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… these droplets are not atoms, but they are sufficiently                                                                        

small and light to be not entirely insusceptible to the                                                                              

impact of one single molecule of those which hammer                                                                                  

their surface in perpetual impacts. …. Their movements 

are determined by the thermic whims of the surrounding 

medium; they have no choice. If they had some 

locomotion of their own they might nevertheless                                                                                

succeed in on getting from one place to another,                                                                                           

but with some difficulty, since the heat motion tosses                                                                                      

them like a small boat in a rough sea.  

 

                                                       (E. Schrödinger, 1941) 
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Thesis abstract 

 

The present dissertation discloses the doctoral work carried out during the past three years at the Italian 

Institute of Technology (IIT) and the University of Genoa. The work was focused on the functionalization 

of iron oxide nanocubes (NCs) for different biological applications. Tuning the surface features of these 

magnetic nanocubes, as well as their assembly and intrinsic chemical and physical properties, resulted in 

the development of suitable nanotools for cancer theranostic, i.e. the combination of diagnosis and cancer 

therapy.  

The first chapter deals with the synthesis of magnetic nanoclusters, referred as magnetic nanobeads 

(MNBs). Here, maghemite (γ-Fe2O3) nanocubes were tightly enwrapped into an amphiphilic polymer 

able to solubilize and stabilize them in water-based solutions. The synthetic route, reported in literature, 

was improved in order to obtain more stable polymeric shells that can be further functionalized with 

PEG-derivatized molecules. Due to the higher magnetic moment found for the MNBs, compared to that 

of single nanocubes, they were investigated for magnetic cell sorting. Therefore, a targeting feature was 

added to their surface by attaching a PEG molecule derivatized with folic acid (PEG-FA). This approach 

provides: 1) the binding of the MNBs to folate receptors overexpressed on the cell membrane of some 

cancer cells; 2) stability in complex biological media; 3) distance of the FA from the polymeric surface; 

4) degree of freedom to the bioactive folic acid. A cancer cell line having high folate receptor expression 

profile (KB cell line) was chosen as a model for testing the sorting ability of the MNBs. The results 

obtained showed a significantly higher sorting efficiency for the MNBs functionalized with PEG-FA in 

comparison to the one observed for the MNBs functionalized with a non-biologically active PEG. This 

outcome reveals the potential of PEG-FA functionalized MNBs for the isolation of relevant folate 

receptor positive cancer cells, e.g. ovarian cancer cells, from biological tissues.  

In the second chapter, the structural transformation of core-shell wuestite/maghemite (FeO/γ-Fe2O3) 

nanocubes into maghemite is reported. Here, an approach that is not often applied by material scientists 

was followed for the transformation under aqueous conditions. The non-interacting nature of core-shell 

nanocubes, due to their low magnetization, allowed for an easy and quantitative transfer in water, using 

a standard protocol for the coating with an amphiphilic polymer. Then, it was found that a mild oxidation 

process, carried out in water at 80 °C, promoted the conversion of the core-shell structure into fully 

maghemite nanocubes, enhancing their magnetic features, especially the specific absorption rate (SAR). 

Thus, the nanocubes were functionalized with PEG-FA and the annealing treatment was repeated. 
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Noteworthy, the oxidation strategy developed did not compromise the bio-functionality of the PEG-FA 

molecule. Unfortunately, the SAR values of the obtained one-phase nanocubes were found to be viscosity 

dependent, discouraging their use for magnetic hyperthermia in cellular environment. Instead, because 

annealing increased the magnetic moment of the nanocubes, they were efficiently used for the magnetic 

sorting of KB cells. The sorting efficiency found for these nanocubes was comparable to that of the 

MNBs reported in chapter 1, suggesting that a high amount of single nanocubes bound to the cell 

membrane increases the magnetic moment of the whole nanocubes-cell system. Thus, the methodology 

adopted for tuning the magnetic properties of core-shell iron oxide-based materials into one single phase 

NPs was proven appropriate for the preparation of nanocubes for magnetic driven cell sorting. 

The third chapter discusses the use of maghemite (Fe2O3) nanocubes for developing multimodal 

nanotherapeutics to treat ovarian cancer. The intriguing high heat performance of the nanocubes was 

exploited to perform magnetic hyperthermia. At the same time, the high surface area available on the 

nanocubes has been used for drug delivery and specific antibody-mediated tumor targeting towards 

ovarian cancer cells. The NCs were functionalized with both an oxaliplatin-derivatized PEG (PEG-Pt) 

and a PEG-Bis(carboxymethyl)-lysine (a nitrilotriacetic derived molecule) complex for the binding of an 

his-tag antibody fragment (scFv) specific for folate receptor α (αFR). The functionalized nanocubes were 

able to recognize their target and to be efficiently internalized by the desired cells via endocytosis 

pathway. Once inside the cells, the nanocubes delivered the Pt compound, which induced toxicity by 

intercalating the DNA. Thanks to their crystal structure and size, these nanocubes exhibited a viscosity-

independent behavior, keeping high SAR values even in highly viscous media. Indeed, once incubated 

with the cells, the nanocubes were able to heat the tumor mass up to 42 °C, promoting cell death. The 

contribution of the cytotoxicity from both Pt delivery and hyperthermia highlighted the use of these 

nanocubes for cancer multitherapy. Thus, combining targeting, drug delivery and magnetic hyperthermia, 

a suitable platform for a synergistic treatment of cancer has been developed. 
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Introduction. Nanoparticles in medicine 

1. What is nanomedicine? 

… 

Nanomedicine concerns the use of precisely engineered materials at the nano-scale size (Figure 1.1), 

generally with at least one dimension defined in the 1-100 nm range,[1-5] to develop therapeutic and 

diagnostic modalities.[1] It can be regarded as the application of nanotechnology (i.e. the 

understanding and control of matter in the nano-size scale) in medicine.  

 

Figure 1.1. Size at the nanoscale. Nanomedicine faces with biological components in the micron/nanometer 

size, making interaction at the atomic scale. Scale on the right is logarithmic. 

Indeed, nanomedicine is an interdisciplinary field, where nanoscience, nanoengineering and 

nanotechnology interact with the life science to achieve improved patients’ outcome and quality of 

life.[3, 6] It also involves the design of colloidal materials and technologies for in vivo diagnosis and 

therapy, as well as new scaffolds and surfaces for regenerative medicine.[3] “The right size is 

Nanobiotechnology” was the statement by which Georges M. Whitesides in 2003 ventured that, by 

working together, physics and biology (from cellular to molecular biology, biochemistry and 

immunology) could have unlocked a fascinating way to lead the comprehension of the life 

mechanisms to an outstanding level of knowledge.[7] The enormous interest for understanding 

nanomaterials’ interaction with the “bio-world” relies on the certainty that they have the potential to 

contribute to new modalities in molecular imaging, sensing and therapeutic intervention.[8, 9] 

Nanomaterials along with chemistry would play a main role in this process. Indeed, chemistry places 

a bridge between physics and biology, making real the theoretical physical laws and taking back 

biology and biologist to reality. However, physics, biology and chemistry occupy just a small portion 

of the whole nanomedicine subject. Mathematical modelling and bioinformatics,[10] molecular 

dynamics[11], biomedical engineering[12] and microbiology[13] contribute as well to face the many 

problems and challenges related to nanomedicine. All together, these subjects optimize research, 

saving time and money. It is, by now, clear that nanomedicine is a multi- and interdisciplinary field, 

in which only the strict collaboration and reciprocal consideration of the different disciplines will 

succeed in tuning its many aspects. The nanotools here exploited have unique size- and shape-

dependent optical, electronic and magnetic properties, which are different from those of bulk 

materials of the same composition.[1, 3, 5] To date, several types of engineered nanomaterials have been 

developed, including both inorganic (e.g. iron oxide,[14] gold,[15] silver,[16] silica[17]), organic (e.g. lipid 

micelles,[18] polymeric nanostructures,[19] protein constructs,[20] layer-by-layer assemblies[21, 22]) or a 
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combination of them (Figure 2.1).[23] First, they can carry a large variety of drugs (e.g. doxorubicin[24-

26]) or therapeutic biological molecules (e.g. siRNA[27-29]) and protect them from degradation.[30] 

Moreover, since most of the drugs commonly used in standard therapy are slightly or sparely soluble 

in water[31] (e.g. cisplatin and docetaxel), the use of smart nanocarriers can enhance their 

biodistribution and prolong their circulation time.[32] Nanomaterials can also act as multiple drug 

carriers for a more effective therapy,[33-37] overcoming the multidrug resistance (MDR) expressed by 

many cancer cells,[38, 39] due to the possibility to target different metabolic pathways at the same time. 

