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Abstract

Brittle delamination fracture under Mode Il dominant conditions in unidirectional composite and
layered beams and wide-plates is studied using a homogenized structural model based on a zigzag
approach. The model captures the unstable propagation of cracks, snap-back and -through
instabilities, the effects of the interaction of multiple cracks on the macrostructural response and of
the layered structure on the energy release rate. The layered structure and the delaminations are
described by introducing local enrichments, in the form of zigzag functions and cohesive interfaces,
to a classical first-order shear deformation plate theory. The model applies to layers with principal
material directions parallel to the geometrical axes, depends on only three displacement variables and
the solution of specific problems requires only in-plane discretization, for any numbers of layers and
delaminations. Closed form solutions are derived for the energy release rate in bi-material beams and
applications are presented to homogeneous, bi-material and layered, simply supported and cantilever,
bend-beams, with one and two delaminations.
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Nomenclature

a, a,, a, Crack length, upper crack length, lower crack length

A1 B 1 c 1 D , E Coefficients in the general solution

A,.B,,,D,,, A, Stiffness coefficients in the constitutive equations of the homogenized beam
c Length of ligament ahead of the crack tip

c®,c®?, c. ,cs Coefficients in the beam homogenized constitutive equations

WE,, WG, Young modulus and shear modulus of layer k =1,...,n




®E, Reduced Young’s modulus in layer k: “E, = ¥E, / “)(1-v,,v,,) for wide-plate;
®E, = WE, for beam; v,,,v,, Poisson coefficients
G Mode Il energy release rate
Gic Mode Il fracture energy
f, Transverse surface load
O Thickness of layer k =1,...,n
J J-integral
Kk Stiffness of interface k
S
Kys Shear correction factor in the homogenized constitutive equations, K,, =5/6.
(i)k44 Local shear correction factors relating generalized shear strain and sub-resultants

in the delaminated and intact arms of the bi-material beam.

N22'M§2'Q2g

Normal force, bending moment and generalized transverse shear force per unit

width, with M3, ,, (x,) —Q,,(x,) =0

2212

ON.. Ope (i)Q Force and moment sub-resultants per unit width in the delaminated and intact
221 221 2g
arms of the bi-material beam.
P Critical load per unit width for crack propagation in the bend-beams.
cr
Qb Transverse shear force
2

z zS ~
Q;, My, o,

Enrichment terms which define the generalized transverse shear force

b S A
Q=@ +Q;, -My,,, -6,

(y, , Oy,

Displacement components in layer k

\7'2‘ Relative sliding displacement at the interface K between layers K and k +1

Vs @y, Wy Global variables: in-plane displacement, bending rotation and transverse
displacement (of reference surface when in first layer)

2@ 5 Generalized shear strain energetically associated to the generalized sub-resultant,

g

Q,, . in the intact and delaminated layers of bi-material beam.

(N ?,, 2 ?, Local rotations in the two layers of the bi-material beam

Y=, +W,,, Global variable used to simplify solution and description of local fields; defines
shear strain in layer k =1

k Ak k k Coefficients accounting for the local enrichments

QZ’AZZ’TZZ' RSZZ g

I1 Total potential energy

5-5 Interfacial cohesive tractions (tangential)

®g g Stress and strain components in the layer k =1,..,n




() 5 post o (k) . post Transverse shear stress and strain calculated a posteriori from local equilibrium
O 14 &y

Y Mode mixity phase angle, w =tan™" (\/a/ \/a)

1 Introduction

Layered composite materials are extensively being used for construction of structural components, in
the form of beams, plates and shells, in various engineering applications. Sandwich panels for
buildings or ship bulkheads, masts, decks and hulls, rudders and ailerons for aircrafts and wind turbine
blades are just a few examples. Laminates and sandwiches are made with a large combination of
materials in and within the layers, which include fiber reinforced polymer, ceramic or metallic
matrices, wood, concrete, steel, polymeric and metallic foams, and glass. The layered structure is
obtained through classical lamination techniques or using structural adhesives to join the layers.
These components may be subjected to impacts and dynamic or repeated loadings, and suffer damage
at several scales (damage in the fibers and the matrix, delamination and debonds at the interfaces
between layers, failure of bonded/bolted attachments and global collapses). Knowing the extent of
damage, through inspection methods and theoretical modeling, is critical to define the residual life
and for damage tolerance assessments.

Modeling the evolution of delamination fracture in layered structures requires proper
representation of various aspects. Delamination fracture is a discrete and localized damage event,
which typically occurs simultaneously at the interface between different layers (multiple
delamination) and may often be catastrophic. Delaminations may grow from manufacturing flaws or
defects or may form, during service, due to impacts and the presence of through-thickness stresses.
Delamination fracture may be brittle or controlled by cohesive mechanisms, due for instance to the
bridging action developed by a through-thickness reinforcement or by cross-over fibers when the
cracks meander through different layers. Delamination cracks are typically constrained to propagate
along pre-defined paths at or near the interface between layers; however, for instance in sandwich
systems with foam cores, the cracks may kink and dive into the core, a behavior which is controlled
by the fracture toughness of the different components and the mode mixity conditions.

The most common numerical technique to analyze delamination fracture in layered structures
uses the Finite Element Method and cohesive interface elements [1-7]. Damage within the layers may
be accounted for using continuum damage approaches which modify the elastic constants of the layers

when damage progresses. Three-dimensional finite elements are commonly used to study local



behaviors, e.g. delaminations in joints, while beam, plate and shell elements are used to describe one-
or two-dimensional structures. Discrete-layer cohesive-crack models, layer-wise and semi-layerwise
theories are also used, often coupled with analytical solution methods or numerical techniques others
than the finite element method [8-15]. Another common approach to study delamination fracture
within finite element models uses the Virtual Crack Closure Technique [16] and requires remeshing
techniques to follow delamination evolution.

One of the drawbacks of the classical approaches is the fine discretization which is necessary
in the through-thickness direction to predict and model onset and growth of delaminations at the
different interfaces. This complicates the finite element discretization and increases computational
cost, especially since the problem is nonlinear. In addition, the requirement of a fine discretization
limits the analytical and semi-analytical solutions to systems with a small number of
layers/delaminations and simple loading and boundary conditions. The latter limitation should not be
underestimated, since, as it will be shown later in the paper, analytical solutions yield an insight that
could not be obtained through purely numerical calculations.

In this paper we investigate the use of a homogenized approach which removes the through
thickness discretization of the problem, to model delamination fracture in layered structures. The
model uses concepts developed in the original zigzag theory in [17,18] to homogenize the problem
and the multiscale strategy formulated in [19,20] to account for the presence of delaminations by
introducing cohesive interfaces, which are then included in the homogenization. The unknowns of
the problem are substantially reduced, are independent of the numbers of layers or interfaces and
coincide with those of a classical first-order shear deformation theory.

The basic assumption of the original zigzag theories for fully bonded structures is to enrich
the displacement field of an Equivalent Single Layer theory, such as first- or higher-order shear
deformation plate theory, by adding a local piecewise linear displacement field through so called
zigzag functions [21,22]. The zigzag functions are then derived in terms of the global displacement
variables through the imposition of continuity conditions at the layer interfaces. This reduces the
number of unknowns of the problem and makes it independent of the number of layers. Most of the
original zigzag theories, including that in [17] which is used in this paper, requires C* continuity for
the displacement field, which complicates the finite element implementation; the purely
displacement-based theories also require a-posteriori transverse shear stress recovery through the
imposition of local equilibrium, which is generally not very accurate in a FE framework; in addition,
it was initially thought that the original theories do not satisfy equilibrium of global forces at clamped
boundaries (this is incorrect, see Sect. 2.2 for a discussion). New refined theories were later developed
to overcome some of the drawbacks of the original theories [23-28].
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The multiscale strategy formulated in [19,20] uses the zigzag theory in [17] and, in addition
to introducing zigzag functions, enriches the global displacement field by introducing a through-
thickness discontinuous local field which describes the presence of cohesive interfaces. The cohesive
interfaces, which are characterized by piecewise linear cohesive tractions laws, are then included into
the homogenization. Other authors have previously attempted to include imperfect interfaces into a
zigzag formulation of the problem, however the models were not energetically consistent (see
discussion in [20]). The approach developed in [19] has been successfully applied to analyze thermo-
mechanical and wave propagation problems in wide-plates with imperfect or fully debonded
interfaces proving the capabilities of the approach to accurately define global and local fields also in
thick plates with highly inhomogeneous layups [29,30]. The model should be applicable to describe
problems where fully debonded interfaces are present only in finite size regions, in order to simulate
the presence of delaminations, and analyze their evolution. However, apart from a preliminary
attempt in [31], this has not yet been proven and is the main objective of the work in this paper.

In [23] [32-36] different strategies have been applied to model the presence of mode Il
delaminations within a zigzag description of the problem. They are represented as thin and very
compliant layers which are added to the regular layers of the system (compliant layer concept). Finite
elements have been formulated which are able to capture the relative displacements between
consecutive layers. They have also been used to simulate delamination damage progression and
fracture by degrading the properties of the thin layers, using for instance a continuum damage
approach. As recently noted in [37,38], however, the models which use this strategy and are based
on the refined zigzag theories in [25,26] have some limitations in plates with in-plane discontinuities
in the material properties and yield inconsistent and unacceptable results, also for the global variables
of the system, in the presence of delaminations.

