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Pull is a jet observable that is sensitive to color flow between dipoles. It has seen wide use for
discrimination of particles with similar decay topologies but carrying different color representations and
has been measured on W bosons from top quark decays by the D0 and ATLAS experiments. In this paper,
we present the first theoretical predictions of pull, focusing on a color-singlet decaying in two jets. The pull
angle observable is particularly sensitive to color flow, but is not infrared and collinear safe and so cannot
be calculated in fixed-order perturbation theory. Nevertheless, all-orders resummation renders its
distribution finite, a property referred to as Sudakov safety. In our prediction of the pull angle, we also
include an estimation of the effects from hadronization and directly compare our results to simulation and
experimental data.
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Determining the short-distance origin of jets, manifes-
tations of high energy quantum chromodynamics (QCD), is
a problem of foremost importance at the Large Hadron
Collider (LHC). Some quantum numbers, such as the mass
or electric charge, are relatively straightforward to measure
at the LHC. Determining the color representation of a jet or
collection of jets, however, is highly nontrivial because the
particles that carry color quantum numbers, quarks and
gluons, are not directly observable in experiment. The color
representation must be inferred through its effect on
kinematic distributions. The observable pull [1], and
derivative quantities, is a widely used observable sensitive
to the color representation. Pull is a two-dimensional vector
that points in the direction of dominant energy flow about a
jet of interest that is particularly useful for determining if
two jets form a color-singlet dipole, i.e., whether they
originate from the decay of resonance that carries no color,
such as an electroweak boson. In a color-singlet dipole,
emissions lie between the ends of the dipole; therefore, the
pull vector would point along the line that connects the
momentum vectors of the jets.
In this paper, we present the first analytic predictions

from first-principles QCD for the pull vector. We focus on
the calculation of the pull vector for color-singlet dipoles,

as this is the case that has been studied experimentally in
detail. The most useful feature of the pull vector for
studying color dipoles is the pull angle, which is the
azimuthal angle about one of the jets in a pair with respect
to the line connecting the jets. Both D0 and ATLAS
experiments have measured the pull angle in the boosted,
hadronic decays of W bosons from top quark decay [2–4].
It has been found that state-of-the-art general-purpose
Monte Carlo simulations provide an unsatisfactory descrip-
tion of the data, thus indicating the need for dedicated
first-principle calculations in QCD. However, unlike most
theoretically studied observables for jet physics, the pull
angle lacks the property of infrared and collinear (IRC)
safety, and so its distribution cannot be calculated in the
fixed-order perturbation theory of QCD. Nevertheless, it is
Sudakov safe [5–7], in that its distribution is rendered finite
by including all-orders resummation. With the theoretical
prediction for the pull angle in hand, we then compare to
Monte Carlo simulation and experimental data.
The original definition of the pull vector ⃗t from [1] was

as a two-dimensional vector in the plane of rapidity y and
azimuthal angle ϕ. The expression for the pull vector is

⃗toriginal ¼
X
i∈J

p⊥ijr⃗ij
p⊥J

r⃗i: ð1Þ

Here, i is a particle in the jet J of interest and p⊥i is its
transverse momentum with respect to the collision beam
axis. The vector r⃗i is the relative rapidity and azimuthal
angle of the particle from the jet axis,

r⃗i ¼ ðyi − yJ;ϕi − ϕJÞ: ð2Þ
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As a weighted sum of particle locations, the pull vector
points from the jet axis in the direction of dominant energy
flow. In this form, the pull vector is expressed in coor-
dinates natural at a hadron collider and has been used for
the measurements at D0 and ATLAS and for searches at
CMS [8–12].
For the calculations in this paper, we use a modified

version of the pull vector, which is identical to Eq. (1) for
central jets in the collinear limit. The definition we use is

