch-clamp electrophysiology 

 

All experiments were performed using an EPC-10 amplifier controlled by the 

PatchMaster software (HEKA Elektronik, Lambrecht/Pfalz, Germany) and an 

inverted DMI6000 microscope (Leica Microsystems GmbH). Patch electrodes 

fabricated from thick borosilicate glasses were pulled to a final resistance of 4−5 

MΩ. Recordings with leak current > 100 pA were discarded. All recordings were 

acquired at 10-20 kHz. Primary mouse cortical neurons exposed at 7 DIV for 20 

min to IL-1β or to the respective vehicle were used for patch-clamp recordings 

at 14 DIV. The standard Tyrode’s extracellular solution contained (in mM): 140 

NaCl, 4 KCl, 2 MgCl2, 2 CaCl2, 10 HEPES, 5 glucose, pH 7.4, with NaOH and 

osmolarity adjusted to ~315 mOsm/l with mannitol. The intracellular (pipette) 

solution was composed of (in mM): 126 K gluconate, 4 NaCl, 1 MgSO4, 0.02 

CaCl2, 0.1 BAPTA, 15 glucose, 5 Hepes, 3 ATP, and 0.1 GTP, pH 7.3. 

Experiments were carried out at RT (20–24°C). All parameters were analyzed 

using the Minianalysis program (Synaptosoft, Leonia, NJ, USA) and Prism6 

(GraphPad Software, Inc.) software. Miniature postsynaptic currents (mPSCs) 

were recorded in voltage-clamp configuration at -70mV of membrane potential 

in the presence of tetrodotoxin (TTX, 300 nM) in the extracellular solution to 

block the generation and propagation of spontaneous action potentials. To 

isolate mEPSCs currents, bicuculline methiodide (30 μM), and (2S)-3-[[(1S)-1-

(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl] (phenylmethyl)phosphinic acid 

hydrochloride (CGP 55845; 5 μM)  were added to block GABA A and GABA B 



 

35 

 

receptors, respectively. All reagents were purchased from Sigma Aldrich or 

Tocris (Tocris, Avonmouth, Bristol, UK). 

 

3.8. Lentivirus production and infection procedures 

 

Third-generation lentiviruses were produced by transient four-plasmid co-

transfection into HEK293T cells using the calcium phosphate transfection 

method. Supernatants were collected, passed through a 0.45 μm filter, and 

purified by ultracentrifugation as previously described. Viral vectors were titrated 

at concentrations ranging from 1 × 108 to 5 × 109 transducing units (TU)/mL and 

used at a multiplicity of infection (MOI) of 10. The efficiency of infection 

calculated from the ratio between neurons expressing GFP and total cells 

stained with DAPI, ranged between 70% and 90%. Primary cortical neurons 

were infected at 1 DIV and treated with IL-1β at 7 DIV for 20 min. Experiments 

were performed at 14 DIV. 

 

3.9. Statistical analysis 

 

The statistical analysis is described in the figure legends. Data are given as 

means ± SEM for n = sample size. To check for normal distribution of data, the 

D’Agostino-Pearson’s normality test was used. To compare data between two 

groups that were not normally distributed, we used the non-parametric Mann–
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Whitney’s U-test. Two-way ANOVA was used for comparison among multiple 

experimental conditions. Statistical significance was set at P-value < 0.05, using 

the GraphPad Prism statistical software 7.03.  



 

37 

 

 RESULTS 4.

4.1. Optimization of an experimental toolkit to 

unambiguously identify full-length REST and 

REST4. 

 

Most published studies failed to report the size of the immunoreactive band of 

REST when examined by western blotting, eventually leading to data 

misinterpretation and controversial findings. Because of this and because of the 

very low expression of REST in the adult brain, the detection of REST-specific 

bands by biochemical experiments is a challenge. Moreover, as discussed in 

the introduction, in mice the REST gene is mostly expressed as a full-length 

transcript, but the REST4 splicing variant can also occur. Thus, we first 

optimized a western blotting protocol to unambiguously identify the REST 

messenger and protein. To distinguish between REST- and REST4-dependent 

effects, specific qRT-PCR primers were designed, and specific antibodies were 

tested, to selectively recognize full-length REST and REST4 at the mRNA and 

protein level. 