The work presented here differs considerably from the previously published work. The
delaminations are modelled using cohesive interfaces, which are then included into the
homogenization, and fracture mechanics methods are applied to rigorously analyze and propagate
cracks. The delamination cracks are then described as it is customary in classical-discrete layer
cohesive-interface models. This description of delamination damage allows the use of classical zigzag
theories [17], since it avoids the introduction of the compliant layers used in the above mentioned
continuum damage approaches. In addition, the solutions presented here are analytical or semi-
analytical and this highlights the effects of the homogenization on the fracture parameters and
limitations and advantages of the approach. The formulation of finite elements based on the
homogenized model used in this paper is possible, but not carried out here, using approaches already

used in the literature.
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The work is limited to mode Il dominant problems in beams and wide-plates deforming in
cylindrical bending and perfectly brittle fracture of the layers. The effects of the homogenization on
the local fields in the layers and at the crack tip are explained using a bi-material beam with a single
delamination as model system. A closed form solution is derived for the energy release rate in terms
of crack tip force and moment sub-resultants which can be directly compared with accurate 2D
solutions from the literature. Other derivation methods are also used and applied to various layered
beams with single and multiple delaminations to verify the capabilities of the method.

The formulation and solution of the homogenized structural model is presented in Sects. 2.1
and 2.2. In Sect. 3. the energy release rate is calculated using different methods and a closed form
solution in derived for homogeneous and bi-material beams. In Sect. 4, the model is applied to the
solution of various bend-beams: homogeneous, bi-material, sandwich, simply supported and
cantilever, with single and multiple delaminations; and the accuracy is verified through comparison

with 2D solutions, discrete-layer models and experiments from the literature.
2 Homogenized structural model for Mode 11 dominant fracture problems

In this work we exploit the capabilities of the homogenized structural model formulated in [19] for
beams and wide plates with continuous imperfect interfaces, to solve mode Il dominant fracture
problems and analyze delamination growth in layered structures, Fig. 1.a. Mode Il dominant is used
here to describe shear dominant mixed mode states where mode 11 deformation predominates and

delamination growth can be assumed to be driven by mode Il loading [39-41]. Typically, a crack

may be considered to be in mode Il dominant conditions when the phase angle, v = tan_l(\/a/\/a)

, Which is a measure of Mode Il to Mode | loading, is greater than 75°, with w =90",0° the phase

angles for pure Mode Il and Mode I.

The multiscale formulation in [19] couples two mechanical models which are typically used
for layered structures. The first is an Equivalent Single Layer (ESL) theory, namely first-order shear
deformation or first-order shear and normal deformation plate theory [42,43], and is used at the global
scale (coarse grained model). The theories depend on a limited number of unknowns, accurately
predict global fields but cannot reproduce the complex local fields which arise due to the layered
structure, e.g. zigzag displacement fields, and the relative displacements occurring at the layer
interfaces in the presence of delaminations. A discrete-layer cohesive interface model [8],[12] is then
used at the local scale, which accounts for the layered structure and describes the imperfect interfaces

and delaminations using piece-wise linear cohesive traction laws able to approximate the interfacial
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mechanisms, e.g. Figs. 1.b,c for Mode Il problems. The two models are coupled by assuming a small-
scale displacement field where the local variables enrich the field of the global theory.
Homogenization is then applied to define the macro-displacement fields; and homogenized
equilibrium equations are derived using a variational technique. They depend on the global variables
of the model and on a set of coefficients which can be easily calculated, a priori, for fixed geometrical

and material properties.

()

Fig. 1. (a) Layered beam/wide-plate with n layers and delaminations under mode Il dominant loading and homogenized
description. (b) Element from a generic layer k of the actual plate in (a) with interfacial cohesive tractions. (c) Piece-wise

linear cohesive traction law relating tangential cohesive tractions and sliding displacement.

The equations of the homogenized model in [19] are recalled and used in this section to
describe mode Il dominant fracture problems where the interfaces are assumed to be rigid against
mode | relative displacements, Fig. 1. It will be shown later that this assumption is analogous to the
assumption of constrained-contact often used in discrete-layer descriptions of the problem. General
solutions are derived for beams with arbitrary numbers of layers and delaminations and the local

fields calculated a posteriori are discussed for the exemplary case of a cracked bi-material beam.

2.1.  Model assumptions and homogenization

The n layers of the beam/wide-plate in Fig. 1.a are linearly elastic, homogenous and orthotropic with

principal material axes parallel to the geometrical axes, x, — x, —x,. The layer k, with k =1 the lower



layer, is defined by the coordinates of its lower and upper surfaces, x5*and x{, and has thickness “h

(the superscript (k) on the left of a quantity shows association with the layer k; the superscript k on

the right defines the interface between layers). The layers are assumed to be incompressible in the
thickness direction and the transverse normal stresses “o, to be negligible compared to the other
stress components. Under these assumptions and if the wide-plate deforms in cylindrical bending, the
nonzero displacement components are ®v, = ®v,(x,,x;) and®v, =w,(x,), and the relevant

constitutive and compatibility equations of the layer k are:

0 _ 0OF (0 L0, _0g o
0,="E"¢, ; Oy =" "Gp2 ey @)
k k . k k k
( )gzz(xz’xa)z ( )Vzvz (%, %) 5 21 )823(X2,X3)= ( )V2’3 (X21X3)+( )stz (X3, %3)
where “o; and “g; for i, j = 2, 3 are stress and infinitesimal strain components;

©E, = WE, 1 ®W(1—w,v,,) for a wide-plate and “E, = “E, for a beam, with “E,, ¥G,,, “v,, and
®y . relevant Young’s modulus, shear modulus and Poisson coefficients of the layer k (a comma

followed by a subscript denotes a derivative with respect to the corresponding coordinate).

Cohesive interfaces are introduced between the layers in the schematic in Fig. 1.a. The (n-1)
interfaces are zero-thickness mathematical surfaces where material properties and displacements are
discontinuous while surface tractions are continuous. The mechanical behavior of the interfaces is
governed by a cohesive traction law which relates the relative sliding displacement of the layers at

the interface:
VE (%) = “ v, (%, X, = X5) = O, (%, X, = X¥) 2)

to the interfacial cohesive tractions, &&(x,, x, = x§) Fig. 1.c. In order to approximate perfectly brittle

fracture, the cohesive traction law is assumed to be linear, with a very stiff initial branch, up to a

critical sliding displacement v,_, beyond which the cohesive tractions vanish [1] [12]:

KXV (x,) for VX (x,) <V, 3

&S‘f(xz,xazx?‘j):{ 0 for v (x,) >V,



The coordinates where V5 =¥, define the crack tips, Fig. 2.a. To simplify the treatment of the

problem, the cohesive laws are approximated by the following two-branch law, Fig. 2.b:

K03 (x,) for V3 (x,)
K03 (x,) for v; (x,)

V,, with /KX —0 4)
V,, WithKS -0

GE (X0 Xy :xg):{

\VARVAY

where the interfacial shear tractions are assumed to be proportional to the relative displacement. The
advantage of the law in Eq. (4) is that it allows to formulate and solve the problem for generic linear

traction laws with stiffness K¢, k=1..,n-1, and then use the solution to describe the different

portions of the beam. In the numerical solutions presented in Sect. 4 the numerical values of the
interfacial stiffnesses in the intact/delaminated portions will be chosen as large/small as possible to
avoid numerical problems; in the closed form solutions, a perturbation technique will be used and

zero order expansions of the variables will describe the fully-bonded and delaminated regions.

~ k ~k
o A ogh
JSC“ USc“ ] r
K;v EKS —
L/
GHC R e i LS =0
A ~F A T Ak
Vae v, Vae v,
(@ (b)

Fig. 2. (a) Interfacial traction law to approximate mode Il Linear Elastic Fracture Mechanics. (b) Interfacial traction law

used in the solution of the homogenized model.

Following [17-19], a small-scale displacement field is assumed for the layer k:

90,01 =V () + 30,0+ 3 )06 =)+ 3. 04) ©)

(k)V3 (X5, X5) =Wy (X,) + X005 (X,)

where local terms are introduced to enrich the global field of the first order theory: zigzag functions,

Q' (x,)(x;—x;'), and relative sliding displacements at the layer interfaces, V5 (x,) . The global

variables are the in-plane displacement, v, (X,), the bending rotation, ¢,(x,) and the transverse

9



displacement w;(x,); they directly define the generalized displacements of the reference surface when
this falls into the first layer. The small scale displacements in the plate are then defined by a total of
three global variables and 2(n—1) local variables.

The zigzag functions are derived as functions of the global variables by imposing continuity
of the shear tractions of the layers at the interfaces; this is done by posing
C Do (% =x5) = Wo,e(x, =x5) for k = 1,...(n-1) and using Egs. (1). The relative sliding
displacements at the interfaces are derived as function of the global variables by equating the

interfacial cohesive tractions, Eq. (4), to the shear tractions, using Egs. (1) [19]. This yields:

Q; = (Wo,z T, )/\;2 ;U= (Wo,z T, )\sz (6)
with
1 1 (ki < @)
Ak = 0g _ : pk — B114+ 3 AD
22 23 (k+l)st (k)G23 22 Ksk JZ_; 22

Substituting the small-scale variables into Eq. (5) yields the macro-scale displacements in the layer
K:

(k)Vz (X5, X5) =V (X,) + X3, (X;) + [Wo’z (%) + (Dz(xz)] Rgzz(xg) (8)

(k)V3(X2) =W, (Xz)

with

Rgzz(xs):§|: Aizg(X3—X3i)+‘Pi22 } ©)

Strain and stress components, interfacial tractions and relative crack displacements are obtained in
terms of the global variables by substituting Eg. (8) into Egs. (1)(2)(4):

)y (%1 Xs) =Varp (%) + X1y (%) +[Wo sz (%) + @515 (%) R, (10)

2Wg (X,, X;) = [Wo'z (x,) +(p2(x2)](1+ R:zz,g,)
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(k)azz (X5, Xs) = (k)Ez (Vozlz (%) + X351, (%) + [Wovzz (X,)+ 5., (Xz)] Rgzz)

(k)023(x2) = (k)st [Wo 2 (%) + 0, (Xz)](1+ Rgzz 13)

k .
51 = 09, (“ZA;J[WO.Z (04)+ 9, 0)]