⃗tmodified ¼
X
i∈J

Eisin2θi
EJ

ðcosϕi; sinϕiÞ: ð3Þ

Here, Ei is the energy of particle i, θi is its angle from the
jet axis, and ϕi is the azimuthal angle about the jet axis. The
angle ϕi is measured with respect to a fiducial jet direction.
This form is much more amenable to analytic calculations,
and because the jet radii that we consider are typically
relatively small (R ≃ 0.4), the collinear limit is a good
approximation anyway. To correct for the difference
between the original definition that is used in experiment
and this modified definition, we could match our resummed
calculations to fixed-order results, which would account for
the difference. In what follows, we will refer to this version
of the pull vector as ⃗t, for brevity.
As a two-dimensional vector, ⃗t can be defined by a

magnitude j⃗tj≡ t and an angle ϕp. When measured with
respect to the line connecting the momentum vectors of two
jets, ϕp is the pull angle observable. The pull vector
magnitude t is itself IRC safe, and so can be calculated
to any fixed order. While the pull angle ϕp is not IRC safe,
the problematic region of phase space is localized to t ¼ 0,
where the complete cross section vanishes anyway. This
motivates the calculation of the distribution of the pull
angle pðϕpÞ by marginalization of a joint probability
distribution of t and ϕp,

pðϕpÞ ¼
Z

dt pðt;ϕpÞ: ð4Þ

This only exists if the joint distribution is integrable, which
is not true when calculated at fixed order. Following
Ref. [7], we can make progress by reexpressing the joint
distribution in terms of a conditional probability,

pðϕpÞ ¼
Z

dt pðt;ϕpÞ ¼
Z

dt pðtÞpðϕpjtÞ; ð5Þ

where pðϕpjtÞ is the distribution of ϕp conditioned on the
value of t.pðϕpjtÞ is finite for t ≠ 0, and so can be calculated
to any fixed order, while pðtÞ is finite to any fixed order and
further can be calculated in resummed perturbation theory.
To render the integral finite, then, we resum t and calculate
the joint probability to fixed order (FO),

pðϕpÞ ≃
Z

dt presumðtÞpFOðϕpjtÞ: ð6Þ

While this relationship is no longer an exact equality, it
nevertheless exists, is formally accurate to a fixed order with
t ≪ 1, and is systematically improvable. In the language of
[7], the pull vector magnitude t is the safe companion of the
pull angle ϕp.
We now calculate these two distributions, one resummed

and one at fixed order. Starting with the conditional
distribution, we note that

pFOðϕpjtÞ ¼
pFOðt;ϕpÞ
pFOðtÞ

; ð7Þ

where everything is calculated to the same order in αs.
Further, the fixed-order distribution of the pull magnitude is
just a marginalization of the joint distribution

pFOðtÞ ¼
Z

2π

0

dϕppFOðt;ϕpÞ; ð8Þ

so we just need to calculate the joint distribution. We will
calculate pFOðt;ϕpÞ to leading order in αs, in the soft and
collinear limits, that is, to leading order for t ≪ 1. The soft
and collinear limits can be separated from one another with
dimensional regularization and therefore can be calculated
separately.
For soft gluon emission off of a qq̄ dipole, which

originates from an electroweak boson decay, the distribu-
tion can be calculated from

psðt;ϕpÞ

¼ g2CFμ
2ϵ

Z
½ddk�þ

2n1 · n2
kþðn2 · kÞ

Θ
�
tan2

R
2
−
kþ

k−

�

× δ

�
t −

kþk−

EJk0

�
δðϕp − ϕÞ: ð9Þ

Here, g is the QCD coupling, CF ¼ 4=3 is the fundamental
Casimir, μ is the dimensional regularization scale, and
½ddk�þ is on-shell, positive-energy, d ¼ 4 − 2ϵ dimensional
phase space. The lightlike four-vectors n1 and n2 specify
the directions of the two jets of the dipole, and we have
chosen to demand that the emission lies within an angle R
of jet direction n1. EJ is the energy of jet 1, k0 is the energy
of the emission, ϕ is the azimuthal angle of the emission
about jet 1 with respect to jet 2, and we use the shorthand
notation

kþ ¼ k0ð1 − cos θ1kÞ; k− ¼ k0ð1þ cos θ1kÞ: ð10Þ

θ1k is the angle between the emission of jet 1. The
renormalized joint distribution for a soft emission is then
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psðt;ϕpÞ ¼
αsCF