Kainic acid (KA) treatment has been reported to increase REST protein levels in 

the cortex and hippocampus in rodents [37], [59]. Thus, this treatment was 

chosen to identify REST-specific immunoreactive bands. Primary mouse cortical 

neurons in vitro were exposed to KA (100 μM) for 20h and the nitrocellulose 

membrane was probed with the Millipore #07-579 anti-REST antibody. An 
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appreciable increase in the intensity of a double band around 180 kDa was 

observed, compared to non-treated, control samples. This band was identified 

as phosphorylated REST (Fig. 7A left, experiment performed by Dr. Rocchi). 

Similarly, cell extracts of REST lox/lox primary cortical neurons infected with 

CRE or deltaCRE expressing lentiviral vectors, were subjected to KA treatment. 

We observed a significant decrease in the intensity of REST immunoreactive 

band in samples infected with the CRE-carrying lentivirus, ultimately confirming 

the specificity of the REST antibody used (Fig. 7A, right). Subsequently, mice 

were treated with saline or KA (30 mg/Kg) and followed for 24 h and 48 h 

according to the published protocols. Various CNS areas were isolated from 

vehicle- and KA-treated animals and analyzed by western blotting: cerebellum, 

cortex, hippocampus, striatum, lower and upper spinal cord. The nitrocellulose 

membrane was probed with the same Millipore #07-579 anti-REST antibody, 

which recognizes only the full-length form of the protein (Fig. 7B). According to 

the quantification of the double band just above the 150 kDa marker, REST 

immunoreactivity increased in cortex of the animals treated with KA, as reported 

in literature. The western blotting protocol was thus optimized to clearly 

determine REST immunoreactivity and employed for all the subsequent 

biochemistry experiments. 

In order to distinguish between REST and REST4 mRNAs, we designed 

specific primers able to selectively recognize the full-length form of REST 

(REST-FL), but not REST4, and vice versa. Figure 7C shows the amplification 
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curves obtained using REST-FL and REST4-specific primers on plasmids 

coding full-length REST (myc-REST, left) and REST4 sequence (right).  

Moreover, REST4-specific antibodies were tested transfecting Neuro2a 

neuroblastoma cells (N2a) with three distinct plasmids coding for REST4, 

human REST (hREST) and full-length myc-tag REST (myc-REST), respectively. 

This antibody is able to recognize the C-terminal epitope SECDLVG of REST4 

sequence, which belongs to the first part of N-exon [48]. In figure 7D, the first 

membrane was probed with an anti-GFP antibody able to recognize the GFP 

sequence cloned in the REST4 and hREST vectors (Fig. 7D left). The second 

and third membranes were probed with the anti-REST4 and anti-REST full-

length antibodies respectively, confirming the specificity of the two antibodies for 

their respective REST isoforms (Fig. 7D middle and right). 
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Figure 7: Different REST isoforms are discriminated at the mRNA and 

protein level. (A) Representative western blot analysis (left) and 

quantif ication (middle) of REST protein levels in mouse cortical neurons 

treated with vehicle (CTRL) or KA (100 μM) for 20 h. Representative 

western blot of REST lox/lox mouse cortical neurons infected with CRE or 

deltaCRE expressing lentiviral vectors and treated with  vehicle (CTRL) or 

KA (100 μM) for 20 h (right). (B) Representative immunoblot (left) and 

quantif ication (right) of brain samples from mice treated with KA (30 

mg/Kg), for the indicated times. Values of KA animals are expressed as % 

of control mice. Data are expressed as means ± s.e.m. Anti-REST 

antibodies: Millipore #07-579; anti-calnexin antibodies were used to verify 

equal loading. (C) qRT-PCR amplif ication curves obtained using  REST-FL 

and REST4-specific primers, using a vector containing the ful l- length REST 

sequence (myc-REST, left) or the REST4 sequence (right)  as template. (D) 

Representative western blot experiment showing N2a cells  not transfected 

(NT) or transfected with plasmids coding REST4, hREST and myc-REST. 