The second important feature of the nanoparticles relies on their high surface to volume ratio, which 

allows for the grafting of multiple functional ligands at high density. These ligands can serve as 

stabilizing agents (e.g. PEG-based molecules[40]), for increasing the nanoparticles solubility and 

bioavailability,[41] or as targeting ligands (e.g. peptides,[42, 43] folic acid[44] or antibodies[45]) for the 

selective guidance of the nanocarriers to the desired cells or tissues.[46, 47] The third critical point 

regards the release of the loaded cargo in a controlled manner.[9].[48] Indeed, conventional therapy has 

sometimes tremendous side effects, related to the intrinsic toxicity of the therapeutic agent involved 

in the pathologic treatment.[48] Then, to spare the healthy tissues in favor of a more localized therapy, 

the so called precision medicine, has acquired enormous importance in modern medicine. Several 

therapeutic strategies based on nanoparticles were developed, all focused on the selective induction 

of damage to only unhealthy cells, minimizing the side effects of the anticancer drugs while 

enhancing the efficacy of clinical treatments.[4] 

 

Figure 1.2. Toolbox of the applications of nanoparticles in medicine. Several kinds of functionalization, 

from the addition of targeting ligands or diagnostic agents, to the conjugation with therapeutics, can make 

nanoparticles, of different sizes and compositions, suitable for a wide range of uses in nanomedicine CAFs = 

Cancer Associated Fibroblasts; CCCs = Circulating Cancer Cells. 
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2. Cancer 

… 

Cancer biology 

Cancer is not simply composed by homogeneous malignant cells but is rather a complex ecosystems 

containing tumor cells, and also endothelial, hematopoietic and stromal cells that influence its 

function as a whole.[49] There is increasing awareness that intratumoral heterogeneity contributes to 

therapy failure and disease progression[49] Cancers originally develop from normal cells that gain the 

ability to proliferate aberrantly and eventually turn malignant. These cancerous cells grow clonally 

and have the potential to metastasize.[50] The clonal origin of tumors does not imply that the original 

progenitor cell, that gives rise to a tumor, has initially acquired all of the characteristics of 

a cancer cell. On the contrary, the development of cancer is a multistep process in which cells 

gradually become malignant through a progressive series of alterations.[51]  The basis of cancer 

development is mainly genetic and involves the mutations and the selection for cells with 

progressively increasing capacity of proliferation, survival, invasion and metastasis.[51]  The tumor 

initiation results in genetic aberrations and abnormal proliferation of a single cell. New cell clones 

originate, with the further increase of genetic alterations that promote the cells heterogeneity. As the 

tumor progresses, modifications of the cellular environment take place. Different hallmarks of the 

cancer, intended as distinctive and complementary capabilities that enable tumor growth and 

metastatic dissemination, provide helpful fundaments to better understand what tumorigenesis is 

(Figure 2).[52] The remodeling of the extracellular matrix (ECM) is one of the main events of 

carcinogenic processes.[53-55] Indeed, ECM is composed of molecules like collagens, laminins, 

fibronectin, glycoprotein and proteoglycans that have a structural and functional role. The 

deregulation of all these components has been associated with the development of malignancies.[55-

57] Concomitantly to the induction of ECM remodelling processes, the cells of the tumor 

microenvironment secrete growth factors that promote angiogenesis, which is the formation of new 

blood vessels. Like normal tissue, tumors require nutrient and oxygen to sustain their growth. 

Angiogenesis, which occurs also during embryogenesis and wound healing in a transient manner, is 

deregulated in tumor and constantly activated.[52] Tumor-associated neo-vasculature rises in response 

to tumor-associated cells secreting growth factors that stimulate the proliferation of endothelial cells 

in the capillaries of the surrounding tissue, resulting in the outgrowth of new vessels.[57] Angiogenesis 

and tumor development may be associated with cancer cell migration form the original site. This 

event is promoted by the downregulation of adhesion molecules that ensure the contact between cell 

and ECM. The local invasion of the adjacent tissues is followed usually by the protrusion of those 

cells in the blood circulation, from which they can extravasate and start the growth of micrometastasis 

in distant tissues and organs. This colonization can lead to the establishment of a new tumor.[52] The 

chronic and often uncontrolled cell proliferation that represents the essence of neoplastic disease 

involves not only deregulated control of cell proliferation but also corresponding adjustments of 

energy metabolism in order to fuel cell growth and division.[52] As consequence, tumors sustain their 

growth in hypoxic environment, which produce a decrease of the pH of the surrounding vasculature 

and tissues. Another, still-unresolved issue surrounding tumor formation involves the role that the 

immune system plays in resisting or eradicating formation and progression of incipient neoplasias. 

The long-standing theory of immune surveillance proposes that cells and tissues are constantly 

monitored by immune system, responsible for recognizing and eliminating the majority of nascent 

cancer cells. According to this, solid tumors that do appear have managed to avoid detection by the 

https://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3407/
https://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A2944/
https://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3104/
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various components of the immune system or have been able to limit the extent of immunological 

killing, thereby evading eradication.[52] 

 

Figure 2.1. Cancer hallmarks. The distinctive features and properties of cancer development are highlighted. 

CAF = cancer associated fibroblast; CC = cancer cell; EC = endothelial cell; CSC = cancer stem cell; IC = 

immune inflammatory cell.[52] Adapted from Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74., Hanahan, 

D. and R.A. Weinberg, 2011, with permission from Elsevier. 

Half century of challenges 

Cancer is an abnormal growth of cells caused by multiple changes in gene expression leading to 

dysregulated balance of cell proliferation and cell death and ultimately evolving into a population of 

cells that can invade tissues and metastasize to distant sites, causing significant morbidity and, if 

untreated, death of the host.[58] This statement, proposed by Weinberg in “The biology of cancer” [58] 

masterfully resume the cancer concept. Cancers figure among the leading causes of death worldwide. 

Global demographic characteristics predict an increasing cancer incidence in the next decades, with 

19.3 million new cancer cases annually expected by 2025. An overview on the most recent data, 

shown in Figure 2.2, indicates the most common cancers estimated to occur in men and women by 

2016. Prostate, lung and bronchus, and colorectal cancers account for 44% of all cases in men, with 

prostate cancer alone accounting for 1 in 5 new diagnoses. For women, the 3 most commonly 

diagnosed cancers are breast, lung and bronchus, and colorectal, representing one-half of all cases; 

breast cancer alone was expected to account for 29% all new cancer diagnoses in women.[59] 

There has been a steady rise in cancer death rates in the western countries during the past 50 years. 

The major reasons of this increment may be found in the higher life expectancy, which has 

progressively risen over the last decades,[58]  and in the adoption of unhealthy lifestyles that became 

dramatically common with the achievement of economic welfare.[60] What has becoming clear is that 

cancer treatment was a more arduous challenge than what was initially expected. Despite the 

advancements of modern medicine in therapy and diagnosis, many patients still fail therapy, resulting 

in disease progression, recurrence, and reduced overall survival[49]. However, the continuously 

growing knowledge of molecular and tumor biology has notably changed cancer treatment paradigms 
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during the past 15 years.[61] Cancer therapy is moving gradually in the direction of more selective and 

safe treatments, aimed to reduce or avoid the destructive side effects of conventional therapies as 

surgery, radiotherapy and chemotherapy. New cancer treatment methods as genotype-directed 

precision oncology or targeted therapy, by means of antibody or other components of the immune 

system, are currently emerging and show a realistic possibility to be used in routine pharmacology.[61] 

However, in most of the cases conventional therapies are still cheaper and more efficient than the 

new arising technologies. Therefore, great efforts have to be made by researchers to develop the next 

generation of precision medicines with effective cost/benefit advantages.[61]  Besides the treatment of 

the disease once it is already established, the early diagnosis has remarkable importance. Until the 

second half of 20th century cancer was diagnosed only when symptoms could have been clearly 

recognized. In many cases, cancer would have already spread, thus limiting the efficacy of the 

treatment.[62] The poor outcomes for cancers diagnosed at advanced stages of development have been 

the main rationale behind research into techniques able to detect the disease before symptoms are 

manifest.[62] Besides the therapeutic treatment, nanomedicine has moved in the direction of 

developing efficient tools for the screening of cancer biomarkers at the early stages of tumor 

development.[63] 

 

Figure 2.2. Ten leading cancer types for the estimated new cancer cases and deaths by sex, in the United States 

by 2016. Reprinted, by permission, from Rebecca L. Siegel, Kimberly D. Miller, Ahmedin Jemal, Cancer statistics, 2016 Jan 7, 2016 

(24), Cancer Journal for Clinicians. Copyright © 1999 - 2017 John Wiley & Sons, Inc. 

 

 

http://www.wiley.com/
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3. Magnetic materials 

... 

Introduction to magnetic nanoparticles  

Magnetic nanoparticles (MNPs), made by a metal core like iron, cobalt, manganese or metal oxides 

have been differently used in the development of modern technology.[64] In particular, in the last 

decades, MNPs have attracted the attention not only of researchers but also that of chemical and 

pharmaceutical companies focusing on applications in the biomedical field. The properties of such 

nanoparticles can be finely tuned depending on the desired application, which might range from 

medicine for MRI imaging,[65] drug delivery[66] and magnetic hyperthermia,[67] to bioremediation, for 

the removal of contaminants from wastewater[68]. Materials in the nano-size scale have physical-

chemical properties significantly different from those of the corresponding bulk materials, thanks to 

their high surface to volume ratio and tunable shape, composition and surface structure.[69] An 

important example of size-governed property change is related to magnetism. The attractive or 

repulsive forces between magnetic materials can be described in terms of magnetic dipoles, which 

can be considered as tiny bar magnets with opposite poles. Materials can thus be classified into 

diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic, and antiferromagnetic according to the 

arrangement of their magnetic dipoles in the absence and presence of an external magnetic field.[70] 

Table 3.1 summarizes the different types of magnetic materials. 

