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Abstract 

 

Brittle delamination fracture under Mode II dominant conditions in unidirectional composite and 

layered beams and wide-plates is studied using a homogenized structural model based on a zigzag 

approach. The model captures the unstable propagation of cracks, snap-back and -through 

instabilities, the effects of the interaction of multiple cracks on the macrostructural response and of 

the layered structure on the energy release rate. The layered structure and the delaminations are 

described by introducing local enrichments, in the form of zigzag functions and cohesive interfaces, 

to a classical first-order shear deformation plate theory. The model applies to layers with principal 

material directions parallel to the geometrical axes, depends on only three displacement variables and 

the solution of specific problems requires only in-plane discretization, for any numbers of layers and 

delaminations. Closed form solutions are derived for the energy release rate in bi-material beams and 

applications are presented to homogeneous, bi-material and layered, simply supported and cantilever, 

bend-beams, with one and two delaminations. 
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Nomenclature  

, ,U La a a   Crack length, upper crack length, lower crack length 

A , B , C , D , E   
Coefficients in the general solution 

22 22 22 44, , ,A B D A  Stiffness coefficients in the constitutive equations of the homogenized beam 

c Length of ligament ahead of the crack tip 

rSC , 2SC , 
44

PC  , SC  Coefficients in the beam homogenized constitutive equations 

( ) ( )

2 23,  k kE G     Young modulus and shear modulus of layer k =1,…,n 
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( )

2

k E  Reduced Young’s modulus in layer k:
( ) ( ) ( )

2 2 12 21/ (1 )k k kE E     for wide-plate; 

( ) ( )

2 2

k kE E  for beam;   
12 21,   Poisson coefficients 

IIG  Mode II energy release rate 

IICG  Mode II fracture energy 

3f  Transverse surface load 

( )k h  Thickness of layer k =1,…, n  

J  J-integral 

k

SK  Stiffness of interface k 

44k  Shear correction factor in the homogenized constitutive equations, 44 5 / 6k  . 

( )

44

i k  Local shear correction factors relating generalized shear strain and sub-resultants 

in the delaminated and intact arms of the bi-material beam. 

22 22 2, ,b

gN M Q  Normal force, bending moment and generalized transverse shear force per unit 

width, with 
22 2 2 2 2, ( ) ( ) 0b

gM x Q x   

( ) ( ) ( )

22 22 2, ,i i b i

gN M Q  Force and moment sub-resultants per unit width in the delaminated and intact 

arms of the bi-material beam. 

crP  Critical load per unit width for crack propagation in the bend-beams. 

2

bQ  Transverse shear force 

2 22 2
ˆ,  ,  z zSQ M   Enrichment terms which define the generalized transverse shear force 

2 2 2 22 2 2
ˆ,b z zS

gQ Q Q M      

( )

2

k v , ( )

3

k v  Displacement components in layer k 

2
ˆkv  Relative sliding displacement at the interface k  between layers k  and 1k    

02 2 0, ,v w  Global variables: in-plane displacement, bending rotation and transverse 

displacement (of reference surface when in first layer)  

( )

232 i

g  Generalized shear strain energetically associated to the generalized sub-resultant,

( )

2

i

gQ  , in the intact and delaminated layers of bi-material beam. 

(1) (2)

2 2,   Local rotations in the two layers of the bi-material beam 

2 0 2,w    Global variable used to simplify solution and description of local fields; defines 

shear strain in layer k =1 

2 22 22, ,k k k   ,
22

k

SR  Coefficients accounting for the local enrichments 

  Total potential energy 

ˆ k

S  Interfacial cohesive tractions (tangential) 

( )k

ij ,
( )k

ij  Stress and strain components in the layer k =1,..,n 



3 

 

( ) ( )

23 23, 2k post k post   Transverse shear stress and strain calculated a posteriori from local equilibrium 

  
Mode mixity phase angle,  1 /II I = tan G G  

 

 

1 Introduction 

 

Layered composite materials are extensively being used for construction of structural components, in 

the form of beams, plates and shells, in various engineering applications. Sandwich panels for 

buildings or ship bulkheads, masts, decks and hulls, rudders and ailerons for aircrafts and wind turbine 

blades are just a few examples. Laminates and sandwiches are made with a large combination of 

materials in and within the layers, which include fiber reinforced polymer, ceramic or metallic 

matrices, wood, concrete, steel, polymeric and metallic foams, and glass. The layered structure is 

obtained through classical lamination techniques or using structural adhesives to join the layers. 

These components may be subjected to impacts and dynamic or repeated loadings, and suffer damage 

at several scales (damage in the fibers and the matrix, delamination and debonds at the interfaces 

between layers, failure of bonded/bolted attachments and global collapses). Knowing the extent of 

damage, through inspection methods and theoretical modeling, is critical to define the residual life 

and for damage tolerance assessments.  

 Modeling the evolution of delamination fracture in layered structures requires proper 

representation of various aspects. Delamination fracture is a discrete and localized damage event, 

which typically occurs simultaneously at the interface between different layers (multiple 

delamination) and may often be catastrophic. Delaminations may grow from manufacturing flaws or 

defects or may form, during service, due to impacts and the presence of through-thickness stresses. 

Delamination fracture may be brittle or controlled by cohesive mechanisms, due for instance to the 

bridging action developed by a through-thickness reinforcement or by cross-over fibers when the 

cracks meander through different layers. Delamination cracks are typically constrained to propagate 

along pre-defined paths at or near the interface between layers; however, for instance in sandwich 

systems with foam cores, the cracks may kink and dive into the core, a behavior which is controlled 

by the fracture toughness of the different components and the mode mixity conditions. 

 The most common numerical technique to analyze delamination fracture in layered structures 

uses the Finite Element Method and cohesive interface elements [1–7]. Damage within the layers may 

be accounted for using continuum damage approaches which modify the elastic constants of the layers 

when damage progresses. Three-dimensional finite elements are commonly used to study local 
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behaviors, e.g. delaminations in joints, while beam, plate and shell elements are used to describe one- 

or two-dimensional structures. Discrete-layer cohesive-crack models, layer-wise and semi-layerwise 

theories are also used, often coupled with analytical solution methods or numerical techniques others 

than the finite element method [8–15]. Another common approach to study delamination fracture 

within finite element models uses the Virtual Crack Closure Technique [16] and requires remeshing 

techniques to follow delamination evolution.   

 One of the drawbacks of the classical approaches is the fine discretization which is necessary 

in the through-thickness direction to predict and model onset and growth of delaminations at the 

different interfaces. This complicates the finite element discretization and increases computational 

cost, especially since the problem is nonlinear. In addition, the requirement of a fine discretization 

limits the analytical and semi-analytical solutions to systems with a small number of 

layers/delaminations and simple loading and boundary conditions. The latter limitation should not be 

underestimated, since, as it will be shown later in the paper, analytical solutions yield an insight that 

could not be obtained through purely numerical calculations.  

 In this paper we investigate the use of a homogenized approach which removes the through 

thickness discretization of the problem, to model delamination fracture in layered structures. The 

model uses concepts developed in the original zigzag theory in [17,18] to homogenize the problem 

and the multiscale strategy formulated in [19,20] to account for the presence of delaminations by 

introducing cohesive interfaces, which are then included in the homogenization. The unknowns of 

the problem are substantially reduced, are independent of the numbers of layers or interfaces and 

coincide with those of a classical first-order shear deformation theory.  

The basic assumption of the original zigzag theories for fully bonded structures is to enrich 

the displacement field of an Equivalent Single Layer theory, such as first- or higher-order shear 

deformation plate theory, by adding a local piecewise linear displacement field through so called 

zigzag functions [21,22]. The zigzag functions are then derived in terms of the global displacement 

variables through the imposition of continuity conditions at the layer interfaces. This reduces the 

number of unknowns of the problem and makes it independent of the number of layers. Most of the 

original zigzag theories, including that in [17] which is used in this paper, requires 1C  continuity for 

the displacement field, which complicates the finite element implementation; the purely 

displacement-based theories also require a-posteriori transverse shear stress recovery through the 

imposition of local equilibrium, which is generally not very accurate in a FE framework; in addition, 

it was initially thought that the original theories do not satisfy equilibrium of global forces at clamped 

boundaries (this is incorrect, see Sect. 2.2 for a discussion). New refined theories were later developed 

to overcome some of the drawbacks of the original theories [23–28].  
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The multiscale strategy formulated in [19,20] uses the zigzag theory in  [17] and, in addition 

to introducing zigzag functions, enriches the global displacement field by introducing a through-

thickness discontinuous local field which describes the presence of cohesive interfaces. The cohesive 

interfaces, which are characterized by piecewise linear cohesive tractions laws, are then included into 

the homogenization. Other authors have previously attempted to include imperfect interfaces into a 

zigzag formulation of the problem, however the models were not energetically consistent (see 

discussion in [20]). The approach developed in [19] has been successfully applied to analyze thermo-

mechanical and wave propagation problems in wide-plates with imperfect or fully debonded 

interfaces proving the capabilities of the approach to accurately define global and local fields also in 

thick plates with highly inhomogeneous layups [29,30]. The model should be applicable to describe 

problems where fully debonded interfaces are present only in finite size regions, in order to simulate 

the presence of delaminations, and analyze their evolution. However, apart from a preliminary 

attempt in [31], this has not yet been proven and is the main objective of the work in this paper.  

 In [23] [32–36] different strategies have been applied to model the presence of mode II 

delaminations within a zigzag description of the problem. They are represented as thin and very 

compliant layers which are added to the regular layers of the system (compliant layer concept). Finite 

elements have been formulated which are able to capture the relative displacements between 

consecutive layers. They have also been used to simulate delamination damage progression and 

fracture by degrading the properties of the thin layers, using for instance a continuum damage 

approach.  As recently noted in [37,38], however, the models which use this strategy and are based 

on the refined zigzag theories in [25,26] have some limitations in plates with in-plane discontinuities 

in the material properties and yield inconsistent and unacceptable results, also for the global variables 

of the system, in the presence of delaminations.     