Membranes were probed with different antibodies: anti -GFP (left), anti-

REST4 (middle) and anti-REST full-length (#07-579, right).  
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4.2 REST is overexpressed in the spinal cord of 

mice affected by EAE 

 

From a pilot study conducted on spinal cord samples of EAE-affected mice, full-

length REST appeared to be overexpressed immediately after the onset of the 

disease symptoms. Such overexpression was accompanied by downregulation 

of one of its target genes, the voltage-gated sodium channel Nav1.2, confirming 

REST transcriptional repression and suggesting neuronal dysregulation at this 

early stage (data not shown). Starting from this observation, full-length REST 

mRNA levels were firstly measured at different relevant stages of EAE, from the 

asymptomatic (7 days post immunization, dpi) to the chronic phase (14 days 

post-onset, dpo), and in various CNS regions. The most significant increase of 

REST expression was observed at 4 dpo, during the peak of the disease 

symptoms, in both the upper and lower regions of the spinal cord (Fig. 8A, 

experiments performed by Ms. V. Petrosino). Spinal cords were extracted from 

naïve and EAE-affected mice at the same time point and subjected to SDS-

PAGE and immunoblotting analysis. The results showed a significant 

upregulation of REST protein levels in the lower spinal cord (Fig. 8B left), while 

in the upper spinal cord REST levels were comparable between EAE-affected 

and naïve mice (Fig. 8B right). 

Analysis of REST4 at the same disease point revealed a significant upregulation 

of mRNA levels restricted to the upper spinal cord of EAE-affected mice (Fig. 

8C left). This, however, was not paralleled by an increase of protein levels, 
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which instead showed a trend to be downregulated in both upper and lower 

spinal cord samples (Fig. 8D left). 
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Figure 8. Expression levels of full-length REST and REST4 mRNA and 

protein in the spinal cord of EAE mice at 4 dpo. (A) qRT-PCR analysis of 

full-length REST mRNA levels in the lower (left) and upper (right) spinal 

cord samples from naïve and EAE mice. Lower spinal cord: n = 10 naïve 

and 15 EAE animals; upper spinal cord: n = 6 naïve and 8 EAE animals. (B) 

Representative immunoblots (top) and quantif ication of REST protein level 

(bottom). Lower spinal cord: n = 6 naïve and 6 EAE animals; upper spinal 

cord: n = 3 naïve and 3 EAE animals. (C) qRT-PCR analysis of REST4 

mRNA levels. Lower spinal cord: n = 25 naïve and 28 EAE animals; upper 

spinal cord: n = 8 naïve and 10 EAE animals. (D) Representative 

immunoblot (top) and quantif ication of REST4 protein level (bottom). Lower 

spinal cord: n = 5 naïve and 6 EAE animals; upper spinal cord: n = 3 naïve 

and 3 EAE animals. Anti-calnexin antibodies were used in all blots to verify 

equal loading. Values of EAE animals are expressed as % of naïve mice.  

Data are expressed as means ± s.e.m. *p < 0.05, ** p < 0.01, *** p < 0.001, 

Mann-Whitney U-test. 
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4.3. The expression of REST target genes is 

reduced in the spinal cord of EAE-affected mice 

 

A comprehensive analysis of REST-target and non-target genes expression in 

the spinal cord was performed using the NanoString nCounterTM gene 

expression system, a technology able to capture and count individual mRNA 

transcripts without amplification [111]. Fig. 9 summarizes the results of two 

independent experiments, for a total of 4 mice per experimental group. The fold 

change EAE-affected / naïve is reported for the selected 80 genes, including 

REST-target (RE1-containing) and non-REST-target (non-RE1) genes, and 

keeping the results of the first and second experiment separated to appreciate 

the inter-experimental variability. Values are reported in a color-coded fashion, 

where blue / red colors correspond to genes that are respectively less / more 

expressed in EAE samples than in naïve samples. The data from the two 

experiments are consistent, showing a trend for RE1 genes to be 

downregulated in the spinal cord region. On the other side, the expression of 

most ‘non-RE1’ genes is very similar between EAE-affected and naïve mice, 

with some genes (particularly those belonging to cytokine signaling pathways) 

being clearly upregulated in samples from EAE-affected mice. 
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Figure 9: Transcriptional analysis of lower spinal cord samples from 

