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Abstract

In the present age of advanced computer vision, the necessity of (user-annotated) data is a key factor

in image & video understanding. Recent success of deep learning on large scale data has only acted as

a catalyst. There are certain problems that exist in this regard: 1) scarcity of (annotated) data, 2) need

of expensive manual annotation, 3) problem of change in domain, 4) knowledge base not exhaustive.

To make efficient learning systems, one has to be prepared to deal with such diverse set of problems.

In terms of data availability, extensive manual annotation can be beneficial in obtaining category spe-

cific knowledge. Even then, learning efficient representation for the related task is challenging and

requires special attention. On the other hand, when labelled data is scarce, learning category spe-

cific representation itself becomes challenging. In this work, I investigate data driven approaches that

cater to traditional supervised learning setup as well as an extreme case of data scarcity where no

data from test classes are available during training, known as zero-shot learning. First, I look into

supervised learning setup with ample annotations and propose efficient dictionary learning technique

for better learning of data representation for the task of action classification in images & videos. Then

I propose robust mid-level feature representations for action videos that are equally effective in tradi-

tional supervised learning as well as zero-shot learning. Finally, I come up with novel approach that

cater to zero-shot learning specifically. Thorough discussions followed by experimental validations

establish the worth of these novel techniques in solving computer vision related tasks under varying

data-dependent scenarios.
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Chapter 1

Introduction

1.1 Motivations and Objectives

Data driven approach [LCHL07, RPE+05, BMB+13] is defined as the practise of inspecting upon data

first and then choose the best strategies that suits the requirement(s). By analyzing the current and past

data from different (re)sources, researchers as well as private companies can get a sense of the mag-

nitude and size of the problem in hand. This, in turn, help them understand the problem in hand in a

clearer way and consequently make accurate decisions. Many research approaches [FFFP06, FF+03]

as well as applications still are bound by the constraints of scarcity of data build their models taking

such disadvantages into account. Even in cases with abundantly available data, data scenarios can

change quickly and render a model was built upon can quickly turn unreliable in making a decision.

A data driven approach essentially takes into account these changing scenarios, provides options to

consider ever-changing nature of data and thus providing more accurate analysis. In an industrial

setup, data also impacts marketing immensely and is fundamental to business strategy, advertising,

and sales. It helps with management and operation on data, allowing researchers to operate faster and

more efficiently, ultimately positively impacting final outcome.

In the current age of deep learning based approaches, supervised training with large data has proven

to be promising in problems such as classification, regression, prediction etc. Notable scenarios that

can arise based on the availability of data are as below:

1



2 Chapter 1. Introduction

1. The best possible situation in supervised learning setup is when data during the training phase

spans equally over all the possible classes and all data labels are verified by humans. On the

other hand, situations where data is scarce, training becomes difficult.

2. In extreme case scenarios only a few data is available for training, known as few-shot learning.

There are situations when only a single image is available for training. This is known in research

community as one-shot learning. Possibly, the most difficult case is when there no data from

test classes are available during training phase, a problem known as zero-shot learning (ZSL).

These starkly different situations demand closer inspection of the data and intelligently designed

approaches that cater to such conditions and constraints. In this thesis, I particularly inspect two

opposite scenarios in data dependent approaches 1) When ample labeled data is available for training:

traditional supervised learning. 2) No training data is available for the test classes: zero-shot learning.

THe novelty of this work lies in the fact that I discuss thoroughly the necessity of investigating into

data resources first and then make decision on how to train a system. At the same time, I propose

novel approaches in the two situations that fit the requirements based on data availability.

In a traditional computer vision problem such as recognition of object/action categories, the training

procedure focuses on extraction of relevant features from available data of each categories. Primary

goal is to obtain compact and relevant ”label information”. One of the most prominent ways to achieve

this is codebook generation. A codebook (dictionary) is a set of vectors that span a new/sub-space of

the original data-space. This eventually provides a ”compact” as well as informative version of the

original data. A standard supervised learning framework that incorporates codebook generation, fol-

lows the three standard stages: 1) Extraction of local descriptors, 2) Codebook (dictionary) generation

and feature encoding, and 3) Classification based on the encoded features. Although success of such

a framework depends upon a number of factors, and effective codebook generation is undoubtedly the

most noteworthy. Especially if labeled data is available in abundance, a codebook is detrimental to

the quality of category specific representation and thus the consecutive computer vision related task

such as classification.

A standard codebook generation process is based on vector quantization of local descriptors extracted

from the available training data in which the cluster centroids define the codewords; the basic build-
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ing blocks that are ultimately used to encode the underlying visual entities. Needless to mention,

the quality of the extracted local descriptors affect representation power of the codewords which, in

turn, has direct impact on the recognition performance. For instance, the descriptors extracted from

background regions or the ones shared by many visual categories add little to the discriminative ca-

pability of the codebook in comparison to the ones specifically extracted from the objects of interest.

However, it is impossible to ensure the selection of potentially useful local descriptors in advance

since such feature extraction techniques are typically engineered and ad hoc. In other words, there

are certain immediate advantages if the most discriminative local descriptors are used for the purpose

of a cogent codebook construction, though the process is intrinsically complex in general. Selection

of the discriminative local descriptors for effective codebook generation is dealt in the first part of

this thesis work. We take up action recognition from images and video as the field of application.

We come up with a simple algorithm which gradually filters out unrepresentative descriptors before

constructing a compact global codebook. The proposed method is generic in the sense that it can

work with different types of local features irrespective of the underlying visual entities they refer to.

For example, we represent each still image by a large pool of category independent region propos-

als [ADF12]. Each region proposal is represented by convolutional neural network (CNN) features

(4096 dimensions) obtained from a pre-trained network. More specifically, we propose a sequential

method for codebook construction which first clusters the local descriptors of each entity using the

non-parametric mean-shift (MS) technique [CM02]. The cluster centroids thus obtained represent

the reduced set of non-repetitive local features. Another round of MS clustering on the new set of

local descriptors calculated from all the entities of a given category is followed and the centroids thus

obtained are employed to build a temporary codebook specific to each category. Further, we propose

an adaptive ranking criteria to highlight potentially discriminative codewords from each category spe-

cific codebook and the global dictionary is built by accumulating these reduced set of codewords from

all the categories. We argue that our codebook construction technique explicitly incorporate the class

support and a novel notion of distinctiveness based on conditional entropy is introduced.

Intelligently designed codebooks may be well suited for supervised multi-class classification prob-

lems but they do not necessarily solve all the problems present in a large scale dataset.

Even with availability of labeled data, action recognition is a difficult problem at its core when dealing
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with realistic videos (UCF-101, Youtube, Olympics, etc.) [SZS12]. This is primarily due to the large

intra-class variations within an action category and the fine-grained nature of several action classes,

besides other issues derived by background clutter, occlusions, illumination variations, and changes

of camera viewpoint. This leads to the need for robust video representations capable of addressing the

aforementioned problems adequately. Currently, available video-level features are broadly assorted

into two groups: ad-hoc hand-crafted and deep features [HHP16]. A large set of hand-crafted fea-

tures have been proposed in literature to date, which abstracts local spatio-temporal variations in the

video content. These features include space-time interest points (STIP) [Lap05], cuboids [WXDL11],

dense and improved trajectories [WKSL13]. Methods making use of such features usually consist of

two stages: feature detection in order to highlight local interest points followed by the generation of

descriptors characterizing the regions surrounding them. Although such features have been success-

fully applied for action recognition [WTVG08] [WKSL13], they are not fundamentally optimized as

visual discriminants and may lack distinctive capability. On the contrary, deep learning based models

(convolutional neural networks [KSH12a], recurrent networks [DWW15]), which are discriminatively

trained from a large volume of labelled data, learn from a very basic to high level feature hierarchies

automatically. Deep models proposed in this context include 3D-CNN [KTS+14] and two-stream

networks [SZ14a], which have proved to analyse video data successfully. However, they require a

large amount of labelled videos for training, and most of the available datasets are relatively small.

In addition, most of the current CNN-based models for video analysis largely overlook the intrinsic

differences between the static and dynamic aspects of the videos. There are some endeavours to effec-

tively combine both the facets in an unified framework [WQT15], but still they require a huge training

time for end to end learning, which further affects the scalability of such features for real-time video

analysis.

In this context, it is evident that: 1) It is indeed important to encode local scene characteristics (static

and dynamic) from videos given the peculiar fine-grained nature of several action classes; 2) unlike the

hand-crafted features, deep features are expected to embed high level discriminative interpretations

associated with such local regions; and 3) the evolution of such abstract characteristics of the local

regions over time, if extracted automatically, bears far reaching significance in designing a robust

action recognition system.
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Inspired from these considerations, the second part of the thesis proposes a novel mid-level feature

representation for action videos. In this regard, we introduce the notion of concept, a mid level

representation capable of capturing the evolution of motion salient local regions over consecutive

video frames. The concepts are thus represented as chain graphs of such coherent regions at the

temporal scale, and we propose an iterative maximum bipartite graph matching strategy for obtaining

them automatically. The extracted concepts are less in number, rich in semantic information, can

capture long-range video dynamics, and are able to highlight the subtle differences between action

categories efficiently. In addition, the constraint regarding the explicit detection of objects being

interacted can completely be bypassed given the automatic unsupervised discovery of concepts.

In order to prove the generality and robustness of this descriptior, it is necessary to employ them

on supervised classification scenarios with labled data as well as situations with scarce data (zero

shot learning, in the present case). While we rely on the metric learning based multi-class Support

Vector Machines (SVM) for fully supervised recognition, we propose a novel semi-supervised zero-

shot learning (ZSL) strategy which can benefit from the semantic descriptive power of our visual

embedding effectively. In contrast to the standard ZSL approaches where an attribute [LNH14a] or

word-embedded space [XHG15] is learnt from existing feature space for semantic interpretation, we

completely rely on the visual embedding and directly learn correspondence between the label and

the proposed concept spaces. Similarly, for zero-shot recognition, our descriptor exhibits enhanced

performance but without the need of costly human annotations of attributes or semantic word embed-

ding.

Exclusive scenarios where no data of test classes are present in training time requires transferring

of a classification model trained on a set of seen classes and deploying it on a set of completely

different classes - the unseen ones [LNH09, FEHF09, XSA17]. In order to achieve that, zero-shot

learning (ZSL) approaches take advantage of semantic embeddings which act as a sort of “bridge”

between seen and unseen classes. Depending on the nature of semantic embedding, ZSL approaches

can be classified in two categories, one based on attributes and the other based on distributed word

embeddings.

Attribute-based methods leverage human defined attributes to describe the classes to be discriminated.
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Specifically, attributes are binary vectors in which each entry denotes the presence/absence of a par-

ticular feature characterizing the ”object” or class. For instance, in the case of animal classification

[LNH09], a model trained on zebras is able to recognize horses since informed that both have four

legs/hoofs, are mammals, have a mane and they both eat grass. Crucially, since attribute annotation is

an expensive process, distributed word embeddings (DWEs) - such as word2vec [MSC+13] or GloVE

[PSM14] - are used as surrogates. They are learnt from a deep neural network that creates continuous

embeddings from a text corpus by imposing that two words have nearby embeddings if they often

occur close to each other in a sentence.

Each one of these two types of semantic embeddings has drawbacks. Finding an exhaustive list of

attributes by manual annotations is usually expensive and difficult; on the other hand, DWE-based

approaches are not easily interpretable. More importantly, the semantic information provided by

attributes/word-embeddings is typically unable to encode semantic patterns in visual data. For in-

stance, still in the example of the zebra-to-horse transfer above quoted, a great boost to ZSL would

be provided by noting that, in addition to sharing attributes, zebras look extremely similar to horses -

apart from the stripes.

Recently, a few works [MGS14, KXFG15a, JWS+17a, QLSH17] have tried to incorporate visual

information in the semantic embeddings by aligning the geometry of semantic space (made of either

attributes or DWEs) onto the visual space produced by the visual feature representation, usually

provided by fully connected layers of a convolutional neural network (CNN). These works leverage

the implicit assumption that, among the visual and the semantic spaces, the former is preferable and

the latter should be modified accordingly. Differently, we posit that semantic and visual spaces are

equally important since providing complementary sources of information. Therefore, as opposed to

modifying the semantic embedding on the basis of visual patterns, we propose to augment it by

using visual semantic information extracted from the data itself. This augmentation is semantic in

nature since it exploits the class similarity information obtained from a deep neural network in the

form of soft labels [TSS07], which are finally jointly considered with the semantic attributes/DWEs.

This is performed by devising an optimization process in which the latent attributes are inferred in

the resulting visually-driven augmented space, which globally includes the semantic embedding, the

visual features and the soft labels.
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Differently from the hard labels (e.g., one-hot encoding), which only describe the correct class, soft

labels [TSS07] estimate the likelihood probability distribution for an arbitrary instance to belong to

every class. Therefore, if two classes are visually similar to each other, we expect this similarity to be

captured by soft labels, and we claim that this fact can boost performance in ZSL methods.

In summary, this thesis discusses thoroughly the different data dependent scenarios and presents novel

approaches applicable to different data driven scenarios. More specifically, the main contributions of

this thesis are the summarized in the following.