Table 3.1. Features and behavior of the different types of magnetic materials. [70, 71]  

Weak magnetic interactions Strong magnetic interaction 

 

 

 
Diamagnetic  

1) Does not 

have magnetic 

dipoles in the 

absence of an 

external field 

and has weak 

induced dipoles 

in its presence; 

2) 

magnetization 

responds in the 

opposite 

direction of the 

magnetic field  

 

 
 

Ferrimagnetic 

1) Magnetic 

dipoles 

always exist 

in the 

absence and 

presence of 

an external 

field; 

2) displays a 

permanent 

magnetic 

moment 

 

 
 
Antiferromagnetic 

1) Adjacent 

dipoles are 

antiparallel in 

the absence of 

an external 

magnetic 

field and 

cancel each 

other 

 

 
Paramagnetic 

1) Randomly 

oriented 

dipoles that can 

be aligned in 

an external 

field; 

2) 

magnetization 

responds in the 

same direction 

as the external 

field 

 

 
Ferromagnetic 

1) Magnetic 

dipoles 

always exist 

and are 

aligned 

antiparallel 

to the 

adjacent 

2) strong 

dipoles in 

the absence 

of an 

external 

magnetic 

field 

 

Each magnetic moment shown for the different materials can be considered inside the same multidomain 

structure. Picture a shows the size-dependent difference between single domain and multidomain. Adapted, by 

permission, from U. Jeong,X. Teng,Y. Wang,H. Yang,Y. Xia, Superparamagnetic Colloids: Controlled Synthesis and Niche 

Applications, Dec 12, 2006 (28), Advanced Materials. Copyright © 1999 - 2017 John Wiley & Sons, Inc. 

Particle diameter

Single domain Multiple domains

a

http://www.wiley.com/
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In general, magnetic materials refer to those characterized by either ferro- or ferrimagnetic 

features.[70] Different factors such as saturation of magnetization (Ms), coercivity (Hc), blocking 

temperature (TB) and relaxation time (τN and τB) contribute to control and optimize the key magnetic 

properties of MNPs.[71] Ms is the maximum magnetization possible and arises when all the magnetic 

dipoles are aligned in an external magnetic field. This parameter increases with nanoparticles size 

until it reaches the bulk value.[71] Figure 3.1a shows a typical magnetization curve for ferromagnetic 

or ferrimagnetic nanoparticles, showing the remanent magnetization (Mr, induced magnetization, 

which is conserved after an applied field is removed) and coercivity (Hc, the intensity of an external 

magnetic field needed to force the magnetization to go back to zero).[70] Magnetism, which arises 

from the collective interaction of atomic magnetic dipoles, is highly volume and temperature 

dependent. When the size of a ferro- or ferrimagnet decreases to a certain critical value rc, the particles 

change from a state with multiple magnetic domains to a single domain.[71] In a single domain 

material, the magnetic moments of the atoms align accordingly to the reciprocal interactions below a 

critical temperature (TB). Blocking temperature defines the transition from ferromagnetic to 

superparamegnetic regimes and can be considered as the thermal energy needed for spin 

reorientation.[70, 72] As shown in Figure 3.1b, if the size decreases to a value r0, the thermal energy 

becomes comparable to that required for flipping the magnetic moment in the opposite directions, 

leading to the randomization of the magnetic dipoles in a short period of time.[70] Such small particles, 

known as superparamagnetic nanoparticles, do not have permanent magnetic moments in the absence 

of an external field and behave like a giant paramagnetic “molecule” in which the magnetic moment 

is able to rotate randomly. Nevertheless, they can respond fast to an external magnetic field.[70]  As a 

consequence, the magnetization changes spontaneously above a critical temperature, which is 

significantly lower than in the case of single domain materials and approximate the room 

temperature.[64, 70, 73] Indeed, TB increases with particle size.[71] The limiting size between 

monodomain and superparamagnetic MNPs (SPIONs) depends on their crystalline structures (in 

particular anisotropy constant K), composition and size.[64, 70] Figure 3.1c shows the maximum 

diameters for superparamagnetic (Dsp) and single-domain (Dsd) nanoparticles of different 

compositions [71, 72] and Figure 3.1d their magnetization curves. While for multidomain or single 

domain ferromagnetic nanoparticles a hysteresis loop is produced due to the presence of several 

magnetic moments that affect Mr and Hc (red line), for superparamagnetic nanoparticles, a sigmoidal 

curve with no hysteresis is originated (green line). In addition, the curves of diamagnetic (black line) 

and paramagnetic (blue line) nanoparticles are shown, with opposite or weak response to magnetic 

field, respectively.[71]The lack of remanence magnetization enables superparamagnetic nanoparticles 

to maintain their colloidal stability and avoid agglomeration, which is very important for biomedical 

purposes:[64] The main biomedical applications include magnetic hyperthermia (MH),[74] MRI 

imaging[75-77] and magnetic separation[44, 78] and will be discussed in paragraph 4.  
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Figure 3.1. a) The typical magnetization curve of a ferro- or ferrimagnetic material, from which one can 

identify the saturation magnetization Ms, the maximum value of M; the remanence magnetization Mr, the 

residual magnetization at zero field strength; and the external field required to bring magnetization back to 

zero known ascoercivity Hc,.[70] b) Schematic illustration of the dependence of magnetic coercivity on particle 

size. In the single-domain regime, the coercivity can follow either the solid curve for non-interacting particles 

or the dashed line for particles that have coupling between them. The coercivity falls to zero for 

superparamagnetic colloidal particles.[70] c), Different magnetic materials have different transition size from 

single domain (Dsd, diameter single domain) to superparamagnetism (Dsp, diameter superparamagnetism). For 

diameters, D < Dsp, they exhibit superparamagnetic behaviour; for D > Dsd, they split into multiple domains to 

minimize their overall energy and in between, Dsp < D < Dsd, they are ferromagnetic and single domain.[72] d) 

Magnetic behavior, under the influence of an applied field, for different magnetic materials. The X-axis is the 

applied field (Oe), and the Y-axis is the magnetization of the sample as a function of field exposure (emu/g). 

Typical behavior of multidomain ferro(i)magnetic materials shows hysteresis loop (red line); single domain 

materials/superparamagnetic nanoparticles do not show hysteresis and have coercivity close to 0 (green line). 

Paramagnetic materials slightly follow the external magnetic field (blue line), while diamagnetic materials 

respond in the opposite direction of the applied field (black line). (a-b) Reprinted, by permission, from U. Jeong,X. 

Teng,Y. Wang,H. Yang,Y. Xia, Superparamagnetic Colloids: Controlled Synthesis and Niche Applications, Dec 12, 2006 (28), 

Advanced Materials. Copyright © 1999 - 2017 John Wiley & Sons, Inc. (c-d) Reprinted, with permission, from Krishnan, K.M., 

Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy, IEEE Transactions on Magnetics, 

2010. 46(7): p. 2523-2558. 

MNPs: iron oxide nanoparticles above all 

Among the different kinds of magnetic nanoparticles developed so far, iron oxide-based nanoparticles 

(IONPs) are the most used for biological applications. Indeed, IONPs express the best compromise 

between good magnetic properties (such as Ms) and stability under oxidizing conditions.[64] The most 

investigated iron oxides are FeO (wuestite), γ-Fe2O3 (maghemite) and Fe3O4 (magnetite), which have 

remarkably different magnetic properties.[70] Wuestite, being paramagnetic at room temperature, is  

less attractive than maghemite and magnetite. Nevertheless, new opportunities begin to emerge for 

nanoparticles with a mixed composition of wuestite and ferrimagnetic oxides, as it will be discussed 

in chapter 6. γ-Fe2O3 and Fe3O4 are instead ferrimagnetic[79] Both have spinel structure, with the 

oxygen ions forming a close-packed cubic lattice and iron ions located at the interstices.[64, 80] The 

saturation of magnetization (Ms) for bulk material, at low temperature (ca. 5 K), is higher for 

magnetite (98 emu/g) than for maghemite (83.5-87.4 emu/g). The highest value reached so far for 

magnetite IONPs was 92 emu/g, while for maghemite it was 77 emu/g.[81] Despite the better magnetic 

http://www.wiley.com/
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properties, magnetite is poorly stable under ambient conditions.[73] Indeed, Fe3O4 nanoparticles tend 

to oxidize to γ-Fe2O3, which instead are more stable in aqueous solution, ensuring durable magnetic 

performances.[64, 73] Several methods for the synthesis of IONPs were developed and are now 

available. Table 3.2 reports the procedures used for the synthesis of iron oxide nanoparticles.[73, 80, 82, 

83]  

Table 2.2. Synthetic routes of iron oxide nanoparticles with tunable size and shape.[73, 80, 83, 84] 

Synthetic method 
Reaction 

T (°C) 

Reaction 

time 
Solvent 

Capping 

ligands 

Size 

distribution 
Yield 

Co-precipitation 20-90 minutes 
Water, 

base 
Oleic acid (OA) < 50 nm High/scalable 

Thermal 

decomposition 
100-320 hours 

Organic, 

e.g. 

octadecene 

(ODE) 

OA, 

hexadecylamine 

(HDA), 

decanoic acid  

2-40 nm[85, 

86] 
High 

Microemulsion 20-50 hours 

Water-

organic, 

e.g. 