=L

\75 = \sz [Wo’z (X,) + o, (Xz)]

In a plate with layers having the same elastic properties, A%, =0 is zero since “*G,, = “G,,; in the

intact portions of such plate, where1/ K& = %%, =0, also the relative crack displacements, V5, vanish
and the displacement field coincides with that of the first order shear deformation theory [42]. If the
elastic constants of the layers differ, A%, #0 and in the intact portions of the plate the displacement

field coincides with that assumed by the original zigzag theory in [17].
The transverse shear stresses in Eq. (10) are constant through the thickness, since

96, (1+ Ré0s ) = “G,, (1+RE;;.4 ) . This is a consequence of the a priori imposition of continuity

of the shear tractions at the interface and the assumption of a first order global displacement field. To
account for this limitation a shear correction factor will be introduced in the equilibrium equations of
the problem (Sect. 2.2). In addition, in the delaminated portions of the plate, where the interfacial
tractions vanish, which implies w,,, +¢, =0 after Eq. (10), both shear strains and stresses vanish.
Following the approach which is commonly used for the structural low order theories, accurate

predictions of the transverse shear stresses and strains, in both delaminated and intact regions, can be

made a posteriori from the bending stresses by imposing local equilibrium:

(k) _post (11)
(k) (k) __post __ . (k) .post _ O3
Oyt 05 3=0 | 2V = WG
23

The use of the equations above allows to accurately describe the complex local fields which arise in
multilayered plates with imperfect or fully bonded interfaces, also in very thick and highly anisotropic
plates (see [19,29]). However, stress recovery using the equation above is not very accurate in a finite
element framework [27]. Due to the vanishing of the shear strains in the delaminated regions of the
plate, the transverse displacements in Eq. (8) will only account for the bending contributions and this
may affect the load re-distribution between different regions in statically indeterminate systems.

2.2.  Constitutive and equilibrium equations and general solution
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The homogenized equilibrium equations and boundary conditions in the beam in Fig. 1.a, are derived
using the Principle of Virtual Works [19]. The variationally consistent equilibrium equations and

boundary conditions in terms of force and moment resultants per unit width, N,,,M;,,Q,,, and

surface tractions, f,, are:

N5, (X,)=0 12)
Mgz’z (%) _Qgg (x,)=0
QZg 2 (Xz) + f3(X2) =0

and
N,,n, = N, or Vo, = Vo, (13)
b T b ~
My,n, =M, or Py =@,
Q,gn, =N, or W, =W,
7S 7 2S ~
M22n2:M2 or Wo s = Wossp

where the tilde defines prescribed values at the plate edges and n, ==+1 is the component of the

outward unit normal along x, .

Force and moment resultants are given by:

X 14
(N, M3,) ZI  Woy, (1,%,) dx, (14)
ng (Xz) = Qg (Xz) + sz (Xz) - Mzzg 2 (Xz) - &2 (Xz)
with
. , « (15)
ZJ. (k)0'23dX3 ; M 23 Z_[ (k)o'zstkzzdxs

n x'3‘ n-1 k .
_ (k) k . A (k+1) j ~k
- Z jxg_l 023 RS 22 'SdXS ! 62 - _Z GZ3 (14_ Z A22 )VZ
k=1 k=1 j=1

The form of the equilibrium equations is analogous to that of the global first order shear

deformation theory and the normal force and bending moments, N,andM,,, have the usual
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definitions. The effects of the local enrichments appear in the generalized transverse shear force, Q,,

which substitutes for the classical transverse shear force, Q;, in the second and third equilibrium
equation (12). As shown in the third equation in (12), the variationally consistent generalized
transverse shear force is statically equivalent, at any arbitrary section of the plate with outward normal
n= {0,1, O}T, to the vertical equilibrant of the external forces acting on the portion of the plate to the

right of the section. Q,, therefore equates the resultant of the a posteriori calculated transverse shear

stresses o | Eq. (11):

D (16)
— (k) t
QZg - z J‘X|3<71 O-2p3os dXS
k=1

The resultant of the a-posteriori calculated shear stresses is variationally consistent in this model.

In the intact portions of the plate where Vi =0, which implies &, =0 Eg. (15), the
equilibrium equations coincide with those of the original first order zigzag theory in [17] for fully
bonded plates. In the intact portion of a homogenous plate or when the zigzag effects are neglected

by posing Ak, =0, then MZ =Q? =6, =0, the generalized shear force Q,, equals the transverse

shear force Q; and the equilibrium equations are those of first order shear deformation theory.

As a consequence of the homogenization, the boundary conditions, Eq. (13), are defined in
terms of global quantities. This highlights two limitations of the model when applied to cracked
bodies. First, it is not applicable to problems with edge cracks where sub-forces and sub-moments
acts at the delaminated arms in opposite directions. For instance if two equal magnitude shear forces

were applied at the two delaminated arm ends with opposite signs, the generalized shear force Q,,,

which is the net value over the thickness, would be zero. However, these boundary conditions are
essentially limited to laboratory test specimens and are unlikely to occur in practical cases, where the
delamination arise between the internal layers and the loads are applied on the outer surfaces of the
structure. The second limitation is the impossibility of the present model to satisfy local conditions
in a boundary region at the crack tip cross-sections.

At clamped supports, where the boundary conditions Eq. (13) impose ¢, =W,,,=0, the

transverse shear strains and stresses in Eq. (10), vanish, which implies Q) = 0; this result does not

affect the global solution of the problem, as it was erroneously thought in early applications of the
original zigzag model to fully bonded plates [25], since global equilibrium is satisfied at the clamped
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edges by a nonzero generalized transverse shear force, Q,,, which is the variationally consistent

relevant internal force. However, as for the crack tip cross sections, since the boundary conditions are
in terms of global quantities, boundary regions are generated at the clamped edges where the local
fields are not accurately predicted; the size of these regions depend on the mismatch of the elastic
constants of the layers and on the stiffness of the interface and is very small in plates where the
mismatch is small and the interfacial stiffness is very large or very small [31][38].

The constitutive equations of the layered beam are derived by substituting stresses and
interfacial relative sliding displacement from Eqgs. (10) into Eq. (14)[44]:

(7)

Ny, A, By +C» C® Vozr2
Mgz =| By Dy +C® C*® (Z37)
MZZS COS ClS +C52 CSZ W

0122

02122
ng:A44((P2+W0!2)_[COS C*®+C* CSZ] D127

01222
with:
(Azz , Bzzi Dzz) = Z (k)Ez_Lk: (1v X3 X32)dX3

k=1 s

A44 = k44Cz|134 +C°

where the coefficients, C", C*2, C} and C* forr =0, 1, 2, depend on the geometry, the layup and

the status of the interface and are defined in Eq. (47) in Appendix A. The coefficients with superscript
S depend on the local enrichments and they assume different values in the intact and delaminated

regions; M2 is the moment resultant due to the local enrichments, Eq. (15). In a plate with fully
bonded interfaces, with 1/ K& — 0, and where the zig-zag contributions are zero or neglected by
posing A%, =0, the constitutive equations coincide with those of First Order Shear Deformation
theory, since C® = C*2 = C°® =0. Inthis case the response is described by the classical extensional,

coupling and bending stiffnesses,A,,, B, , D,, and s the classical shear stiffness

n
k> MG,
A44 - k44 GZ3 h )
k=1

A shear correction factor, k,,, is introduced in the equations above in order to recover the

constitutive equations of the equivalent first order shear deformation theory in the limiting case of a

fully bonded homogeneous plate, for which k,, =5/6 under static loading. The correction factor
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required for homogeneous plates can be used also for layered plates since the zigzag effects are
accounted for through the multiscale treatment; this was observed in [19] for static problems and in
[12] for dynamic problems. In Eq. (17) the shear correction factor is introduced so that
2, (%, %) = (Q) +QF) / (k,,CL).

The homogenized equilibrium equations are defined in terms of global displacements, by

substituting the constitutive equations (17) into Eq. (12). The eight order system is:

A NVga120 H(Byy +C® P22 +COSW01222 =0 (18)
(B, + c Woaszo +(Dgy + 2C" + CSZ)(Dz’zz +(C15 + CSZ)Wszzz A, (W,,, +9,) =0

COS\/027222 +(Cls +C52)¢21222 +C82Wo’2222 =AWy +0,,,) = ;=0

In a beam with traction-free external surfaces, f, =0, the general solution is [44]:

(19)

B _JB Ec 3 2
[cleﬁxz —C,e E“}f(xz) +C, (%) +C5X, +Cq

0, = (1— DB +E j[cle@z +cze‘4§XzJ_%(x2 )’ —2¢,%, +C, —C

B
B(B,D-B,-C*)+B,E
A,B

JBx By ], CBRE 2
[cle P00 [+ 22 (X, ) 4Gy X, + G

2hy

where B, C, D and E depend on the coefficients in Eq. (47) and are given in Eq. (49) and c, for i
=1, ..., 8, are integration constants. From Eq. (10) and (19), the transverse shear strain of the first

layer, y =2%e,, = @, +W,,,, which will be used in the following derivations is defined by:

V= 2(1)523 =@yt Wy = Cleﬁxz + Czeiﬁxz +G (20)

The derivation constants in Eq. (19) necessitates the imposition of boundary conditions and
continuity conditions on the global variables, v,,, @,, W,, Wy,,, N,,, MJ,, ng and M2 at the
joining cross sections. In the intact region of the plate, where 1/K¢ — 0, Eq. (19) holds with with

Wk, =0, V¥ =0, C;,=0. In the delaminated region of the plate, for Kf —0, some of the

coefficients in Eq. (19) remain finitt A—1, A,,B,,,D,, E, DB, C*B, while others go to

15



infinity with various orders [29]. Concepts from perturbation analysis will be used in the following

to elaborate the solution in this limit.
2.3. Local fields in an edge cracked element

To clarify how the homogenized approach preserves the description of the local fields of classical
discrete layer cohesive-zone models, the special case of a bi-material beam with a single delamination
is examined and the local fields derived in closed form from the solution in Eq. (19). The fields will

be discussed with reference to a cracked element of length (a+c) extracted from the “actual” beam in
Fig. 1.a and subjected only to moment and force resultants acting at the element ends, N, VQ, "M
, with i = 0,1,2 for the intact, delaminated and substrate arms, Fig. 3.a. It will be shown that, at
sufficient distance from the crack tip, the local fields calculated a posteriori coincide with those of a
classical discrete-layer model which uses Timoshenko beam theory to describe the layers.