 The work presented here differs considerably from the previously published work. The 

delaminations are modelled using cohesive interfaces, which are then included into the 

homogenization, and fracture mechanics methods are applied to rigorously analyze and propagate 

cracks. The delamination cracks are then described as it is customary in classical-discrete layer 

cohesive-interface models. This description of delamination damage allows the use of classical zigzag 

theories [17], since it avoids the introduction of the compliant layers used in the above mentioned 

continuum damage approaches. In addition, the solutions presented here are analytical or semi-

analytical and this highlights the effects of the homogenization on the fracture parameters and 

limitations and advantages of the approach. The formulation of finite elements based on the 

homogenized model used in this paper is possible, but not carried out here, using approaches already 

used in the literature. 
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 The work is limited to mode II dominant problems in beams and wide-plates deforming in 

cylindrical bending and perfectly brittle fracture of the layers. The effects of the homogenization on 

the local fields in the layers and at the crack tip are explained using a bi-material beam with a single 

delamination as model system. A closed form solution is derived for the energy release rate in terms 

of crack tip force and moment sub-resultants which can be directly compared with accurate 2D 

solutions from the literature. Other derivation methods are also used and applied to various layered 

beams with single and multiple delaminations to verify the capabilities of the method.  

      The formulation and solution of the homogenized structural model is presented in Sects. 2.1 

and 2.2. In Sect. 3. the energy release rate is calculated using different methods and a closed form 

solution in derived for homogeneous and bi-material beams. In Sect. 4, the model is applied to the 

solution of various bend-beams: homogeneous, bi-material, sandwich, simply supported and 

cantilever, with single and multiple delaminations; and the accuracy is verified through comparison 

with 2D solutions, discrete-layer models and experiments from the literature.             

 

2 Homogenized structural model for Mode II dominant fracture problems  

 

In this work we exploit the capabilities of the homogenized structural model formulated in [19] for 

beams and wide plates with continuous imperfect interfaces, to solve mode II dominant fracture 

problems and analyze delamination growth in layered structures, Fig. 1.a.  Mode II dominant is used 

here to describe shear dominant mixed mode states where mode II deformation predominates and 

delamination growth can be assumed to be driven by mode II loading [39–41].  Typically, a crack 

may be considered to be in mode II dominant conditions when the phase angle,  1 /II I = tan G G

, which is a measure of Mode II to Mode I loading, is greater than 75 , with 90 ,0   the phase 

angles for pure Mode II and Mode I.  

The multiscale formulation in [19] couples two mechanical models which are typically used 

for layered structures. The first is an Equivalent Single Layer (ESL) theory, namely first-order shear 

deformation or first-order shear and normal deformation plate theory [42,43], and is used at the global 

scale (coarse grained model). The theories depend on a limited number of unknowns, accurately 

predict global fields but cannot reproduce the complex local fields which arise due to the layered 

structure, e.g. zigzag displacement fields, and the relative displacements occurring at the layer 

interfaces in the presence of delaminations. A discrete-layer cohesive interface model [8],[12] is then 

used at the local scale, which accounts for the layered structure and describes the imperfect interfaces 

and delaminations using piece-wise linear cohesive traction laws able to approximate the interfacial 
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mechanisms, e.g. Figs. 1.b,c for Mode II problems. The two models are coupled by assuming a small-

scale displacement field where the local variables enrich the field of the global theory. 

Homogenization is then applied to define the macro-displacement fields; and homogenized 

equilibrium equations are derived using a variational technique. They depend on the global variables 

of the model and on a set of coefficients which can be easily calculated, a priori, for fixed geometrical 

and material properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) Layered beam/wide-plate with n layers and delaminations under mode II dominant loading and homogenized 

description. (b) Element from a generic layer k of the actual plate in (a) with interfacial cohesive tractions. (c) Piece-wise 

linear cohesive traction law relating tangential cohesive tractions and sliding displacement. 

 

The equations of the homogenized model in [19] are recalled and used in this section to 

describe mode II dominant fracture problems where the interfaces are assumed to be rigid against 

mode I relative displacements, Fig. 1. It will be shown later that this assumption is analogous to the 

assumption of constrained-contact often used in discrete-layer descriptions of the problem. General 

solutions are derived for beams with arbitrary numbers of layers and delaminations and the local 

fields calculated a posteriori are discussed for the exemplary case of a cracked bi-material beam. 

 

2.1. Model assumptions and homogenization 

 

The n layers of the beam/wide-plate in Fig. 1.a are linearly elastic, homogenous and orthotropic with 

principal material axes parallel to the geometrical axes, 
1 2 3x x x  . The layer k, with  k = 1 the lower 
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layer, is defined by the coordinates of its lower and upper surfaces, 1

3

kx  and 3

kx , and has thickness ( )k h  

(the superscript (k) on the left of a quantity shows association with the layer k; the superscript k on 

the right defines the interface between layers). The layers are assumed to be incompressible in the 

thickness direction and the transverse normal stresses ( )

33

k   to be negligible compared to the other 

stress components. Under these assumptions and if the wide-plate deforms in cylindrical bending, the 

nonzero displacement components are ( ) ( )

2 2 2 3( , )k kv v x x  and ( )

3 0 2( )k v w x , and the relevant 

constitutive and compatibility equations of the layer k are: 

 

( ) ( ) ( ) ( ) ( ) ( )

22 2 22 23 23 23     ;      2k k k k k kE G      

( ) ( ) ( ) ( ) ( )

22 2 3 2 2 2 3 23 2 3 2 3 2 3 3 2 2 3( , ) , ( , )     ;    2 ( , ) , ( , ) , ( , )k k k k kx x v x x x x v x x v x x     

(1) 

 

 

where 
( )k

ij  and 
( )k

ij  for i, j = 2, 3 are stress and infinitesimal strain components;  

( ) ( ) ( )

2 2 12 21/ (1 )k k kE E     for a wide-plate and ( ) ( )

2 2

k kE E  for a beam, with ( ) ( ) ( )

2 23 12, ,k k kE G   and 

( )

21

k    relevant Young’s modulus, shear modulus and Poisson coefficients of the layer k (a comma 

followed by a subscript denotes a derivative with respect to the corresponding coordinate).

Cohesive interfaces are introduced between the layers in the schematic in Fig. 1.a. The  ( 1)n   

interfaces are zero-thickness mathematical surfaces where material properties and displacements are 

discontinuous while surface tractions are continuous. The mechanical behavior of the interfaces is 

governed by  a cohesive traction law which relates the relative sliding displacement of the layers at 

the interface: 

 

( 1) ( )

2 2 2 2 3 3 2 2 3 3
ˆ ( ) ( , ) ( , )k k k k kv x v x x x v x x x     (2) 

 

to the interfacial cohesive tractions, 2 3 3
ˆ ( , )k k

S x x x  Fig. 1.c. In order to approximate perfectly brittle 

fracture, the cohesive traction law is assumed to be linear, with a very stiff initial branch, up to a 

critical sliding displacement 
2

ˆ
cv , beyond which the cohesive tractions vanish [1] [12]:  

 

2 2 2 2 2

2 3 3

2 2 2

ˆ ˆ ˆ( )         for ( )
ˆ ( , )

ˆ ˆ0         for ( )

k k k

k k S c

S k

c

K v x v x v
x x x

v x v


 
  



 
(3) 
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The coordinates where 
2 2

ˆ ˆk

cv v  define the crack tips, Fig. 2.a. To simplify the treatment of the 

problem, the cohesive laws are approximated by the following two-branch law, Fig. 2.b: 

 

2 2 2 2 2

2 3 3

2 2 2 2 2

ˆ ˆ ˆ( )         for ( )  with 1/ 0
ˆ ( , )

ˆ ˆ ˆ( )         for ( )  with 0

k k k k

k k S c S

S k k k k

S c S

K v x v x v K
x x x

K v x v x v K


  
  

 

 
(4) 

 

 

where the interfacial shear tractions are assumed to be proportional to the relative displacement. The 

advantage of the law in Eq. (4) is that it allows to formulate and solve the problem for generic linear 

traction laws with stiffness k

SK , 1,.., 1k n  , and then use the solution to describe the different 

portions of the beam. In the numerical solutions presented in Sect. 4 the numerical values of the 

interfacial stiffnesses in the intact/delaminated portions will be chosen as large/small as possible to 

avoid numerical problems; in the closed form solutions, a perturbation technique will be used and 

zero order expansions of the variables will describe the fully-bonded and delaminated regions.  

 

 

(a)                                             (b) 

Fig. 2. (a) Interfacial traction law to approximate mode II Linear Elastic Fracture Mechanics. (b) Interfacial traction law 

used in the solution of the homogenized model. 

 

 

Following [17–19], a small-scale displacement field is assumed for the layer k: 

 

1 1
( )

2 2 3 02 2 3 2 2 2 2 3 3 2 2

1 1

( )

3 2 3 0 2 3 3 2

ˆ( , ) ( ) ( ) ( )( ) ( )

( , ) ( ) ( )

k k
k i i i

i i

k

v x x v x x x x x x v x

v x x w x x x





 

 

     

 

 
 

(5) 

 

 

where local terms are introduced to enrich the global field of the first order theory:  zigzag functions, 

2 2 3 3( )( )i ix x x  ,  and relative sliding displacements at the layer interfaces, 
2 2

ˆ ( )iv x . The global 

variables are the in-plane displacement, 02 2( )v x , the bending rotation,  2 2( ) x  and the transverse 
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displacement 0 2( )w x ; they directly define the generalized displacements of the reference surface when 

this falls into the first layer. The small scale displacements in the plate are then defined by a total of 

three global variables and  2 1n   local variables. 