heptane, 

[87] 

octane[88] 

Dioctyl 

sulfosuccinate 

(AOT)[87], 

cetyltrimethyl-

ammonium 

bromide 

(CTAB)[88] 

4-15 nm Low 

Hydrothermal 65 hours 
water -

ethanol 
Silica coating 

10-30 nm[89, 

90] 
Medium 

Magnetobacteria[91] 220 days 

Growth 

medium, 

water 

based 

Lipids and 

proteins 
̴ 45-55 nm 

Low 

(compared to 

chemical 

methods) 

In addition to the methods shown in Table 3.2, other synthetic routes can be identified: sol-gel and polyol 

method, microwave-assisted synthesis, sonolysis or sonochemical methods, electrochemical methods, 

aerosol/vapor methods, electron beam lithography, gas-phase deposition, oxidation method, flow injection 

method and supercritical fluid method.[73] 

Among all the listed synthetic approaches, one of the most studied for the synthesis of IONPs is 

thermal decomposition of iron-oleate, developed by Hyeon et al.[92, 93] due to its scalability and 

versatility. However, a variety of parameters (e.g. atmosphere, the amount and type of reducing agent, 

surfactant, precursor, solvent) make this type of synthesis quite critical. Monitoring the effect of those 

factors on the magnetic behavior, as well as on the size and shape distributions, is of great relevance 

for developing suitable IONPs for biomedical applications.[81] During the synthesis, the IONPs are 

covered by capping ligands, which contribute to separate the magnetic domain of each single 

nanoparticle and to hold the attractive forces apart.  For both the syntheses preformed in  aqueous or 

organic solvents the binding of the capping ligands to the IONPs surface is mediated by coordination 

complex between the electron donor groups (e.g. carboxylic,[86] hydroxyl,[94] phosphonate[95] or amine 

groups[96, 97]) and Fe2+ and Fe3+ species (Figure 3.2a).[98] Because iron is extremely reactive towards 

oxidizing agents and in the presence of water, the protection of MNPs is of prime importance for 

obtaining physically and chemically stable colloidal systems. Such protection can be achieved by: 1) 

surface coating of the MNPs (Figure 3.2b), using polymeric stabilizers/surfactants, like dextran,[99] 
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carboxydextran,[100] poly(vinyl alcohol) (PVA)[101] or poly(ethylene glycol) (PEG);[102] 2) by 

deposition of layers of metals (e.g. gold)[103] or oxides(e.g. SiO2);
[104] ,3) by the formation of lipid-

like coatings (liposomes/ lipid NPs)[105, 106] around the magnetic core.[80] All the three listed cases can 

lead to the formation either of single-coated nanoparticles or clusters. Since many of the synthetic 

routes produce nanoparticles soluble in organic solvents, surface functionalization of IONPs with 

water-soluble ligands or polymers is crucial for their bio-applications. The surface coating strategy 

can involve: 1) the replacement of the capping ligands with more strongly binding ligands, usually 

referred as ligand exchange, Figure 3.2c, which increases the nanoparticles solubility in aqueous 

media;[107] 2) the addition of amphiphilic molecules, which express affinity for both the hydrophobic 

component of the nanoparticle surfactants and for the aqueous surrounding environment known as 

polymer coating, Figure 3.2c[107, 108]. Besides improving the colloidal and physical stability of the 

particles, the surface coating may provide the scaffold for further conjugation of bioactive molecules 

or targeting ligands  in order to obtain multifunctional MNPs (Figure 3.2d).[80]  

 

Figure 3.2. Surface coating provides stability and functionalization to IONPs. a) Nucleation process with 

different surfactants. b) Just after the crystal growth or in a second step of synthesis, IONPs can be coated with 

several molecules able to prevent the degradation of the inorganic iron core. c) Ligand exchange (LE) or 

polymer coating (PC) are the two main techniques used for stabilizing the nanoparticles in aqueous media. d) 

The functionalization with biomolecules such as enzymes, proteins, antibodies, small bioactive molecules (e.g. 

folic acid or biotin) or carbohydrates makes IONPs able to interact with the biological environment. (a) Adapted 

from (Ref 97) with permission of the Royal Society of Chemistry. (b) Adapted with permission from L. Harivardhan Reddy, José L. 

Arias, Julien Nicolas, and Patrick  Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, 

pharmaceutical and biomedical applications. Chem Rev, 2012. 112(11): p. 5818-78. Copyright © 2012 American Chemical Society.  

An important feature of this particular type of MNPs, i.e. IONPs, is their significantly lower toxicity 

and good biodegradability, which show outstanding compatibility towards biological systems, both 

in vitro and in vivo.[109]  As result, the US Food and Drug Administration (FDA) and the European 

http://pubs.acs.org/author/Reddy%2C+L+Harivardhan
http://pubs.acs.org/author/Arias%2C+Jos%C3%A9+L
http://pubs.acs.org/author/Arias%2C+Jos%C3%A9+L
http://pubs.acs.org/author/Nicolas%2C+Julien
http://pubs.acs.org/author/Couvreur%2C+Patrick
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Medicines Agency (EMA) have already approved the medical use of several magnetic iron oxides 

nanoparticles (Table 3.3).[110]  

Table 3.3. Approved and available pharmaceuticals IONPs-based.[80, 110] 

Compound/trademark Company Material Application Target 

Nanotherm® MagForce 
Aminosilane-coated 

IONPs, 15 nm 
Hyperthermia Glioblastoma 

Ferumoxytol/       

Faraheme® 

AMAG 

pharmaceuticals 

SPIONs coated with 

polyglucose sorbitol 

carboxymethylether, 

17-31 nm 

Iron 

replacement 

therapy 

Deficiency 

anemia in adult 

patient with 

CDK 

Ferumoxide/       Feridex® - 

Endorem® 

AMAG 

pharmaceuticals/ 

Guerbet 

SPIONs with low 

molecular weight 

dextran coating, 120-

180 nm[111] 

 

Contrast agent 

in MRI 

imaging 

Liver lesions 

associated with 

RES alteration 

Ferumoxsil/    Gastromark® 

- Lumirem® 

AMAG 

pharmaceuticals/ 

Guerbet 

Siloxane-coated 

SPIONs, 300 nm[112, 

113] 

Contrast agent 

in MRI 

imaging 

Lower 

intestinal 

system 

SPION = superparamagnetic iron oxide nanoparticle; CDK = chronic kidney disease; FDA = Food and Drug 

Administration (USA); EMA = European Medicines Agency; PMDA = Pharmaceuticals and Medical Devices 

Agency (Japan); RES = Reticuloendothelial system. 

many other compounds, initially approved for clinics, were subsequently withdrawn from the market 

due to emerging adverse effects or reduced market potential. Examples of these pharmaceuticals are: 

Abdoscan®, 300 nm IONPs used as gastrointestinal contrast agent; Clariscan®,[114] oxidized starch-

coated SPIONs replaced on the market by a gadolinium-based contrast agent; Sirenem® 

(Combidex®)[115] dextran-coated SPIONs used as contrast agent to detect metastatic diseases in lymph 

nodes; Resovist®, carboxydestran-coated SPIONs contrast agent for liver imaging.[116] Remarkably, 

almost the all the listed IONPs-based systems are explored for MRI or iron deficiency therapy. Thus, 

despite promising results in humans, the marketing of iron oxide nanoparticles is currently at a 

standstill.[115] 
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4. IONPs applications 

… 

Magnetic separation 

Magnetic separation (Figure 4.1) can be used as a quick and simple method for the efficient and 

reliable capture of proteins, biomolecules (DNA and RNA), mammalian cells, bacteria and virus.[73] 

The switchable magnetization properties of nanoparticles, particularly those from superparamagnetic 

nanoparticles, enable the magnetically-driven transport of biological molecules.[70]  Biological 

entities exploit specific interactions with high affinity between molecular pairs to achieve reciprocal 

recognition and trigger signaling processes.[64] Thus, the surface of the nanoparticles is modified with 

biocompatible and/or targeting molecules. The first ones refer to PEGs, carbohydrates or 

phospholipids, which provide good colloidal stability, while the second is obtained using 

antibodies[117] or small molecules like folic acid or biotin,[118] which confer different degrees of 

specificity and affinity towards the desired biological specie.[70] Several applications for bio-

functionalize MNPs have been found so far, including protein and DNA separation, molecular 

biosensing and pathogen detection/sequestration.[64] The separation and enrichment of biologically 

relevant molecules/cells allow a fast and accurate identification of determinant markers inside a 

complex biological fluid, increasing the sensitivity of the commonly used analytical devices like flow 

cytometer[119, 120].  

 

Figure 4.1. Magnetic separation. a) MNPs, functionalized accordingly to the desired research purpose, are 

incubated with the biological tissue of interest (1). Here, nanoparticles are able to recognize specifically their 

target. Subsequently, they can be collected by applying an external magnetic field (2). The magnetically 

isolated and enriched biomolecules (cells, proteins, antigens etc.) can be separated from the MNPs and washed, 

in order to remove debris (3). Once re-dissolved in the desired medium, the sample can be analyzed using the 

commonly used analytical techniques, like Fluorescence Activating Cell Sorting (FACS) (4). b) MACS® 

columns contain a matrix composed of ferromagnetic spheres covered with a cell-friendly coating that, when 



Introduction. Nanoparticles in medicine 

15 

placed on a magnetic separator, amplify the magnetic field and are able to hold cells magnetically labeled with, 

for example, MNPs. The unlabeled fraction is quickly eluted, while the desired labeled population of cells is 

collected just after the removal of the column from a compatible magnet. c) Stand for supporting the magnetic 

separator that fixes the magnetic columns of different sizes. 