Figure 3.b shows the “homogenized” crack tip element and the global force and moment
resultants, Egs. (14), acting at x, =—a, N,,Q,,,M3,, and at x, =c , “N,,, “Q,;, "M;,. The
origin of the global system x, —x, —x, is at the crack tip cross section and x, is along the neutral

axis of the intact portion of the element (to simplify the derivation it is assumed that the neutral axis

falls into the lower layer); local coordinates are introduced at the mid-thickness of the first,
X, =x,+ e, and second layer, @X, =x,— Pe, with “e and “e the distances between the
reference plane x, =0 and the geometrical mid-thickness of the layers (Fig. 3.c).

A schematic of the longitudinal displacements in the layers of the delaminated portion, ®v,
and ®v,, after Eqg. (8) is shown in Fig. 3.c. The derivatives, ®v,,, and ®v,,,, define the slopes which

represent the local rotations of the layers, @¢p, = Vv, :

(1)(/;2 (xz) =0, (Xz) e
D, (%) =0, (%) +[ @, (%) + Wy (%) | ALy

In a homogeneous element, A}, =0 and the local rotations coincide with the global rotation,
D, = Pp, = ¢, , everywhere in the element. A similar conclusion holds in the delaminated region

in a bi-material element. This is proven by applying concepts of perturbation analysis to the shear

deformation of the first layer, y(x,) in Eq. (20), and to the relative crack displacement, V. (x,) , Eq.
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(10). By assuming K* — 0, the functions »(x,) and V(x,) are expanded into power series of K*
. VX, A s

0 1

0 1
up to the first-order, y=[y]+ Ki[y]+0[(Ki)1 and V) =[0; ]+ Ki[\7§]+0[(K1)2] where the

superscript [l] indicates the order of the expansion term. Since V. = @G,,7(x,)(L+ASP) (K™,

0
after Egs. (7),(10), and its zero order expansion, [V,], must be finite in the delaminated region, then

0
the zero order expansion of » must vanish, [¥]=0. As a consequence, the dominant terms of the

local rotations of the layers in Eq. (21) coincide with the global rotation, “¢, = @p, = ¢, .

(Z}M (U)Q
(2) (2) 4(
h N g #2 & Delaminated portion Intact portion
L—
(l)h (I)N‘ﬁ #1 X, (U)N 2 3
UM ; . OM oy ‘ -
(UQ 17} B c !
(a) o |
0, Xy ‘D)ng 5
N, g'rz ) Cs 5
r L ¢ F +
3 )
T g & (O}sz 4 ‘
Mb 2 > A (C)
2 F T 1 (0) b
22 i c M,
)]

Fig. 3. (a) Schematic of crack tip element in a delaminated bi-material beam with one delamination and no surface loads
showing force and moment resultants acting at the end cross sections. (b) Homogenized crack tip element with global

force and moment resultants and J-integral path. (c) Local coordinates and rotations in the homogenized element.

The continuity conditions at the crack tip cross section on ¢, and w,

012

Eq. (13), forces
@, +W,,, 1o be zero at the crack tip and the local rotations to coincide there on both sides. In the intact
region away from the crack tip, on the other hand, the local rotations generally differ, since A}, #0
and ¢, +w,,,=0.

Force and moment sub-resultants acting in the first and second layers in the delaminated and

intact portions of the homogenized element in Fig. 3.b are defined using the local coordinates as:
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[(i)sz (X2)1 (i)Mgz (Xz ):I = I(I().:]:/ZZ (i)o-zz (X21 (i)X3)[1, me]d (i)xs

p/2

DQ,, (%, )= J(.)h/z(l)O_ZPSOSt(XZ’(i)XS)d(i)XS

(22)

fori=1and 2. They are related to the global resultants acting at the end of the homogenized element,
Fig. 3.b, through simple equilibrium, eg. — ©®N,(x,=-a)+“N,(x,=-a)=N,, and
ON,,(x, =¢)+ @N,,(x, =¢) = °N,,, and in the delaminated region coincide with the “actual” forces

acting on the “actual” element in Fig. 3.a.

Local axial and bending fields

In the delaminated portion of the homogenized element in Fig. 3, the dominant term of the shear

deformations in the first layer vanishes, [;] =0, and the longitudinal displacements in the layers, Eq.

(8), can be expressed in terms of the displacement jump using Eq. (6):

Y (X X3)=V02(X )+X3¢2(X2) 23)

OV, (X0 %) = [ Voo (%) +9, (%) ]+ X0, (x,)  for -a<x,<0

The equations above and the local coordinates are used to redefine the axial stresses and strains in the
delaminated region, Eq. (10). Substituting the axial stresses into the first equation (22), performing
the integration and some algebraic manipulations [44], yield axial strains and stresses in the layers i

=1, 2 of the delaminated region in terms of the normal force and moment sub-resultants:

. . @) 4 120Mmb 24
ez (% OX; )= (i>|§N<2i§h +P%, WE ( 2(X ) -
2 E h

Top T ( '>h)

The equations have the same form of those of the equivalent single layer theory for homogeneous
layers. This result highlights the capability of the homogenized approach to describe the local
discontinuous fields in the delaminated region of the plate from just three global kinematic variables.
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In the intact portion of the element in Fig. 3.c, the constitutive equations of the model, Eq.

(17), modify since B,, =0:

ON,, (%,)=ANe., (%, )+C%y,,(x,) for 0<x,<c (25)
OMJ, (%,) =Dy, (X,)+C%7,,(x,) for 0<x,<c

The last terms are not present in a homogeneous plate, where C°% =C" =0; in a bi-material plate

they becomes negligible at a sufficient distance from the crack tip since the exponential terms in the

solution of » in Eq. (20) decrease moving away from the crack tip in order for » to become
independent of x,, as is required by the geometry and loading conditions (shear is constant along the
ligament ahead of the crack tip). For sufficiently long c, » is constant with respect to x,, which
implies that y,,=0. As a consequence, the axial strain and stress in the intact region at a sufficient

distance from the crack tip are defined in terms of the global normal force and bending moment
resultants, Eqgs. (10) and (25), by:

ON OIVE: 26
(k)g22 (X2 =c, X3) — 2 X, 22 ( )
Ay, D,,
_ (O)N (O)M b
(k)o-zz (X, =C,%;) = (k)Ez 2+ X, =
A, D,,

As for the delaminated layers, at a sufficient distance from the crack tip in the intact region, the

constitutive equations have the same form of those of the classical plate theory.
Local shear fields
The transverse shear strains in the layers, Eq. (10), can be rewritten in terms of the local rotations of

the layers in Eqg. (21). This yields an expression which is similar to that of the first order shear
deformation theory and applies to the delaminated and intact regions of the plate:

2(k)‘923(X2! X3) =Wy, (%) + (k)¢2(xz) (27)
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The shear strains are constant in the thickness of each layer and vanish in the delaminated portion of

the plate where w,,, +®¢, =0. Shear strains, ¢, related to the a posteriori calculated shear

stresses which satisfy local equilibrium, “cf*, have already been defined in Eq. (11).

For the derivation of the energy release rate in Sect. 3.3 in terms of crack tip force and moment
sub-resultant, it is convenient to introduce, following the Jourawsky’s method, global strain measures
energetically associated to the generalized shear resultant, Eq. (14), and sub-resultants, (22), acting

at the end sections at the coordinates x, =—a,c. This is done by imposing:

1/ i 12 Gy post (i) _post.q (i
5(2()‘92391 ()ng ) =§I_(i)h/22()gzp3 e ftd OX,

(28)

where O are Vg are related through Eq. (11), (24) to the axial and moment sub-resultants, in
the delaminated region, and to the axial and moment resultants, Egs. (11), , (26) at x, =c in the intact

region away from the crack tip. Global equilibrium, Eqg. (12), and local equilibrium in the

homogeneous delaminated layers, “M3,,, —'Q,, =0, then yields [44]:

. HQ ©Q,. (x, =c) (29)
2Wg = 2 fori=12andx,<0; 2@ (x,=c)= 92 .
29 = Wy O, 0 2 239 (%, =C) Ok, 0G,,Oh
i=1,2
with:
Wk, =5/6 fori=12; (30)

-1
2 —d+h —d+h +h,
<°)k44=[<c52)22‘“%“’!{ [ 106y 109G dx + | m(xg)Z/“)ngdxgH
k=1

—-d —d+h,

and
1(x,) =%(—(1)E2X32 n (1)Ezd2) © d=WetrOh/2

1l og = = e 2
m(X3)=§[—(2)E2x32+(1)E2d2+((2)E2—‘”Ez)((l’h—d) }

(Fig. 3.c for the notation). The local shear correction factors, k,,, coincide with those typically

defined for classical first order theories. This is expected since the axial stresses, which are used in
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Eq. (28), are related to the normal and moment resultants/sub-resultants through relationships, Egs.

(24)(26), which coincide with those of the classical theories.