1.2 Contributions

1. A novel supervised discriminative dictionary learning strategy is introduced for the purpose of

action recognition from still images as well as videos. This takes advantage of available labeled

training samples to adaptively rank local features which are both robust and discriminative.

Further clustering of local features is done at the entity and category levels to eliminate the

effects of features corresponding to non-recurrent or background locations. The adaptive rank-

ing paradigm proposed holds wider applications in areas including feature selection, ranked set

generation for retrieval etc. This serves as an ideal framework for fully supervised learning.

2. A framework for extracting discriminative mid-level representations of action videos is intro-

duced. Novel algorithms for both the feature detection and description stages are also proposed.

An extension of this framework can cope with the paradigm of zero-shot action recognition. In

that regard, a semi-supervised clustering formulation is introduced which effectively embeds a

semantic interpretation of the proposed visual embedding space. Essentially, this framework

can handle traditional supervised learning as well as zero-shot learning scenarios.

3. A visually-driven semantic augmentation (VdSA) method for zero-shot learning (ZSL) ap-

proach is proposed that augments the semantic information coming from attributes/Distributed

Word Embeddings (DWE) with that of the visual patterns embedded in a deep network’s soft

labels. This is well suited for training with scarse data.
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4. To the best of my knowledge, this work is the first to highlight two starkly different scenarios

An unified discussion of such opposite requisites show the need for data-driven approaches.

At the same time, this work introduces novel approaches to improve in both traditional and

zero-shot learning.

1.3 Publications

1.3.1 Journal

1. Abhinaba Roy, Biplab Banerjee, Vittorio Murino. Discriminative Body Part Interaction Mining

for Mid-Level Action Representation and Classification. Journal of Visual Communication

and Image Representation, Elsevier. [RBM18]

1.3.2 Conferences

1. Abhinaba Roy, Biplab Banerjee, Vittorio Murino. Discriminative Latent Visual Space For

Zero-Shot Object Classification. 24th International Conference on Pattern Recognition

(ICPR), 2018. [RBM]

2. Abhinaba Roy, Jacopo Cavazza, Vittorio Murino. Visually-driven Semantic Augmentation for

Zero Shot Learning. British Machine Vision Conference (BMVC), 2018. [RCM]

3. Abhinaba Roy, Biplab Banerjee, Vittoro Murino. A Novel Dictionary Learning based Multiple

Instance Learning Approach to Action Recognition from Videos. 6th International Confer-

ence on Pattern Recognition Applications and Methods (ICPRAM), 2017. [RBM17b]

4. Abhinaba Roy, Biplab Banerjee, Vittorio Murino. Discriminative Dictionary Design for Ac-

tion Classification in Still Images. 19th International Conference on Image Analysis and

Processing (ICIAP), 2017. [RBM17a]



Chapter 2

Related Work

The first part of this thesis deals with codebook construction (dictionary learning). Subsequent chapter

deals with mid-level feature representation for videos. Since these two chapters deal with action

recognition in images and videos, we discuss the related works in action recognition in brief here,

stressing upon works with mid-level features. Then we provide a comprehensive discussion of related

dictionary learning techniques. Finally, we discuss about zero-shot learning.

2.1 Action recognition

2.1.1 Images

Recognition of human actions [CWS+15] has been tried using images of an action [YWM10]. Fol-

lowing the standard dictionary learning based image classification scenario, a typical framework ex-

tracts dense SIFT [Low04] from the training images and codebook is constructed by clustering the

SIFT descriptors by k-means clustering. Further, efficient encoding techniques including bag of words

(BoW), LLC, Fisher vector are used to represent the images before the classification stage is carried

out in such a feature space [CLVZ11].

Since the inherent idea of the BoW based frameworks is to learn recurring local patches, a different

9
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set of approaches directly models such object parts in images. Such techniques either initially define

a template and try to fit it to object parts or iteratively learn distinctive parts for a given category.

Discriminative part based models (DPM) [FGMR10] are used extensively for this purpose and they

served as the state of the art for a period. The hierarchical DPM model is used to parse human

pose for action recognition in [WTLF12]. An efficient action and attributed representation based on

sparse bases of local features is introduced in [YJK+11]. An expanded part model for human attribute

and action recognition is proposed in [SJS13]. The effects of empty cavity, ambiguity and pooling

strategies are explored in order to design the optimal feature encoding for the purpose of human action

recognition in still images in [ZLP+16].

Very recently, the part learning paradigm has gained much attention because of its ability to represent

mid-level visual features. Given a large pool of region proposals extracted from the images, such

techniques iteratively learn part classifiers with high discriminative capabilities. Methods based on

partness analysis [JVJZ13], deterministic annealing for part learning [SJ15] etc. are some of the

representative in this respect.

2.1.2 Videos

Video level features for the sake of human action recognition are broadly classified into: low, mid

and high level deep features. Amongst low level features, a large number of endeavours are based on

encoding of local spatio-temporal variations in the videos in terms of the STIP features [LMSR08].

Apart from STIP; tracklets [RS10], cuboid, dense trajectories [WKSL11] are used successfully for hu-

man action recognition exhibiting improved recognition performance measures. Arguably, dense in-

terest points based descriptors outperform their sparse counterparts for most of the datasets [WUK+09].

Ideally, the descriptors corresponding to the local interest points need to be encoded into fixed length

vectors for the sake of classification and several encoding strategies are used for this purpose [DTS06]

[PSM10]. Following the overwhelming success of deep CNN based models in image classification,

a number of deep architectures have been proposed recently in relation to video based action recog-

nition [JXYY13]. In this connection, [KTS+14] proposes to train a 3D CNN model which considers
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each video as a stack of consecutive frames. On the other hand, the popular two stream networks

proposed in [SZ14a] consider two separate CNN models for encoding the appearance and motion

components of a video and further fuse the response of both the networks at a later stage. In addition,

some of the recent frameworks consider the videos as time-series data [FGO+17] and introduce recur-

rent networks based models for action recognition in videos [TBF+15] [SMS15]. Low level features

are pixel based, spurious and mostly susceptible to physical changes (illumination, shadows, clutter

etc. ) in videos, whereas deep features lack transferability of abstract action concepts.Alternatively,

Mid level features, which can take care of most of these shortcomings, have gained much attention in

vision community in recent times. The majority of existing mid-level features for videos are based on

grouping spatially consistent low-level features into clusters. Such clusters are the prototypes of the

characteristics observed in video sub-volumes. [RKS12] proposes to group locally dense trajectories

to form motion consistent action parts. Similarly, motion atoms and phrases are used to temporally

segment the videos in [WQT13]. A binary partition tree based hierarchical video representation is

introduced in [PS13] which is based on grouping the dense trajectories at different levels. A set of

classifiers over the spatio-temporal volume is considered to learn exemplar-based video features in

[TT16]. Each classifier is an exemplar SVM defined discriminatively on the low-level features of

each video volume. Action proposals are used in [YY15]. Very recently, two-stream CNN network is

coupled with the improved dense trajectories to define a context-sensitive mid-level feature [WQT15]

for videos. In addition, unsupervised discovery of video tubes (tubelets [JVGJ+14], APT [vGJGS15])

are closely related to mid-level feature disclosure.

2.2 Dictionary Learning

Dictionary learning strategies can be supervised or unsupervised in nature. A class of unsupervised

dictionary learning strategies compute over-complete sparse bases considering the idea of alternate

optimization [OF97]. Such techniques iteratively update the dictionary components and sparse co-

efficients for the input samples using k-SVD and matching pursuit based methods. [WYY+10] pro-

poses the LLC technique where a locality constraint is added to the loss function of sparse coding.

[LBRN06] introduces an l1-norm based sparse coding algorithm where feature-sign search is applied
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for encoding and Lagrange dual method for dictionary learning. Effective sampling strategies for the

BoW model is the focus of discussion in [NJT06] where several aspects including the codebook size,

clustering techniques adopted etc. are exhaustively studied.

On the contrary, the supervised approaches include the class support in building the dictionary. Label

consistent SVD [JLD11], logistic regression based sparse coding [MPS+09] explicitly consider the

class discrimination in designing the sparse bases for dictionary learning. Two different clustering

based approaches for keypoints selection are introduced in [LTCK16] for the purpose of dictionary

learning based generic scene recognition. Distance measures among the keypoints are modeled in an

online fashion to filter out keypoints with low generalization capability.

2.3 Zero-shot Learning

The majority of the initial endeavors on zero-shot visual classification are based notion of human an-

notated semantic attributes which are used to model the category prototypes. [LNH14a, LNH09] are

some of the foremost works in this line where the authors propose direct (DAP) and indirect attribute

prediction (IAP) paradigms requiring explicit mappings between the attributes and the visual cate-

gories. On the other hand, [AHS15] proposes a hierarchical approach for attribute label propagation

for visual classes. From a different point of view, [RSS11] introduces a hierarchical ZSL framework

using the notion of class taxonomy. [RPT15b] develops a linear network to handle relations between

classes, attributes and features. Nonetheless, the major shortcoming of such approaches is primarily

due to the fact that explicit human annotations are costly, more often domain specific, and subjective.

Alternatively, semantic representations barring the need for defining explicit problem specific at-

tributes have recently been brought into attention to the ZSL community [LBSF+15]. Auxiliary infor-

mation obtained from linguistic sources are extensively studied for this purpose [APHS13, FCS+13,

CCGS16]. Especially, vector embeddings based on the idea of distributed word representations have

gained popularity. In particular, a vector-space is extracted from linguistic knowledge bases, e.g.,

Wikipedia, news database etc. in terms of sophisticated mapping modules like Word2Vec[GL14]

and the class names are projected onto such a learned space preserving the semantic properties of
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the classes at large. An embedding between visual features and these signatures are learned and the

notion of similarity between signatures in the vector-space is further used to carry out the inference

stage for ZSL. Inspired by this analogy, [APHS13] uses auxiliary information to learn an additional

embedding between attributes and class labels.

Besides the extensive research on defining a robust semantic embedding space, many of the recent

ZSL techniques aim at learning visually meaningful feature descriptors for ZSL. [FCS+13] proposes

a deep learning model which aims at learning the relation between images and the corresponding

class name embeddings. [NMB+13] conveys that a convex combination of the class-name embed-

dings, weighted by class posterior probabilities given by a pre-trained CNN model, can be used to

map images to the respective class-name embedding space. The zero-shot paradigm considers non-

overlapping training and test classes and aims at classifying previously unseen test instances. That is

realized using attributes [LNH14a] which reduce the semantic gap between low-level visual features

and class descriptors. Visual to attribute classifiers are typically modelled on an auxiliary dataset, and

novel categories are subsequently specified by a human agent in terms of the attributes which accredit

recognition in absence of training data. There are only a few methods in the literature which adopt

this paradigm for action recognition [LKS11] since it is costly and ambiguous to define attributes for

actions. On the other hand, the semantic embedding space based ZSL techniques are based on a dis-

tributed representation of the class names in terms of text words [XHG15]. Regressors are then used

to map low-level visual features into this word-vector space. Zero-shot recognition is subsequently

performed by mapping novel category instances and class names to this common space and perform-

ing nearest neighbour matching [XHG15]. However, the mapping from the visual features to semantic

space is a complex process and such methods are not expected to generalize well if the unseen action

categories (eg. running vs walking) are largely different from the seen ones (hand-waiving, hand-

clapping). In addition, sparse coding based methods are also used for ZSL based action recognition

[KXFG15b], where the feature spaces of both the seen and unseen classes are assumed to be related

by substantial domain-shift.
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Dictionary Learning

In a supervised learning setup, the best possible scenario is when data during training phase spans

equally over all the possible classes and all data labels are human verified. In this case, one does not

need to worry about imbalance in data creating unnatural bias in the learned model. The problem

of training a system focuses on better representation of data and/or features for the relevant task. In

this section, we concentrate on the problem of classification, especially action classification in im-

ages and videos. Since ample data is available, the system concentrates on better (and discriminative)

representation of each action categories for better classification performance. In that regard, dictio-

nary learning becomes important. In this chapter we come up with a novel dictionary learning based

approach that is well suited for situations with ample labeled data, in this particular case, action recog-

nition in images and videos. We follow a standard action classification framework consists of four

major stages: 1) Extraction of local features, 2) Discriminative dictionary construction, 3) Feature

encoding, 4) Action classification.

For notational convenience, let us consider that TR = {Xi, Yi}Ni=1 constitutesN training examples be-

longing to L action categories where each Xi represents an image or a video and Yi is the correspond-

ing class label. Entities in TR are represented by a set of local descriptors Fi = {F 1
i , F

2
i , . . . , F

αi
i }

where F k
i ∈ Rd and d = 4096 or d = 162, respectively, depending on whether the underlying Xi

is an image or a video. In addition, αi represents the number of local descriptors extracted from Xi.

Further, {C1, C2, . . . , CL} represents the set of category specific codebooks learned by the proposed

14
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algorithm by exploiting the local features extracted from TR, whereas C = [C1C2 . . . CL] is the

global codebook obtained by the concatenation of the local ones.