naïve and EAE-affected mice at 4dpo. mRNA from lower spinal cord 

(LSC) samples of EAE (4 dpo) and naïve animals was analyzed through the 

nCounter system. Two animals per group for the first experiment (values 

averaged in LSC1) were analyzed, and two for the second experiment 

(values averaged in LSC2). Values are normalized against f ive 

housekeeping genes (PPIA; Pgk1; Hdac3; GAPDH; HPRT) and expressed 

as fold change EAE/naïve. The blue color corresponds to genes that are 

less expressed in EAE compared to naïve, while red color indicates a 

higher expression in EAE samples.   
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4.4. Characterization of the cell-specificity of REST 

overexpression in EAE-affected mice 

 

Western blotting analysis does not allow to identify which cell population(s) are 

involved in REST overexpression. Thus, we sought to visualize REST 

localization by immunohistochemistry and confocal microscopy in spinal cord 

tissues derived from naïve and EAE mice. Immunostaining was performed on 

spinal cord slices by using anti-REST antibodies and anti-NeuN antibodies as 

marker of neuronal nuclei (Fig. 10A). REST immunoreactivity was localized 

mainly to nuclei, and all neuronal nuclei were REST-positive. The total number 

of REST-positive cells remained constant overall but, in samples derived from 

EAE-affected mice, neurons decreased significantly, most likely as a 

consequence of the pathology that can induce appreciable neuronal death in 

the lower part of the spinal cord at this stage of the disease (Fig. 10A, left). 

Consistent with these observations, there was a striking increase in the number 

of REST-positive non-neuronal cells in samples from EAE-affected mice (Fig. 

10A, middle). In order to address the contribution of neuronal REST to the 

global REST overexpression, the intensity of REST fluorescence was measured 

in NeuN-positive nuclei, unveiling a significant increase in neuronal REST 

expression in EAE samples, compared to naïve (Fig. 10A, right). 

To assess the identity of the glial cell population(s) that contributed to REST 

overexpression, co-immunostaining with anti-REST antibodies and anti s100β 

or anti-Iba-1 antibodies to label astrocytes or microglial cells, respectively, was 
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performed, and slices were analyzed by confocal microscopy. Quantification of 

Iba-1-positive cells showed a noticeable upregulation of microglial cells, as 

consistent with the fact that microgliosis is a key neuropathological feature of 

EAE (Fig. 10B, left). An increased number of REST-positive microglial cells in 

EAE samples (Fig. 10B, middle) and a concomitant increase in REST 

fluorescence intensity in these cells (Fig. 10B, right), were observed. Thus, 

more microglial cells express REST in EAE, and at higher levels. 

Similarly, the analysis of s100β immunoreactivity showed an upregulation also 

in the number of astrocytes (Fig. 10C, left), while, the number of REST-positive 

astrocytes remains constant between the two experimental groups (Fig. 10C, 

middle). Nevertheless, they show an upregulation in the expression of REST 

fluorescence intensity (Fig. 10C, right). 
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Figure 10. Cell-specificity of REST overexpression in lower spinal cord 

samples from naïve and EAE mice at 4 dpo. Lower spinal cord tissue 

samples from naïve and EAE mice at 4 dpo were processed for 

immunofluorescence with the following antibodies: anti -REST antibodies 

(red in all panels); anti-NeuN (neurons, panel A), anti-Iba1 (microglia, panel 

B) and anti-s100  (astrocytes, panel C); nuclei were stained with DAPI 

(blue in all panels). Scale bars: 20 μm. In each panel, representative 

confocal images are shown at the top, while the corresponding 

quantif ication of f luorescence data is at the bottom. (A) Left: Quantif ication 

of NeuN+ cells. All NeuN+ cells are also REST+. Middle: Quantif ication of 

REST+ /NeuN- cells. Right: Quantif ication of REST fluorescence intensity in 

NeuN+ nuclei. n = 12-18 slices, from 4 animals per experimental group. (B) 

Left: Quantif ication of Iba1+ cells. Middle: Quantif ication of REST+/Iba1+ 

cells. Right: quantif ication of REST fluorescence intensity in Iba1+ cells. n 

=7-18 slices, from 4 animals per experimental group. (C) Left: 