The zigzag functions are derived as functions of the global variables by imposing continuity 

of the shear tractions of the layers at the interfaces; this is done by posing 

( 1) ( )

23 3 3 23 3 3( ) ( )k k k kx x x x      for k = 1,…,(n-1) and using Eqs. (1). The relative sliding 

displacements at the interfaces are derived as function of the global variables by equating the 

interfacial cohesive tractions, Eq. (4), to the shear tractions, using Eqs. (1) [19]. This yields:  

 

   2 0,2 2 22 2 0,2 2 22
ˆ       ;      k k k kw v w         (6) 

 

with 

( 1)
(1) ( )23

22 23 22 22( 1) ( )
123 23

1 1
      ;         1

k k
k k j

k k k
jS

G
G

G G K






  
        

   
  

(7) 

 

 

Substituting the small-scale variables into Eq. (5) yields the macro-scale displacements in the layer 

k : 

 

 ( )

2 2 3 02 2 3 2 2 0 2 2 2 2 22 3

( )

3 2 0 2

( , ) ( ) ( ) , ( ) ( ) ( )

( ) ( )

k k

S

k

v x x v x x x w x x R x

v x w x

    


 

(8) 

 

 

with 

 
1

22 3 22 3 3 22

1

( )
k

k i i i

S

i

R x x x




 
    

 
  

(9) 

 

 

Strain and stress components, interfacial tractions and relative crack displacements are obtained in 

terms of the global variables by substituting Eq. (8) into Eqs. (1)(2)(4): 

 

 

  

( )

22 2 3 02 2 2 3 2 2 2 0 22 2 2 2 2 22

( )

23 2 3 0 2 2 2 2 22 3

( , ) , ( ) , ( ) , ( ) , ( )

2 ( , ) , ( ) ( ) 1 ,

k k

S

k k

S

x x v x x x w x x R

x x w x x R

  

 

   

  
 

(10) 
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( ) ( )

22 2 3 2 02 2 2 3 2 2 2 0 22 2 2 2 2 22

( ) ( )

23 2 23 0 2 2 2 2 22 3

( , ) , ( ) , ( ) , ( ) , ( )

( ) , ( ) ( ) 1 ,

k k k

S

k k k

S

x x E v x x x w x x R

x G w x x R

  

 

   

  

 ( 1)

23 22 0 2 2 2 2

1

ˆ 1 , ( ) ( )
k

k k j

S

j

G w x x 



 
    

 
  

 2 22 0 2 2 2 2
ˆ , ( ) ( )k kv w x x    

 

In a plate with layers having the same elastic properties, 22 0k   is zero since ( 1) ( )

23 23

k kG G  ; in the 

intact portions of such plate, where 221/ 0k k

SK    , also the relative crack displacements, 2
ˆkv , vanish 

and the displacement field coincides with that of the first order shear deformation theory [42]. If the 

elastic constants of the layers differ, 22 0k   and in the intact portions of the plate the displacement 

field coincides with that assumed by the original zigzag theory in [17]. 

The transverse shear stresses in Eq. (10) are constant through the thickness, since 

   ( ) ( 1) 1

23 22 3 23 22 31 , 1 ,k k k k

S SG R G R    . This is a consequence of the a priori imposition of continuity 

of the shear tractions at the interface and the assumption of a first order global displacement field. To 

account for this limitation a shear correction factor will be introduced in the equilibrium equations of 

the problem (Sect. 2.2). In addition, in the delaminated portions of the plate, where the interfacial 

tractions vanish, which implies 0 2 2, 0w    after Eq.  (10), both shear strains and stresses vanish. 

Following the approach which is commonly used for the structural low order theories, accurate 

predictions of the transverse shear stresses and strains, in both delaminated and intact regions, can be 

made a posteriori from the bending stresses by imposing local equilibrium: 

 

( )
( ) ( ) ( ) 23

22 2 23 3 23 ( )

23

, , 0    ;     2
k post

k k post k post

k G


      

(11) 

 

 

The use of the equations above allows to accurately describe the complex local fields which arise in 

multilayered plates with imperfect or fully bonded interfaces, also in very thick and highly anisotropic 

plates (see [19,29]). However, stress recovery using the equation above is not very accurate in a finite 

element framework [27]. Due to the vanishing of the shear strains in the delaminated regions of the 

plate, the transverse displacements in Eq. (8) will only account for the bending contributions and this 

may affect the load re-distribution between different regions in statically indeterminate systems.  

 

2.2. Constitutive and equilibrium equations and general solution 
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The homogenized equilibrium equations and boundary conditions in the beam in Fig. 1.a, are  derived 

using the Principle of Virtual Works [19]. The variationally consistent equilibrium equations and 

boundary conditions in terms of force and moment resultants per unit width, 22 22 2, ,b

gN M Q , and 

surface tractions, 
3f , are: 

 

22 2 2

22 2 2 2 2

2 2 2 3 2

, ( ) 0

, ( ) ( ) 0

, ( ) ( ) 0

b

g

g

N x

M x Q x

Q x f x



 

 

 

(12) 

 

 

and 

22 2 2 02 02

22 2 2 2 2

2 2 3 0 0

22 2 2 0 2

              or                   

            or                   

              or                   

          or                   ,

b b

g

zS zS

N n N v v

M n M

Q n N w w

M n M w

 

 

 

 

 0 2,w

 

(13) 

 

 

where the tilde defines prescribed values at the plate edges and 
2 1n    is the component of the 

outward unit normal along 
2x .  

Force and moment resultants are given by: 

 

   
3

1
3

( )

22 22 22 3 3

1

, 1,
k

k

n x
b k

x
k

N M x dx




  

2 2 2 2 2 2 22 2 2 2 2
ˆ( ) ( ) ( ) , ( ) ( ) b z zS

gQ x Q x Q x M x x     

(14) 

 

 

with  

3 3

1 1
3 3

3

1
3

( ) ( )

2 23 3 22 22 22 3

1 1

1
( ) ( 1)

2 23 22 3 3 2 23 22 2

1 1 1

         ;        

ˆ ˆ,        ;       1

k k

k k

k

k

n nx x
b k zS k k

S
x x

k k

n n kx
z k k k j k

S
x

k k j

Q dx M R dx

Q R dx G v

 

 

 



 




  

 

 
     

 

  

  
 

(15) 

 

 

 The form of the equilibrium equations is analogous to that of the global first order shear 

deformation theory and the normal force and bending moments, 22N and 22

bM ,  have the usual 
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definitions. The effects of the local enrichments appear in the generalized transverse shear force, 2gQ

which substitutes for the classical transverse shear force,  2

bQ , in the second and third equilibrium 

equation (12). As shown in the third equation in (12), the variationally consistent generalized 

transverse shear force is statically equivalent, at any arbitrary section of the plate with outward normal 

 
T

0,1,0n , to the vertical equilibrant of the external forces acting on the portion of the plate to the 

right of the section. 2gQ  therefore equates the resultant of the a posteriori calculated transverse shear 

stresses ( )

23

k post  , Eq. (11): 

 

3

1
3

( )

2 23 3

1

k

k

n x
k post

g
x

k

Q dx




  
(16) 

 

 

The resultant of the a-posteriori calculated shear stresses is variationally consistent in this model. 

In the intact portions of the plate where 
2

ˆ 0kv  , which implies 
2

ˆ 0   Eq. (15), the 

equilibrium equations coincide with those of the original first order zigzag theory in [17] for fully 

bonded plates. In the intact portion of a homogenous plate or when the zigzag effects are neglected 

by posing 22 0k  , then 22 2 2
ˆ 0zS zM Q    , the generalized shear force 2gQ  equals the transverse 

shear force 
2

bQ  and the equilibrium equations are those of first order shear deformation theory. 

As a consequence of the homogenization, the boundary conditions, Eq. (13), are defined in 

terms of global quantities. This highlights two limitations of the model when applied to cracked 

bodies. First, it is not applicable to problems with edge cracks where sub-forces and sub-moments 

acts at the delaminated arms in opposite directions. For instance if two equal magnitude shear forces 

were applied at the two delaminated arm ends with opposite signs, the generalized shear force 2gQ , 

which is the net value over the thickness, would be zero. However, these boundary conditions are 

essentially limited to laboratory test specimens and are unlikely to occur in practical cases, where the 

delamination arise between the internal layers and the loads are applied on the outer surfaces of the 

structure. The second limitation is the impossibility of the present model to satisfy local conditions 

in a boundary region at the crack tip cross-sections.  

At clamped supports, where the boundary conditions Eq. (13) impose 
2 0 2, 0w   , the 

transverse shear strains and stresses in Eq. (10), vanish, which implies 2 0bQ  ; this result does not 

affect the global solution of the problem, as it was erroneously thought in early applications of the 

original zigzag model to fully bonded plates [25], since global equilibrium is satisfied at the clamped 



14 

 

edges by a nonzero generalized transverse shear force, 2gQ , which is the variationally consistent 

relevant internal force. However, as for the crack tip cross sections, since the boundary conditions are 

in terms of global quantities, boundary regions are generated at the clamped edges where the local 

fields are not accurately predicted; the size of these regions depend on the mismatch of the elastic 

constants of the layers and on the stiffness of the interface and is very small in plates where the 

mismatch is small and the interfacial stiffness is very large or very small [31][38]. 