3.1 Extraction of Local Features

We consider category independent region proposals to highlight local regions in still images whereas

the popular STIP features are used for video streams.

Region proposal generation techniques highlight region segments in the image where the likelihood of

the presence of an object part is high. This provides a structured way to identify interesting locations

in the image and thus reduces the search space for efficient codeword generation. We specifically

work with the objectness paradigm for region proposals generation from still images which is based

on modeling several aspects regarding the characteristics of the objects in a Bayesian framework.

Each region proposal is further represented by the CNN features. We prefer the ImageNet pre-trained

VGG-F [CSVZ14] model which has an architecture similar to AlexNet [KSH12a], and comprises of

5 convolutional layers and 3 fully-connected layers. The main difference of VGG-F and AlexNet is

that VGG-F contains less convolutional layers and uses a stride of 4 pixels leading to better evaluation

speed than the AlexNet architecture. In case of videos, the representation of local variations depends

on local STIP keypoints. STIP features are the extension of the Harris corner detectors for images

to the spatio-temporal domain. They are detected at locations where the video frame level intensities

have significant local variations in both space and time. Histogram of oriented gradients (HOG) and

histogram of optical flow (HOF) features are extracted around each STIP point.

3.2 Discriminative Dictionary Learning

We first build category specific codebooks and then concatenate all the local codebooks to generate a

global codebook.
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3.2.1 Separate dictionary learning for each category

For a given l ∈ {1, 2, . . . , L}, the dictionary learning process is summarized as follows:

1. For each training instance with the category label l, we first group the local descriptors using MS

clustering and consider the cluster centroids as constituting the reduced set of local descriptors.

MS is an iterative, non-parametric clustering method which does not require an estimation of

the number of clusters as input. Instead, it relies on the kernel density estimate in the feature

space to group samples which form dense clusters. Given Fi = {F 1
i , F

2
i , . . . , F

αi
i }, the kernel

density estimate at a point F k
i is expressed as

f(F k
i ) =

1

αihd

αi∑
m=1

K(
F k
i − Fm

i

h
) (3.1)

where K is a radially symmetric kernel function and h defines the width of the Parzen window

to highlight the neighbourhood around F k
i . A cluster is identified as the region where the data

density is locally maximum. This can alternatively be interpreted as the local regions where

∇f ≈ 0. ∇f can efficiently be calculated by iteratively shifting the centroids of the Parzen

windows until the locally dense regions are reached [CM02].

Since all the descriptors in a dense region in the feature space highlight near similar local

features, the mean-shift clustering is able to select one unique representative for all of them.

Further, since mean-shift implicitly estimates the number of clusters present in the dataset,

hence, the problem of over-merging is greatly reduced. On the other hand, spherical clustering

techniques like k-means and fuzzy c-means create suboptimal codebooks as most of the cluster

centroids fall near high density regions, thus under-representing equally discriminant low-to-

medium density regions. MS resolves such problem by focusing on locally dense regions in the

feature space. Let F̂i = {F̂ 1
i , F̂

2
i , . . . , F̂

α̂i
i } represents the new set of local descriptors for the

ith training instance where each F̂ k
i represents a cluster centroid.

2. Once F̂is are constructed for all the training instances with category label l, we vector quantize

all such F̂is using MS clustering to build a temporary codebook Cl = {C1
l , C

2
l , . . . , C

βl
l } for
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the category with each Ck
l representing a codeword (cluster centroid). Similar to the previous

stage, it is guaranteed that Cl is ensured to capture all the potential local features for the lth

category.

{C1, C2, . . . , CL} are constructed in the similar fashion for l ∈ {1, 2, . . . , L}. It is to be noted that

the labels of the codewords depend upon the action categories they refer to. Further, the sizes of the

Cls may differ from each other. The Cls thus obtained are not optimal in the sense that they contain

many codewords with low discriminative property. Such codewords need to be eliminated in order to

build robust category specific codebooks. However, we need a measure to rank the descriptors based

on their discriminative ability. In this respect, the following observations can be made:

• A potentially discriminative codeword is not frequent over many of the categories constituting

the dataset.

• Most of its nearest neighbors in {C1, C2, . . . , CL} share the same class label with the codeword

under consideration.

We model the first observation in terms of the idea of conditional entropy whereas the second obser-

vation is replicated by the tf-idf score.

For a given codeword Ck
l , we find out the labels of its T nearest neighbours over the entire set of

codewords in {C1, C2, . . . , CL} and subsequently define the conditional entropy measure as:

H(Y |Ck
l ) = −

L∑
l′=1

p(l′|Ck
l ) log2 p(l

′|Ck
l ) (3.2)

where Y is the class lebel and p(l′|Ck
l ) represents the fraction of the retrieved codewords with label l′.

For discriminative codewords, i.e. the ones which do not span many categories, H is small whereas

the value of H grows with the selection of codewords shared by many categories.

In addition to the H score, we also expect the nearest neighbours to be populated from the same
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category as of Ck
l . In order to impose this constraint, we define the tf-idf score for Ck

l as follows:

TI(Ck
l ) =

|Ck′

l′ |Ck′

l′ ∈ knn(Ck
l ) AND l′ = l|

|Ck′
l′ |Ck′

l′ ∈ knn(Ck
l )|

(3.3)

Both the measures are further combined in a convex fashion to define the ranking measure as follows:

Rank(Ck
l ) = w1

1

H(Y |Ck
l )

+ (1− w1) TI(Ck
l ) (3.4)

We repeat this stage for all the codewords in {C1, C2, . . . , CL} . As already mentioned, theRank(Ck
l )

has high values for potentially discriminative and category specific codewords.

3.2.2 Number of codeword selection

We rank the codewords on the basis of the Rank scores. In order to select the number of optimal

codeworks to select, we use an adaptive algorithm. This is in stark contrast to the related work done

in [RBM17a], where top B codewords were chosen in a greedy fashion in order to define the final

codebook Ĉl for category l. For this adaptive algorithm, we make a spanning tree of the code words

Cl. We first create a spanning tree G with Cl as nodes and the edge weights as the difference between

the features. Note that the nodes are connected sequencially based on the ranked list. On this spanning

tree, we carry out a dominant set clustering [PP07]. More specifically, we carry out a binary clustering

on the graph to get two subgraphs. We select the subgraph (set of codewords) with higher rank. This

results in variable numbers of codewords in each of the classes. Algorithm 1 describes the adaptive

number of codeword selection process.

3.2.3 Global dictionary construction

The local codebooks obtained in the previous stage are concatenated in order to obtain a global code-

book Ĉ = [Ĉ1Ĉ2 . . . ĈL].
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Algorithm 1: Adaptive number of codewords selection
Input: Cl
Output: Ĉl

1 1. Construct a linear chain graph G = {Cl, E} with the extracted parts from a given class as
the nodes and the edge weights are defined as Euclidean distance between the corresponding
features (E).

2 3. Perform dominant set clustering on G to to obtain two sub-graphs;
3 4. Choose the subset (Ĉl) with the parts having higher ranks according to the proposed cost

function;

3.3 Feature encoding using Ĉ

We represent each visual entity with respect to Ĉ for still images and videos separately. We find that

LLC based encoding works best while dealing with the CNN features in case of action recognition in

still images, whereas Fisher vector outperforms other BoW based encoding methods for video based

features. For each entity, we consider all the initially extracted local features for encoding.

3.4 Action classification

The final classification is performed using random forest ensemble classifier [Bis06a]. The decision

tree learning algorithm used is information gain and bootstrap aggregation is employed to learn the

ensemble model. Thus the forest reduces classifier variance without increasing bias. Random sub-

space splitting is used for each tree split and we consider
√
d features for each split given d original

feature dimensions. The generalization is performed by applying majority voting on the outcomes of

the learned trees.

Label propagation

In order to refine and further strengthen the classification results from random forests, we apply an

additional round of label propagation. In it’s original form, label propagation is a semi-supervised

classification way to propagate labels from labeled sample to unlabeled samples [ZG02]. Based on

the idea that samples should have same labels if they are neighbors to each other, label propagation
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”propagates” labels of labeled samples to unlabeled samples according to the proximity. The more

similarly samples are, the more easily propagate labels between them. The similarity of samples is

calculated as and exponential of negative distance between them (Equation 3.5).

wij = exp(−
d2ij
σ

) (3.5)

where dij is the distance between ith and jth sample. The degree of difficulty for label propagation is

described by probabilistic transition matrix Tij , which is defined as

Tij = P (xi → xj) =
wij∑l+u
k=1wkj

(3.6)

where Tij is the probability of switching label (inference) from instance xi to xj . Larger wij leads

to larger Tij that allows labels to propagate more easily. The process of label propagation continues

until labels of all samples tend to be stable. Label propagation defines a label matrix Y with all

the label probabilities of data points xis. In this work, we attempt to propagate the labels of most

confident labels onto the other inferences with less confidences. First we detect all the output labels

from the random forest classifier which most likely provide true inference for a certain test instance.

In the cases where there is ambiguity amongst the tree classifier outcomes, we expect propagation of

confident labels will solve this issue and provide better classification performance. In order to measure

the ambiguity between individual tree classifiers in the random forest, we device a measurement to

determine the confidence of inference for each test instances. We define the confidence of the inferred

labels in terms of agreement of trees in majority voting of random forest. Hence confidence of inferred

yi from a test instance xi is denoted by

confi =
Nyi

N
(3.7)

where Nyi denotes the number of trees which inferred yi as the label of xi and N is the total

number of trees. We rank the test samples in order of confidence of inferences from them. Con-

secutively, we use top 20% confident inferences and apply label propagation to improve the out-

come of the rest of the inferences. The algorithm related to label propagation is shown below.



3.5. Experimental details 21

Algorithm 2: Label propagation for improved classification
Input: Test instances with confident inferences (x1, y1), ..., (xl, yl). Other test instances with

not confident inferences (xl+1, yl+1), ..., (xl+u, yl+u). yi is the inference from random

forest for instance xi. YL = y1, ..., yl; YU = yl+1, ..., yl+u; Y = [YU ;YL]

Output: Labels of all instances

1 1. Calculate wij between samples;

2 2. Calculate probabilistic transition matrix T ;

3 3. Structure matrix Y;

4 4. TY → Y ;

5 5. Normalize Y ;

6 6. Reset YL;

7 7. Repeat step 4 until Y does not change/maximum number of iteration is reached;

3.5 Experimental details

3.5.1 Dataset

We consider the Stanford-40 [YJK+11] still image action recognition database and UCF-50 [RS13]

video based action recognition dataset to evaluate the effectiveness of the proposed framework. Stanford-

40 actions is a database of human actions with 40 diverse action types, e.g. brushing teeth, reading

books, blowing bubbles, etc. The number of images per category ranges between 180 to 300 with a

total of 9352 images. We use the suggested [YJK+11] train-test split with 100 images per category

as training and remaining for testing. On the other hand, the UCF-50 dataset contains videos repre-

senting 50 actions in a unconstrained environments. The dataset contains a total of 6700 videos with

about 100 − 150 videos per category. This dataset is a superset of the popular UCF-11 dataset. We

randomly select 60% of the videos per category to represent the training set and the remaining 40% is

used to evaluate the classification performance of the proposed framework.
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3.5.2 Experimental setup

The following experimental setup is considered in order to evaluate the performance of the proposed

framework for both the datasets.

• MS clustering is used in conjunction with the Gaussian kernel. The adaptive bandwidth param-

eter (h) is fixed empirically as D
m

(1 ≤ m ≤ 10), where D is the average pairwise distance of

all the local descriptors extracted from all the visual entities of each category. The same setup

is repeated for MS clustering in the entity and the category levels(section §3.2.1).

• We extract 500 region proposals per image for the Stanford-40 dataset. Figure 1 depicts the

extracted region proposals for a pair of images from the dataset. We further discard proposals

which are largely overlapping to each other (overlap of≥ 50%) in order to highlight potentially

discriminative local patches in the images. The STIP keypoints are extracted from the videos

using the publicly available implementation of [Lap05].

• The number of final distinctive codewords selected for each class are set adaptively as discussed

before. As for feature encoding, for LLC, 100− 200 nearest neighbors per local descriptor are

considered to encode the images. We select the optimal hyper-parameters by cross-validation.

Each image in the Stanford-40 dataset is optimally represented by a sparse vector of length

8000 × 1 (100 neighbors in LLC).Whereas each video has a feature length of 32400 × 1 (2 ×

feature dimension(162)× No. of Gaussian components(100)).

• Each component tree in the random forest model is essentially a classification and regression

tree (CART) [Bis06a]. We conduct experiments with random forest of different sizes (500 −

2000) and find that a random forest with 1000 CART trees exhibits superior performance.

• For post processing based on label propagation, we fix the threshold for ”confident” inferences

to 20%. This value is determined by 5 fold cross validation for both image and video data.

• We compare the overall classification performance of the proposed technique with the repre-

sentative techniques from the literature. All the experiments are repeated multiple times and

the average performance measures are reported.
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Figure 3.1: Extraction region proposals from images of Stanford-40 using objectness

3.5.3 Performance evaluation

In this section we evaluate the performance of our framework on action recognition over benchmark

datasets with still images (Stanford-40) and videos (UCF-50).