2π2
1

t

�
2 log

μ tan R
2

tEJ sinϕp

þ 2 cotϕptan−1
tanR

2

tan
θ12
2

sinϕp

1 − tanR
2

tan
θ12
2

cosϕp

− log

�
1þ tan2 R

2

tan2 θ12
2

− 2
tan R

2

tan θ12
2

cosϕp

��
: ð11Þ

In this expression, θ12 is the angle between the two ends of
the dipole,

n1 · n2 ¼ 1 − cos θ12: ð12Þ

The collinear contribution to the joint distribution can be
calculated similarly, with appropriate changes to the form
of the pull vector observable in this limit. For a collinear
splitting of jet 1 in which one particle takes an energy
fraction z and the other 1 − z, the distribution can be
calculated from

pcðt;ϕpÞ

¼ g2μ2ϵ
Z

½ddk1�þ½ddk2�þð2πÞ4δð4ÞðpJ − k1 − k2Þ

× Pqg←qðzÞδðt − zð1 − zÞj1 − 2zjθ2Þδðϕp − ϕÞ: ð13Þ

Here, pJ is the total four-vector of the jet that undergoes the
splitting to particles with momenta k1 and k2, Pqg←qðzÞ is
the collinear splitting function, and θ is the angle between
the particles in the splitting

k1 · k2
k01k

0
2

¼ 1 − cos θ: ð14Þ

The peculiar form of the pull magnitude, with the factor
j1 − 2zj, comes from the fact that the two particles in the
splitting preserve the momentum of the jet, and so their
azimuthal angles ϕ1 and ϕ2 about the jet axis must differ
by π. The renormalized collinear contribution to the joint
distribution is then

pcðt;ϕpÞ ¼
αsCF

4π2
1

t

�
log

4tE2
Jsin

2ϕp

μ2
−
3

2

�
: ð15Þ

Combining these soft and collinear results produces a
lowest-order distribution that is independent of renormal-
ization scale μ,

pFOðt;ϕpÞ¼psðt;ϕpÞþpcðt;ϕpÞ

¼ αsCF

2π2
1

t

�
log

4tan2 R
2

t
−
3

4

þ2cotϕptan−1
tanR

2

tan
θ12
2

sinϕp

1− tanR
2

tan
θ12
2

cosϕp

− log

�
1þ tan2 R

2

tan2 θ12
2

−2
tanR

2

tanθ12
2

cosϕp

��
: ð16Þ

By integrating over the pull angle ϕp, we find the
distribution of the pull magnitude t,

pFOðtÞ ¼
αsCF

π

1

t

2
64log 1

t
−
3

4
− log

0
B@
1 − tan2R

2

tan2
θ12
2

4tan2 R
2

1
CA
3
75: ð17Þ

The ratio of these distributions then defines the fixed-order,
conditional distribution, pFOðϕpjtÞ. Note that, to lowest
order, this conditional probability distribution will be
independent of the value of the coupling, αs.
Now, we calculate the resummed distribution of the pull

magnitude presumðtÞ. Because experimental analyses typi-
cally consider a W boson decaying into subjets with small
radius, we decide to perform the all-order calculation in the
collinear limit, although to determine the full-R depend-
ence is a straightforward extension. We note that in this
limit our definition of pull and the original one coincide.
The pull vector ⃗t is an additive observable in that the
contribution to the pull vector from additional soft emis-
sions simply add. The pull vector is recoil-free in the sense
that soft emissions do not affect the direction of the jet axis
to leading power in the pull magnitude t ≪ 1. With these
observations, to next-to-leading logarithmic accuracy
(NLL) in the collinear limit, the double differential cross
section for the pull vector can be directly calculated from an
infinite sum of jets with any number of emissions of energy
fraction fzig and emission angles fθig,
1

σ

d2σ

dt⃗
¼ exp

�
−
Z

R2

0

dθ2

θ2

Z
1

0

dz
Z

2π

0

dϕ
2π

αs
2π

Pqg←qðzÞ
�

×

�X∞
n¼0

1

n!