 The constitutive equations of the layered  beam are derived by substituting stresses and 

interfacial relative sliding displacement from Eqs. (10) into Eq. (14)[44]: 
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(17) 

 

with: 

3

1
3

( ) 2

22 22 22 2 3 3 3

1

44 44 44

, ,D ) (1,( , )
k

k

n x
k

x
k

P S

E x x dA x

A k C C

B






 

   

where the coefficients, rSC , 2SC , 
44

PC  and SC  for r = 0, 1, 2, depend on the geometry, the layup and 

the status of the interface and are defined in Eq. (47) in Appendix A. The coefficients with superscript 

S  depend on the local enrichments and they assume different values in the intact and delaminated 

regions; 
22

zSM  is the moment resultant due to the local enrichments, Eq. (15). In a plate with fully 

bonded interfaces, with 1/ 0k

SK  , and where the zig-zag contributions are zero or neglected by 

posing 22 0k  , the constitutive equations coincide with those of First Order Shear Deformation 

theory, since rSC  = 2SC  = SC  = 0.  In this case the response is described by the classical extensional, 

coupling and bending stiffnesses, 22A , 
22B  , 

22D , and  is the classical shear stiffness 

( ) ( )

44 44 23

1

n
k k

k

A k G h


  .  

A shear correction factor, 44k , is introduced in the equations above in order to recover the 

constitutive equations of the equivalent first order shear deformation theory in the limiting case of a 

fully bonded homogeneous plate, for which 
44 5 6k   under static loading. The correction factor 
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required for homogeneous plates can be used also for layered plates since the zigzag effects are 

accounted for through the multiscale treatment; this was observed in [19] for static problems and in 

[12] for dynamic problems. In Eq. (17) the shear correction factor is introduced so that 

(1)

23 2 3 2 2 44 442 ( , ) ( ) / ( )b z px x Q Q k C   .   

 The homogenized equilibrium equations are defined in terms of global displacements, by 

substituting the constitutive equations  (17) into Eq. (12). The eight order system is:  
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(18) 

 

  

In a beam with traction-free external surfaces, 
3 0f  , the general solution is [44]: 
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(19) 

 

 

where B , C , D  and E  depend on the coefficients in Eq. (47) and are given in Eq. (49) and 
ic  for i 

= 1, …, 8, are integration constants.  From Eq. (10) and (19), the transverse shear strain of the first 

layer, 
(1)

23 2 0 22 ,w     , which will be used in the following derivations is defined by: 

 

2 2(1)

23 2 0 2 1 2 32 ,
Bx Bx

w c e c e c   
       

(20) 

 

The derivation constants in Eq. (19) necessitates the imposition of boundary conditions and 

continuity conditions on the global variables, 
02v , 

2 , 
0w , 0 2,w , 

22N , 
22

bM , 2gQ  and 
22

zSM  at the 

joining cross sections. In the intact region of the plate, where 1 0k

SK  , Eq. (19) holds with with 

22 0k  , 
2

ˆ 0kv  , 
22 0SC  . In the delaminated region of the plate, for 0k

SK  , some of the 

coefficients in Eq. (19) remain finite 1A  , 22 22 22, , ,A B D  E , DB , 
0SC B , while others go to 
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infinity with various orders [29]. Concepts from perturbation analysis will be used in the following 

to elaborate the solution in this limit.  

 

2.3. Local fields in an edge cracked element 

 

To clarify how the homogenized approach preserves the description of the local fields of classical 

discrete layer cohesive-zone models, the special case of a bi-material beam with a single delamination 

is examined and the local fields derived in closed form from the solution in Eq. (19). The fields will 

be discussed with reference to a cracked element of length (a+c) extracted from the “actual” beam in 

Fig. 1.a and subjected only to moment and force resultants acting at the element ends, ( ) ( ) ( ), ,i i iN Q M

, with i = 0,1,2 for the intact, delaminated and substrate arms, Fig. 3.a. It will be shown that, at 

sufficient distance from the crack tip, the local fields calculated a posteriori coincide with those of a 

classical discrete-layer model which uses Timoshenko beam theory to describe the layers.  

Figure 3.b shows the “homogenized” crack tip element and the global force and moment 

resultants, Eqs. (14), acting at 
2x a  ,  22 2 22, , b

gN Q M ,  and at 
2x c  , (0) (0) (0)

22 2 22, , b

gN Q M . The 

origin of the global system 
1 2 3x x x   is at the crack tip cross section and 

2x  is along the neutral 

axis of the intact portion of the element (to simplify the derivation it is assumed that the neutral axis 

falls into the lower layer);  local coordinates are introduced at the mid-thickness of the first, 

(1) (1)

3 3X x e  , and second layer, (2) (2)

3 3X x e  , with   
(1)e  and 

(2)e  the distances between the 

reference plane 
3 0x   and the geometrical mid-thickness of the layers (Fig. 3.c).  

A schematic of the longitudinal displacements in the layers of the delaminated portion, (1)

2v  

and (2)

2v , after Eq. (8) is shown in Fig. 3.c. The derivatives, (1)

2 3,v  and (2)

2 3,v , define the slopes which 

represent the local rotations of the layers, ( ) ( )

2 2 3,
i i v  :  

 

   

       

(1)

2 2 2 2

(2) 1

2 2 2 2 2 2 0 2 2 22,

x x

x x x w x

 

  



     

 
(21) 

 

 

In a homogeneous  element, 1

22 0   and the local rotations  coincide with the global rotation, 

(1) (2)

2 2 2    , everywhere in the element. A similar conclusion holds in the delaminated region 

in a bi-material element. This is proven by applying concepts of perturbation analysis to the shear 

deformation of the first layer, 
2( )x  in Eq. (20), and to the relative crack displacement, 1

2 2
ˆ ( )v x , Eq. 
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(10). By assuming 1 0
S

K  , the functions 
2( )x  and 1

2 2
ˆ ( )v x  are expanded into power series of 1

S
K  

up to the first-order,  
0 1 2

1 1[ ] [ ]
S S

K O K      
  

 and  
0 1

2
1 1 1 1 1

2 2 2
ˆ ˆ ˆ[ ] [ ]

S S
v v K v O K   

  
, where the 

superscript [ ]
i

  indicates the order of the expansion term. Since  1 (2) (1,1) 1 1

2 23 2 22
ˆ ( )(1 )( )Sv G x K   , 

after Eqs. (7),(10), and its zero order expansion, 
0
1

2
ˆ[ ]v , must be finite in the delaminated region, then 

the zero order expansion of   must vanish, 
0

[ ] 0  . As a consequence, the dominant terms of the 

local rotations of the layers in Eq. (21) coincide with the global rotation, (1) (2)

2 2 2    .  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a) Schematic of crack tip element in a delaminated bi-material beam with one delamination and no surface loads 

showing force and moment resultants acting at the end cross sections. (b) Homogenized crack tip element with global 

force and moment resultants and J-integral path. (c) Local coordinates and rotations in the homogenized element. 

 

The continuity conditions at the crack tip cross section on 
2  and 

0 2,w , Eq. (13), forces 

2 0 2,w   to be zero at the crack tip and the local rotations to coincide there on both sides. In the intact 

region away from the crack tip, on the other hand, the local rotations generally differ, since 1

22 0   

and 
2 0 2, 0w   .  

Force and moment sub-resultants acting in the first and second layers in the delaminated and 

intact portions of the homogenized element in Fig. 3.b are defined using the local coordinates as: 
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(22) 

 

 

for i = 1 and 2. They are related to the global resultants acting at the end of the homogenized element, 

Fig. 3.b, through simple equilibrium, e.g. (1) (2)

22 2 22 2 22( ) ( )N x a N x a N       and 

(1) (2) 0

22 2 22 2 22( ) ( )N x c N x c N    , and in the delaminated region coincide with the “actual” forces 

acting on the “actual” element in Fig. 3.a.   

 

Local axial and bending fields 

In the delaminated portion of the homogenized element in Fig. 3, the dominant term of the shear 

deformations in the first layer vanishes, 
0

[ ] 0  , and the longitudinal displacements in the layers, Eq. 

(8), can be expressed in terms of the displacement jump using Eq. (6): 

 

     

       

(1)

2 2 3 02 2 3 2 2

(2)

2 2 3 02 2 2 2 3 2 2 2

,                        

ˆ,       for  - 0

v x x v x x x

v x x v x v x x x a x





 

      

 
(23) 

 

 

The equations above and the local coordinates are used to redefine the axial stresses and strains in the 

delaminated region, Eq. (10).  Substituting the axial stresses into the first equation (22), performing 

the integration and some algebraic manipulations [44], yield axial strains and stresses in the layers i 

= 1, 2 of the delaminated region in terms of the normal force and moment sub-resultants:  
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(24) 

 

 

The equations have the same form of those of the equivalent single layer theory for homogeneous 

layers. This result highlights the capability of the homogenized approach to describe the local 

discontinuous fields in the delaminated region of the plate from just three global kinematic variables. 
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 In the intact portion of the element in Fig. 3.c, the constitutive equations of the model, Eq. 

(17), modify since 22 0B  : 
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(25) 

 

 

The last terms are not present in a homogeneous plate, where 0 1 0S SC C  ; in a bi-material plate 

they becomes negligible at a sufficient distance from the crack tip since the exponential terms in the 

solution of    in Eq. (20) decrease moving away from the crack tip in order for     to become 

independent of 2x , as is required by the geometry and loading conditions (shear is constant along the 

ligament ahead of the crack tip). For sufficiently long  c,    is constant with respect to 2x , which  

implies that 2, 0  . As a consequence, the axial strain and stress in the intact region at a sufficient 

distance from the crack tip are defined in terms of the global normal force and bending moment 

resultants,  Eqs. (10) and (25), by: 
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(26) 

 

 

As for the delaminated layers, at a sufficient distance from the crack tip in the intact region, the 

constitutive equations have the same form of those of the classical plate theory.  