Evaluation on Stanford-40

We evaluate the performance of our approach in two folds. First we provide an ablation study to

evaluate performance of our adaptive number of codeword selection.The results are shown in Table

3.1. In the previous work of [RBM17a], number of codewords are chosen empirically after cross

validation, still adaptive selection improves that performance by 0.4%. This goes on to show that

adaptive selection not only eliminate the need to execute cross-validation to select the number of code

words, but also improves previous performance by a margin.

Next, we demonstrate the effect of label propagation (§3.4) in our pipeline. We compare the effect of

addition of label propagation in Table 3.2. We achieve a performance improvement of 1.8%. A simple

assumption that neighbouring data points tend to have similar labels clearly improves the performance

of random forest. This also shows that label propagation is an effective tool to reduce the tree classifier

confusions that arise in a random forest. It also adds helps majority voting, that is applied in random

forest alleviate the problem of tree classifier confusions and avoid misclassification.

Finally, we evaluate the performance of our approach against other related action recognition pipelines

in literature. Table 3.3 mentions the accuracy assessment of different techniques for the Stanford-40

dataset. The performances of the methods based on hand-crafted SIFT-like features are comparatively

less (≈ 35.2%) [WYY+10]. This can be attributed to the fact that differences in human attributes

for many of the action classes are subtle. Label consistent K-SVD provides 32.7% accuracy. Part
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Table 3.1: Effect of adaptive number of code word selection for Stanford-40
Method Classification accuracy

Top B (B=200 chosen empirically) codewords and LLC encoding [RBM17a] 49%
Proposed framework with adaptive number of codewords and LLC encoding 49.4%

Table 3.2: Effect of label propagation for Stanford-40
Method Classification accuracy

Proposed framework with adaptive number of codewords and LLC encoding 49.4%
Proposed framework with adaptive number of codewords and LLC encoding +label propagation 51.2%

learning based strategies obtain better recognition performance in this respect by explicitly modelling

category specific parts. Classification accuracy of 40.7% is obtained with the generic expanded part

models (EPM) of [SJS13] which is further enhanced to 42.2% while the contextual information is

incorporated in EPM. The best performance with shallow features obtained for this dataset is 45.7%

by [YJK+11] which performs action recognition by combining bases of attributes, objects and poses.

Further they derive their bases by using large amount of external information. It is worth noting

that, the ImageNet pre-trained AlexNet reports a classification accuracy of 46% [KSH12a]. With

our framework, we observe an improvement of 5.2% over them. It can be argued that our method

encapsulates the advantages of deep and shallow models effectively in a single framework. The CNN

based region proposals are capable of encoding high level abstractions from the local regions. Since

the images are captured in unconstrained environments, the backgrounds are uncorrelated in different

images of a given category. The per category dictionary learning strategy reduces the effects of such

background patches and the proposed ranking measure further boosts the proposals corresponding to

the shared human attributes, human-objects interaction etc. for a given action category. In contrast to

other techniques which are based on SVM classifier, our framework relies on the random forest model

which does not explicitly require any cross-validation. We observe that performance of the random

forest model gradually improves with growing number of CART trees within the range 500 − 1000

and a random forest model with 1000 trees outputs the best performance. Further, the addition of

label propagation overcomes the problem of misclassification due to confusion created because of

ensemble nature of random forest.
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Table 3.3: A summary of the performance of our classification framework for the Stanford-40 data in
comparison to the literature

Method Classification accuracy
ObjectBank [LSFFX10] 32.5 %

label consistent K-SVD [JLD11] 32.7 %
LLC with SIFT features [WYY+10] 35.2 %

Spatial pyramid matching kernel [LSP06] 34.9 %
Expanded parts model [SJS13] 40.7 %

CNN AlexNet [KSH12a] 46 %
Proposed framework (with adaptive number of codeword selection and LLC encoding & label propagation) 51.2 %

Table 3.4: Effect of adaptive number of code word selection for UCF-50
Method Classification accuracy

Top B (B=200 chosen empirically) codewords [RBM17a] and fisher vector encoding 64%
Proposed framework with adaptive number of codewords and fisher vector encoding 64.5%

UCF-50 dataset

For UCF-50, we divide our experiments in similar way we do for Stanford-40. Table 3.4 shows the

effect of adaptive selection of number of codewords. Similar to that of Standford-40, we observe

an increment of 0.5% in result. Table 3.5 shows the effect of label propagation on random forest.

Label propagation improves the performance of random forest by 2.2%. Encoding videos properly

is inherently more complex than images due to added difficulty of encapsulating changes along pro-

gression of time. This in turn creates confusion in an ensemble setting such as random forest. Label

propagation works well in this scenarios which is evident from such a high increment of result.

We compare the performance of our framework with that of three different shallow representations

from the literatures with similar train-test split (Table 3.6). The standard STIP (HOG + HOF) with

the BoW encoding and the frame based GIST descriptors [OT06] exhibit classification performances

of 47.9% and 38.8% respectively. Since the differences between many of the action classes in UCF-

50 are fine-grained and the videos contain substantial camera motion and cluttered backgrounds,

models based on global descriptors fails drastically in discriminating the action classes. The Action-

Bank [SC12] model based on learned action templates provides improved recognition performance

(57.9%), although it requires numerous supervised information to learn the templates. Improved

dense trajectory [WS13]; dense trajectory with additional RootSIFT normalization provided 65.2%.

Table 3.5: Effect of label propagation for UCF-50
Method Classification accuracy

Proposed framework with adaptive number of codewords and fisher vector encoding 64.5%
Proposed framework with adaptive number of codewords and fisher vector encoding + label propagation 66.7%
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Table 3.6: A summary of the performance of our classification framework for the UCF-50 data in
comparison to the literature

Method Classification accuracy
GIST [OT06] 38.8 %

STIP (HOG+HOF) + bag of words 47.9 %
ActionBank [SC12] 57.9 %

Improved dense trajectory [WS13] 65.3%
Proposed framework (with adaptive number of codewords and fisher vector encoding + label propagation) 66.7%

All the aforementioned setups are based on the SVM classifiers.

In contrast, the current framework exhibits the best average recognition accuracy of 66.7% (we use

GMM with 100 components). The enhancement of the performance of the proposed framework is

attributed to the robust ranking measure which selects recurrent and discriminative local features and

reduces the effects of background patches by assigning low distinctiveness scores. This is established

since the recognition performance of the system sharply decreases (recognition accuracy of ≈ 58%

when all the codewords are considered) as more codewords per category are considered to build the

dictionary.

Essentially, We introduce a novel supervised discriminative dictionary learning strategy for the pur-

pose of action recognition from still images as well as videos. We take advantage of the available

training samples to adaptively rank local features which are both robust and discriminative. Further,

we cluster the local features at the entity and category levels to eliminate the effects of features cor-

responding to non-recurrent or background locations. The adaptive ranking paradigm proposed in

this work holds wider applications other areas including feature selection, ranked set generation for

retrieval etc.
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Mid-Level Feature Representations

In a standard supervised classification setup, it is sufficient if representations of each category are

discriminative enough. With enough labeled data, that can be achieved through proper dictionary

learning techniques as discussed in the previous chapter. But for situations where labeled data is

not available, there is a need to learn generalized representation from a small number of data. In

this chapter, we look into feature representations that are equally effective in dealing with both data

dependent scenarios. We take into account the extreme situation of scarcity of data where no example

of tst categories are available during training. This is known as the problem of zero shot learning

(ZSL). In this chapter, we investigate into a mid-level feature extraction paradigm that equally efficient

in standard classification as well as ZSL classification (Fig. 4.1). As a case study, we focus on the

problem of action classification from videos.

Firstly, to establish notations used in the first section of this chapter, let there be N labelled training

videos {(Xi, Yi)}Ni=1 where Xi = {x1i , x2i , . . . , x
ni
i } represents the frames of videos Xi and Yi ∈

{1, 2, . . . , C} is the corresponding class label. For a given frame xji , {rkij}
mj

i
k=1 represents the mj

i

motion salient region proposals (or the corresponding CNN features, rkij ∈ R4096) extracted from

xji . Further, the chain graphs extracted from the videos (or the corresponding pooled features) are

denotes as {ĉli}
νi
l=1 for a given Xi. In addition, each Xi is represented by a Q dimensional vector

(φ1
i , φ

2
i , . . . , φ

Q
i ) after the proposed dictionary learning process. All the notations and corresponding

methods are described as follows. The proposed mid-level feature extraction framework initially

27
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Figure 4.1: The proposed action recognition pipeline: Mid-level Descriptor Extraction, Dictionary Learning,
Classification

Figure 4.2: Mid level feature extraction: (a) Motion salient region proposals; (b) Pairwise bipartite graph
matching (thicken lines denote outcome of the matching algorithm); (c) Chain formation (each chain is repre-
sentative of a given concept); (d) time series pooling (blue denoted positive change and green denotes negative
change)

constructs distinct temporal chain graphs (concept detection) of the category independent and motion

salient region proposals extracted from the video frames. Further, a time-series pooling based feature

extraction from the chains is carried out to encode the evolution of the regions inherently tracked by

them (concept description). The stages (see Fig. 4.2) are described in details in the following.

4.1 Motion salient region proposal extraction

Given a video, we are interested in further analysing spatial regions which substantially capture the

scene dynamics since they are expected to contribute to the recognition of the underlying activity.

For the extraction of such motion salient regions, we rely on the region proposal network (RPN) of

[RHGS15] which can generate accurate proposals in a near free-cost manner. In order to further

account for the motion content of such region proposals, the graph based motion saliency detector of

[HKP06] is used to assign saliency scores ([0 − 1]) to the pixels of the video frames and proposals
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with high average motion saliency (≥ 0.6) are retained. In addition, we ensure to discard sufficiently

large (area ≥ 2000 pixels), skewed (aspect ratio more than 6 : 1 or 1 : 6), and highly overlapping

(intersection over union (IoU > 0.5)) proposals per frame. Further, high level CNN features (4096×

1) are extracted from the selected proposals by using the final fully-connected layer of the ImageNet

pre-trained VGG-16 model [SZ14c]. As an outcome, we obtain {rkij}
mj

i
k=1 for all the frames (1 ≤ j ≤

ni) of Xi.

Remark 1. Motion salient region proposals ideally indicate different body-parts of the person pertain-

ing to an action in the corresponding video. Subsequently, such proposals are tracked over consecutive

frames in terms of a weighted bipartite graph matching strategy.

4.2 Concept detection

Region proposal selection. In order to track the movement of the selected proposals over the video

frames, we propose an efficient iterative bipartite maximum weighted graph matching strategy for

each pair of consecutive frames. The region correspondence obtained in this way are further linked in

order to form the chain graphs.

Given {rkij}
mj

i
k=1 and {rkij+1}

mj+1
i

k=1 of Xi, an undirected bipartite graph G(V,E) with V = {rkij}
mj

i
k=1 ∪

{rkij+1}
mj+1

i
k=1 and the bi-adjacency edge matrixEmj

i×m
j+1
i

is constructed. The edge weights (w(rpij, r
q
ij+1))

in E represent similarity measures between all pairs of proposals from both the frames as the convex

combination of their spatial overlapping along with the appearance resemblance as follows:

w(rpij, r
q
ij+1) = δ

R(rpij) ∩R(rqij+1)

R(rpij) ∪R(rqij+1)
+

(1− δ) exp(−γ||r(rpij)− r(r
q
ij+1)||22)

(4.1)

Where first part of RHS denotes the spatial overlap between rpij and rqij+1, defined in terms of their

respective spatial regions R(rpij) and R(rqij+1).

The second part of RHS in Eq. 4.1 represents the appearance similarity between rpij and rqij+1 in terms
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of the Gaussian Radial Basis Function (RBF) kernel of their CNN features. We explicitly consider

w = 0 for non-overlapping proposals (IoU = 0) in order to omit the construction of irrelevant chains

and remove the respective edges in E. Since the movement of a given body part is consistent both

in spatial arrangement and appearance, w(p, q) is high if both p and q refer to unswerving regions in

both the frames. Given the bipartite graph G, a matching is defined as a set of the edges chosen in

such a way that no two edges share a common endpoint.

Remark 2. Since we aim at finding a bijective mapping between the proposals of both frames based

on high similarity and consistency, we can alternatively find the maximum weighted matching fromG

which refers to our desired solution. We employ an equivalent approximation based on integer linear

programming (ILP) for the maximum weighted graph matching problem for the bipartite graph G.

Maximum weighted bipartite matching. Given boolean variables ∆ for the edges in E such that

∆e = 1, (e ∈ E) for a matched edge and 0 otherwise, the maximum weighted matching problem can

be formulated as:

maximize
∑
e

we ∆e

subject to ∀v ∈ V,
∑
e∼v

∆e ≤ 1

∀e ∈ E,∆ ∈ {0, 1}.