Nowadays, several magnetic tools based on magnetic micro/nano particles have been 

commercialized.[121] Among them, Dynabeads® (Invitrogen)[122] and MACS® microbeads (Miltenyi 

Biotech) can be considered the most popular.[123] Dynabeads® are uniform polystyrene beads with a 

magnetic core and dimeter of 4.5 µm, while MACS® (Figure 4.1b) microbeads are beads of 20-100 

nm made by superparamagnetic iron oxide nanoparticles covered by a dextran coating. Opportunely 

functionalized with biological active molecules, they found important applications in the isolation of 

immune system cells and cells from bulk tissues. [124-127] 

Magnetic Hyperthermia 

Magnetic hyperthermia (MH) is a novel non-invasive treatment, now undergoing clinical trials on 

patients affected by glioblastoma multiforme, prostate cancer and pancreatic cancer.[64, 128] It exploits 

the heat generated by magnetic nanoparticles (MNPs) when exposed to an alternating magnetic field 

(AMF) (Figure 4.3).[8, 72, 129] The continuously switching rotation of the magnetic moment of the 

nanoparticles under AMF generates energy, which is dissipated in the form of heat. In small 

monodomain MNPs, the reorientation of the magnetic moments can occur due to Néel or Brownian 

relaxation. Néel relaxation (with time constant τN) occurs when the inner magnetic spin flips from the 

easy axis of the crystal structure to the opposite direction, thus overcoming the energy barrier related 

to magneto-crystalline anisotropy constant (K) and particle magnetic volume (Vm). In addition, it is 

insensitive to the viscosity (η) of the environment. Brownian relaxation involves the mechanical 

rotation of the whole particles, constituted by the magnetic core and the organic coating. Its time 

constant (τB) strictly depends on the viscosity (η) of the medium and the hydrodynamic size (dh) of 

the particle.[64, 71] Figure 4.2 shows the relaxation mechanisms involved in the dissipation of heat 

from the nanoparticles.  

 

Figure 4.2. Relaxation mechanisms for nanoparticles. Néel (top) and Brownian (bottom) rotation of the 

nanoparticles. Red dot and orange square refers to biomolecules grafted on the NPs coating. The equations 

show the magnetization energy barrier (1), the Brownian (2) and Néel (3) relaxation times and the overall 

effective relaxation time of the particles (4). ΔE = thermal energy barrier; K = anisotropy constant; Vm = 

ΔE = KVm                               (1) 

τB = 
3𝜂𝑉𝐻

𝐾𝐵𝑇
                     (2) 

τN = τ0exp (
𝐾𝑉

𝐾𝐵𝑇
)         (3) 

τ = 
𝜏𝐵𝜏𝛮

𝜏𝐵+ 𝜏𝛮
                    (4) 
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magnetic volume; η = viscosity; VH = hydrodynamic volume of the particle; KB = Boltzmann constant; T = 

temperature; τ0 = 10-9 s.[130] 

The heating efficiency of the magnetic nanoparticles is expressed by their specific absorption rate 

(SAR)/specific loss power (SLP). [8, 64, 71, 130] The SAR value defines the temperature increase with 

time (ΔT/Δt) at a given MNP mass concentration (m), and is calculated by the following equation:  

𝑆𝐴𝑅 = (
𝑊

𝑔
) =

𝐶

𝑚
 𝑥 

𝑑𝑇

𝑑𝑡
        (5) 

where C is the specific heat capacity of the solvent. The concentration m of magnetic material is 

expressed as gL-1. [86, 131] SAR depends on various factors, among them: 1) the applied magnetic field 

characteristics (frequency and amplitude); 2) the intrinsic magnetic properties (i.e. saturation 

magnetization, anisotropy); 3) the properties of the dispersing medium (i.e. viscosity, concentration, 

heat capacity).[128] From a biological point of view, hyperthermia is defined as the use of heat for 

killing tumors. [8] When biological tissues are exposed to temperatures higher than 41°C, damages are 

induced in cancer cells rather than healthy cells, due to the disorganized and compact vascular 

structure of the tumor mass, which hinders heat dissipation in comparison to healthy tissues.[8, 64, 130] 

Some medical constraints are imposed to the physical parameters of the AMF to ensure a  safe 

application of hyperthermia to patients. Indeed, the product of the frequency by the magnetic field 

amplitude (Hf) cannot exceed an established threshold of 5 x 109 Am-1s-1.[130, 132]  

Gilchrist et al. were the first ones to use magnetic particles for the thermal treatment of tumors, back 

in 1957. In this pioneer work, they successfully used micrometer-size particles for heating lymph 

nodes in dogs.[133]  The successful results obtained from MNP-based hyperthermia treatment of cancer 

in animal models, in the past three decades,[134-138] led to the establishment of the technique in clinical 

and industrial development.[64] Clinical studies, using combined hyperthermia and radiation therapy 

or chemotherapy, have shown that more than 80% of patients had tumor regression, of which 37% 

had a complete tumor ablation while 25% exhibited a tumor reduction above 50%.[64, 139] The efforts 

made in this field culminated with the approval of the therapy by FDA for use in the treatment of 

established non-surgical cancer additive treatments. [64, 139]   

 

Figure 4.3. Magnetic hyperthermia application. a) Hyperthermia carried out using iron oxide nanoparticles 

relies on the accumulation of IONPs at the tumor site. During the exposition to an AMF, the nanoparticles 

a c

b

d
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release energy in the form of heat, rising the surrounding tissue temperature up to 42-45 °C, thus promoting 

the disease ablation. b) Picture of the device used for measuring the heating performance of the nanoparticles 

in vitro (DM applicator series from nanoScale Biomagnetics Corp.). The probe, submerged in a solution of 

IONPs, is inserted inside the equipment coils able to generate AMF. The increase of temperature over time is 

recorded by the analyzer and the SAR values calculated according to the slope (ΔT/Δt) obtained. c) 

Hyperthermia experiment on a mouse using similar instrumentation. Usually, the tumor xenografted into the 

mouse is locally injected with the nanoparticles and then exposed to cycles of AFM.[140] d) Thermotherapy 

treatment of the pelvic region in humans, after intratumoral injection of magnetic nanoparticles, using the 

alternating magnetic field applicator MFH 300F (MagForce Nanotechnologies AG, Berlin, Germany).[141] (c) 

Reprinted, by permission, from Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S, Abe M, Matsumoto T, Ishimura K. 

Superparamagnetic Nanoparticle Clusters for Cancer Theranostics Combining Magnetic Resonance Imaging and Hyperthermia 

Treatment. Theranostics 2013; 3(6):366-376.  Creative Commons License. (d) Reprinted, by permission, from Thiesen, B. and A. 

Jordan, Clinical applications of magnetic nanoparticles for hyperthermia, International Journal of Hyperthermia, 2008. 24(6): p. 467-

474. Copyright © Taylor & Francis. 

Although different kinds of MNPs can be efficiently used for hyperthermia purposes,[64, 70, 130] ferrite 

nanomaterials like CoFe2O4
[142, 143] and MnFe2O4

[131], IONPs remain the main candidates, due to their 

higher heat performance.  However, the intrinsic toxicity of Co2+ and Mn2+ [144, 145] can instill 

skepticism in the use of these materials for therapy, especially when it requires multiple exposures 

and prolonged circulation in the body of the nanoparticles. Contrarily, the superior biodegradability 

and biocompatibility of IONPs make these nanoparticles absolutely promising.[146] Nowadays, there 

are two main companies developing devices for MNP-based hyperthermia for clinical application: 

Sirex Medical and MagForce. Sirtex Medical designed a combined hyperthermia-radioteherapy 

system, using small magnetic micro-spheres (Thermosphere®, under development in collaboration 

with the Australian National University) in combination with resin-based microparticles impregnated 

with radioisotope yttrium-90, for the treatment of liver cancer.[64] Under magnetic induction 

conditions of 53 kHz and 30 kAm-1, an intratumoral temperature of 48 °C can be reached in 5 

minutes.[147] MagForce exploits iron oxide nanoparticles, with a diameter of 15 nm, coated with 

aminosilane for the treatment of cancer such as glioblastoma, prostate and pancreatic cancer.[64, 141, 

148, 149] Using an applicator MFH®300F generating frequency of 100 kHz and fields between 0-18 

kAm-1, intratumoral treatment reaches temperatures ranging from 43 °C to 47 °C, at an injected dose 

of nanoparticles between 40-120 mg mL-1 (Figure 4.3d).[141, 150, 151] Despite these encouraging results, 

concerns have been raised regarding the toxicity for cancer-directed therapy, due to the possible 

thermal damaged to the adjacent healthy tissues. In order to minimize the potential side effects arising 

during the clinical treatments, the quantity of nanoparticles administered needs to be as low as 

possible.[152] Currently, this represents the main limitation of MH, i.e. is the poor heating efficiency 

of most of the used magnetic nanoparticles when administered at low doses.[152] Another drawback 

which comes from the high concentration of IONPs required for therapy is the impairment to monitor 

tumor progression by MRI, since the substantial dose of IONPs is incompatible with MRI 

imaging.[153] Although several research studies have aimed to design optimal heat mediators that 

would allow reduction of the IONPs dose, while maintaining the required heating performance, low 

heating efficiency remains among the current limitations for IONPs used in clinical trial.[154] 

Therefore, major efforts were made to optimize the NP heating efficiency by tuning key magnetic 

parameters such as size, shape and composition. 