 

Local shear fields 

The transverse shear strains in the layers, Eq. (10), can be rewritten in terms of the local rotations of 

the layers in Eq. (21). This yields an expression which is similar to that of the first order shear 

deformation theory and applies to the delaminated and intact regions of the plate: 

 

( ) ( )

23 2 3 0 2 2 2 22 ( , ) , ( ) ( )k kx x w x x    (27) 
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The shear strains are constant in the thickness of each layer and vanish in the delaminated portion of 

the plate where ( )

0 2 2, 0kw   . Shear strains, ( )

23

k post , related to the a posteriori calculated shear 

stresses which satisfy local equilibrium, ( )

23

k post , have already been defined in Eq. (11). 

For the derivation of the energy release rate in Sect. 3.3 in terms of crack tip force and moment 

sub-resultant, it is convenient to introduce, following the Jourawsky’s method, global strain measures 

energetically associated to the generalized shear resultant, Eq.  (14), and sub-resultants, (22), acting 

at the end sections at the coordinates 
2 ,x a c  . This is done by imposing: 
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(28) 

 

 

where ( )

23

i post  are ( )

23

i post  are related through Eq. (11), (24) to the axial and moment sub-resultants, in 

the delaminated region, and to the axial and moment resultants, Eqs. (11), , (26) at 2x c  in the intact 

region away from the crack tip. Global equilibrium, Eq. (12), and local equilibrium in the 

homogeneous delaminated layers, ( ) ( )

22 2 2, 0i b i

gM Q  , then yields [44]: 
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with: 
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(Fig. 3.c for the notation). The local shear correction factors,  ( )

44

i k , coincide with those typically 

defined for classical first order theories. This is expected since the axial stresses, which are used in 
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Eq. (28), are related to the normal and moment resultants/sub-resultants through relationships, Eqs. 

(24)(26), which coincide with those of the classical theories.  

 

3 Energy release rate in layered beams with single and multiple delaminations under Mode 

II dominant conditions 

 

The general solution of the homogenized model, Eq. (19), and the boundary conditions in Eq. (48), 

are  used to define the energy release rate for the collinear propagation of delamination cracks in 

simply and multiply delaminated layered beams under mode II dominant conditions, Fig. 4.  Problems 

characterized by mixed-mode conditions could be studied similarly using the extended version of the 

multiscale model presented in [19], which accounts also for the interfacial opening displacements. 

The energy release rate is calculated using the compliance method, Sect. 3.1, and through 

different applications of the J-Integral, Sect. 3.2. For the special case of homogeneous and bi-material 

beams with a single delamination, closed form solutions are derived in terms of crack tip force and 

moment sub-resultants, Sect. 3.3 

 

3.1. Energy release rate: compliance method  

 

In order to apply the homogenized model to the specimens in Fig. 4, cohesive interfaces 

governed by the interfacial traction law in Eq. (4) are introduced along the crack planes. The 

numerical values for the interfacial stiffnesses in the intact and delaminated portions are chosen as 

( ) 3

2 10k k

SK h E   and ( ) 3 10

2 10 10k k

SK h E   , respectively, Fig. 2; these values are respectively 

large and small enough values to avoid numerical problems and ensure the convergence of the 

solution. The specimens are then homogenized, Fig. 4, discretized into portions separated by the 

coordinates which define the crack tips and concentrated loads and the coefficients which describe 

the homogenized stiffnesses of the different portions are calculated, Eq. (47)(49). The unknown 

integration constants of the general solutions in Eq. (19) are calculated by imposing boundary and 

continuity conditions. The boundary conditions are: 0 2 2 0  b zSw M M  and 2 0N   or 02 0v  at 

the simple supports, Fig. 4.a,b; 0 2 02 0w v    at the clamped ends, Fig. 4.c; 2 2 2 0b zSN M M    

and 2 0gQ   at the free ends subjected to concentrated transverse loads, Fig. 4.c.  Continuity 

conditions are imposed on the global variables 02v , 2 , 0w , 0 2,w , 22N , 
22

bM , 2gQ  and 
22

zSM . 

Using the solution of the homogenized model, the energy release rate is calculated as the 

variation of the total potential energy for unit collinear crack advancement: 
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2
II

d P dC

da da


  G  

(31) 

 

 

with   the total potential energy, P  the load applied per unit width and  0 2 / C w x L P  the load 

point displacement due to a unit load. Using Eq. (31) allows to verify the capability of the 

homogenized model to define transverse displacements in cracked beams. 

 

 

                     

      

 

 

 

 

 

 

 

                                     (a)                                                             (b) 

 

 

 

 

 

 

 

 

 

 

(c) 

Fig. 4. (a) Three-point bend-beam and homogenized model, used for the beams in Table 1. (b) Three-point bend-beam 

with layered (sandwich) structure and homogenized model, Table 4. (c) Cantilever bend-beam with two delaminations 

and homogenized model, used for the beams in Table 7. 
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3.2. Energy release rate: J-Integral  

 

In the beams with a single delamination, Figs. 4.a,b, the energy release rate for the collinear 

propagation of the delamination is also calculated using the J-integral along a path surrounding the 

crack tip, shown in Fig. 3.b: 

 

3 2( , )II ij j iJ Wdx n v d


   G  (32) 

 

for i, j = 2, 3, with   the contra-clockwise path surrounding the crack tip and d  an element of arc 

length along  ;  22 22 23 232 2W       is the strain energy density, jn is the component of the unit 

outward normal vector and ij jn  are the tractions along the contour. The terms in the J-integral are 

obtained from the solution of the homogenized model, Eqs. (19)(48). The requirement to obtain an 

accurate prediction of the energy release rate is that the quantities in the J-integral must be a posteriori 

calculated values, namely  22 22 23 232 2post postW      , post

ij j ij jn n   components and 

( ) ( ) ( )

3 2 23 2, 2i post i post iv    , after Eq. (27). 

 

J-Integral along a path following the delamination surfaces 

To verify the capability of the homogenized model to accurately predict crack surface displacements, 

the energy release rate is also calculated using a J-Integral path which follows the delamination 

surfaces, Fig. 5.a. Using Bückner’s superposition principle and the procedure in [45], and since the 

crack surfaces can only slide with no friction, Eq. (31) applied to Fig. 5.c yields: 
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where  2x  are the shear tractions generated at level of the cracked interface in the intact 

homogenized element in Fig. 5. The Mode II energy release rate is: 
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2 2 2 2 23 3 3 2 2 2 2
ˆ ˆ ˆ, 0

x
post

II
x a

x v dx x x v x a v x 



        G  

(34) 

 

since    (1) 1

2 23 3 3

postx x x     does not depend on 2x  for 20 x a  . 
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The energy release rate calculated through Eq. (34) relies on accurate calculations of the 

relative crack displacement. Concepts of perturbation analysis, already anticipated in the previous 

section for the bi-material case, show that zero order expansion of the relative crack displacement for 

1 0
S

K  , which is the dominant term in the delaminated region, is  
0 1

(2)

2 23 22
ˆ[ ] [ ] 1v G   and 

depends on the first order expansion of 
2 0 2,w   . The presence of terms which do not depend on 

2x  in the first order expansion of   [44] implies that the relative crack displacement does not vanish 

at the crack tip. This results, which is a consequence of the imposition of continuity conditions only 

on global quantities, has no effect on the energy release rate in Eq. (34), since the terms of 2v̂  which 

are independent of 2x  cancel in    2 2 2 2
ˆ ˆ 0v x a v x    . 

 

 

Fig. 5. Bückner’s superposition scheme used to calculate the J-integral along the crack surfaces.  

 

3.3. Energy release rate: closed form solutions for unidirectional and bi-material beams  

 

In this section, closed form solutions are derived for the energy release rate of homogeneous and bi-

material beams with a single delamination arbitrarily located in the thickness. The energy release rate 

is calculated referring to the cracked element in Fig. 3.a subject to force and moment resultants acting 

at the end sections. The length of crack and ligament, a  and c , are assumed to be long enough so 

that the crack tip fields can be described in term of end resultants. The minimum lengths depend on 

the mismatch of the elastic constants and are on the order of the global thickness of the plate for 

conventional composites, [46–49]. The assumption allows comparison of the results with accurate 

2D solutions from the literature. The derivation uses the local fields discussed in Sect. 2.3 and the J-

Integral in Eq. (32).   

The components of the J-Integral along the paths 4  and 5 in Fig. 3.b are 4 5 0J J  , since 

the upper and lower surfaces of the element are traction-free. The components of the J-Integral along 

the paths i  for i=1,2, are obtained using Eqs. (32)(10) : 

 



25 

 

 
( ) ( )

( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( )2 2
1,2 2 22 22 3 23 23 3

2 2

( ) ( ) ( )2
23 3 2 3

2

1 1
2

2 2

,

i i

i i

i

i

h h

i i i i i i

i h h

h

i i i

h

J x a d X d X

v d X

   




 



    



 



 

(35) 

 

 

The equation is elaborated by noting that ( ) ( ) ( )

3 2 0 2 23 2, , 2i i iv w      , after Eq. (27), introducing a  

posteriori calculated shear stresses and strains, 
( ) ( )

23 23

i i post   and 
( ) ( )

23 23

i i post  , Eq. (11), and using 

the relationships in Eqs. (28)(29) and Eq. (24). This yields:
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Similar considerations are applied along the path 3 , which yield (see [44] for details): 
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Summing up the contribution is Eqs. (36)(37), the energy release rate in the homogenized 

element in Fig. 3.b is: 
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where ( )

22

i N , ( )

22

i bM  and 
( )

2

i

gQ  for i = 0, 1 and 2, are the force and moment sub-resultants acting on 

the different arms, Eq. (22), and (1)

2 2   and (2)

2  are the local rotations of the first and second 

layers at the edges of the homogenized element,  given in Eq. (21).  
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When the first and second layers of the element in Fig. 3.a have the same elastic constants, 

the neutral axis of the intact section is at mid-thickness and the following relationships hold: 1

22 0 

, (1) (2)

2 2 2    , (1) (2) 2e h , (2) (1) 2e h  and ( )

44 44 5 / 6i k k   for i = 0,1,2. The energy release 

rate in Eq. (38) then coincides with that derived in [21][48] using structural mechanics considerations. 