(4.2)

e ∼ v indicates that e ∈ E is adjacent to the vertex v ∈ V . Optimal solution to this problem is the

assignment vector of the maximum weighted matching. Since it is impractical to solve Eq. 4.2. in

polynomial time as ILP is NP-complete, we relax the integrability constraint on ∆ (0 ≤ ∆ ≤ 1) so as

to convert Eq. 4.2 into a standard linear programming problem (LP). The solution to the ILP problem

is consistent to that of the LP one which provides an upper bound on the solution of Eq. 4.2. We

solve the LP problem in terms of the classical Hungarian primal-dual algorithm [Sch02] given that

the minimum vertex cover is dual to the maximum matching problem. In particular, the Hungarian

algorithm maintains a cover and iteratively reduces the weight of the cover by finding maximum

matchings on tight edges of the corresponding equality graph (perfect bipartite graph corresponding

to G with auxiliary edges) (Kuhn-Munkres theorem) [Sch02]. Once such matchings are obtained for
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all pairs of selected frames of Xi, we link common proposals for two consecutive matchings in order

to further expand the chain graphs (Fig. 4.2).

Remark 3. Such chain graphs represent the characteristics of the video sub-volumes which contribute

to the recognition of the underlying human activity. We opt for the proposed bipartite graph match-

ing based framework in contrast to simple region matching between the proposals since such naive

matching in the Euclidean space is prone to false region correspondence which may affect the efficacy

of the classifier. Since the chains can be of different lengths, we further employ a generic time-series

feature pooling strategy to encode the appearance evolution of the underlying region proposals into

fixed length vectors.

Remark 4. It is worth noting that the Hungarian algorithm is yet to be explored extensively in

computer vision. However, it proves to have significant applications in areas involving assignment

problems.

Time series pooling and concept generation. Specifically, the considered time-series pooling [RRM15]

separately tracks the positive and negative slopes for each of the dimensions of the feature gradient

vectors. The gradient is defined as the difference between the CNN features of a pair adjacent propos-

als (nodes) present in the chain. The positive and negative components are further averaged to obtain

two 4096× 1 dimensional descriptors. Each chain is finally represented by a vector of size 8192× 1

by concatenating them. We rely on the time-series pooling since unlike the traditional max/average

pooling, it respects the ordering of the frame-level contents. Further, considering the dimensions

of the gradient vectors as one dimensional signals, it is possible to quantify the advancement (ab-

sence/presence) of abstract concepts over the frames with this feature representation. We further term

such extracted descriptors as concepts (Fig. 4.1).

Fig. 4.3 provides a visual description of the mid level feature extraction process from a sample

HMDB51 video as discussed here. In this figure, (a) shows the region proposals after initial subsam-

pling as discussed in the main submission. (b) shows the way each region proposal in one frame is

treated as a node and edges are formed between region proposals of 2 consecutive frame pairs to form

a bipartite graph. Maximum weighted bipartite graph matching provides optimal solution for region
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(a)

(b)

(c)

Figure 4.3: chain graph formation example for HMDB51. (a) Initial sets of motion salient region
proposals. (b) pairwise bipartite graph matching. (c) chain graph formation.

correspondence. Connecting the solutions from each pair give the chain graph in (c). Fig. 4.3 vali-

dates visually our region proposal subsampling process. The resultant region proposals are not highly

overlapping and generally contain a certain body part. Hence chain graphs formed subsequently fol-

low the movements of specific parts of body. For example, in Fig. 4.3, region proposals in each frame

correspond to hand, upper body legs respectively. Three chain graphs formed essentially follow the

movements of these body parts. Similarly, region proposals corresponding to head and hand can be

observed in different frames in Fig. 4.3. Also, maximum weight graph matching ((b) in Fig 4.3)

based optimization greatly reduces chances of region mismatch, utilizing both CNN feature extracted

from region proposals as well as their position in frames (for finding overlap). Fig. 4.4 is the visual

description for the times series pooling used in our work. We pool on chains formed on local spatial

regions across the frames. Also, by incorporating positive and negative gradient information, we en-

code local information across temporal dimension as well. This is in contrast with general convention

of global pooling schemes such as max pooling, average pooling etc [WLSS16].

Remark 5. Differently from [ZNH+15], concepts are automatically discovered without any assump-

tion, and multiple concepts ({ĉli}
νi
l=1) are extracted from Xi. Further, the extracted concepts are highly

non-redundant since they neither contain any common proposal nor refer to background contents. We

also propose a simple dictionary learning strategy to encode the videos with respect to the concepts.
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Figure 4.4: Example of time series pooling from chain graph (concept). Positive gradient is denoted by brown
colour. negative gradient is denoted by blue colour. For a 4096 dimensional vector (in our work), positive and
negative gradients are placed in their respective dimension (position in a vector). Concatenation of these two
provides final 8192 dimensional vector.

4.3 Dictionary learning with probabilistic embedding

Dictionary construction. It is expected that for a given action, a certain body part repeats similar

manoeuvres multiple times which further reappears in videos from the same category. It is worth not-

ing that the extracted concepts mainly have two characteristics: 1) action specific and 2) shared since

we primarily eliminate the presence of irrelevant concepts in the pre-processing stage (Sec. 4.1). In

order to identify clusters of class oriented concepts, k-means with sufficiently large k on all concepts

across videos of every category is separately performed and all the cluster centroids are concatenated

to create a dictionary of size Q = k × C. We further introduce a simple probabilistic embedding

scheme to project the video level concepts in the space spanned by the dictionary codewords. The

distance (ρ) between a given concept ĉli of Xi to the qth codeword µq is computed in terms of the

Gaussian RBF distance as:

ρlqi = exp(−γ||ĉli − µq||22) (4.3)

where ρ is inversely proportional to the distance between ĉli and µq. We calculate the similarities of
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x

Figure 4.5: Example of video embedding into concept space: C1, C2 and C3 are codewords (concept tem-
plates). s1,s2 and s3 are interest points from a video. Similarities are calculated according to equation 1.
Column-wise max-pooling operation gives the embedding φ of the corresponding video.

Eq. 4.3 between all the concepts of the video Xi and the set of codewords.

Proposed embedding. We retrieve an embedding φqi of Xi for the qth (1 ≤ q ≤ Q) dimension by

max-pooling the similarity measures between all the concepts of Xi and the qth codeword as follows:

φqi = max
l

(ρlqi ) (4.4)

Essentially, φi ∈ RQ represents a discriminative embedding of the videoXi; a vector of best similarity

scores between the concepts and each of the Q codewords.

Remark 6. Popular encoding techniques such as VLAD or fisher vector (FV) are super-vector en-

coding and depending on the size of codebook, the size of the obtained encodings is extensively

large. Given the small size of the datasets considered, the ratio between the number of samples and

the data dimensionality is very less, which subsequently causes the overfitting of the classifier. The

proposed encoding is devoid of such a problem since there is no hyper-parameter involved and we

always obtain a fixed length feature vector of size 8192. Other work in [RBM17c] has demonstrated

the effectiveness of this encoding technique even for low level features.

Remark 7. It should be noted that unsupervised k-means is used to select the initial set of codewords

per category. However, further introduce a discriminative probabilistic embedding which ensures

concentration of the videos belonging to each class. On the other hand, the construction of a single

dictionary considering k-means on the videos of all the classes does not possess enough discrimination

unless external supervision is deployed.
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Figure 4.6: Example of ZSL. action 1∗ and action 2∗ are unseen class labels. R (along with D), determines
the class assignment of elements of Xu either to action 1∗ or to action 2∗. See also text.
Remark 8. In contrast to the exemplar classifier based embedding generally adopted for mid-level

descriptors [ZNH+15], the proposed encoding is simple, discriminative and does not require to model

the responses of such classifiers. As an outcome, we obtain aQ dimensional embedding (φ1
i , φ

2
i , . . . , φ

Q
i )

of video Xi . We use metric learning based multi-class SVM for classification and the proposed semi-

supervised clustering based ZSL technique is mentioned below.

4.4 Action classification using zero-shot learning

For the task of ZSL, we consider that the training classes Cs (Cs ⊂ {1, 2, . . . , C}) and test classes Cu

(Cu ⊂ {1, 2, . . . , C}) are mutually non-overlapping (Cs ∩ Cu = ∅). Furthermore, the available seen

and unseen instances for ZSL are of the form {(Xα, Yα)}NS
α=1 and {(Xβ)}Nu

β=1, respectively.

In order to learn a mapping (D) from label to visual embedding space jointly for both the seen and

unseen data, we pose the ZSL problem as a semi-supervised clustering problem [SB16], where seen

and unseen data are clustered together, utilizing available annotations of seen instances. The visual

embedding (φ) of the previous step is considered for semantic embedding and the unseen classes are

initially embedded based on the concepts extracted from the seen classes. Further, such embeddings

are projected onto a metric space [Sug06] for better cluster discrimination. Given that the CNN

features capture high-level discriminative abstractions, videos from a given class are expected to form

a dense cluster in the metric space. Let ai ∈ Rt be the signature of a seen class Yi ∈ Cs and the matrix

Ss ∈ Rt×|Cs| stores the signatures into columns: Ss = [a1, a2, ..., a|Cs|]. Similarly, Su ∈ Rt×|Cu|

represents the same for unseen classes (Fig. 4.6).
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We construct an optimization function based on ridge regression for the underlying semi-supervised

clustering problem. In particular, we intend to learn a low-rank transformation preserving the least

square error bounds on seen classes. For samples belonging to unseen categories, we ideally seek

cluster assignments (R) such that a generic cluster validity index is also optimized. Formally, we

aspire to optimize the following cost function jointly on all the samples:

min
R,D
||Xs −DYs||2F + λ1||Xu −DSuRT ||2F + λ2||D||2F (4.5)

where Xs = [X1, X2, . . . , XNs ], Ys = [Y1, Y2, . . . , YNs ] ∈ Rt×Ns and R ∈ RNu×|Cu| is the class

indicators matrix for unseen data. Eq. 4.5 signifies that we seek a class assignment for samples

of unseen classes in such a way that linear transformation of both seen and unseen class signatures

provide good representations for the samples.

Since Eq. 4.5 is not convex jointly on {R,D}, the function is optimized by an alternate descent

technique which iteratively finds D and R keeping the other fixed. Given R, the problem becomes a

simple multi-task ridge regression and there is a closed-form solution for D as follows:

D = (XsY
T
s + λ1XuRS

T
u )(YsY

T
s + λ1SuR

TRSTu + λ2I)−1 (4.6)

Fixing D, R can be solved by assigning each unseen sample to its nearest class. i.e. for a sample Xβ

from unseen class we find:

k′ = arg min
k
||Xβ −DSu(k)|| (4.7)

and subsequently assign Rβk′ = 1. We use difference in the goodness of clustering (Dunn’s index)

[HVB00] for unseen instances between two consecutive iterations as the stopping criteria . The whole

algorithm is shown in Algorithm 3.

Remark 9. Since we essentially learn an embedding (D) jointly from seen and unseen data, the

framework is thus capable of inherently capturing any potential domain mismatch between both the

source and target domains.
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Algorithm 3: Zero shot learning
Input: Xs,Ys,Xu, Ss, Su
Output: R,D

1 Initialize R,D ;
2 while err ≤ η do
3 update D using Eq. 4.6 for fixed R;
4 update R using Eq. 4.7 for fixed D;
5 err = difference between the goodness of target domain clustering for two iterations;
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Figure 4.7: 2D t-SNE visualization of video data after probabilistic embedding. Colorbar corresponds to the
cluster labels. Best viewed in color.

4.5 Experiments

In this section, we primarily evaluate the robustness of the proposed descriptors and the encoding

technique, respectively in terms of fully-supervised action recognition.

Datasets. We evaluate the performance of the proposed framework on four challenging datasets:

KTH dataset [SLC04] consists of 599 videos of 6 actions performed by 25 subjects in 4 different

scenarios including indoor, outdoor, changes in clothing and scale variations. UCF-101 [SZS12]

contains 13320 videos related to 101 human action categories. They represent single action with

substantial background clutter. HMDB-51 [KJG+11] comprises of 6766 videos from 51 human action

categories. They are primarily collected from realistic videos from movies, Youtube and other public

repositories. Finally, Hollywood Human Action (HOHA) [LMSR08] consists of 430 videos from 8

action classes of realistic human actions in unconstrained videos such as in feature films, sitcoms, or

news segments.

Implementation details. We use the RPN used in faster RCNN [RHGS15] for the initial region
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Figure 4.8: Trade-off between the number of selected codewords and classification accuracy (without metric
learning).
proposals from video frames, approximately obtaining 5 − 50 proposals from each frame after pre-

processing (Sec. 4.1). For initial class specific codebook generation (Sec. 4.3), we select 100 code-

words per class for KTH and HOHA, 50 words per class for UCF-101 and HMDB-51 datasets (Fig.

4.8). These values are selected by empirically. Probabilistic embedding therefore provides encod-

ings of size R600,R5050, R2550 and R800 for KTH, UCF-101, HMDB-51 and HOHA respectively.