Quantif ication of s100+ cells. Middle: Quantif ication of REST+/s100+ 
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cells. Right: Quantif ication of REST fluorescence intensity in s100+ nuclei. 

n =8-14 slices, from 4 animals per experimental group. Data are expressed 

as means ± s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001, Mann-Whitney U-

test. 
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4.5. Characterization of REST expression under 

inflammatory conditions in vitro 

4.5.1. IL-1β treatment at 7 DIV induces a transient 

increase in REST mRNA/protein expression and 

CREB phosphorylation 

 

To test the postulate that neurotoxic pro-inflammatory molecules might trigger an 

activation of REST in injured neurons, young (7 DIV) and mature (14 DIV) 

primary mouse cortical neurons were exposed for 24 h to specific inflammatory 

cytokines (TNF-α, IL-1β, IFN-γ, IL-6 and a mix of all of them) (20 ng/ml) involved 

in EAE pathogenesis, and REST expression was assessed at the mRNA and 

protein level. REST mRNA and protein were significantly upregulated selectively 

upon IL-1β treatment in 7 DIV neurons (Fig. 11A-B). Longer treatments (48 and 

72 h) were also tested, but no significant effects on REST levels were observed 

(data not shown). 

IL-1β is one of the most important mediators of the inflammatory response and 

modulates some of the inflammation-induced alterations of synaptic plasticity and 

structure [112]. In consideration of the fast kinetics through which IL-1β exerts its 

neuroprotective and neurotoxic actions [113], a time response curve of REST 

mRNA and protein was performed by treating 7 DIV neurons with IL-1β (20 

ng/ml) at various time points, ranging from 20 min to 72 h. REST transcription 

markedly increased at shorter times (20 min, Fig. 11C), while 24 h were needed 

to observe an effect at the translational level (Fig. 11D). Furthermore, we 
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speculated about some possible kinase pathways involved downstream to IL-1β 

and REST. Since CREB signaling is activated by IL-1β and evidence exists of a 

correlation between REST and CREB, we evaluated the expression of the Ser-

133-phosphorylated isoform of CREB (pCREB) in parallel with REST expression 

after 20 min and/or 24 h treatment with IL-1β. Indeed, we showed that IL-1β-

induced REST overexpression triggered the activation of CREB signaling, as 

showed by the significant increase of Ser-133-phosphorylated CREB at shorter 

times (Fig. 11E). 
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Figure 11: IL1- treatment induced an increase in REST mRNA and protein levels 

in 7 DIV cortical neurons. (A) qRT-PCR analysis of REST mRNA levels upon 

treatment with various pro-inflammatory cytokines for 24 h. n=3-6 independent 

preparations. (B) Representative immunoblot (left) and corresponding quantification 

(right) of REST protein levels under the same experimental conditions. n=2-5 

independent preparations. (C) qRT-PCR analysis of REST mRNA levels upon IL-1β 

treatment for different times, as indicated. n=2-5 independent preparations. (D) 

Representative immunoblot (left) and corresponding quantification (right) of REST 

protein levels upon treatment with IL-1β for 20 min and 24 h. n=3-4 independent 
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preparations. (E) Representative immunoblots (top) and corresponding quantification 

(bottom) showing the levels of pCREB in samples treated with IL-1β for 20 min (left, 

n=12 independent preparations) or 24 h (right, n=4 independent preparations). pCREB 

values were normalized to the housekeeping gene calnexin. In all panels, values of 

treated samples are expressed as % of vehicle-treated samples (CTRL). Data are 

expressed as means ± s.e.m. *p < 0.05, **p < 0.01, Mann-Whitney’s U-test. 

 

4.5.2.  A short IL-1β treatment at 7 DIV impacts on 

neuronal physiology at later stages in vitro 

 

To gain some insights into the role of REST in synaptic integrity and 

neuroprotection, the effect of the 20 min treatment of IL-1β was evaluated in 

mature neuronal networks at later stages. Through patch clamp recordings, 

frequency and amplitude of excitatory postsynaptic currents (mEPSPs) were 

monitored in 14 DIV wild type cortical neurons, previously treated with IL-1β at 7 

DIV for 20 min. Unexpectedly, given the very short treatment, neuronal 

physiology was affected, with a long-term effect on synaptic plasticity. As 

reported in Fig. 12, we observed a significant downregulation of mEPSP 

frequency (Fig. 12C left) and amplitude (Fig. 12C right), in the absence of 

significant effects on the decay and rising time of the current.  
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Figure 12. IL-1β treatment at 7 DIV affects spontaneous activity of wild type 

primary neurons at 14 DIV. Primary cortical neurons from wild type animals were 

treated with IL-1β (20 ng/ml) for 20 min at 7 DIV, or treated with vehicle (CTRL). 