Yn
i¼1

Z
R2

0

dθ2i
θ2i

Z
1

0

dzi

Z
2π

0

dϕi

2π

αs
2π

Pqg←qðziÞ

×δ

�
tx−

Xn
i¼1

ziθ2i cosϕi

�
δ

�
ty−

Xn
i¼1

ziθ2i sinϕi

��
:

ð18Þ
Momentum conservation of the collinear emissions has
been suppressed, and this expression ignores nonglobal
logarithms [13] and powers of the jet radius R.
The structure of the resummed results is akin to the well-

known transverse-momentum resummation (e.g., [14,15]),
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and consequently the sum can be done explicitly with a
two-dimensional Fourier transform and the cross section
can be expressed as

1

σ

d2σ

d⃗t
¼

Z
d2b
ð2πÞ2 e

ib⃗·⃗te−RðbÞ: ð19Þ

RðbÞ is the radiator, which, at this accuracy, depends
exclusively on the magnitude of the Fourier conjugate
vector b ¼ jb⃗j,

RðbÞ ¼
Z

R2

0

dθ2

θ2

Z
1

0

dz
αs
2π

Pqg←qðzÞð1 − J0ðbzθ2ÞÞ; ð20Þ

where J0ðxÞ is the Bessel function. To determine the
distribution for the magnitude of the pull vector
presumðtÞ, we simply integrate over the pull angle ϕp and
the b-space azimuthal angle to find

presumðtÞ ¼
1

σ

dσ
dt

¼ t
Z

∞

0

db bJ0ðbtÞe−RðbÞ: ð21Þ

This expression can be explicitly expanded and evaluated
to NLL with the two-loop running coupling, but we leave it
implicit here.
There are two more things we include in our theoretical

prediction of the pull angle. First, in the calculation of the
fixed-order conditional distribution pFOðt;ϕpÞ, there is
explicit dependence on the angle between the two ends
of the color-singlet dipole θ12. Our expression for
pFOðt;ϕpÞ, then, needs to be convolved against the dis-
tribution of this angle. For isotropic color-singlet decays,
this distribution can be determined by boosting the rest
frame decay to the lab frame. We find

pðcos θ12Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ4 − γ2
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2
γ2
− cos θ12

q 1

ð1 − cos θ12Þ3=2

× Θ
�
1 −

2

γ2
− cos θ12

�
; ð22Þ

where γ is the boost factor. For comparison with data, we
need to integrate over all possible subjet angles accepted by
the experimental cuts. From ATLAS’s analysis, most of the
top quarks will be produced at or near rest, and so the W
boson’s boost factor is approximately

γ ¼ m2
t þm2

W

2mtmW
≃ 1.3: ð23Þ

ATLAS also requires that the jets on which the pull angle is
calculated have a minimum transverse momentum of
p⊥;min ¼ 25 GeV; so assuming a purely transverse decay,
the maximum angle between the jets is

cos θ12 ≳ 1 −
m2

W

2p⊥;minðγmW − p⊥;minÞ
≃ −0.62: ð24Þ

We use these parameters to form our complete theory
prediction.
The final component of our theory prediction is the

inclusion of nonperturbative corrections from hadroniza-
tion. Due to the additivity of the pull vector, hadronization
corrections can be included to leading power by convolu-
tion of the perturbative distribution with a model shape
function [16–20]. This shape function encodes the kin-
ematic distribution of nonperturbative emissions on which
the pull vector is measured and is peaked around energies
comparable to the QCD scale ΛQCD. While one can do
something more sophisticated, we parametrize the non-
perturbative distribution of the pull vector as

pnpðt;ϕpÞ ∝ tanh

�
1

aϕpð2π − ϕpÞ
�
δ

�
t −

Ω
EJ

�
; ð25Þ

where the constant of proportionality is defined by nor-
malization. Here, Ω ≃ ΛQCD, and the functional depend-
ence of the pull angle ϕp has a free parameter a for which
a → 0 yields a flat distribution in ϕp and a → ∞ is a δ
function at ϕp ¼ 0. This form of the nonperturbative
distribution is motivated by noting that, in the center-of-
mass frame of the color-singlet decay at lowest-order,
emissions are uniform in the azimuth about the decay axis.
When boosted to the lab frame, this naturally clusters
emissions at small values of ϕp. We find that varying the
parameter a ∈ ½0; 1