Next, for standard multi-class action classification, we rely on the Local Fisher Discriminant Anal-

ysis (LFDA) [Sug06] metric learning based SVM framework for its better performance (discussed

later in detail) and scalability. Gaussian RBF kernel is chosen in conjunction with SVM and both

kernel hyper-parameter (≈ 0.05− 0.005) and SVM trade-off parameter (≈ 1000) are fixed by 10-fold

cross-validation.

For ZSL, both λ1 and λ2 (Eq. 4.5) are fixed by cross-validating on the seen classes. Proper con-

vergence of the alternate optimization is largely dependent on the initialization of R. For optimal

initialization of R and D, we obtain a projection matrix (D) solely based on the samples from the

seen classes by solving the standard ridge regression problem. We subsequently cluster the unseen

samples after projecting them on the new space (D) using k-means to initialize R accordingly.

Parameter tuning. Our pipeline is indeed a combination of several subtasks. Each of these subtasks

are carefully chosen in order to fit our requirements, i.e. the ultimate goal of mining discriminative

concepts. A brief description of parameter selection strategy is given below:

• Motion salient region proposal detection: In this task, the number of region proposals to extract

is a crucial parameter. We tune this number to satisfy two criteria: a) Avoid redundancy b)
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Figure 4.9: Bar graph for recognition for KTH. Notations: Yellow→ wrongly classified, Purple→
rightly classified
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Figure 4.10: Bar graph for recognition for UCF101 (split 3). Notations: Yellow→ wrongly classified, Purple
→ rightly classified
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Class names

brush hair

 cartw
heel

 catch

 chew

 clap
 clim

b

 clim
b stairs

 dive
 draw

 sw
ord

 dribble

 drink

 eat
 fall floor

 fencing

 flic flac

 golf
 handstand

 hit
 hug

 jum
p

 kick
 kick ball

 kiss
 laugh

 pick
 pour

 pull up

 punch

 push

 pushup

 ride bike

 ride horse

 run
 shake hands

 shoot ball

 shoot bow

 shoot gun

 sit
 situp

 sm
ile

 sm
oke

 som
ersault

 stand

 sw
ing baseball

 sw
ord

 sow
rd exercise

 talk
 throw

 turn
 w

alk

 w
ave

N
u
m
b
er

o
f
cl
ip
s

0

5

10

15

20

25

30

correct

recognition

Incorrect

recognition
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Capture salient regions. In order to satisfy a) we do not extract too many region proposals

(RP) so that the same region does not come under a large number RPs. In order to satisfy

b) we visually observe on a number of (consecutive) image(s), the minimum number of RPs

that capture the regions responsible for motion (e.g. hands, legs etc.). It should be noted that

initial number of RPs proposed from the faster R-CNN is 2000. In order to come to a fixed

optimal number, we utilize the notion of motion saliency. As discussed in section 3.1, we fix

the saliency to be 0.6. This is done in order to make the process to be semi supervised (semi

supervised because we fix the threshold of motion saliency yet do not necessarily rely on visual

inspection to fix the number of RPs) and adaptive. We observe that number of RPs selected are

different for different datasets. For example, for KTH there were 10 RPs/image in average over

all the images but in HMDB51, this number was increased to 50.

• Bipartite graph matching and time series pooling: Our bipartite graph matching and time series

pooling stages are hyper parameter free.

• Number of code-words for probabilistic embedding: For this, we fixed the other settings (RP

selection, pooling, LFDA and SVM) and performed supervised classification on the validation

sets of the respective datasets. Fig. 8 shows this. Please note that we could not experiment with

high number of per class codewords since it would result in probabilistic embedding of really

high dimensionality and consequently make the rest of the process rather cumbersome.

• LFDA and SVM:The output dimensionality is a key parameter which we fix by cross-validation

together on the go with the parameters of SVM (RBF kernel hyperparameter and SVM regular-

ization parameter). Please note for different datasets, the sets of parameters were different.

• Zero shot learning: We create the setup for our ZSL experiments by randomly splitting the

dataset in 50%-50% for test-train sets. Further, we tune the parameters λ1 and λ2 by creating

validation sets on the training set and applying algorithm 1. We try to maintain a ratio of 50%-

50% in creating the validation set out of our training sets.For KTH, we have 3 training classes,

hence we create a split of 2-1 class(es) for validation. For each split (since we have 10 random

splits) we repeat this. This means for each random split we essentially have different values for

λ1 and λ2.
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At each subtask (except zero shot learning), the parameters are tuned keeping the other parts of the

pipeline constant. Classification parameters were tuned using 10 fold cross-validation with (almost)

90%-10% split on the training set.

Visualization of the extracted descriptors. For visual confirmation of our results we use t-SNE

[MH08]. For example, Fig. 4.14 depicts the 2-dimensional visualizations of the extracted concepts

generated from t-SNE [MH08] for UCF-101 and HMDB-51. It can be observed that the concepts form

locally dense clusters and concepts from different categories can easily be distributed. This essentially

is due to high discriminative nature of the proposed encoding obtained based on the concepts.

Effectiveness of bipartite matching technique. We carried out experiments to compare the effec-

tiveness of the sub-graph matching algorithm we used in our pipeline with two other commonly used

matching techniques:

1. Ford-Fulkerson Algorithm [EK72]

2. HopcroftKarp Algorithm [Gar85]

Ford-Fulkerson algorithm is primarily used in case of maximum flow problem and can be extended to

solve the maximum bipartite matching problem. On the other hand, Hopcroft-Karp algorithm solves

bipartite matching problem using a maximum matching, a matching of maximum size (maximum

number of edges). In order to compute the efficiency of our matching strategy against the ones men-

tioned above, we compute the percentage of correct matching in order to create meaningful concepts.

Ideally, if similar region proposals (part of body) is tracked in consecutive frames, the difference of

CNN feature values will be small, whereas if the matching is faulty (i.e. dissimilar body parts are

matched) the difference will rather be high. We first calculate the difference of the consecutive region

proposals in a chain of region proposals (concepts). We average them over number of region propos-

als in the chain. We take the average of all such values over all possible chains in a video. Table 4.1

shows a comparison of the methods on all 4 datasets. The reported values are mean over all the videos

in each of the datasets.

From the table it is evident that our matching provides the least amount of error in creating the chain

of region proposals which in turn proves the effectiveness of our matching approach. Especially
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Table 4.1: Comparison of our bipartite matching approach with other methods.

Method KTH UCF-
101

HMDB-
51

HOHA

Ford-Fulkerson
Algorithm

10400 25650 34800 100750

Hopcroft-Karp
Algorithm

9800 21500 37600 98750

Ours 1050 9700 13200 34050

in HMDB-51 and HOHA, our matching performs considerably better than both other algorithms

compared.

Table 4.2: Comparison of our probabilistic embedding technique with other embedding techniques (in %).

Method KTH UCF-101 HMDB-51 HOHA
VLAD 78.9 65.5 53.3 39.8
FV 82.1 69.2 55.1 41.4
LLC 80.6 65.1 54 39.8
Probabilistic
embedding

86.4 76.5 71.1 49.7

4.5.1 Action recognition

The goal of this experiment is to show the efficiency of our mid level encoding through supervised

action classification performance.

Experimental protocol. For the KTH dataset, 25-fold leave-one-group-out is used whereas for the

remaining datasets, the available train-test splits are considered. We report the performance of our

framework in terms of mean classification accuracy.

Evaluation. First, we compare the proposed probabilistic embedding to three standard feature en-

coding techniques used in conjunction with the extracted concepts: Vector of Linearly Aggregated

Descriptors (VLAD), Fisher’s vector (FV) [CLVZ11], and sparse locality constrained linear coding

(LLC) [WYY+10]. We find that the proposed encoding sharply outperforms the others by a substan-

tial margin in terms of classification accuracy. For example, Fisher’s encoding with 100 Gaussians

provides best classification performance among the above mentioned three encoding techniques for
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Table 4.3: Comparison of our supervised classification accuracies with that of the recent literature (in %).
Type Method KTH UCF-101 HMDB-51 HOHA

Local
STIP+BoW [Lap05] 91.8 43.9 20.2 34.8
DT [WKSL13] 94.1 - 46.6 28.8
IDT [WS13] - 85.9 57.2 41.8

Mid-
level

Graph MIL [YL16] - - - 56.51
Action parts [RKS12] - - - 40.1

CNN

3D CNN [KTS+14] - 63.3 - -
C3D (1 net) [TBF+15] - 82.3 - -
Spatial CNN [SZ14a] - 73.0 40.5 -
Temporal CNN [SZ14a] - 83.7 54.3 -
Two Stream Net [SZ14a] - 86.9 58.0 -
CNN+LSTM [VLS16] - 83 57 -

Pooling
(mo-
tion)

Average pooling [WLSS16] - 80 50.9 -
Max pooling [WLSS16] - 80.2 50.6 -
Temporal PP [WLSS16] - 81.6 54.7 -
Order aware [WLSS16] - 82.1 55.0 -

Ours
SVM 86.4 76.5 71.1 49.7
LFDA + SVM 94.3 85.1 82.1 57.35

Table 4.4: Recognition accuracies for the three splits of UCF101 and HMDB51.
UCF-101

method split 1 split 2 split 3 average
SVM 73 77.9 78.6 76.5

SVM+LFDA 77.7 88.7 88.9 85.1
HMDB-51

method split 1 split 2 split 3 average
SVM 70.3 68.9 74.1 71.1

SVM+LFDA 82.1 81.5 82.4 82.1

the KTH, UCF-101, HMDB-51 and HOHA with 82%, 69%, 55% and 41%, respectively, which are

considerably lower than ours (Table 4.2). Another point to consider is the fact that all the encodings

compared here, considers supervectors of high dimensionality, given the initial size of our feature

vectors (R8192) and it is computationally more expensive to handle these encodings. Apart from that,

evolution of the classification performance for different number of codewords is shown in Fig. 4.8.

It can be observed that for both UCF-101 and HMDB-51, a small number of codewords produce

better classification outcomes, whereas the performance gradually degrades for a larger number of

codewords. This can be attributed to the fact that concepts are spread across the feature space, hence

selecting in more number implies these class specific code words are also more spread across the fea-

ture space. Thus class-secificity of these code words are diluted and they become rather ambiguous
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Figure 4.13: Experiments on pooling techniques.

(Fig. 4.14).

Effect of time series pooling. In order to validate the effectiveness of our pipeline as compared to

just the effect of deep features, we conduct the following experiment. We extract CNN features per

frame and the video level descriptors are calculated by max and average pooling the :

• frame level CNN descriptors

• gradient features between each pair of frames.

In both the cases, the obtained accuracies are substantially less for all 4 datasets (Fig. 4.13). Exper-

iments reveal that maxpooling fares better average pooling for both frame level CNN and gradient

features. But even in that case, time series pooling performs much better than max pooling. For

example, for KTH dataset, frame level CNN feature + maxpooling gives an accuracy of 71.3% and

gradient feature+maxpooling gives 80.1% accuracy. Whereas time series pooling gives 86.4% accu-

racy (Table 1). Effect of metric learning (LFDA). Fig. 4.14 shows that class specific concepts

are distributed throughout feature space in a locally dense manner. LFDA is known for its ability to
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Figure 4.14: 2D t-SNE visualization of video data after probabilistic embedding. Colorbar corresponds to the
cluster labels. Best viewed in color.

maximize between-class separability while preserving within-class local structure [Sug06]. Hence,

LFDA, being a fast, robust, local metric learning technique, can be adopted to our setup effectively.

Consequently, given the discriminative nature of our encoding, which highlights class-specific con-

cepts, supervised LFDA further enhances the class separation significantly, thus providing a high leap

in accuracy. Our system exhibits classification performance of 86.4%, 76.5%, 71.1%; and 49.7% and

94.3%, 85.1%, 82.1% and 57.35% for KTH, UCF-101, HMDB-51 and HOHA, without and with the

use of metric learning (Table 4.3) respectively.

Comparison to the literature. Table 4.3 summarizes our performance with respect to recent litera-

ture. We compare our results with low level local features, mid level features, as well as some high

level CNN based models. We further perform a comparative analysis with other recent deep fea-

ture pooling techniques used in action recognition. Amongst local approaches, the improved dense

trajectory based features with HOG, HOF an MBH descriptors [WS13] produce recognition accura-

cies of 85.9%, 57.2% and 41.2% for UCF-101, HMDB-51 and HOHA, respectively. On the other

hand, 3D-CNN [KTS+14] trained on 1-million sports videos produces 63.3% accuracy for UCF-101

after fine-tuning. The popular two-stream networks [SZ14a] also exhibit competitive performance

for UCF-101 and HMDB-51 with 86.9% and 58%, respectively. Amongst different pooling strate-

gies, order-aware pooling [WLSS16] is found to provide best performance, i.e. 82.1% and 55% for

UCF-101 and HMDB-51, respectively by incorporating ranking paradigm in CNN training.