  

Particularization to crack tip quantities: homogeneous element 

 For a homogeneous beam, Eq. (38) can be redefined in terms of crack tip quantities by noting 

that the normal and shear resultants and sub-resultants at the crack tip coincide with those at the 

element ends, Fig. 3.b, while the bending moments are    ( ) ( ) ( )

22 2 22 2 20i b i b i

gM x M x a Q a      for 

i=1,2 and     (0) (0) (0)

22 2 22 2 20b b

gM x M x c Q c    . In addition, the rotations of the end sections of 

the layer are calculated by integrating the third equation in (24)  from 
2x a   to 

2 0x  , and the 

second equation in  (25) from 
2 0x   to 

2x c : 
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The energy release rate in terms of crack tip quantities becomes: 
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(40) 

 

 

where    ( )

2 2 2 20 0i

i x x         for i = 1, 2 define the relative rotations of the arms at the 

crack tip, also known in the literature as crack tip root-rotations [46,49][51]. Imposition of the 

continuity condition on the global rotation at the crack tip cross section of the homogenized model 

implies  (0) (1) (2)

2 2 2 2       and 0i   at 
2 0x  , which yields: 
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(41) 

 

 

where 
44 5 / 6k  . Equation (40) coincides with the accurate 2D solution derived in [49] where the 

crack tip root rotations 
i  are defined as linear functions of the crack tip force and moment 

resultants through compliance coefficients which depend on the geometry and material properties. 

The crack tip root rotations describe the near tip deformations and their effect on the energy release 

rate of the plate can be important in the presence of crack tip shear, also when the crack is long. The 

homogenized model formulated here, Eq. (41), does not account directly for these effects, which 

however could be introduced a posteriori as explained in [49]. Additional discussion on this problem 

can be found in Sect. 4. 

 

Particularization to crack tip quantities: bi-material element 

In the bi-material element, the energy release rate in Eq. (38) can be defined in term of crack tip 

quantities following a similar procedure. The end rotations of the two delaminated arms, 

 ( )

2 2

i x a    for i=1,2, coincide with those derived in Eq. (39). The exact definition of the local 

end rotations of the two layers in the intact part would imply using Eqs. (19)(21). Here, since c  is 

assumed to be sufficiently long, the local end rotations in the intact part are calculated by integrating 

the curvature 2 2, in the second equation in (25) from 2 0x   to 2x c  and then using (1)

2 2   and 

(2)

2 2 22     , after Eq. (21). This procedure neglects the contribution of the exponential terms in 

  of Eq. (19), and yields:  
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(42) 

 

 

where 44 5 / 6k   is the global shear correction factor introduced in the equilibrium equations, Eq. 

(18). The effects of the exponential terms   would affects the local rotation  (2)

2 2x c   only for 
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small values of c. The equation above shows that in the intact part of the plate the local rotations of 

the two layers differ, due to the zigzag enrichment in the third term of (2)

2  which comes from the 

contribution  22  in Eq. (21) and is therefore related to shear. Noting that  (1) (0) (2)

2 2 2g g gQ Q Q  , 

substituting Eq. (42) into Eq. (38) where    ( )

2 2 20 0 0ix x       for i = 1, 2  due to the 

continuity conditions, and with some manipulation, yield: 
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(43) 

 

 

The last term on the right hand side describes the work done by the shear sub-resultant in the upper 

layer, (2)

2gQ , on the difference between the local rotation of the upper and lower layers, (2) (1)

2 2  , 

at 2x c . All terms in the equation above are to be calculated at the crack tip but for (2)

2gQ , which, if 

calculated from the a posteriori shear stresses may suffer at the crack tip from the presence of a 

boundary layer. It is therefore preferable to use the value calculated at a sufficient distance from the 

crack tip. Comparing Eqs. (43) and (41) highlights the effect of the local zigzag enrichment in bi-

material systems. The applications in Sect. 4 will further explain the role of this term. 

 

4 Applications 

 

In this section the homogenized model is applied to define energy release rate and analyze crack 

propagation in the beams in Fig. 4. Homogeneous, bi-material, sandwich and laminated beams with 

single and multiple delaminations are analyzed. The results are compared with 2D elasticity solutions, 

with solutions obtained using classical discrete-layer models and with experimental results.  

 

4.1. Homogeneous and bi-material beams with a single delamination, Fig. 4.a 

The beam with a single delamination in Fig. 4.a is loaded in three-point bending. Three 

material/geometrical configurations are examined and detailed in Table 1. Beam 1 is homogeneous, 

orthotropic, with a mid-thickness delamination and represents an End-Notched Flexural (ENF) 
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specimen used for Mode II fracture testing of unidirectional composites (see [52] for a description). 

Beam 2 is homogeneous with unequal thickness layers. Beam 3 is a bi-material beam with equal 

thickness layers. The delaminations in Beams 2 and 3 are in Mode II dominant conditions and the 

phase angle,  1 /II I = tan G G , which define a measure of the amount of Mode II to Mode I 

loading, is defined using the 2D elasticity solutions in [46][47][49] and presented in Table 2. 

 Using the notation in Fig. 3.b, the homogenized forces in the homogenized beam in Fig. 4.a 

are calculated as follows. The global force and moment resultants are obtained through simple 

equilibrium considerations. For 20   x L , they are (0)

22 2 22 2( ) ( ) 0,N x N x 

(0)

22 2 22 2 2( ) ( ) /2b bM x M x Px    and (0)

2 2 2 2 ( )  ( ) / 2  g gQ x Q x P    The sub-resultants in the 

delaminated portion of the specimen are obtained by noting that (1) (2)

2 2 2 2 2 2 2 2 2, ( ) , ( ) , ( )x x x    , 

Eq. (21).  This yields:
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2 2 2g g gQ Q Q  , for equilibrium, force and moment sub-

resultants for 20 x a   are: 
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They coincide with those obtained using classical discrete approaches by matching the displacements 

of the two arms at the support [47].  

The energy release rate is calculated in closed form and shown in Table 2, using the 

material/geometrical properties in Table 1, and  Eq. (41),  with 
44 5 6k  , for Beam 1 and 2 and Eq. 

(43), with (1) (2)

44 44 44 5 / 6 0.833k k k     and (0)

44 0.815k  , after Eq. (30), for Beam 3. Table 3 

shows relative percent errors between the predictions of the homogenized model and the 2D solutions 

on varying the normalized crack length,  /a h . The table also shows relative errors obtained using the 

other approaches presented in Sect. 3.   
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Table 1. Geometrical and material properties of homogeneous and bi-material beams in Fig. 4.a 

Beam Thickness Thickness 

ratio 

Orthotropic layers Isotropic layers 

 2H h  
(2) (1)h h  

1 2 3 2E E E E  
23 2G E  

23 21,  ,
13  (2) (1)E E  (1) (2),   

Beam 1  (1) (2)h h  1 0.071 0.033  0.32 , 0.32 , 0.45   

Beam 2 (1) (2)h h  0.5  0.071 0.033  0.32 , 0.32 , 0.45  

Beam 3 (1) (2)h h  1  2 3  0.5  

 

Table 2 - Closed forms for the Energy Release Rate in the homogeneous and bi-material beams in Table 1, Fig. 4a. 

2

2

E h

P

G
 

Homogenized model  

Energy release rate 

2D Elasticity  

(Energy Release Rate and Mode Mixity angle) 

Source 

 

Beam 1 

2
9

16

a

h

 
 
 

, Eq. (41) 
2 2

9
1 0.728 0.529

16

a h h

h a a

      
       

       

 

1 9tan / 0( )II I  G G , Mode II 

[47,49] 

 

Beam 2 

2 2
3

1 1.357
8

a h

h a

    
    

     

, Eq. (41) 
2 2 2

3
1 1.357 2.141 0.101

8

a h h h

h a a a

        
          

         

 

1tan ( / ) 65.2II I  G G  

[49]  

 

Beam 3 

2 2 2

0.445 1 0.012 0.21
a h h

h a a

      
       

       

, 

Eq. (43) 

2 2 2

0.445 1 0.012 0.445 0.073
a h h h

h a a a

        
          

         

 

1tan ( / ) 82.4II I  G G  

[46,49] 

 

Table 3: Relative error on the energy release rate. Error is between results of homogenized model and 2D solutions. 

Relative error against 2D solutions in 

Table 2 
 

10
a

h
  15

a

h
  20

a

h
  30

a

h
  40

a

h
  

J-integral, Table 2, closed form, Eq. (41) Beam 1 -6.3% -4.4% -3.4% -2.3% -1.8% 

J-Integral (crack surface displacement), 

numerical, Eq. (34) 

Beam 1 -6.3% -4.4% -3.4% -2.3% -1.8% 

Compliance method, numerical, Eq. (31) Beam 1 -10.2% -6.2% -4.4% -2.8% -2.0% 

J-integral, Table 2, closed form, Eq. (41) Beam 2 -17.5% -12.5% -9.7% -6.7% -5.1% 

J-Integral (crack surface displacement), 

numerical, Eq. (34) 

Beam 2 -18.6% -13.0% -10.0% -6.8% -5.2% 

Compliance method, numerical, Eq. (31) Beam 2 -23.7% -15.4% -11.4% -7.4% -5.5% 

J-integral, Table 2, closed form, Eq. (43) Beam 3 -4.1% -2.8% -2.1% -1.4% -1.1% 

J-Integral (crack surface displacement), 

numerical, Eq. (34) 

Beam 3 -4.3% -2.9% -2.2% -1.5% -1.1% 

Compliance method, numerical, Eq. (31) Beam 3 -4.8% -3.1% -2.2% -1.5% -1.1% 
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Discussion on the Energy Release Rate 

Beam 1 in Table 1, Fig. 4.a, is homogeneous, orthotropic and anti-symmetric. The delamination is 

under pure mode II conditions. In this beam, the terms in Eq. (41) which depend on the shear forces, 

give a zero contribution, due to the symmetry of the geometry about the delamination line. The second 

and third terms in the square brackets of the 2D solution (Table 2) account for the effects of shear on 

the near tip deformations generated by the bending moments and the shear forces, respectively. The 

near tip deformations are described in the 2D solution as relative rotations of the crack tip cross 

sections on the delaminated and intact side, or root-rotations (see discussion in [49]) Predictions using 

the closed form solution of the homogeneous model in Table 2 are quite accurate for sufficiently long 

cracks. The energy release rate in terms of crack surface displacements coincides in this problem with 

that obtained using the crack tip sub-resultants. Predictions obtained using the compliance method 

are less accurate, but still acceptable for sufficiently long cracks, due to an underestimation of the 

specimen compliance as a consequence of neglecting the shear deformations in the delaminated 

portion. 