4
� is sufficient to estimate the dependence

on the precise shape of nonperturbative corrections. As will
be shown below, this variation gives rise to a fairly
large uncertainty band. We are confident that this rather
conservative approach to nonperturbative uncertainties also
accounts for the uncertainty due to missing higher pertur-
bative orders. This is helpful because traditional ways of
assessing perturbative uncertainties, i.e., scale variation,
tend to produce small error bands for observables calcu-
lated through conditional probabilities [21,22].
With all of these pieces in place, we can then state the

complete expression for the theoretical prediction of the
pull angle distribution. Step by step, the perturbative joint
distribution pperpðt;ϕpÞ of the pull magnitude and angle is

pperpðt;ϕpÞ

¼
Z

−0.18

−0.62
d cos θ12presumðtÞpFOðϕpjtÞpðcos θ12Þ; ð26Þ

where the integration bounds follow from the earlier
discussion of the boost of the W boson in the lab frame.
Nonperturbative corrections can be included by convolu-
tion carefully vectorially summing the components of the
pull vector
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pðt;ϕpÞ

¼
Z

∞

0

dt0
Z

2π

0

dϕ0
Z

∞

0

dt00
Z

2π

0

dϕ00pperpðt0;ϕ0Þpnpðt00;ϕ00Þ

×δ

�
ϕp−cos−1

t0 cosϕ0 þ t00 cosϕ00

t

�

×δ
�
t−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t02þ t002þ2t0t00 cosðϕ0−ϕ00Þ

q �
: ð27Þ

Finally, integrating over the pull magnitude yields the pull
angle distribution

pðϕpÞ ¼
Z

∞

0

dt pðt;ϕpÞ: ð28Þ

Our theoretical prediction is plotted in Fig. 1 results.
On the left-hand side, we show the pull distribution as
computed in perturbative QCD and with hadronization
corrections as described above. At small ϕp, the lower edge
of the band corresponds to a ¼ 0, while the upper one
corresponds to a ¼ 1

4
. For comparison we also show

simulated data both at parton level and hadron level. To
produce the simulated events, we follow the experimental
analysis of Ref. [3], where the pull angle measured on all
particles from the two jets from hadronic W decay in
semileptonic tt̄ events. Therefore, we generate semileptonic
pp → tt̄ events at the 8 TeV LHC with MADGRAPH v2.6.4
[23] and then showered in PYTHIA v8.240 [24]. FASTJET
v3.3.2 [25] was used to impose phase-space restrictions
from the ATLAS analysis, find jets, and calculate the pull

angle. Finally, on the right-hand side of Fig. 1 we compare
theory and Monte Carlo predictions at hadron level to data
collected by the ATLAS experiment of Ref. [3], which are
available from HEPData [26]. As central value of our
hadron-level theoretical prediction, we consider the mid-
point of the 0 < a < 1

4
band. We note that both theory

calculation and simulation predict a distribution of the pull
angle that is slightly more peaked at small values than data,
which was also observed in ATLAS’s analysis.
It is known that the pull angle shows more sensitivity to

color flow than the pull magnitude itself, but it has the
drawback of being IRC unsafe. Despite the fact that we
were able to obtain a first-principle description of its
distribution exploiting its Sudakov safety, it would be
better to employ an IRC safe observable that maintains
the same sensitivity. The projection of the pull vector along
the line connecting the two jets, i.e., the variable tx in
Eq. (18), is IRC safe and enjoys many of the same
properties as the pull angle. Exploiting once again the
similarities with transverse-momentum resummation, this
observable can be resummed using the techniques devel-
oped in [27,28]. We are looking forward to future work on
this topic.

We thank Ben Nachman, Yvonne Peters, Matthew
Schwartz, Gregory Soyez, and Jesse Thaler for useful
discussions and comments. This work is partly supported
by the curiosity-driven Grant “Using jets to challenge the
Standard Model of particle physics” from Università di
Genova.

FIG. 1. (Left) The distribution of the pull angle in various approximations. Monte Carlo simulations from PYTHIA are shown at parton
level (black þ) and hadron level (blue ×). Our theory prediction is also shown at parton level (purple line) and with varying
hadronization corrections (light-red band). (Right) Comparison of our hadron-level result (red ⋄) to the ATLAS data (black •), as well as
to the Monte Carlo simulation (blue ×).
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