We also provide the bar graph showing per class accuracies for KTH, UCF101, HMDB51 and HOHA
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Table 4.5: Comparison of recognition accuracies of the ZSL techniques (in %).
Method KTH UCF-101 HMDB-51 HOHA
Random guess
[XHG15]

- 2.0 4.0 -

DAP [LNH14a] - 2.2±0.5 - -
IDP [LNH14a] - 6.9±1.1 - -
NN Self-Training
[XHG15]

- 18.6±2.0 21.2±3.0 -

Sparse code + ZSL
[KXFG15b]

- 14.0±1.8 - -

Ours 40 ± 4.0 17.8±0.8 20.1±0.6 8.0 ±3.4

in Fig. 4.9,4.10, 4.11 and 4.12 respectively. We obtain state of the art recognition accuracy in

HMDB51. Although for most of the classes recognition is commendable (we got 100% class ac-

curacy in 7 classes- ’cartwheel’, ’catch’,’golf’, ’punch’,’sit’, ’wave’), for the classes ’ swing baseball’

and ’kick’, recognition is comparatively much lower. 27 out of 30 clips in ’swing baseball’ (90% of

clips) and 19 clips from ’kick’ (63%) are misclassified.

Our model exhibits consistently impressive performance for vastly different action types. In particu-

lar, for the challenging HMDB51 (daily activity), where the action videos include substantial human

object interaction as well as cluttered backgrounds, we report state of the art performance, outper-

forming the best accuracy by more than 20% (71.1% & 82.1% vs 58%). Given the semantic richness

of extracted concepts, which is attributed to the motion salient region proposals, our feature descrip-

tors implicitly encode complex human object interactions. Similarly for UCF 101 (sports centric),

our results are comparable to the standard two-stream net [SZ14a] and CNN+LSTM [SMS15], thus

emphasizing the discriminative nature of our concepts without the need of costly training of deep net-

work.In particular, Two-stream nets trains deep networks to encode appearance and motion, whereas

we encode both at the same time without any extra deep training overhead.

In comparison to other mid level approaches [RKS12, YL16], which require clustering of large vol-

ume of trajectories (often redundant and irrelevant), our detected concepts are non overlapping, fo-

cussed on action specific components, as exhibited by the performance on the HOHA, dominated by

camera and background motion (see Table 4.3). Overall, these results on datasets of varied nature and

size establish the robustness as well as the scalability of our proposed pipeline for .
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4.5.2 Zero shot classification

The aim of this experiment is to demonstrate the ability of the concepts as a replacement for computa-

tionally expensive semantic attributes for the action classes. A proper way to highlight this is through

a ZSL setup where there is a need for semantic understanding of the related classes.

Experimental protocol. For ZSL, we randomly split all the available classes into two groups ( seen

and unseen group) where each of the groups consists of half of the available classes. We consider 10

such random splits for each dataset and report the average classification performance.

Comparison to the literature. We compare the proposed semi-supervised clustering based ZSL tech-

nique with that of the traditional attribute based [LNH14a] and semantic embedding based techniques

in Table 4.5. Attributes are an important factor in ZSL give the fact it forms the basis for seman-

tic space. They are either predetermined from prior experience or learnt through explicit supervised

learning. Automatic learning of attributes is an expensive process and does not always guarantee

proper understanding of semanticity related to a class label. The performances of both direct and

indirect attribute prediction (DAP, IDP [LNH14a]) is very little for the UCF-101 data when 51 classes

are considered to be seen and the remaining 50 classes are used for testing (2.2% and 6.9%, for DAP

and IDP respectively). On the contrary, the proposed clustering based approach does not require the

application of manually annotated attributes or extensive training of deep models for word embedding

[GL14]. Our results closely resemble with that of the costly semantic embedding based approach of

[XHG15] for both UCF-101 and HMDB-51 (only about 1% less). Another important aspect of ex-

periments related to ZSL is the stability, i.e. how consistent the process is when the sets of known

and unknown classes are changed. This is generally expressed in terms of the standard deviation as

measure of tolerance. In this regard, we exhibit more stability over different splits (standard deviation

≤ 1%) as compared to [XHG15] (standard deviation 2%-3%). This stability property establishes the

global and invariant nature of the extracted concepts.
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Visually-Driven Semantic Augmentation for

Zero Shot Learning

In spite of supirior performance of mid level features for traditional supervised as well as zero-shot

scenarios, there is still progress needs to be made in order to achieve generality, which essentially

guarantees success in situations with small number of data. To that regard, zero-shot learning demands

special attention. In particular, we concentrate on the topic of zero-shot image recognition. Different

from the contemporary works that learn an embedding from visual to semantic spaces and carry out

zero shot recognition based on the semantic representation of categories, we posit that semantic and

visual spaces are equally important, providing complementary information. In this chapter, we present

a novel optimization pipeline, called Visually-driven Semantic Augmentation (VdSA), to augment

semantic embeddings by means of visual cues extracted from soft labels. Before discussing the details

of the method, some notations are as follows.

Let X denote a generic instance data to be classified (in this work, an image). In ZSL, the task

is to train a model with full supervision using instances belonging to a given set of seen classes

Yseen. During testing, such model is transferred on a different set of unseen classes Yunseen. As

usually done in ZSL [XSA17], one assumes that seen and unseen classes are disjoint sets, that is,

Yseen ∩ Yunseen = ∅.

For each instance X , we compute its visual signature fX ∈ Rm in a visual embedding space whereas,

49
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l0.3
Figure 5.1: Overview of the proposed ZSL method. In the first stage, the visual embedding fX is first mapped into the
latent attribute space z and, afterwards into the semantic embedding sy: this mapping is performed by Φ, which depends
by parameters V and W. The second stage is accomplished by the auxiliary mapping Ψ, which depends by parameters U.

for each class y, we compute a semantic representation sy ∈ Rn in semantic embedding space. In

other words, one can think of fX as a deep feature from a CNN [KSH12b, SZ14b], and sy can be a

distributed word embedding (such as word2vec [MSC+13]).

As a learning process, ZSL can be framed in stages. In training, we only use the seen classes Yseen

to learn a transformation Φ taking visual signature fX as input and outputs a semantic representation

Φ(fX). In testing, we predict the unseen class of a testing instance X̃ by selecting ỹ ∈ Yunseen

according to the criterion

ỹ = arg min
y∈Yunseen

‖Φ(fX̃)− sy‖2, (5.1)

where ‖ · ‖2 stands for the Euclidean norm.

5.1 Method

Our proposed Visually-driven Semantic Augmentation (VdSA) builds upon the previous setup of

learning a transformation Φ from visual to semantic embeddings (that is, from f , computed from X ,

to s, computed from y).

Our approach is to augment semantic information through the representation pX extracted from the

softmax output vector of a deep neural network (trained for image classification tasks on the seen

classes only), fed with X . Let us note that since we are learning a mapping Φ: f → s where

the semantic representation s is the output (and not the input), one cannot simply concatenate soft

labels to attributes/DWEs features and learn a (supposedly) better function Φ. Therefore, the way of
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inserting soft labels in a ZSL pipeline is not trivial a priori.

In this work, we tackle this issue and propose a novel ZSL pipeline. The key idea consists of intro-

ducing a intermediate layer z represented by latent attributes, instead of having a direct mapping Φ

from fX to sy [ZS16a, PTX+16, XHG16, JWS+17b, KXG17, HMS17]. The rationale is that we take

advantage of z in order to do a compression while fusing the visual embedding fX and soft-labels pX ,

ultimately integrating the semantic cues which are extracted by softmax operators from visual data

directly.

Formally, let Fseen denote the visual data, i.e., m × d matrix which stacks by columns all the visual

features fXk
computed from training data instances Xk, k = 1, . . . , d, belonging to the set of seen

classes . Similarly, let Sseen be the n× d matrix whose kth column gives the semantic representation

syk relative to the seen training class yk to which Xk belongs to. As a baseline, we consider the

following model based on latent attributes [ZS16a, PTX+16, XHG16, JWS+17b, KXG17, HMS17]:

min
W,V,Z

‖Sseen −WZ‖2F + α‖Z −VFseen‖2F , (5.2)

where α > 0, ‖ · ‖F stands for the Frobenius norm, Z stacks by columns all the latent attributes, and

the two sets of parameters W and V represent the mapping Φ (see Figure 5.1)1.

In order to make latent attributes aware of semantic information distilled from visual data by means of

soft labels, we introduce the auxiliary function Ψ which enriches z using pX . Therefore, our proposed

ZSL framework rewrites as follows

min
W,V,U,Z

‖Sseen −WZ‖2F + α‖Z −VFseen‖2F + β‖Z −UPseen‖2F (5.3)

where α, β > 0 and Pseen stacks all soft labels by columns. In (5.3), the usage of the auxiliary mapping

Ψ helps Φ in optimizing z as to 1) map visual into semantic embeddings, and 2) take advantage of the

auxiliary semantic information extracted by means of soft labels. This constitutes a novel approach,

never investigated in previous ZSL methods [LNH09, FEHF09, MSN11, WM10, WJ13, PTX+16,

1Although in principle the map Φ can be arbitrary, here we consider it to be a composition of linear functions as
commonly done in several mainstream ZSL approaches such as [FCS+13, RPT15a, ARW+15, JWS+17b, KXG17].
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Dataset No. of instances No. of attributes No. of seen/unseen classes
aP&Y [FEHF09] 15339 64 20/12
AwA [LNH09] 30475 85 40/10

CUB-200 [WBW+11] 11788 312 150/50

Table 5.1: Description of the ZSL benchmark datasets used in experiments

ZS16a, JWS+17b], in which semantic information driven by visual data is actually disregarded. Since

we are using Pseen, soft label information from a discriminative network, this also contributes towards

equation 5.3 to be discriminative.

Optimization. The objective function (5.3) is not jointly convex with respect to all the variables

W,V,U, Z. But it becomes convex as long as one optimizes over one variable while fixing the

others. In fact, if one uses alternating optimization to solve (5.3), when either optimizing over W

(resp. V or U), only the first (resp. second or third) term in (5.3) is considered. More importantly,

solving for W,V and U separately is a least square fitting for which a closed-form solution exists

(due to the usage of the Frobenius norm, one can use normal equations [Bis06b]).

Similarly, the optimization for Z can be done in closed-form by the following change of variables:

Z can be found by minimizing the objective ‖A − BZ‖2F (while freezing W,V and U) where the

matrices A and B are given as the 3 × 1 block-column matrices composed of Sseen,VFseen,UPseen

and W, I, I , respectively (I denotes the identity matrix of suitable size). We impose a normalization

on our trainable parameters; each column in W,V,U or Z has ‖ ·‖2-norm upper bounded by 1. Even

with such constraint, we still achieve closed-form solution in our alternated optimization thanks to

Lagrangian multipliers [Rud76]. In the inference stage, predictions are done using eq. (5.1).

5.2 Experimental Results

In this Section, we empirically demonstrate the effectiveness of the VdSA approach. More precisely,

after providing technical details for reproducibility (in §5.2.1), we provide an ablation study to as-

sess the effect of soft labels (in §5.2.2) and, finally, we report a comparison with the state-of-the-art

methods on three benchmark datasets (in §5.2.3).
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5.2.1 Details for reproducing the experiments

We validate our proposed semantic augmentation by performing experiments on three ZSL bench-

mark datasets for the task of object recognition and image classification: aPascal & aYahoo (aP&Y)

[FEHF09], Animals with Attributes (AwA) [LNH09], Caltech-UCSD Birds-200-2011 (CUB-200)

[WBW+11]. Details of these datasets are shown in Table 5.1 in terms of number of samples/attributes.

To partition seen and unseen classes, we adopt the splitting criteria commonly used in the literature

[XSA17].

Visual Embedding. As done in [JWS+17a, QLSH17, ZS15], we encode each image with the 4096-

dimensional fc7 feature vector extracted from a VGG-19 model [SZ14b] pre-trained on ImageNet

[DDS+09].

Semantic Embedding. We consider binary attributes - manually annotated - provided with each

dataset. In addition, we also use continuous distributed word embeddings (DWEs). To this end,

we use word2vec [MSC+13], exploiting a pre-trained model2 to cast each class name into a 300-

dimensional vectorial representation.

Soft labels. We generate soft labels by extracting softmax outputs generated after fine-tuning AlexNet

[KSH12b]. To do so, we run ADAM optimizer for 5000 iterations with a fixed learning rate of 0.001

and dropout regularization in the AlexNet fully connected layers (with a dropout rate of 0.5). In

each dataset, we setup soft labels for both seen and unseen classes, but, in order to follow a fair ZSL

protocol, we supervise back-propagation on the soft labels only for seen classes with only seen class

data. Therefore the entries of soft labels which correspond to unseen classes are not directly optimized

with supervision but, rather, we expect that the network itself will populate them implicitly. In this

way, the network will mine the similarities among different classes by itself, ultimately facilitating

the transfer of knowledge (more details in §5.2.2).