3 Energy release rate in layered beams with single and multiple delaminations under Mode

Il dominant conditions

The general solution of the homogenized model, Eq. (19), and the boundary conditions in Eq. (48),
are used to define the energy release rate for the collinear propagation of delamination cracks in
simply and multiply delaminated layered beams under mode Il dominant conditions, Fig. 4. Problems
characterized by mixed-mode conditions could be studied similarly using the extended version of the
multiscale model presented in [19], which accounts also for the interfacial opening displacements.
The energy release rate is calculated using the compliance method, Sect. 3.1, and through
different applications of the J-Integral, Sect. 3.2. For the special case of homogeneous and bi-material
beams with a single delamination, closed form solutions are derived in terms of crack tip force and

moment sub-resultants, Sect. 3.3
3.1.  Energy release rate: compliance method

In order to apply the homogenized model to the specimens in Fig. 4, cohesive interfaces
governed by the interfacial traction law in Eqg. (4) are introduced along the crack planes. The
numerical values for the interfacial stiffnesses in the intact and delaminated portions are chosen as
K&®h/E, =10° and K¢ ®“h/E, =10° =107, respectively, Fig. 2; these values are respectively
large and small enough values to avoid numerical problems and ensure the convergence of the
solution. The specimens are then homogenized, Fig. 4, discretized into portions separated by the
coordinates which define the crack tips and concentrated loads and the coefficients which describe
the homogenized stiffnesses of the different portions are calculated, Eqg. (47)(49). The unknown
integration constants of the general solutions in Eq. (19) are calculated by imposing boundary and

continuity conditions. The boundary conditions are: W, =M? =M =0 and N, =0 or 7, =0 at
the simple supports, Fig. 4.a,b; W, = @, =V, =0 at the clamped ends, Fig. 4.c; N, =M? =M 2 =0
and ng =0 at the free ends subjected to concentrated transverse loads, Fig. 4.c. Continuity
conditions are imposed on the global variables vy, , @,, Wy, W,,,, Ny, M3, Q,, and M2 .

Using the solution of the homogenized model, the energy release rate is calculated as the
variation of the total potential energy for unit collinear crack advancement:
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dI[I P?dC (31)

with TT the total potential energy, P the load applied per unit width and C =w, (x, = L)/ P the load

point displacement due to a unit load. Using Eq. (31) allows to verify the capability of the

homogenized model to define transverse displacements in cracked beams.
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Fig. 4. (a) Three-point bend-beam and homogenized model, used for the beams in Table 1. (b) Three-point bend-beam
with layered (sandwich) structure and homogenized model, Table 4. (c) Cantilever bend-beam with two delaminations

and homogenized model, used for the beams in Table 7.
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3.2.  Energy release rate: J-Integral

In the beams with a single delamination, Figs. 4.a,b, the energy release rate for the collinear
propagation of the delamination is also calculated using the J-integral along a path surrounding the

crack tip, shown in Fig. 3.b:

G, =J= L (Wdx, —on,v;,, dT) (32)

fori, j=2, 3, with T" the contra-clockwise path surrounding the crack tip and dI" an element of arc

lengthalong I'; W = (022522 + 20 38,, )/2 is the strain energy density, n;is the component of the unit
outward normal vector and o;n; are the tractions along the contour. The terms in the J-integral are

obtained from the solution of the homogenized model, Eqgs. (19)(48). The requirement to obtain an

accurate prediction of the energy release rate is that the quantities in the J-integral must be a posteriori

calculated  values, namelyW = (o6, +205"ef™)/2, oyn;=of*n;  components and

Oypost = Ogpst W, | after Eq. (27).

J-Integral along a path following the delamination surfaces

To verify the capability of the homogenized model to accurately predict crack surface displacements,
the energy release rate is also calculated using a J-Integral path which follows the delamination
surfaces, Fig. 5.a. Using Biickner’s superposition principle and the procedure in [45], and since the

crack surfaces can only slide with no friction, Eq. (31) applied to Fig. 5.c yields:

X,=—a

J =—IXZ:O T(Xz)(l)VZ'z(Xst=X§)dxg—j T(Xz)(z)VZ,Z(XZ,Xs:Xé)dx2 (33)

X,=—a X, =0

where —z(x,) are the shear tractions generated at level of the cracked interface in the intact

homogenized element in Fig. 5. The Mode Il energy release rate is:

Gn = J.XZ:O T(XZ )\72’2 dx, = (1)0-2|03OSt (Xs = X;)[Oz (Xz = —a)_\72 (Xz = O):| (34)

Xp=—a

sincez(X, ) =-"o ™ (x3 = xé) does not depend on x, for 0<x, <a.
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The energy release rate calculated through Eq. (34) relies on accurate calculations of the
relative crack displacement. Concepts of perturbation analysis, already anticipated in the previous
section for the bi-material case, show that zero order expansion of the relative crack displacement for

0 1
K. — 0, which is the dominant term in the delaminated region, is [9,1=[719G,, (1+A22) and
depends on the first order expansion of y = ¢, +w,,,. The presence of terms which do not depend on
X, in the first order expansion of 5 [44] implies that the relative crack displacement does not vanish
at the crack tip. This results, which is a consequence of the imposition of continuity conditions only
on global quantities, has no effect on the energy release rate in Eq. (34), since the terms of V, which

are independent of x, cancel in V, (x, =-a)-V, (X, =0).

ng X, (“)ng ng X (U)£2
° £
sz a—¢—3 é _sz g e:::'—‘i L 5
1" o — —¥
xz (0)]\]22 2 j (())N g T()C x2 j
Mzb E (U)l;wzb2 M!: (O)Mb
2, , , 22 22 p
’ a c a
(a) (b) (c)

Fig. 5. Biickner’s superposition scheme used to calculate the J-integral along the crack surfaces.

3.3.  Energy release rate: closed form solutions for unidirectional and bi-material beams

In this section, closed form solutions are derived for the energy release rate of homogeneous and bi-
material beams with a single delamination arbitrarily located in the thickness. The energy release rate
is calculated referring to the cracked element in Fig. 3.a subject to force and moment resultants acting
at the end sections. The length of crack and ligament, a and c, are assumed to be long enough so
that the crack tip fields can be described in term of end resultants. The minimum lengths depend on
the mismatch of the elastic constants and are on the order of the global thickness of the plate for
conventional composites, [46—-49]. The assumption allows comparison of the results with accurate
2D solutions from the literature. The derivation uses the local fields discussed in Sect. 2.3 and the J-
Integral in Eq. (32).

The components of the J-Integral along the paths I", and I';in Fig. 3.b are J, =J, =0, since
the upper and lower surfaces of the element are traction-free. The components of the J-Integral along

the paths I"; for i=1,2, are obtained using Egs. (32)(10) :
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1 % (i) (1) d (i)X 1 % 2(i) (1) d (i)X (35)
Jias (Xz :_a) = EI i Oxn € 3 _EI 4 Oz &€ 3t
T2 T2
(O]
2 () (1) (1)
+I b gz Vi 01X,

2
The equation is elaborated by noting that ®v,,, =w,,, =2%¢,, — Vg, , after Eq. (27), introducing a

posteriori calculated shear stresses and strains, “o,, = Yol and “e,, = Ve, Eq. (11), and using

the relationships in Egs. (28)(29) and Eq. (24). This yields:

N, T i 2 o, T 36
J 2(X2=—a)=1 [()N22] +12[()M§2] n [()ng] —20p, OQ, (%)
=1 NE G he (i i i i
| 2| PB,%h  0f, (0n) Pk, UGy "h 0

Similar considerations are applied along the path I, , which yield (see [44] for details):

0) 2 ropb 72 (0) 2 37)
J (x =c)=_l [O NZZ] +[ i M22] n [OQZQ} + g OQ, 4 @y, D
B 2 Azz D22 (0)k442(i)623 “h v 2 & 20
i=1,2

Summing up the contribution is Egs. (36)(37), the energy release rate in the homogenized
element in Fig. 3.b is:

OINTG ipb T o, T (38)
R Y O Y YRy

Xo= —a

©) 2 Topb ©) 2
[ON,,] +[ M2 | N I Q?Q] _ oWy, 0, 2@, O,
A22 DZZ (O)k44 Z (I)GZS (I)h ’ ’

i=1,2

where “N,,, “M?, and (i)ng fori=0, 1 and 2, are the force and moment sub-resultants acting on

the different arms, Eq. (22), and “¢, = ¢, and P¢, are the local rotations of the first and second

layers at the edges of the homogenized element, given in Eq. (21).
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When the first and second layers of the element in Fig. 3.a have the same elastic constants,

the neutral axis of the intact section is at mid-thickness and the following relationships hold: A}, =0

, Do, =P, =p,, Ve=n/2, Pe="h/2 and Pk, =k,, =5/6 fori = 0,1,2. The energy release

rate in Eq. (38) then coincides with that derived in [21][48] using structural mechanics considerations.