Recordings were performed at 14 DIV. (A) Representative mEPSCs recordings and (B) 

cumulative distribution of inter-event intervals of CTRL and IL-1β-treated neurons. (C) 

mEPSC frequency (left) and amplitude (right). n = 23 cells from CTRL, n = 22 cells for 

IL-1β-treated samples, from 2 independent preparations. Data are expressed as means 

± s.e.m. ** p < 0.01, *** p < 0.001 Mann-Whitney U-test. 
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In order to prove that this effect is REST-dependent, the same experiments 

were repeated in cortical neurons derived from REST lox/lox mice infected with 

lentiviruses coding for CRE recombinase, or for a truncated, inactive CRE 

protein (deltaCRE) (Fig. 13). Results showed that neurons infected with the 

delta-CRE lentivirus and treated with IL-1β show a decrease in mEPSP 

frequency and amplitude, similar to that observed in wild type neurons. REST 

knockdown cultures show a significant upregulation of frequency and amplitude 

under both control and IL-1-treated conditions (two-way ANOVA, genotype 

effect p < 0.0001). Similarly, exposure to IL-1 caused a significant reduction in 

frequency and amplitude both in the presence and in the absence of REST 

(two-way ANOVA, treatment effect p < 0.0001). However, under basal 

conditions IL-1 caused a reduction of 64.2%  and 31.1% in the frequency and 

amplitude, respectively, while in the absence of REST this reduction was greatly 

attenuated (31.5% for frequency and 13.8% for amplitude; two-way ANOVA, 

interaction treatment-genotype p = 0.0004 for frequency, p = 0.0037 for 

amplitude) compared to that observed under control conditions, indicating a 

significant interaction (occlusion) between treatment and genotype indicating 

that the observed IL-1β upregulation is, at least partly, mediated by REST (Fig. 

13C).  
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Figure 13. IL-1β treatment at 7 DIV affects spontaneous activity of REST lox/lox 

primary neurons at 14 DIV. Primary cortical neurons from REST lox/lox animals were 

infected with CRE or deltaCRE expressing lentiviral vectors, treated with IL-1β (20 

ng/ml) for 20 min at 7 DIV, or treated with vehicle (CTRL). Recordings were performed 

at 14 DIV. (A) Representative mEPSCs recordings and (B) cumulative distribution of 

inter-event intervals of CTRL and IL-1β-treated neurons. (C) mEPSC frequency (left) 

and amplitude (right). n = 16 cells from deltaCRE CTRL, n = 18 cells for deltaCRE IL-

1β-treated samples, n = 13 cells from CRE CTRL, n = 15 cells for CRE IL-1β-treated 

samples, from 3 independent preparations. Two-way ANOVA indicated a statistically 
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significant effect of genotype (frequency: F = 1121, P < 0.0001; amplitude: F = 438.6, 

P < 0.0001), treatment (frequency: F = 146, P < 0.0001; amplitude: F = 152.5, 

P < 0.0001) and genotype X treatment interaction (frequency: F = 13.95, P = 0.0004; 

amplitude: F = 9.173, P = 0.0037). ** p < 0.01, *** p < 0.001 Two-way ANOVA followed 

by the Bonferroni’s multiple comparisons test. For clarification, it is not indicated the 

significance of the post hoc test that is the following between each condition:  p < 

0.0001. Data are expressed as means ± s.e.m. 
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 DISCUSSION 5.

 

Epigenetic modifications are a fundamental mechanism in the regulation of 

transcription and in neuronal development [114]. This is achieved through the 

formation of multiprotein complexes that can regulate gene expression 

positively or negatively. In this context, the transcription factor REST, also 

known as NRSF, plays a central role in the determination of the neuronal fate, 

as well as in the modulation of neuronal activity and plasticity [115]. In the last 

20 years, the role of REST has been described in several pathologies; acting 

under some circumstances as an oncogene, and under other conditions as a 

promoter of neuronal damage. Furthermore, its expression levels have been 

shown to influence the outcome of several pathologies. For example, it has 

been described as a neuroprotective factor in Alzheimer’s disease [75]. 