Latent attributes. For the alternate optimization of our objective function (5.3), we used a uniform

random initialization (in the range [−12, 12]) for all parameters. We did not notice any remarkable

difference in the results of the optimization depending on the order with which variables are optimized

2https://github.com/chrisjmccormick/word2vec_matlab

https://github.com/chrisjmccormick/word2vec_matlab
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Binary attributes annotated by humans
Dataset baseline (5.2) + A VdSA + A + H VdSA + A + S
aP&Y 50.6 51.1 51.7
AwA 78.2 81.0 78.4

CUB-200 55.0 55.1 56.7
Continuous distributed word embeddings (DWEs) learnt from a text corpus
Dataset baseline (5.2) + W VdSA + W + H VdSA + W + S
aP&Y 41.7 42.4 43.2
AwA 51.6 54.1 56.7

CUB-200 29.8 33.9 34.8
Combination of binary attributes and continuous DWEs

Dataset baseline (5.2) + A + W VdSA + A + W + H VdSA + A + W + S
aP&Y 49.1 49.7 53.6
AwA 76.1 79.8 80.6

CUB-200 54.6 56.7 59.7

Table 5.2: Results of our ablation study. We present the multi-class classification accuracies (in percentage %) for
the unseen classes used in testing - best result for each row in boldface. We compare a baseline latent attribute model
(5.2) with our proposed model (5.3) for visually-driven semantic augmentation. In both cases, we evaluate with different
semantic embeddings: either binary manually annotate attributes (A) or distributed word embeddings (W). Also, we
compare augmentation by exploiting both hard labels (H) - given as ground truth - and soft-labels (S) - estimated from
the softmax operator of VGG-19 [SZ14b].

- and therefore we optimized in the order W, V, U, Z. For the latent attributes, we fixed their number

to be 300 for AwA and 500 for CUB-200 and aP&Y respectively. The values of α and β as well as

the number of latent attributes are determined after five fold cross validation, using seen classes only.

5.2.2 Ablation Study

In this Section, we present an ablation study to evaluate the effect of our visually driven semantic

augmentation. To do so, we compare our latent attribute augmentation (5.3) with the baseline (5.2),

without augmentation [HMS17, XHG16]. We consider different semantic embeddings: binary at-

tributes - A, word2vec distributed word embeddings - W, as well as a concatenation of the two (A +

W). In addition, we also compare our proposed visual augmentation based on soft labels with another

approach which, instead of the prediction given by softmax operators, directly takes into account

ground truth labels in the form of one-hot encodings.

The results of our ablation study are reported in Table 5.2.
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Discussion. We register a common trend in all three datasets when using either A, W or A + W.

That is, the ZSL testing accuracies always increase when switching from the baseline (5.2) - second

column - to our proposed visually driven semantic augmentation (5.3) using soft labels S - fourth

column. For instance, +4% on CUB-200 when using W and +5% in the A+W case. This clearly

states that our proposed augmentation 1) extracts semantic patterns from visual data and 2) combines

it with the semantic information of attributes/DWEs.

Hard vs. soft labels. In principle, one can expect that hard labels H are better than soft ones S since

those one-hot vectors are given as ground truth annotations (for the seen classes). On the contrary, soft

labels S are just predictions and therefore they can be wrong. On the contrary, when switching from

hard to soft labels - Table 5.2, third and fourth columns respectively, accuracies grow systematically.

This can be explained by the fact that soft labels are more informative with respect to hard ones since

they convey the confidence with which a given instance is estimated to belong to each class [TSS07].

In our work, we build upon this idea to show that such concept can be favourably embodied in ZSL:

soft labels, even if trained on the seen classes only, implicitly learns similarity patterns between seen

and unseen classes and ultimately boost the transfer in between.

Combining various semantic information. From the results in Table 5.2, one can see how combining

attributes and DWEs in (5.2) is not straightforward. This is clear from the fact that DWEs (such

as word2vec) are surrogates for the attributes used to conveniently circumvent manual annotation.

However, in terms of performance, A is arguably better than W and our experimental findings confirm

that. Moreover, a concatenation of the two does not enrich the semantic information exploited by the

ZSL model to transfer from seen to unseen classes. On the contrary, the performance systematically

deteriorates: when switching from A to A+W, the baseline (5.2) drops from 50.6% to 49.1% on aP&Y

and (5.3) drops from 81.0% to 79.8% on AwA.

Remarkably, our proposed semantic augmentation based on soft labels shows a completely different

behaviour: when concatenating A to W, we sharply improve with respect to using A only. Precisely,

in the 4th column of Table 5.2, our method achieves an improvement on +1.9% on aP&Y, +2.2% on

AwA and +3% on CUB-200.

As the consequence of the solid potential showed by our method in this analysis, in the next Section,
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Method Semantic Datasets
Embedding AwA CUB-200 aP&Y

DAP [LNH14b] A 57.2 - 38.16
DeVise [FCS+13] A 56.7 33.5 -
SJE [ARW+15] A 66.7 50.1 -

Kodirov et al. [KXFG15a] A 73.2 39.5 -
ESZSL [RPT15a] A 75.3 47.2 24.2

SSE [ZS15] A 76.3 30.4 46.2
MTL [YH15] A 63.7 32.3 -

SynC [CCGS16] A 72.9 54.7 -
Bucher et al. [BHJ16] A 77.3 43.3 53.2

JLSE [ZS16a] A 80.4 42.1 50.4
LAD [JWS+17b] A 81.0 55.1 51.1
JSLA [PTX+16] A 82.8 49.8 -

Visually-driven Semantic Augmentation, VdSA (ours) A 78.4 56.7 51.7
DeVise [FCS+13] W 50.4 - -

MTL [YH15] W 55.3 - -
ConSE [NMB+13] W 46.8 23.1 21.8
SynC [CCGS16] W 56.7 21.5 28.5
LatEm [XAS+16] W 50.8 16.5 19.8
VAWE [QLSH17] W 61.2 27.4 35.2

Visually-driven Semantic Augmentation, VdSA (ours) W 56.7 34.8 43.2
Fu et al. [FXKG15] A + W 66.0 - -

SJE [ARW+15] A + W 73.9 51.7 -
Kodirov et al. [KXFG15a] A + W 75.6 40.6 -

Visually-driven Semantic Augmentation, VdSA (ours) A + W 80.6 59.7 53.6

Table 5.3: Benchmarking our proposed Visually-driven Semantic Augmentation (VdSA) with the state-of-the-art in
ZSL. We report classification performance (measured in percentage %) obtained on the unseen classes, following the usual
training/testing splits (see Table 5.1). The performance of our method is in italic, for each of the semantic embeddings
(attributes A, word2vec W and the concatenation A+W) we highlight in bold the best performance. Globally, the highest
classification scores in the Table are underlined.

we will take advantage of it to challenge the state-of-the-art in ZSL.

5.2.3 Comparison with the state-of-the-art in ZSL

To evaluate our proposed visually-driven semantic augmentation against the state of the art while

making comparisons fair, we split methods on the basis of the adopted semantic embedding, either 1)

attributes A, 2) DWE (word2vec) W, or 3) a combination of the two A+W.

1) Among the methods which use annotated attributes, we compare with the probabilistic graphi-

cal model of Direct Attribute Prediction (DAP) [LNH09]. We also consider DeVise [FCS+13], SJE
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[ARW+15] and Embarrassing Simple ZSL (ESZSL) [RPT15a] that use bi-linear compatibility func-

tions to map visual into semantic information. We include the Similarity Semantic Embedding (SSE)

[ZS15], and the dictionary learning-based method of Kodirov et al. [KXFG15a], which both apply un-

supervised domain adaptation methods to ZSL. We also consider the neural network based approach

of [YH15] based on multi-task learning (MTL) and the metric-learning paradigm by Bucher et al.

[BHJ16]. We also compare against the synthetic classifier (SynC) [CCGS16] which expresses images

and semantic class embeddings as a mixture of seen class proportions. Finally, we evaluate our pro-

posed augmentation scheme against the methods JLSE [ZS16a], LAD [JWS+17b], JSLA [PTX+16]

which are all based on latent attributes.

2) In the case of DWEs (here word2vec [MSC+13]), we additionally consider the convex combination

of nearest neighbours predictors ConSE [NMB+13], the latent embedding framework LatEm which

takes advantage of a structured-output support vector machine [XAS+16], and the VAWE approach3

[QLSH17] that re-aligns the topology of the semantic embeddings by using the one of the visual

embedding.

3) Finally, we also consider the geometrical method proposed by Fu et al. [FXKG15], which deploys

ZSL on a manifold with geodesic distances.

Let us clarify that, we do not compare against transductive approaches [YG17, ZS16b] since those

methods use unseen classes for training, while we do not. Moreover, we do not compare with methods

such Zhang et al. [ZXG+17] or Kodirov et al. [KXG17] since they take advantage of end-to-end

learning to explicitly train a deep feature representation for ZSL, whereas, we use pre-computed

visual features to codify the input images4.

We report the quantitative results of our comparison with state-of-the-art methods in Table 5.3 and

we discuss the results in the rest of this Section .

Discussion. When using A, we outperform ESZSL on AwA, CUB-200 and aP&Y by +3%,+7% and

+27%, respectively, and SJE in CUB-200 by +6%. With respect to DAP, we achieve a 21% improve-

3Since VAWE is not technically a full method but just a pruning techniques for DWEs, we reported the combination
of WAVE with ConSE as published in qiao2017visually.

4In spite of that, it’s worth saying that, when using A + W, our visual augmentation is still able to improve [ZXG+17]
by +1.4% on CUB-200.
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ment in AwA, and 13% improvement in aP&Y. We improve over SSE and SynC by +2% in AwA and

CUB-200 and +5% in aP&Y. We outperform MTL by more than 15% in AwA and by more than 26%

in CUB-200.

In general, on aP&Y and CUB-200, our method is superior to all reported methods. The only excep-

tion is Bucher et al. [BHJ16]: on aP&Y, in fact metric learning [BHJ16] seems better than attribute

augmentation - but, on either AwA and CUB-200, our approach is still superior. Finally, apart from

AwA, our method is able to systematically improve other latent-attribute-based methods: we improve

LAD by +1.6% on CUB-200 and by +0.6% on aP&Y, we outperform JSLA by +6.9% on CUB-

200 and we are +1.3% and +14.6% better than JLSE on aP&Y and CUB-200, respectively. This

empirically proves the claim that augmenting is preferable to modify semantic representations.

When comparing with methods that exploit W, our augmentation scheme scores again a solid perfor-

mance: it is on par with respect to SynC on AwA (56.7%) and it outperforms DeVise, MTL, ConSE

and LatEm by large margin. For instance, +18.3% on CUB-200 with respect to LatEm and +21.4%

on aP&Y with respect to ConSE.

VAWE is worth a dedicated discussion. Despite in AwA our method is gapped by −4.5%, in either

CUB-200 or aP&Y, our approach improves over the performance of VAWE by +7.4% and +8.0%,

respectively. Overall, this is an empirical evidence that (in most cases) visually-driven augmentation

is preferable to visually-driven re-alignment.

Moreover, when combining A + W, our method improves Fu et al. [FXKG15], SJE and Kodirov et

al. [KXFG15a] by +5.0% on AwA and by +8.0% on CUB-200 - in either Table 5.2 or 5.3, this is the

most favorable setup for our augmentation.

In general, our method performs extremely well on CUB-200 which is a fine-grained dataset of birds

(as opposed to AwA and aP&Y which tackle regular object recognition). Thus, our experimental

findings seem to suggest that visual semantics augmentation is particularly effective in the case of

fine-grained ZSL.



Chapter 6

Conclusion

This thesis presents approaches in computer vision tasks such as recognition of action and object

categories in two starkly opposite data driven scenarios: traditional supervised learning with ample

data and zero-shot supervised learning. First, we propose novel dictionary learning approaches that

are suitable for traditional supervised learning. With ample labled data available for training, training

data available, dictionary learning becomes detrimental in the success of a learning system. We

come up with novel dictionary learning technique applicable to action recognition in still images and

videos. More precisely, we take advantage of the available training samples to adaptively rank local

features which are both robust and discriminative. Further, we cluster the local features at the entity

and category levels to eliminate the effects of features corresponding to non-recurrent or background

locations.

Then we propose mid-level representation for action recognition in videos which is robust in a tradi-

tional supervised learning setup as well as zero shot learning setup. We devise novel algorithms both

for detecting and describing such mid-level elements which can detect local variabilities in human

body-parts, in addition to capturing rich semantic information. Such mid-level elements, when used

in conjunction with a novel and simple yet discriminative dictionary learning, exhibit superlative

performance. More importantly, such features are transferable in the way that similar local (sub-

)movements of a specific body part are shared by more than one action, which is helpful in obtaining

some ’prior knowledge’ about previously unseen classes as in zero-shot learning.

59
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Finally, we propose a novel optimization approach dedicated to zero-shot setup. We augment the

semantic information conveyed by attributes/ distributed word embeddings with visual patterns which

are distilled from data by means of soft labels. Consecutively, we analyse the benefits of casting such

augmentation in the form of a learning pipeline where latent attributes do bottleneck compression to

fuse multiple sources of semantic information.

This thesis essentially demonstrates the need for application of data driven approaches under varying

scenarios to solve computer vision tasks. We develop novel approaches that can cope with these

scenarios. We show efficiency of our proposed approaches in wide ranges of problems such as action

and object recognition from images and videos. Although other areas in computer vision such as

regression, semantic segmentation in images and videos can also also be explored.
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