 

 

https://creativecommons.org/licenses/by-nc/4.0/
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Nanoparticle’s shape matters for hyperthermia: the importance of using 

nanocubes 

Anisotropic-shaped magnetic nanoparticles have attracted enormous attention in the last few years 

owing to their superior magnetic properties.[128] The particles heat dissipation strongly depends on 

their physico-chemical features. Thanks to the advancements in thermal decomposition synthesis, in 

the latest decades a significant progress in size and shape control has made possible to obtain a large 

variety of spherical,[93] cubic,[155] star-,[156] flower-,[157] rod-[158] and octapod-shaped[159] iron oxide 

nanoparticles.[128] Recently, it was reported that anisotropic cubic-shaped particles reveal a superior 

heating performance in comparison to spherical ones..[152, 160]  In particular, for 19 nm nanocubes 

(NCs) higher SAR values and higher saturation of magnetization values (Ms) were determined than 

for spherical IONPs of near size (25 nm).[161] Interestingly, the SAR values displayed by iron oxide 

nanocubes (with effective anisotropy constant Keff = 9.1 x 104 J/m3, and Ms = 1.7 x 106 Am-1) are 

among the highest reported in the literature so far for IONPs. In detail, the SAR value found was 

about 3000 W/g at µ0Hmax = 73 mT (58 kAm-1) and f = 274 kHz.[152] Nevertheless, the synthesis of 

monodisperse NCs remains a great challenge and it is hardly attainable by any other method rather 

than high temperature colloidal synthesis.[128] The synthesis based on metal-organic precursors, using 

iron acetylacetonate,[81, 132, 153, 160] has proven to be successful for the preparation of homogeneous 

NCs, with tunable sizes (Figure 4.4a). However, among the different NCs sizes obtainable, Guardia 

et al.[162] demonstrated that nanocubes of 19 nm have the best heating performances in the biological 

threshold of frequency and field applied. Compared to bigger nanocubes of 25, 35 and 43 nm, 19 nm 

nanocubes show no hysteresis, with magnetic coercivity close to 0 Oe.[161, 162] Despite they appear to 

be the best candidate for designing a IONPs-based strategy for hyperthermia treatment, another 

parameter affecting the heating performance of the nanocubes has to be considered. As demonstrated 

by Fortin et al.,[163] viscosity (η) is a physical parameter that affect the nanoparticles heating 

efficiency. In addition, Cabrera et al. confirmed a strong decrease of the heat dissipation dependent 

on the increase of the medium viscosity when considering iron oxide nanocubes (Figure 4.4b).[164] 

In addition to the viscosity dependent SAR behavior due to the interaction of magnetic nanoparticles 

with biological samples, it has been shown that the magnetic heating efficiency is significantly reduce 

when MNPs are located inside cells or tissues.[67, 165] this might be explained by the increase of 

viscosity and/or nanoparticles aggregation imposed by the host biological matrices.[165] Hence, the 

need for nanoparticles able to retain their heating efficiency inside the biological environments, in 

order to obtain the maximum therapeutic effect from the hyperthermia treatment, has become a clear 

goal. Noteworthy, the viscosity dependent heating efficiency was also proved for spherical IONPs, 

which present lower SAR values in high viscosity media compared to nanocubes, within a size below 

30 nm,.[161] Indeed, while for spherical IONPs the SAR values strongly decrease when increasing the 

viscosity of the medium, for 14 nm nanocubes SAR is constant among the different viscous media 

tested.[165] Even if 14 nm ones have lower heating performances, compared to the 19 nm 

nanocubes,[162] their viscosity independent behavior suggests their use in hyperthermia application on 

biological samples.[165]. 
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Figure 4.4. Iron oxide nanocubes. a) Representative transmission electron microscopy (TEM) images at low 

(left panel) and higher (right panel) magnification of iron oxide nanocubes for nanocubes edge with lengths of 

(1-2) 12 nm and (3-4) 19 nm. Scale bar 100 nm (left) and 50 nm (right). b) Viscosity dependence of SAR 

values for 14 nm (black dots) and 24 nm (orange dots) IONCs and 21 nm CoFeNCs (green dots). a) Reprinted 

with permission from Pablo Guardia, Riccardo Di Corato, Lenaic Lartigue, Claire Wilhelm, Ana Espinosa, Mar Garcia-Hernandez, 

Florence Gazeau, Liberato Manna, and Teresa Pellegrino, Water-Soluble Iron Oxide Nanocubes with High Values of Specific 

Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS Nano, 2012, 6 (4), pp 3080–3091. Copyright © 2012 American 

Chemical Society. b) Reproduced from (Ref 164) with permission of the Royal Society of Chemistry 
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5. Iron oxide nanoparticles for multimodal cancer therapy  

… 

Cancer treatment: a multimodal approach 

Considering the promising features of using IONPs for MH cancer treatments, new multimodal 

strategies for these materials might be envisaged. One of the most prominent is the addition of binding 

biomolecules to the nanoparticles surface to provide specificity and selectivity and/or the combination 

of MH with drug delivery. Thus, it might be possible to improve the accumulation of the IONPs at 

the tumor site and confine the thermal treatment exclusively to the malignant tissue, sparing the 

healthy ones. In addition to the target units, the surface might be also coated with polymers able to 

encapsulate drug molecules and enhance the effectiveness of cancer therapy. The drug release might 

be driven by a thermic stimulus generated by the magnetic nanoparticles under magnetic 

hyperthermia. When administered in the body, nanoparticles should circulate in the blood as long as 

possible to have a higher chance to find their cell target. To do so, their stability and the protection of 

both targeting molecules and loaded cargo must not be compromised. Once the IONPs will recognize 

the tumor cells, they are expected to be internalized and to release their therapeutic cargo enhanced 

by MH. To direct nanoparticles towards tumor cells, implies overcoming several biological barriers, 

as shown in Figure 5.1. 

 

Figure 5.1. NPs in the body. Overcoming the biological barriers. Despite their potential for targeting and 

drug delivery purposes, the nanoparticles face a complex series of biological barriers that severely limit site-
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specific bioavailability, preventing achievement of proper therapeutic outcomes. These obstacles include 

opsonization and subsequent sequestration by the mononuclear phagocyte system (MPS) and 

reticuloendothelial system components (RES) (1), nonspecific distribution (2), degradation and elimination 

from the body by the clearance organs and tissues (3), cellular internalization and escape from endosomal and 

lysosomal compartments (4). MP = macropinosome; CLIC/GEEC = clathrin-independent carrier/ 
Glycosylphosphotidylinositol - anchored protein (GPI-AP) enriched compartment; CCP = clathrin-coated pit; 

CAV = caveolin; EE = early endosome; LE = late endosome; LY = lysosome; TGN = trans Golgi network; 

PNRE = perinuclear recycling endosome. 

Bioactivity and biodistribution of nanoparticles 

For iron oxide nanoparticles, as well as for most of MNPs, different physical-chemical parameters of 

the material affect the biodistribution of the nanoparticles in human body. Nanoparticles size for 

instance is one of the main features to be considered when designing a therapeutic strategy against 

cancer. The adsorption of plasma proteins (protein corona)[166, 167] onto the NPs was shown to be 

lower for smaller nanoparticles (6% of plasma proteins adsorbed onto 80 nm NPs) than for bigger 

ones, with an trend increase trend dependent on the nanoparticles size (23% and 34% of plasma 

proteins adsorbed onto 170 nm and 240 nm particles).[80] This has important consequences for the 

clearance of the nanoparticles promoted by the cells of the reticuloendothelial systems (RES) and, in 

particular, by monocytes circulating in the blood (mononuclear phagocyte system, MPS), 

macrophages located in different organs (like liver, spleen, lymph nodes, bone marrow, lung an brain) 

and Kupffer cells in the liver.[168-170] Thus, the systemic clearance of the smaller nanoparticles was 

slower than that of the bigger NPs.[80] Moreover, the nanoparticles within a size above 200 nm 

undergo filtration in the spleen, whereas particles with sizes less than 100 nm have higher probability 

of getting trapped into the hepatic parenchyma.[80] Very small particles, below 8 nm of diameter, are 

instead filtered by the glomerular capillary membrane of the renal tubules and cleared by the kidneys 

through the urine.[169]  

Another key parameter, which affects the biodistribution of nanoparticles, is the surface charge. Even 

if it is reported that neutral nanoparticles have low level of opsonization thus showing an extended 

circulation time, [80, 169] the absence of charge and consequently electrostatic repulsions might 

promote the aggregation of IONPs in vitro.[171] This, in turn, might compromise   the nanoparticles 

circulation in the blood system, the effectiveness of drug delivery as well as the hyperthermia, since 

aggregation drastically compromises the heating performance of the IONPs. [171] Therefore, designing 

charged IONPs is preferable. Usually, IONPs with surface charge below -20/-30 mV or above 

+20/+30 mV present good colloidal stability. Negatively charged IONPs shows hepatic and splenic 

uptake but generally a higher blood circulation compared to positively charged nanoparticles that tend 

to be rapidly cleared from the systemic circulation.[80, 169] Another interesting behavior for differently 

charged nanoparticles was reported by Rotello’s group.[172] Using an in vitro system simulating the 

complex tumor environment, they showed that 6 nm spherical gold nanoparticles, with negative or 

positive charges of +30 mV and -36 mV, respectively, were able to rapidly penetrate the cell mass. 