Particularization to crack tip quantities: homogeneous element
For a homogeneous beam, Eg. (38) can be redefined in terms of crack tip quantities by noting

that the normal and shear resultants and sub-resultants at the crack tip coincide with those at the
element ends, Fig. 3.b, while the bending moments are "M, (x, =0)= "M, (x, =—a)+ "'Q,,a for
i=1,2and M3, (x, =0)= "My, (x, =c)-“Q,,c. In addition, the rotations of the end sections of
the layer are calculated by integrating the third equation in (24) from x, =-a to x, =0, and the

second equation in (25) from x, =0 to x, =c:

_ DML (x. = — 60 —_a)a? (39)
(')q)z(xz:_a):(I)qoz(xzzo—)_ 12 M_zz().(z _ a)a+ ng_(xzh 361)8.
Ez((l)h) EZ((I)h)
OMD (v — 6© _ 2
¢2(X2=C):¢2(X2:0+)+12— MZZ(XZ Csc_ ng (X2 C)C

E,(“h+@h)’

The energy release rate in terms of crack tip quantities becomes:

gl et o] @

o 2 |Z:1: E, “h Ez((i)h)3 k44G23 “h ng g

) |:(0)N22:|2 N 12[(0)M§2]Z . |:(0)Q2g:|2
EZ((l)h+(2)h) EZ((l)h+(2)h)3 k44G23((1)h+(2’h)

"
X=0

where Ag, =g,(x, =0")-"p,(x,=0") fori = 1, 2 define the relative rotations of the arms at the

crack tip, also known in the literature as crack tip root-rotations [46,49][51]. Imposition of the
continuity condition on the global rotation at the crack tip cross section of the homogenized model

implies @g, = Yp, = Pp, =¢, and Ap =0 at x, =0, which yields:
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1E [(i)Nsz 12|:(i)M§2]2 [0Q,, ]2 (41)
Gy =+ Z = 0) t— s (i)
2/45| E,"h E, ( (')h) KuGys 0

X,= 0"

([T efw (v,
E,(“h+®h) |§2((1)h+(2)h)3 KuGps (h+ ®h)

X,= 0"

where k,, =5/6. Equation (40) coincides with the accurate 2D solution derived in [49] where the
crack tip root rotations Ag. are defined as linear functions of the crack tip force and moment
resultants through compliance coefficients which depend on the geometry and material properties.
The crack tip root rotations describe the near tip deformations and their effect on the energy release
rate of the plate can be important in the presence of crack tip shear, also when the crack is long. The
homogenized model formulated here, Eq. (41), does not account directly for these effects, which

however could be introduced a posteriori as explained in [49]. Additional discussion on this problem
can be found in Sect. 4.

Particularization to crack tip quantities: bi-material element

In the bi-material element, the energy release rate in Eq. (38) can be defined in term of crack tip
quantities following a similar procedure. The end rotations of the two delaminated arms,
Do, (x, =-a) for i=1,2, coincide with those derived in Eq. (39). The exact definition of the local
end rotations of the two layers in the intact part would imply using Egs. (19)(21). Here, since c is
assumed to be sufficiently long, the local end rotations in the intact part are calculated by integrating

the curvature ¢, ,, in the second equation in (25) from x, =0 to x, =c and then using P¢, = ¢, and

@, =@, +y\,,, after Eq. (21). This procedure neglects the contribution of the exponential terms in

y of Eg. (19), and yields:

OM?, (x, =c)c  9Q,,c? (42)
1) _ _ Nt 22 2 29
@, (X, =C)=g¢,(x,=0")+ —
2 (%2 2( 2 ) D, 2D,
OME (x. —=c)e @O, 2 © 1
(2)¢2(X2 =C)=¢2(XZ :O+)+ 2% ) - 2 + Az K ng 1+ =
D2 2D,, 1Cu D

where k,, =5/6 is the global shear correction factor introduced in the equilibrium equations, Eq.

(18). The effects of the exponential terms 5 would affects the local rotation @, (x, =c) only for
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small values of c. The equation above shows that in the intact part of the plate the local rotations of

the two layers differ, due to the zigzag enrichment in the third term of ®¢, which comes from the
contribution yA,, in Eq. (21) and is therefore related to shear. Noting that “Q,, = °Q,, - ?Q,,
substituting Eq. (42) into Eq. (38) where (pZ(X —0*) M (x2 :O’):O fori = 1, 2 due to the

continuity conditions, and with some manipulation, yield:

2 (T o, T (43)
gooif3{l0w] ] [

_ +— :
i1 Ez()h ( ')h) ()k44623()h
X, =0"
(0) 2 rope P (0) 2 0)
- |: N22:| +|: MZZ:' + I: Q29:| _ _2(2)Q2 (X2 :C)A22 QZQ (1+C_;§j
AZZ D22 (0)k44 Z (I)GZ3 (I)h ’ k44c4p4 22

I:1,2 X2:0+

The last term on the right hand side describes the work done by the shear sub-resultant in the upper

layer, ®Q,, , on the difference between the local rotation of the upper and lower layers, g, — Yo, ,
at x, =c. All terms in the equation above are to be calculated at the crack tip but for ¥Q,, , which, if

calculated from the a posteriori shear stresses may suffer at the crack tip from the presence of a
boundary layer. It is therefore preferable to use the value calculated at a sufficient distance from the
crack tip. Comparing Egs. (43) and (41) highlights the effect of the local zigzag enrichment in bi-
material systems. The applications in Sect. 4 will further explain the role of this term.

4 Applications

In this section the homogenized model is applied to define energy release rate and analyze crack
propagation in the beams in Fig. 4. Homogeneous, bi-material, sandwich and laminated beams with
single and multiple delaminations are analyzed. The results are compared with 2D elasticity solutions,

with solutions obtained using classical discrete-layer models and with experimental results.

4.1.  Homogeneous and bi-material beams with a single delamination, Fig. 4.a
The beam with a single delamination in Fig. 4.a is loaded in three-point bending. Three
material/geometrical configurations are examined and detailed in Table 1. Beam 1 is homogeneous,

orthotropic, with a mid-thickness delamination and represents an End-Notched Flexural (ENF)
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specimen used for Mode Il fracture testing of unidirectional composites (see [52] for a description).
Beam 2 is homogeneous with unequal thickness layers. Beam 3 is a bi-material beam with equal
thickness layers. The delaminations in Beams 2 and 3 are in Mode Il dominant conditions and the

phase angle, 1//=tan’l(\/a/\/a), which define a measure of the amount of Mode 11 to Mode |

loading, is defined using the 2D elasticity solutions in [46][47][49] and presented in Table 2.
Using the notation in Fig. 3.b, the homogenized forces in the homogenized beam in Fig. 4.a

are calculated as follows. The global force and moment resultants are obtained through simple
equilibrium  considerations.  For  0< x, <L, they are  N,(x,)="N,(x,)=0,
M, (%) = OMp,(x,) =—Px,/2 and  Q,,(x,) = “Q,, (x,)=—P/2 The sub-resultants in the
delaminated portion of the specimen are obtained by noting that ®p,,, (x,) = P@,,, (X,) = @,,, (X,),

Eq. (21). This yields:

(2)M§2 (x,) _ (2)Q29 9, — (Z)EZ [ (Z)hjg v
TML00) ~ Qu(,)  PE, [ P

Since OM2 =OME + OME and ©Q, =®Q, + @Q, , for equilibrium, force and moment sub-
22 22 22 29 2g 29

resultants for 0 < x, <a are:

(2)52((241 8 (49)
1 P WE W P
Qg 00) = @F (@pY 2’ Q)= (2)2|§ @pY 2
I+ ag | oy Mg, | on
E, h E, h

(1)M§2 (Xz) = (1)Q29 Xy5 (Z)Mgz (Xz) = (Z)QZQXZ

(1)N22(X2) = (Z)sz(xz) =0

They coincide with those obtained using classical discrete approaches by matching the displacements
of the two arms at the support [47].

The energy release rate is calculated in closed form and shown in Table 2, using the
material/geometrical properties in Table 1, and Eg. (41), with k,, =5/6, for Beam 1 and 2 and Eq.

(43), with k,, = %k, = “k,, =5/6=0.833 and “k,, =0.815, after Eqg. (30), for Beam 3. Table 3

shows relative percent errors between the predictions of the homogenized model and the 2D solutions
on varying the normalized crack length, a/h. The table also shows relative errors obtained using the

other approaches presented in Sect. 3.
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Table 1. Geometrical and material properties of homogeneous and bi-material beams in Fig. 4.a
Beam Thickness Thickness Orthotropic layers Isotropic layers
ratio
H - 2h @n/On | E/E, =E/E| G4/E, | v v v, @E/OE | @y, @y
Beam 1 Oh 4 @h 1 0.071 0.033 | 0.32,0.32,0.45
Beam 2 Dh 4+ @h 05 0.071 0.033 | 0.32,0.32,0.45
Beam 3 Oh 4 @h 1 2/3 0.5

Table 2 - Closed forms for the Energy Release Rate in the homogeneous and bi-material beams in Table 1, Fig. 4a.

GE,h Homogenized model 2D Elasticity Source
p? Energy release rate (Energy Release Rate and Mode Mixity angle)
9(ay 9(aY h hy [47.49]
—| =] ,Eq. (41 —|—11]1+0.728| — |-0.529| —
sean | 3o £ sl [rrore(z J-os()
y =tan™(Jg, /G, ) =90, Mode II
2 2 2 2 2 [49]
§(3j 1+1.357(ﬂj , Eq. (41) §(ij 1+1.357[ﬂj +2.141(Ej+0.101[3)
Beam2 | 8\ h a 8\l h a a a
Y= tan_l(\/gu /G, )=652
2 2 2 2 2 2] [46,49]
0.445 Ej 1—0.012(h +0.21 h , 0.445[3J 1—0.012[DJ +0.445 EJ+0.073 h
Beam 3 h a a h a a a) |
Eq. (43) y=tan(Jg, /G ) =82.4

Table 3: Relative error on the energy release rate. Error is between results of homogenized model and 2D solutions.