Upregulation of REST has been implicated in several neurodegenerative 

diseases, but whether it mediates a deleterious or protective mechanism is still 

debated. 

The main objective of this study was to analyze the role of REST in an 

inflammatory scenario. To our knowledge, this is the first time the transcriptional 

repressor factor REST has been characterized specifically in an inflammatory 

context and in a model of multiple sclerosis.  
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REST is overexpressed in the spinal cord of EAE-affected mice.  

The first part of this thesis describes the expression of REST and REST4 

mRNA and protein levels in distinct regions of the spinal cord of EAE mice. We 

observed that REST is overexpressed in the lower region of the spinal cord of 

EAE mice, while its expression level decreases in the upper spinal cord, with 

respect to naïve animals at 4 dpo. Transcriptional analysis of REST and non-

REST target genes confirmed the overall downregulation of REST target genes 

associated with the upregulation of REST in the spinal cord. REST upregulation 

therefore follows the ascendant trend of the pathology, characterized by an 

inflammatory burst in the lower part of the body at this stage of the disease. In 

line with these observations, a recent paper reported a downregulation of the 

REST target L1 adhesion molecule in the same experimental mouse model that 

was potentially attributed to REST upregulation [116]. REST expression 

appears to be higher where the pathological state is more severe. On the 

contrary, REST4 tends to have the opposite pattern of expression, in line with 

its proposed role as competitor of REST in the binding to RE-1 sites, where 

REST4 is thought to act as a derepressor. 

Thanks to the immunofluorescence analysis, it has been possible to ascertain 

the source of REST overexpression. It is well established from literature that in 

mature neurons REST expression is not completely absent, and neurons can 

modulate REST expression in response to several environmental stimuli and 

pathological insults. What is evident from this study is that, in the presence of an 

inflammatory stimulus, REST expression levels increase in neurons, as well as 
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in astrocytes and microglia. The role of REST in glial cell populations has never 

been investigated. It is known to be involved in gliosecretion [117] and in the 

regulation of several genes related to astrocytes’ specification and maturation 

[118], [119]. A high expression of REST has been described in astrocyte and 

microglia nuclei in the human brain cortex [117]. On the basis of our data, we 

propose that REST dysregulation occurs in the EAE model as a consequence of 

a global overexpression in neurons, microglia cells and astrocytes. 

 

Characterization of REST in an in vitro neuroinflammation experimental system 

To determine whether and how the complex EAE environment affects neuronal 

physiology through the modulation of REST and its targets, in the second part of 

this work we have analyzed REST expression in primary neuron cultures under 

experimental conditions mimicking a neuro-inflammatory environment. Our 

results show that 24 h incubation with a relatively high (20 ng/ml) concentration 

of IL-1β, selectively upregulates REST both at the mRNA and protein level. IL-

1β is a potent and pleiotropic proinflammatory cytokine that activates several 

cell-specific signaling pathways, and is involved in several disorders [112]. 

Having seen an upregulation of REST in the microglia of EAE mice, it is not 

surprising to observe the same effect upon IL-1β treatment in vitro, since 

microglia is the primary source of this cytokine in vivo. 

CREB is a well-known downstream mediator of IL-1β, especially at shorter 

times [120], [121], and the activation of CREB signaling has been closely 

associated with autoimmune inflammation in a rat model of EAE [122]. On the 
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other side, the consensus sequence for CREB was identified in the REST 

promoter [83], suggesting the presence of a regulatory feedback between them 

[18]. Indeed, especially in the context of synaptic plasticity and neuroprotection, 

there are several evidences of a CREB-REST correlation [18] [77], and a REST-

dependent increase of p-GSK3β (Ser9) was described, which in turn induces 

CREB activation [123]. Taken together, our findings thus suggest that a direct 

correlation exists between IL-1β-mediated REST upregulation and the activation 

of the CREB signaling pathway. 