Interestingly, while positive nanoparticles interacted fast with the surrounding cells, negative 

particles were able to go deeper in the tumor mass.[172]  

Along with size and surface charge, shape plays also a major role for the biodistribution of NPs in 

the body. It has been shown that rod-shaped and non-spherical nanoparticles exhibit a longer blood 

circulation time compared to spherical ones, in rat model studies.[173] In particular, short-rod 

mesoporous silica nanoparticles, which have roughly a spherical profile, were found to accumulate 

in the liver, whereas long-rod-shaped particles accumulated into the spleen. Moreover, short-rod 

mesoporous silica nanoparticles showed a faster clearance rate via urine and feces compared with 
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long-rod mesoporous silica nanoparticles.[174] This behavior is likely to be explained based on the 

different interactions that rod-shaped and spherical nanoparticles have with macrophages.[175] In 

addition, the surface organic coating of the particles can dramatically change the composition of the 

protein corona.[169, 170] Noteworthy, the coating should be non-toxic and biodegradable in order to 

ensure safety of the IONPs in clinics. Besides using several polymeric coatings,[176, 177] which should 

provide biological activity while reducing the clearance and the non-specific proteins adsorption, 

recently, new strategies were developed for increasing the biodistribution and the “blood-

compatibility” of the nanoparticles. For instance, the development of biomimetic coatings consisting 

of cell membrane portions isolate from leukocytes[178] and red blood cells[179] demonstrated a 

decreased uptake rate by the MPS, RES and Kupffer cells and so a prolonged circulation time in the 

blood.[178, 179] Other approaches focus on the beneficial effects of the protein corona formation for 

modulating nanoparticles stability and drug delivery.[180] Hamad-Schifferli and co-workers 

demonstrated the efficient formation of controlled protein corona around gold nanoparticles of 

different shape.[181, 182] The protein scaffold was used for payloading cargo molecules such as DNA 

or doxorubicin and their passive releasing.[181, 182] However, since protein corona is a very dynamic 

process relying on the presence of different proteins and their relative concentration in the serum, the 

effectiveness of this approach has to be demonstrated in vivo before being accepted as an alternative 

method.[183] Given all the parameters discussed, one can conclude that the NPs clearance mechanism 

is a very complex and hardly predictable phenomenon, which must consider the combination of  

several factors such as size, charge, shape and coating.[170] It is of utmost importance that particles 

remain stable while in circulation in order to prevent non-required activity in undesired organs and to 

maximize bioavailability at the targeted site.[184] However, once they have accomplished their 

therapeutic purpose, IONPs should leave the organism in a safe way without affecting the body 

homeostasis. Indeed, one of the main concerns is related to the problems that can arise from a long-

time persistence of the nanomaterials in the body: they can trigger chronic inflammation upon the 

interaction of the partially degraded NPs with the immune system or the generation of toxic by-

products.[146] Specific methodologies for monitoring the fate of iron oxide nanoparticles in complex 

organisms are the following: electron paramagnetic resonance (EPR), which allows to distinguish at 

room temperature IONPs from endogenous paramagnetic iron species, MRI, magnetic manipulation 

of the nanoparticles inside organs or tissues, transmission electron microscopy (TEM) and elemental 

analysis.[146] As general rule, the fraction of IONPs that do not reach the liver, spleen or kidneys, 

accumulates inside the endosomal/lysosomal organelles of the cells where they undergo degradation 

processes (Figure 5.2a and d). During iron oxide dissolution, IONPs become surrounded by ferritin 

proteins, which are deputed to the storage and transportation of endogenous iron in the body (Figure 

5.2d). Since ferritin regulates the metabolism of iron species, which can be deleterious if not 

opportunely complexed, the colocalization of the protein with the IONPs suggests remediation and 

recycling processes, ensuring the innocuousness of the nanoparticles.[146] In addition, it was shown 

that the IONPs aggregation state influences the degradation rate of the iron oxide, with single and 

isolated nanoparticles that erode faster than aggregated ones.[146] In mouse model studies, Kolosnjaj-

Tabi et al. could follow the degradation of IONPs by following the reduction of MRI contrast of 

nanocubes in spleen and liver over  time, which returned to normality after four months post-

intravenously (i.v.) injection (Figure 5.2b).[132] In this work the sequestration of the iron by ferritin 

proteins, after nanoparticles degradation, was also proven.[132] Considering the presented data, IONPs 

can be assumed safe from a therapeutic point of view and their application for disease treatment is 

suitable for being largely extended. Of course, considerable attention has to be paid to the coating of 

the nanoparticles, and case-by-case study is needed for understanding the safeness of a IONPs-based 

formulation. 
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Figure 5.2. Biotransformation of IONPs. a) Black dashed box. Comparison of MRI scans of a non-injected 

mouse (left) and a treated mouse intratumorally injected with nanocubes (right) taken in vivo at day 6 post-

injection. A large hypointense signal, mainly localized in the tumor region denoted by a red square, is observed 

in the injected mouse. b) Light blue dashed box. Comparison of MRI scans of a control mouse and 

intravenously injected mice taken at D0, D14, D30, and D120 post-injection, showing a pronounced 

hypointense signal, mainly localized in the liver and spleen (letters L, S, and K denote the liver, spleen, and 

kidney, respectively) which is attenuating over time. c) Green dashed box. Degradation over time of nanocubes 

in lysosome-like medium. After 60 minute, the shape and morphology of the nanocrystal dramatically change 

(black dashed box and black arrows), indicating its partial degradation. The organic coating appear completely 

degraded after 60 minutes (light blue dashed line and arrows). d) Orange dashed box. TEM micrographs 
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showing a representative intracellular endosome loaded with nanocubes (left) and its magnified view (right), 

found in the spleen on the day of cube injection (D0, top). Bottom micrographs show spleen sections harvested 

4 months after injection: characteristic electron-dense lysosomes (right, and left for the magnified view) reveal 

the coexistence of scattered intact nanocubes (white arrows), a cube leftover (red arrow), and numerous 

monodisperse iron-rich ferritin proteins (blue square). (a-b) Adapted with permission from (Ref 131). Copyright (2014) 

American Chemical Society. (c-d) Adapted from Biotransformations of magnetic nanoparticles in the body, Jelena Kolosnjaj-Tabi, 

Lénaic Lartigue, Yasir Javed, Nathalie Luciani, Teresa Pellegrino, Claire Wilhelm, Damien Alloyeau, Florence Gazeau, Volume 11, 

Issue 3, June 2016, Pages 280-284,  with permission from Elsevier.  

Smart drug delivery: NPs get into action 

The need for drug nanocarriers that efficiently target diseased areas in the body arises because drug 

efficacy is often altered by nonspecific cell and tissue biodistribution, and because some drugs are 

rapidly metabolized or excreted from the body.[185]
 Several ways for exploiting a controlled release 

of drugs from NPs were developed so far, aiming to take advantage of the metabolic and 

environmental differences occurring between healthy and pathological tissues, or to trigger a 

synergistic response with the nanoparticles’ intrinsic features like magnetism or heating 

performance.[186] The strategies studied so far include redox release,[187] enzymatic degradation,[188] 

thermo-responsive and pH-responsive release.[189] Redox-sensitive nanosystems rely on the cleavage 

of disulphide bonds by glutathione (GSH), which is abundant in the intracellular environment (~2–

10 mM) but relatively low concentrated in the extracellular environment of healthy tissues.[185] 