Beam 2 in Table 1, Fig. 4.a, is homogeneous and asymmetric. Since (1) (2)h h , the 

delamination surfaces are under compression and the result in Table 2 assumes frictionless contact. 

The second term of the solution of the homogenized model in Table 2 is due to the effect of the crack 

tip shear forces on the shear deformations. In the 2D solution, the third and fourth terms in the square 

brackets account for the effects of shear on the crack tip root-rotations generated by the bending 

moments and the shear forces, respectively. The mode mixity phase angle is  = 65.2◦ [49] and differs 

substantially from the value corresponding to pure mode II, 90◦, since the 2D elasticity solution 

implies interpenetration of the crack faces at the crack tip. The relative percent error between the 

predictions of the homogenized model and the 2D solution is larger than that of the anti-symmetric 

problem. This is due to the important mode I component and to the simplified description of contact 

(constrained-contact).  

Beam 3 Table 1, Fig. 4.a, is a bi-material beam made of two incompressible isotropic layers. 

The Dundurs’ parameters of the interface are 0.2,  0    . For this geometry and material 

properties, the delamination surfaces are in compression and the homogenized solution in Table 2 is 

applicable assuming frictionless contact. The first term on the right hand side of the energy release 

rate calculated using the homogenized model in Table 2 is due to the crack tip bending moment and 

the second and third terms describe the effects of the shear resultant on the shear deformations in the 

layers and of the shear sub-resultant in the upper layer of the intact ligament on the difference between 

the rotations of the upper and lower layers. The 2D elasticity reference solution is obtained through 

an elaboration of the results in [47], in order to separate the different contributions following the 
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methodology suggested in [49]. The third and fourth terms in the square brackets account for the 

effects of shear on the crack tip root-rotations generated by the bending moments and the shear forces, 

respectively. The mode mixity phase angle is equal to 82.4◦ and is very close to 90◦, which define 

mode II conditions. This explain the very good predictions of the model also for short cracks. The 

solution obtained using the J-Integral along the fracture surface coincide with predictions that fully 

neglect the effects of shear. 

  

Macro-structural Response – Critical load vs load deflection curve of Beam 1, Table 1, Fig. 4.a 

The macrostructural response of Beam 1 in Table 1, Fig. 4.a is analyzed through the critical 

load versus load deflection curve shown in Fig. 6, for 100 3L h  and an initial crack of length 

0 20a h . The crack propagates when the energy release rate of the homogenized model in Table 2 

equals the critical value, IICG , and the critical load for crack propagation is: 

 

2

4

3

cr

IIC

P h

ahE

 
  

 G
 

(46) 

 

 

with 0 20a a h   for the initial propagation. The load point displacement is obtained from the 

solution of the model as 0 2( )w x L , Eq. (19).  To follow crack propagation, the crack length is then 

progressively increased and the corresponding critical load calculated using Eq. (46). This crack-

length control allows to follow the virtual branch associated to the snap-back instability. The results 

of the homogenized model are compared with those obtained through a 2D solution of the problem 

using the 2D energy release rate in Table 2. The results obtained using a classical discrete layer model 

[8] are also presented in the figure. In this approach, the layers in the delaminated region are modeled 

separately by the first order shear deformation theory and are allowed to freely slide along each other; 

the intact portion of the specimen is modeled by the first order shear deformation theory. 

The sudden change in the shape of the post-peak curve indicates that the crack has approached 

the mid-span. There the concentrated load generates a compression region which typically arrests the 

cracks in quasi static laboratory experiments. Here the solution is presented also for a L , which 

now defines a stable propagation approaching the  limiting solution (dash-dot line) of two separated 

layers free to slide along each other (see also [7]).  
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(a) 

 

 

 

 

 

 

 

 

 

 

 

(b)                                                                                  (c) 

 

Fig. 6. (a) Dimensionless diagram of the critical load for crack propagation as function of the load point displacement 

in: (a) unidirectional ENF specimen in Fig. 4.a, Beam 1, Table 1; (b), (c) unidirectional ENF fracture specimens tested 

in [53] under displacement control. Model (a) and (b) described in the main text.  

 

Macro-structural Response – Comparison with experimental results 

The diagrams in Figs. 6.b,c show the critical load for crack propagation in two ENF specimens made 

of Graphite/epoxy [0]24 laminates tested in  [53,54]. The geometry is defined by : L = 50 mm, 2h = 

3.4 mm, 0 25a   mm, b = 25 mm (width), Fig. 4.a. The material of the beam in Fig. 6.b is a 

graphite/epoxy AS-4/828 with 2 139 16.7E    GPa and 23 6G  GPa, defined from flexural tests on 

the laminate [54], and Mode II fracture energy 1.04 0.17IIC  G  N/mm, calculated in [53] using the 
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cr
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compliance method. The material of the beam in Fig. 6.c is a graphite/epoxy AS-4C/828 with 

2 158 5.06E    GPa and 23 6G   GPa and 1.15 0.13IIC  G  N/mm.  

Two theoretical curves are shown in each diagrams. The curves in Fig. 6.b have been obtained 

using the average values of the elastic constants and energy release rate, red dashed lines Model (a), 

and the maximum values, black solid lines Model (b). In Fig. 6.c the red curve corresponds to the 

average values, Model (a) and the black curve has been obtained using the average value of energy 

release rate and the maximum value of the Young modulus, Model (b). 

The experimental results, under displacement control show a load drop in the critical load at 

the onset of propagation; this is due to an unstable propagation of the crack which grows 

catastrophically and arrests near the mid-span. The homogenized model, which is under crack-length 

control, is able to capture the snap-back instability and follow the virtual branch where crack growth 

is associated to a reduction of the load-point displacement. Crack propagation is modelled also in the 

region beyond the mid-span where the curve stably approaches the limiting solution (dotted line) 

corresponding to two fully delaminated layers.  

 

4.2. Layered beam (sandwich) with a single delamination, Fig. 4.b 

 

The material and geometrical properties of the three-layer (sandwich) bend beam in Fig. 4.b are given 

in Table 4. The layers are incompressible and isotropic with Dundurs’ interface parameters 

0.6,  0    For this geometry and material properties, the delamination surfaces are in 

compression and the model is applicable assuming frictionless contact. The energy release rate is 

calculated numerically using the J-integral in Eq. (32) along the path shown in Fig. 3c, with a and c 

are chosen at sufficient distance from the crack tip and the relevant boundaries. The 2D solution is 

presented in Table 5 [48][55]. The third and fourth terms account for the effects of shear on the near 

tip deformations generated by the bending moments and the shear forces, respectively. The mode 

mixity phase angle, is 83.1◦.  Table 6 shows relative error between predictions made through the 

homogenized approach and the 2D solution. The results highlight the accuracy of the homogenized 

approach also for layered beams.  

The diagram in Fig. 7 highlights the effects of the layered structure on the fracture properties. 

The dimensionless critical load for crack propagation, calculated using the model and 2D elasticity 

(Table 5) is shown versus normalized crack length in the sandwich beam of Tables 4 (red curves). 

The results are compared with those obtained for Beam 2 in Table 2, which is homogeneous with  

(2) (1) 1E E   and a delamination at the same thickness-wise location. The effects of the layup on the 

critical load for crack propagation are important and well captured by the homogenized model. The 
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reduced accuracy of the solutions for the homogeneous beam, already discussed in Section 4.1, 

depends mainly on the crack tip conditions which have an important Mode I component, .265  .  

 

Table 4. Geometrical and material properties of the three-layer (sandwich) beam in Fig. 4.b 

 Thickness Thickness ratios Isotropic layers 

 3H h  
(2) (1) (3) (1),h h h h  (2) (1)E E  (3) (1)E E  (1) (2) (3), ,    

Sandwich Beam  (1) (2) (3)h h h   1 1/4 1 0.5 

 

Table 5 – 2D elasticity solution for the Energy Release Rate of the sandwich beam in Table 4, Fig. 4b. 

 2D Elasticity  

(Energy Release Rate and Mode Mixity angle) 

Source 

Sandwich beam 2 2 2(1)

2
0.265 1 0.484 0.739 0.621

Eh a h h h

h a a aP

        
           

         

G

1tan ( / ) 83.1II I  G G  

[48] 

 

Table 6: Relative error on the energy release rate. Error is between results of the homogenized model and 2D solution.  