Our results show that a short exposure to IL-1β treatment at a precocious stage 

in neuronal culture, before the establishment of a mature neuronal network, is 

sufficient to cause a REST-dependent long-lasting effect at both the pre- and 

post- synaptic levels in the mature neuronal network. The effect of IL-1β on 

neuronal cultures has been already described and results in synapse loss [124]. 

Moreover, IL-1β modulates glutamate release, enhances NMDA receptor 

function, [125], [126], with an inhibition of NMDA outward currents [127], 

induces tau phosphorylation through p38-MAPK pathway, and decreases 

synaptophysin, a well-known REST target gene, in cortical neurons [128]. In line 

with the work of Yang and colleagues [129], we observed a downregulation of 

the mEPSC frequency in neurons treated with IL-1β in both wild type and REST 

lox/lox cortical neurons infected with lentiviruses encoding a defective Cre 

recombinase (deltaCre). IL-1β is thus confirmed to act at the presynaptic level, 

influencing neurotransmitter release. On the contrary, Yang and colleagues 

[129] did not observe any difference in the mEPSC amplitude, although they did 
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not completely exclude the presence of a postsynaptic effect. Indeed, in our 

system IL-1β mainly elicited postsynaptic effects, with a significant 

downregulation in mEPSC amplitude, which is in line with recent evidence 

showing the downregulation of AMPA receptor expression mediated by IL-1β 

[130]. 

The role of REST in the physiology of a mature neuronal network is well 

described. In recent years, our group demonstrated its involvement in 

hyperactivity-induced intrinsic homeostasis [27], and in the homeostatic 

regulation of presynaptic machinery [131]. The Cre-mediated deletion of REST 

(our observations) causes the upregulation of mEPSCs frequency in untreated 

cells, which fits well with what observed by Pecoraro-Bisogni and colleagues, 

since this event could be due to the expression of presynaptic proteins, involved 

in transmitter release. The effect on the amplitude, not observed before, opens 

the possibility that REST modulation acts also at the postsynaptic level, 

hypothesis that will be addressed by further molecular investigations through 

transcriptomic and proteomic analysis of REST-target postsynaptic proteins, 

such as AMPA receptor genes [34]. 

Finally, when REST is knocked down, the downregulation of mEPSC amplitude 

and frequency is much less evident than in control cells, suggesting an 

occlusion effect. Thus, the IL-1β-induced changes are at least partly mediated 

by REST, while the residual decrease in both frequency and amplitude upon IL-

1β treatment could be mediated by other signaling pathways. A comprehensive 

analysis of inhibitory spontaneous currents and cellular excitability will give us 
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more details on the role played by REST in the IL-1β-mediated alterations of 

network functionality.  
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 FUTURE DIRECTIONS 6.

 

The results presented in this thesis propose REST as a molecular target in the 

inflammation process, both in vivo and in vitro. 

In the future, we will evaluate EAE severity and analyze the expression profile of 

REST target genes in conditional REST KO mice. If REST overexpression is a 

deleterious process in EAE, the induction of the disease in conditional REST KO 

mice will help us to understand whether REST depletion can significantly 

ameliorate disease course. Ongoing experiments are being performed through 

the CRE-inducible deletion of REST in REST lox/lox mice through an intra-

cisterna magna (ICM) injection of AAV2/9 vectors, characterized by a high 

tropism for neurons, and expressing Cre under the strong CMV promoter. EAE 

will be induced in injected and control mice following the standard protocol. We 

will analyze the progression of the disease in REST-deficient and wild type EAE 

animals, and histological analysis of CNS samples will be conducted to define the 

causal role of REST in EAE and windows of opportunity whereby inhibition of 

REST can be therapeutic. 

The in vitro part will continue with further histochemical and biochemical studies, 

in order to identify the molecular mechanisms underlying the observed 

phenotypes. In this way, we will try to understand better the molecular and 

functional interaction between REST and IL-1β. 
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Our final aim will be to understand whether REST indeed represents a 

pathogenic response contributing directly to neurodegeneration, or plays an 

endogenous neuroprotective role in the context of neuro-inflammation. 
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