Relative error against 2D solutions in

a a a a a
—=10 —=15 —=20 —=30 —=40
J-integral, Table 2, closed form, Eq. (41) Beam 1 -6.3% -4.4% -3.4% -2.3% -1.8%
J-Integral (crack surface displacement), | Beam 1 -6.3% -4.4% -3.4% -2.3% -1.8%
numerical, Eq. (34)
Compliance method, numerical, Eq. (31) Beam 1 -10.2% -6.2% -4.4% -2.8% -2.0%
J-integral, Table 2, closed form, Eq. (41) Beam 2 -17.5% -12.5% -9.7% -6.7% -5.1%
J-Integral (crack surface displacement), | Beam 2 -18.6% -13.0% -10.0% -6.8% -5.2%
numerical, Eq. (34)
Compliance method, numerical, Eq. (31) Beam 2 -23.7% -15.4% -11.4% -1.4% -5.5%
J-integral, Table 2, closed form, Eq. (43) Beam 3 -4.1% -2.8% -2.1% -1.4% -1.1%
J-Integral (crack surface displacement), | Beam 3 -4.3% -2.9% -2.2% -1.5% -1.1%
numerical, Eq. (34)
Compliance method, numerical, Eq. (31) Beam 3 -4.8% -3.1% -2.2% -1.5% -1.1%
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Discussion on the Energy Release Rate

Beam 1 in Table 1, Fig. 4.a, is homogeneous, orthotropic and anti-symmetric. The delamination is
under pure mode Il conditions. In this beam, the terms in Eq. (41) which depend on the shear forces,
give a zero contribution, due to the symmetry of the geometry about the delamination line. The second
and third terms in the square brackets of the 2D solution (Table 2) account for the effects of shear on
the near tip deformations generated by the bending moments and the shear forces, respectively. The
near tip deformations are described in the 2D solution as relative rotations of the crack tip cross
sections on the delaminated and intact side, or root-rotations (see discussion in [49]) Predictions using
the closed form solution of the homogeneous model in Table 2 are quite accurate for sufficiently long
cracks. The energy release rate in terms of crack surface displacements coincides in this problem with
that obtained using the crack tip sub-resultants. Predictions obtained using the compliance method
are less accurate, but still acceptable for sufficiently long cracks, due to an underestimation of the
specimen compliance as a consequence of neglecting the shear deformations in the delaminated
portion.

Beam 2 in Table 1, Fig. 4.a, is homogeneous and asymmetric. Since “h> @h, the
delamination surfaces are under compression and the result in Table 2 assumes frictionless contact.
The second term of the solution of the homogenized model in Table 2 is due to the effect of the crack
tip shear forces on the shear deformations. In the 2D solution, the third and fourth terms in the square
brackets account for the effects of shear on the crack tip root-rotations generated by the bending

moments and the shear forces, respectively. The mode mixity phase angle is y =65.2° [49] and differs

substantially from the value corresponding to pure mode Il, 90°, since the 2D elasticity solution
implies interpenetration of the crack faces at the crack tip. The relative percent error between the
predictions of the homogenized model and the 2D solution is larger than that of the anti-symmetric
problem. This is due to the important mode | component and to the simplified description of contact
(constrained-contact).

Beam 3 Table 1, Fig. 4.a, is a bi-material beam made of two incompressible isotropic layers.

The Dundurs’ parameters of the interface are « =-0.2, #=0. For this geometry and material

properties, the delamination surfaces are in compression and the homogenized solution in Table 2 is
applicable assuming frictionless contact. The first term on the right hand side of the energy release
rate calculated using the homogenized model in Table 2 is due to the crack tip bending moment and
the second and third terms describe the effects of the shear resultant on the shear deformations in the
layers and of the shear sub-resultant in the upper layer of the intact ligament on the difference between
the rotations of the upper and lower layers. The 2D elasticity reference solution is obtained through

an elaboration of the results in [47], in order to separate the different contributions following the
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methodology suggested in [49]. The third and fourth terms in the square brackets account for the
effects of shear on the crack tip root-rotations generated by the bending moments and the shear forces,
respectively. The mode mixity phase angle is equal to 82.4° and is very close to 90°, which define
mode Il conditions. This explain the very good predictions of the model also for short cracks. The
solution obtained using the J-Integral along the fracture surface coincide with predictions that fully
neglect the effects of shear.

Macro-structural Response — Critical load vs load deflection curve of Beam 1, Table 1, Fig. 4.a
The macrostructural response of Beam 1 in Table 1, Fig. 4.a is analyzed through the critical

load versus load deflection curve shown in Fig. 6, for L=100h/3 and an initial crack of length
a, =20h. The crack propagates when the energy release rate of the homogenized model in Table 2

equals the critical value, G, , and the critical load for crack propagation is:

L‘EKD) (46)
\IGIIChEZ B 3 a

with a=a, =20h for the initial propagation. The load point displacement is obtained from the
solution of the model as w, (X, = L), Eq. (19). To follow crack propagation, the crack length is then

progressively increased and the corresponding critical load calculated using Eq. (46). This crack-
length control allows to follow the virtual branch associated to the snap-back instability. The results
of the homogenized model are compared with those obtained through a 2D solution of the problem
using the 2D energy release rate in Table 2. The results obtained using a classical discrete layer model
[8] are also presented in the figure. In this approach, the layers in the delaminated region are modeled
separately by the first order shear deformation theory and are allowed to freely slide along each other;
the intact portion of the specimen is modeled by the first order shear deformation theory.

The sudden change in the shape of the post-peak curve indicates that the crack has approached
the mid-span. There the concentrated load generates a compression region which typically arrests the
cracks in quasi static laboratory experiments. Here the solution is presented also for a> L, which
now defines a stable propagation approaching the limiting solution (dash-dot line) of two separated
layers free to slide along each other (see also [7]).
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Fig. 6. (2) Dimensionless diagram of the critical load for crack propagation as function of the load point displacement
in: (a) unidirectional ENF specimen in Fig. 4.a, Beam 1, Table 1; (b), (c) unidirectional ENF fracture specimens tested

in [53] under displacement control. Model (a) and (b) described in the main text.

Macro-structural Response — Comparison with experimental results
The diagrams in Figs. 6.b,c show the critical load for crack propagation in two ENF specimens made

of Graphite/epoxy [0].4 laminates tested in [53,54]. The geometry is defined by : L = 50 mm, 2h =
34 mm, a,=25 mm, b = 25 mm (width), Fig. 4.a. The material of the beam in Fig. 6.b is a

graphite/epoxy AS-4/828 with E, =139+16.7 GPa and G,; =6 GPa, defined from flexural tests on
the laminate [54], and Mode Il fracture energy G,. =1.04+0.17 N/mm, calculated in [53] using the
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compliance method. The material of the beam in Fig. 6.c is a graphite/epoxy AS-4C/828 with
E, =158+5.06 GPaand G,; =6 GPaand G, . =1.15+0.13 N/mm.

Two theoretical curves are shown in each diagrams. The curves in Fig. 6.b have been obtained
using the average values of the elastic constants and energy release rate, red dashed lines Model (a),
and the maximum values, black solid lines Model (b). In Fig. 6.c the red curve corresponds to the
average values, Model (a) and the black curve has been obtained using the average value of energy
release rate and the maximum value of the Young modulus, Model (b).

The experimental results, under displacement control show a load drop in the critical load at
the onset of propagation; this is due to an unstable propagation of the crack which grows
catastrophically and arrests near the mid-span. The homogenized model, which is under crack-length
control, is able to capture the snap-back instability and follow the virtual branch where crack growth
IS associated to a reduction of the load-point displacement. Crack propagation is modelled also in the
region beyond the mid-span where the curve stably approaches the limiting solution (dotted line)

corresponding to two fully delaminated layers.
4.2.  Layered beam (sandwich) with a single delamination, Fig. 4.b

The material and geometrical properties of the three-layer (sandwich) bend beam in Fig. 4.b are given
in Table 4. The layers are incompressible and isotropic with Dundurs’ interface parameters

a=0.6, =0 For this geometry and material properties, the delamination surfaces are in

compression and the model is applicable assuming frictionless contact. The energy release rate is
calculated numerically using the J-integral in Eq. (32) along the path shown in Fig. 3c, with a and ¢
are chosen at sufficient distance from the crack tip and the relevant boundaries. The 2D solution is
presented in Table 5 [48][55]. The third and fourth terms account for the effects of shear on the near
tip deformations generated by the bending moments and the shear forces, respectively. The mode
mixity phase angle, is 83.1°. Table 6 shows relative error between predictions made through the
homogenized approach and the 2D solution. The results highlight the accuracy of the homogenized
approach also for layered beams.

The diagram in Fig. 7 highlights the effects of the layered structure on the fracture properties.
The dimensionless critical load for crack propagation, calculated using the model and 2D elasticity
(Table 5) is shown versus normalized crack length in the sandwich beam of Tables 4 (red curves).
The results are compared with those obtained for Beam 2 in Table 2, which is homogeneous with

@E/®E =1 and a delamination at the same thickness-wise location. The effects of the layup on the

critical load for crack propagation are important and well captured by the homogenized model. The
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reduced accuracy of the solutions for the homogeneous beam, already discussed in Section 4.1,

depends mainly on the crack tip conditions which have an important Mode | component, = 65.2°.

Table 4. Geometrical and material properties of the three-layer (sandwich) beam in Fig. 4.b

Thickness Thickness ratios Isotropic layers
H =3h (Z)h/ (1)h’ (3)h/ (l)h (Z)E/ (1)E (3)E/ (1)E (l)V, (Z)V, (3)V
Sandwich Beam Oh4 @h4 ®h 1 1/4 1 0.5

Table 5 — 2D elasticity solution for the Energy Release Rate of the sandwich beam in Table 4, Fig. 4b.

2D Elasticity Source
(Energy Release Rate and Mode Mixity angle)

Sandwich beam OE 2 2 2 [48]
g ZEh =0.265[Ej [1—0.484(2) +0.739(Ej+0.621(hj }
P h a a a

Y= tan_l(\/gu 1G,)=831

Table 6: Relative error on the energy release rate. Error is between results of the homogenized model and 2D solution.