Relative error against 2D solution Beam 
10

a

h
  15

a

h
  20

a

h
  30

a

h
  40

a

h
  

J-integral, numerical, Eq. (32)  Sandwich Beam  -7.3% -4.8% -3.6% -2.3% -1.7% 

J-Integral (crack surface 

displacement), numerical, Eq. (34)  

Sandwich Beam -6.8% -4.6% -3.4% -2.3% -1.7% 

Compliance method, numerical, 

Eq. (31) 

Sandwich Beam -8.9% -5.5% -4.0% -2.5% -1.8% 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Dimensionless diagram of critical load for crack propagation versus crack length in three-point bend beams with 

half-length  20L H . Black curves: homogeneous beam, 
(2) (1) 1E E  ; red curves: sandwich beam, 

(2) (1) 1/ 4E E  .  
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4.3. Cantilever beam with multiple delaminations, Fig. 4.c 

 

The cantilever beam in Fig. 4.c with two unequally spaced, unequal length delaminations is analyzed 

in this section. The interactions between delaminations induce phenomena of amplification or 

shielding of the energy release rate of a crack as it would be in the absence of other cracks; this 

behavior is controlled by length and spacing of the delaminations and has profound effects on the 

macrostructural behavior of laminated and sandwich beams [56][8][57]. In addition, when there are 

multiple delaminations extensive contact may occur along the crack faces [57,58][15]. The 

application is used to discuss capabilities and limitations of the homogenized model in the description 

of these phenomena. The beam is assumed to be homogeneous, isotropic and incompressible. 

Different geometries are examined and details are given in Table 7. 

 

Table 7. Geometrical and material properties of the multiply delaminated cantilever beam in Fig. 4.c 

Beam Thickness Length Crack Lengths Thickness ratios Isotropic  

layers 

 h  L  /Ua h  /La h  (2) (1)h h  (3) (1)h h  ( )i E  ( )i  

Cantilever Beam 1  (1) (2) (3)h h h   10 h varying 5 1 1 E 0.5 

Cantilever Beam 2 (1) (2) (3)h h h   

 

10 h varying 

0 / 5.5Ua h   

varying 

0 / 6Ua h   

2 1 E 0.5 

Cantilever Beam 3 (1) (2) (3)h h h   

 

10 h varying

0 / 5Ua h   

varying 

0 / 4Ua h   

1/3 

 

1/3 E 0.5 

 

 Figure 8 shows the dimensionless energy release rate of the upper crack in the Cantilever 

Beam 1 of Table 7 on varying its length for a fixed length of the lower crack, 0.5La L , calculated 

using the compliance method, Eq. (31), (thick solid lines). The results are compared with 2D Finite 

Element results in [8] (red triangles). The dashed curve defines the 2D solution of the upper crack in 

the absence of the lower crack [46] (single crack limit). The effect of crack interaction is an important 

amplification of the energy release rate with respect to the single crack limit. The effect is negligible 

only when 
U La a . The homogenized model accurately captures the interaction effects but when 

the difference in the length of the interacting delaminations is less than a few times the separation of 

their planes. In this region, the model predicts a discontinuity of the energy release rate, when 
U La a  

, and overestimates (for 
U La a ) or underestimates (for 

U La a ) the 2D solution. The 2D solution 

in  [46] shows that for 
U La a the crack tip conditions are mode II,  arct 0an( / 9)II I  G G , and 
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contact between the crack faces occurs when 
L Ua a ; for 

U La a , there is a sharp transition and the 

mode I component is suddenly increased to a phase angle 55  ; on increasing the length of the 

upper crack, the phase angle then approaches that corresponding to the single crack limit, 66.7   

The results obtained with two discrete-layer models which assume constrained contact 

conditions (green dots) and elastic-contact along the crack surfaces (spring-contact model, dotted 

line) are also presented in the figure [8][12]. The constrained contact results coincide with the results 

of the homogenized model. The response substantially improves when contact between the crack 

surfaces is properly modelled.  This comparison suggests a possible improvement of the homogenized 

model using the extended version of the multiscale model in [19], which may be used to account for 

crack opening and elastic contact.    

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Dimensionless diagram of the energy release rate of the upper crack in the Cantilever Beam 1 of Table 7, Fig. 

4.c. Length of lower crack fixed at / 5La h  . 2D and discrete-layer model results in [8,12].  

   

Figures 9 and 10 show the effects of the interaction on the macrostructural behavior. The 

dimensionless diagrams depict the critical load for the propagation of the cracks in the Cantilever 

Beams 2 and 3, in Table 7, versus load-point deflection. The delaminations are assumed to propagate 

when the energy release rate, calculated using the compliance method, Eq. (31),  approaches the 

critical value, IICG . The results of the homogenized model are compared with the results of the 

discrete-layer cohesive-crack model with spring-contact in [12] and the same propagation criterion. 

A local snap-through instability is observed in the Cantilever Beam 2 when the upper crack starts to 

propagate in A and approaches the lower crack tip, in B. Then the load to propagate the crack must 

be increased, due to a shielding phenomenon, up to point C where the two cracks propagate together 



38 

 

unstably. In the Cantilever Beam 3 the lower crack, which is shorter, starts to propagate at the 

maximum load, point A; crack propagation is unstable and characterized by a snap-back instability 

up to point B. Then there is a sudden drop in the load, to point C, caused by a sudden amplification 

discontinuity. After point C the lower crack continues its propagation.  

 

 

 

 

 

 

 

 

 

 

Fig. 9. Dimensionless diagram of the critical load for crack propagation versus load point displacement. Cantilever 

Beam 2 in Table 7, Fig. 4c. Discrete-layer model results in [8,12]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Dimensionless diagram of the critical load for crack propagation in the Cantilever Beam 3 in Table 7,  

Fig. 4.c. and discrete layer model results in [8,12]. 

 

The diagrams in Figs. 8-10 highlight advantages and limitations of the homogenized 

approach. The model is able to capture, with only three displacement variables, complex interaction 

phenomena occurring between multiple delaminations and the qualitative behaviors are well 

captured. The results are less accurate when the difference in length of the delaminations is within a 
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few times their spacing, mainly due to the assumptions of the model which neglects the transverse 

compressibility of the layers and contact along the crack surfaces.  

 

5 Conclusions 

 

Mode II dominant brittle fracture of homogeneous and layered beams is analyzed using a 

homogenized structural model based on a zigzag approach. The model captures the unstable 

propagation of cracks in bend-beams, snap-back and snap-through instabilities, the effects of the 

interaction of multiple cracks on the macrostructural response and the effects of the layered structure 

on the energy release rate and critical load for crack propagation.  

The model is based on an extension of a classical zigzag theory, with the minimum number 

of unknowns, to beams and wide-plates with delaminations, which are described as cohesive 

interfaces and are included in the homogenized description. It applies to layers with principal material 

axes parallel to the geometrical axes, is controlled by three displacement variables, for any numbers 

of layers and delaminations, and rigorous fracture mechanics methods are used to derive the energy 

release rate and grow the cracks.  

Closed form solutions have been derived for the displacement variables of general 

delaminated beams and for the energy release rate of homogeneous and bi-material beams with a 

single delamination. The energy release rate is in terms of crack tip force and moment sub-resultants 

and can be directly compared with accurate 2D solutions from the literature. The particularization to 

bi-material beams highlights the features of the model and the effects of the homogenization on the 

local fields in the layers and at the crack tip. The energy release rate in other geometries, namely 

layered beams and beams with multiple delaminations, is calculated using the compliance method 

and the J-Integral.  

The limitations of the homogenized approach have been discussed. The first is a consequence 

of  the imposed continuity of shear tractions and interfacial cohesive tractions at the layer interfaces; 

this implies that in the delaminated region of the plate the shear stresses and strains vanish and 

therefore their effects on the transverse compliance of the structure is neglected. Accurate shear 

stresses and  strains can be calculated a posteriori from the bending stresses by imposing local 

equilibrium and their effect included in the energy release rate; and the resultant of these a-posteriori 

calculated stresses is variationally consistent. The second limitation is due to the imposition of 

continuity conditions on the global quantities. This implies that the near tip deformations, which are 

typically described using crack tip root rotations, are not accounted for in homogeneous beams and 

are only partially considered in bi-material beams thanks to the accurate description of the zigzag 
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fields. A third limitation, which has been discussed in  [44] and needs to be properly tackled if crack 

propagation has to be controlled directly from the cohesive tractions, as is it usually done in cohesive-

crack modeling, regards the presence of a boundary region at the crack tip where the interfacial 

cohesive tractions are not accurately predicted by the model; this is again a consequence of the 

imposition of continuity conditions on the global variables.    

Different assumptions and homogenization techniques could be used to limit the effects of 

neglecting the shear strains in the delaminated regions and to overcome the limitations of the zigzag 

theory used within this model (C1 continuity; a posteriori definition of the shear stresses), typically at 

the expenses of an increased number of unknowns, [27]. This could be important for future 

implementation of the model into finite element codes. An attempt has been recently made in [38] 

using the refined zigzag theory in [25], which has been modified to include the cohesive interfaces. 

However, a preliminary investigation shows some inconsistencies when using that approach in the 

imposition of continuity conditions between regions with large variations of the homogenized 

properties, which is the case when dealing with plates with finite length delaminations. The same 

inconsistency has been noted in [37]. 

 The investigation presented in this paper is limited to mode II dominant fracture of beams and 

wide-plates with a single delamination. The results are promising, and further work is necessary to 

verify the capabilities of  this method to study single and multiple delaminations, under general 

mixed-mode conditions, cohesive fracture in Mode I, Mode II and Mode III and for the fracture 

analysis of more complex systems, such as plates and shells. The extension should be possible using 

the extended version of the homogenized model in [19,20] or other homogenization techniques, with 

the difficulties already mentioned above. 
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Appendix A – Coefficients and boundary conditions  

Coefficients of the homogenized constitutive and equilibrium equations of the layered beam: 
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Homogenized boundary conditions, Eq. (13), in terms of displacement variables: 
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Coefficients of the general solution, Eq. (19), for a bi-material or n-layer wide-plate/beam: 
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