Relative error against 2D solution Beam
g 2_10 | 2215 | 2220 | 2230 | 2-40
h h h h h
J-integral, numerical, Eq. (32) Sandwich Beam -71.3% -4.8% -3.6% -2.3% -1.7%
J-Integral (crack surface | Sandwich Beam -6.8% -4.6% -3.4% -2.3% -1.7%
displacement), numerical, Eq. (34)
Compliance method, numerical, Sandwich Beam -8.9% -5.5% -4.0% -2.5% -1.8%
Eg. (31)
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Fig. 7. Dimensionless diagram of critical load for crack propagation versus crack length in three-point bend beams with

half-length L > 20H . Black curves: homogeneous beam, ®E/®E =1; red curves: sandwich beam, PE/“E =1/4,
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4.3. Cantilever beam with multiple delaminations, Fig. 4.c

The cantilever beam in Fig. 4.c with two unequally spaced, unequal length delaminations is analyzed
in this section. The interactions between delaminations induce phenomena of amplification or
shielding of the energy release rate of a crack as it would be in the absence of other cracks; this
behavior is controlled by length and spacing of the delaminations and has profound effects on the
macrostructural behavior of laminated and sandwich beams [56][8][57]. In addition, when there are
multiple delaminations extensive contact may occur along the crack faces [57,58][15]. The
application is used to discuss capabilities and limitations of the homogenized model in the description
of these phenomena. The beam is assumed to be homogeneous, isotropic and incompressible.

Different geometries are examined and details are given in Table 7.

Table 7. Geometrical and material properties of the multiply delaminated cantilever beam in Fig. 4.c

Beam Thickness Length Crack Lengths Thickness ratios Isotropic
layers
h L a,/h a_/h (Z)h/ ®h (3)h/ ®h O ®y,
Cantilever Beam 1 Ohy @hy ®@h | 10 varying 5 1 1 E 0.5
Cantilever Beam 2 Oh+Ph+®h | 10h varying varying 2 1 E 0.5

a,,/h=55 | a,,/h=6

Cantilever Beam 3 Oh+Ph+®h | 10h varying varying 1/3 1/3 E 0.5
a,,/h=5 a,,/h=4

Figure 8 shows the dimensionless energy release rate of the upper crack in the Cantilever

Beam 1 of Table 7 on varying its length for a fixed length of the lower crack, a, =0.5L, calculated

using the compliance method, Eq. (31), (thick solid lines). The results are compared with 2D Finite
Element results in [8] (red triangles). The dashed curve defines the 2D solution of the upper crack in
the absence of the lower crack [46] (single crack limit). The effect of crack interaction is an important
amplification of the energy release rate with respect to the single crack limit. The effect is negligible
only when a, >>a, . The homogenized model accurately captures the interaction effects but when
the difference in the length of the interacting delaminations is less than a few times the separation of

their planes. In this region, the model predicts a discontinuity of the energy release rate, when a, = a,

, and overestimates (for a, <a, ) or underestimates (for a, >a, ) the 2D solution. The 2D solution

in [46] shows that for a, < a, the crack tip conditions are mode Il, w =arctan(y/g, /G, ) =90°, and
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contact between the crack faces occurs when a_ ~a, ; for a, > a, , there is a sharp transition and the
mode | component is suddenly increased to a phase angle y =55°; on increasing the length of the

upper crack, the phase angle then approaches that corresponding to the single crack limit, y =66.7°

The results obtained with two discrete-layer models which assume constrained contact
conditions (green dots) and elastic-contact along the crack surfaces (spring-contact model, dotted
line) are also presented in the figure [8][12]. The constrained contact results coincide with the results
of the homogenized model. The response substantially improves when contact between the crack
surfaces is properly modelled. This comparison suggests a possible improvement of the homogenized
model using the extended version of the multiscale model in [19], which may be used to account for
crack opening and elastic contact.

_1200

GEh [ —— Homogenized Model Discrete-layers:
P? [ A AA 2D Finite Element s+« constrained contact
1000 | ---- 2D single crack limit = e elastic contact ~ +
r /
800 |
600 |
400 |
200 f g
0 2o L
0 1 2 3 4 5 6 7 8 9 a,/h

Fig. 8. Dimensionless diagram of the energy release rate of the upper crack in the Cantilever Beam 1 of Table 7, Fig.

4.c. Length of lower crack fixed at a, /h=5. 2D and discrete-layer model results in [8,12].

Figures 9 and 10 show the effects of the interaction on the macrostructural behavior. The
dimensionless diagrams depict the critical load for the propagation of the cracks in the Cantilever
Beams 2 and 3, in Table 7, versus load-point deflection. The delaminations are assumed to propagate
when the energy release rate, calculated using the compliance method, Eq. (31), approaches the

critical value, G, .. The results of the homogenized model are compared with the results of the

discrete-layer cohesive-crack model with spring-contact in [12] and the same propagation criterion.
A local snap-through instability is observed in the Cantilever Beam 2 when the upper crack starts to
propagate in A and approaches the lower crack tip, in B. Then the load to propagate the crack must
be increased, due to a shielding phenomenon, up to point C where the two cracks propagate together
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unstably. In the Cantilever Beam 3 the lower crack, which is shorter, starts to propagate at the
maximum load, point A; crack propagation is unstable and characterized by a snap-back instability
up to point B. Then there is a sudden drop in the load, to point C, caused by a sudden amplification

discontinuity. After point C the lower crack continues its propagation.
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Fig. 9. Dimensionless diagram of the critical load for crack propagation versus load point displacement. Cantilever

Beam 2 in Table 7, Fig. 4c. Discrete-layer model results in [8,12].
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Fig. 10. Dimensionless diagram of the critical load for crack propagation in the Cantilever Beam 3 in Table 7,

Fig. 4.c. and discrete layer model results in [8,12].

The diagrams in Figs. 8-10 highlight advantages and limitations of the homogenized
approach. The model is able to capture, with only three displacement variables, complex interaction
phenomena occurring between multiple delaminations and the qualitative behaviors are well
captured. The results are less accurate when the difference in length of the delaminations is within a
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few times their spacing, mainly due to the assumptions of the model which neglects the transverse

compressibility of the layers and contact along the crack surfaces.

5 Conclusions

Mode Il dominant brittle fracture of homogeneous and layered beams is analyzed using a
homogenized structural model based on a zigzag approach. The model captures the unstable
propagation of cracks in bend-beams, snap-back and snap-through instabilities, the effects of the
interaction of multiple cracks on the macrostructural response and the effects of the layered structure
on the energy release rate and critical load for crack propagation.

The model is based on an extension of a classical zigzag theory, with the minimum number
of unknowns, to beams and wide-plates with delaminations, which are described as cohesive
interfaces and are included in the homogenized description. It applies to layers with principal material
axes parallel to the geometrical axes, is controlled by three displacement variables, for any numbers
of layers and delaminations, and rigorous fracture mechanics methods are used to derive the energy
release rate and grow the cracks.

Closed form solutions have been derived for the displacement variables of general
delaminated beams and for the energy release rate of homogeneous and bi-material beams with a
single delamination. The energy release rate is in terms of crack tip force and moment sub-resultants
and can be directly compared with accurate 2D solutions from the literature. The particularization to
bi-material beams highlights the features of the model and the effects of the homogenization on the
local fields in the layers and at the crack tip. The energy release rate in other geometries, namely
layered beams and beams with multiple delaminations, is calculated using the compliance method
and the J-Integral.

The limitations of the homogenized approach have been discussed. The first is a consequence
of the imposed continuity of shear tractions and interfacial cohesive tractions at the layer interfaces;
this implies that in the delaminated region of the plate the shear stresses and strains vanish and
therefore their effects on the transverse compliance of the structure is neglected. Accurate shear
stresses and strains can be calculated a posteriori from the bending stresses by imposing local
equilibrium and their effect included in the energy release rate; and the resultant of these a-posteriori
calculated stresses is variationally consistent. The second limitation is due to the imposition of
continuity conditions on the global quantities. This implies that the near tip deformations, which are
typically described using crack tip root rotations, are not accounted for in homogeneous beams and

are only partially considered in bi-material beams thanks to the accurate description of the zigzag
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fields. A third limitation, which has been discussed in [44] and needs to be properly tackled if crack
propagation has to be controlled directly from the cohesive tractions, as is it usually done in cohesive-
crack modeling, regards the presence of a boundary region at the crack tip where the interfacial
cohesive tractions are not accurately predicted by the model; this is again a consequence of the
imposition of continuity conditions on the global variables.

Different assumptions and homogenization techniques could be used to limit the effects of
neglecting the shear strains in the delaminated regions and to overcome the limitations of the zigzag
theory used within this model (C* continuity; a posteriori definition of the shear stresses), typically at
the expenses of an increased number of unknowns, [27]. This could be important for future
implementation of the model into finite element codes. An attempt has been recently made in [38]
using the refined zigzag theory in [25], which has been modified to include the cohesive interfaces.
However, a preliminary investigation shows some inconsistencies when using that approach in the
imposition of continuity conditions between regions with large variations of the homogenized
properties, which is the case when dealing with plates with finite length delaminations. The same
inconsistency has been noted in [37].

The investigation presented in this paper is limited to mode Il dominant fracture of beams and
wide-plates with a single delamination. The results are promising, and further work is necessary to
verify the capabilities of this method to study single and multiple delaminations, under general
mixed-mode conditions, cohesive fracture in Mode |, Mode Il and Mode Ill and for the fracture
analysis of more complex systems, such as plates and shells. The extension should be possible using
the extended version of the homogenized model in [19,20] or other homogenization techniques, with

the difficulties already mentioned above.
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Appendix A — Coefficients and boundary conditions

Coefficients of the homogenized constitutive and equilibrium equations of the layered beam:
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Homogenized boundary conditions, Eq. (13), in terms of displacement variables:

ANVozrz +By @515 + +C%w, 0122) 2:N2 or Vo, =V, (48)

ByoVoz 2 + D22+Cls)¢2’2+cls 0'22] 2:M§ o ¢,=¢,

(
[A44( 072 ~C%y, 02’22_((:1S +C52)(p2,22 _CSZWO!zzz}nz = Ns or W, =W,
(Cosvoziz ClS Csz)%’z +C*w, mzz)nz I\7IZZS or Wy, =Wy

Coefficients of the general solution, Eq. (19), for a bi-material or n-layer wide-plate/beam:
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