Moreover, due to the high metabolic activity, some tumors express elevated glutathione concentration 

in comparison to non-diseased tissues.[190] Reducible polymers, GSH-sensitive crosslinking agents or 

thiol-cleavable bonds were used for grafting on the nanoparticles surface drugs for the treatment of 

cancer cells.[185] Enzyme-sensitive systems take advantage from the altered expression profile of 

specific enzymes (such as proteases, phospoholipases or glycosidases) observed in pathological 

conditions, such as cancer or inflammation, for triggering enzyme-mediated drug release with 

accumulation of drugs at the desired biological target. Most of the systems devoted to enzyme-

mediated drug delivery exploited the presence of enzymes in the extracellular environment, like 

matrix metalloproteinases (MMPs).[185] Thermo-responsive (TH) polymers, which can undergo 

reversible changes in physical properties in response to changes in the solution temperature, have 

become very popular. The possibility to rise the local temperature, not only of the pathological 

environment but also of the NPs coating via hyperthermia, suggested intriguing application of IONPs 

for the synergistic treatment of cancer. Indeed, while treating cancer cells by heat, it is possible to 

trigger the release of drugs from thermo-responsive polymeric shells, in which the therapeutic cargo 

is encapsulated.[191-193] This combination of treatments increases the effectiveness of the therapy, 

promoting an efficient eradication of the malignancy. Another strategy exploits the local changes in 

pH that occur naturally at different organ, tissue and cellular levels, e.g. the stomach versus the 

intestine environment, the intracellular endosomal-lysosomal compartments versus the cellular 

cytoplasm. This pH difference occurs also in some pathological conditions, such as the inflammatory 

or tumor microenvironment. pH-responsive polymers show changes in stability, solubility and 

volume in response to environmental pH changes. These features have been merged with NPs to 

produce new probes for  drug delivery systems, tracking and imaging.[185] pH-responsive polymers 

are usually synthesized by using amines or derivatives, which confer to the nanoparticles shell a 

positive charge.[185] Positively charged nanoparticles have been reported to promote the endosomal 

escape of the nanoparticles after cell uptake.[194] This phenomenon, referred as “proton sponge 

effect”[195] acquired relevance for enhancing the cytosolic release of cargo molecules, avoiding their 

degradation inside the lysosomes.[196] Despite promising results were obtained for the delivery of 

drugs and genetic materials,[197, 198] it was shown that highly positively charged nanoparticles may 

induce acute generic cytotoxicity.[199, 200] Thus, the rational design of the polymeric shell and/or the 

linkers that bound a chosen drug to the NPs surface is critical for obtaining the desired therapeutic 

effect and strictly influences the disease outcome. 

http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188
http://www.sciencedirect.com/science/article/pii/S1748013215001188


Introduction. Nanoparticles in medicine 

25 

 

Figure 5.3. Stimuli-responsive drug release. a) Redox-stimuli systems exploit the oxidative reduction of 

reducible linkers or polymers which bind or encapsulate drugs cargoes. b) Upon the proteolytic activity of 

enzymes specifically active at the tumor environment, therapeutic molecules are released from the enzyme-

sensitive nanosystems. c) The local decrease of pH at the tumor site or the low endosomal/lysosomal pH that 

the nanoparticles experience after the endocytosis process induce the release of the NP-bound/encapsulated 

drug following the polymer swelling. d) The local increase of temperature generated by magnetic hyperthermia 

may promote the shrinking of thermo-responsive polymer grafted on the IONPs surface. The drugs 

encapsulated inside are then release in the surrounding environment. (d) Adapted from (Ref 192) with permission of the 

Royal Society of Chemistry. 

Targeting, i.e. how to localize IONPs at the desired site 

To direct the nanoparticles towards the intended site, two different routes are usually followed: 

passive or active targeting (Figure 5.4). The first relies on the passive targeting of IONPs, based  on 

the enhanced permeation effect (EPR) typical of some tumors. The presence of irregular blood vessels 

that present a discontinuous epithelium and lack the basal membrane of normal vascular structures 

were considered for a long time as a good opportunity for the passage and accumulation of tiny IONPs 

(30-100 nm in size) at the tumor site.[201, 202] However, several concerns have been raised, recently, 

about the reliability of the EPR as general hallmark of cancer.[203, 204] Indeed, different groups reported 

that the blood vasculature architecture can greatly change from one tumor to another and that, while 

for highly permeable tumors the EPR remains an affordable factor for nanoparticles targeting, in more 

compact and dense tumor masses only small, long circulating NPs may slowly extravasate.[205] 

Therefore, linking to the IONPs surface biomolecules able to actively recognize its target may help 

to localize the therapeutic drug at the desired site. This methodology, involving an active or ligand-

mediated targeting, relies on the affinity of immobilized ligands on the nanoparticle’s surface towards 

specific molecular targets present on the tumor cells.[206]  
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Figure 5.4. Passive vs active targeting. Passive targeting exploits the EPR effect for accumulating the 

nanoparticles, with the relative therapeutic cargo, at the tumor site. The fenestrations that are present in the 

disorganized and fast growing tumor vasculature promote the extravasation of the NPs and their interaction 

with the cells of the unhealthy environment. The drug is released in the tumor ECM or intracellularly upon the 

passive uptake of the nanocarriers. Active targeting instead relies on the ligand-mediated interaction of the 

biomolecules bound to the NP surface with specific markers overexpressed or preferentially expressed on the 

cancer cells membrane. The targeting may be directed to the cells of the tumor mass or to the endothelial cells 

of the tumor vasculature. Active targeting may also take advantage of the leaky tumor vasculature and increase 

the NPs uptake at the tumor site. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Cancer (reference 9), 

copyright t (2017). 

Active targeting  

Nanoparticles have been successfully functionalized with several biological active molecules in order 

to obtain specific targeting. Small molecules, peptides and antibodies are the most frequently used 

for that purpose.[207] Small molecules or peptides allow for a high density coating on the nanoparticles 

surface, increasing the avidity for the target. Moreover, a homogeneous coating can also provide 

better stability to the nanoparticles in solution. [43, 208] Compared to small molecules or peptides, 

monoclonal antibodies (mAb) express higher specificity and affinity for their target. However, they 

are usually very expensive, poorly stable, immunogenic and difficult to handle and produce. Lately, 

small antibody fragments, differently composed of the variable heavy (VH) and light (VL) regions of 

an entire antibody and connected through natural or synthetic loop, have acquired increasing interest 

in the field of bioconjugation (Figure 5.5).[45] Among them, single-chain fragment variable 

recombinant antibodies (scFv) have shown a great potential.[45, 209, 210] Due to their small size 

(typically in the range of 20-30 kDa) they are more stable and do not present a high immunogenic 

profile.[211] Even if they express a reduced affinity for their target compared to their parent mAb, the 

binding of multiple fragments on the surface of the nanoparticles produces an increment in the avidity 

for the target, compensating the reduction of affinity.[211]  
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Figure 5.5. Antibody and antibodies fragments for NP-mediated targeting.  Monoclonal antibodies 

(mAbs) consist of four protein chains; two identical ca. 25 kDa light chains (i.e. L-subscript) and two identical 

ca. 50 kDa heavy (i.e. H-subscript) chains. These chains contain multiple domains which are characterised by 

their degree of sequence variability. The N-termini of the chains constitute the variable domain (V), which 

form the antigen-binding region. Further from the terminus, the structure becomes more conserved and is 

called constant region (C). The heavy and light chains are held together by several inter-chain disulfide bonds 

(ds) to form a Y-shaped structure. The overall structure can be divided into two distinct segments; the fragment 

antigen-binding (Fab) region and the fragment crystallisable (Fc) section. Fabs can be further divided into 

variable (Fv, VH/L) and constant (CH/L) regions.[45] Fab, Fab’, F(ab’)2, were isolated and used alone or in 

combination with nanoparticles. Additionally, other classes of antibody fragments emerged as targeting 

molecules for NPs, such as the ScFv (green dashed box), ds-Fv, ds-ccFv, single domain antibodies (sdAb), 

and diabodies. Adapted from (Ref 45) with permission of the Royal Society of Chemistry. 

An astonishing amount of binding chemistries are available for the functionalization of the 

nanoparticles surface,[212] either exploiting the natural affinity of the chemical groups of the 

nanoparticle surface and biomolecule or relying on the modification of one or both components. [212] 

Parameters such as the ratio of biomolecule per NP, the orientation of the biomolecules onto the 

nanoparticle, as well as its distance form NP surface, control over the attachment affinity and finally, 

yet importantly, the cheapness and replicability of the chosen strategy have to be strictly considered 

(Figure 5.6). Instinctively, one can think that higher is the number of molecules bound on the NP 

surface, better would be the recognition of their target and consequently more efficient and specific 

the treatment. However, despite the possibility to exploit the high surface to volume ratio of the 

particles with the grafting of small molecules at high density, the impact of the steric hindrance of the 

biomolecules and their reciprocal interactions onto the NP surface should not be underestimated, 

especially for big biomolecules. Indeed, Colombo et al. reported that increasing the number of 

antibodies bound on the surface of gold nanoparticles reduced their effective specificity towards the 

desired cells. Their work showed that the binding of one antibody resulted in an efficient recognition 

of the target, while the nanoparticles functionalized with two antibodies were inefficient.[213] 

Intuitively, also the orientation of the biomolecules plays a crucial role for an efficient bioconjugation 

strategy. The activity of proteins, enzymes, antibodies but also small molecules like folic acid or 

biotin depends on the availability/accessibility of their active site to interact with the target molecule. 

A rational plan of the distance and orientation parameters of the biomolecules grafted on the NP 

surface is essential to ensure a precise bioconjugation construct. Indeed, non-specific chemistry or 

electrostatic interactions can result in heterogeneous attachment and impair the activity of the final 

conjugate.[212]  
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Figure 5.6. Rational binding of the biomolecules to the NP surface. Taking into consideration a toolset of 

parameters would allow controlling the attachment of any protein or biomolecule to any NP. These criteria 

include 1) control over attachment affinity; 2) control over relative separation distance from the NP; 3) control 

over the orientation and exposition of the active site on the NP; 4) control over the valence of biomolecule per 

NP. A further parameter that should be considered is the replicability of the binding strategy, i.e. the possibility 

to extend it to other biomolecules. Moreover, the intrinsic cost of the procedure chosen may facilitate the 

clinical/market translation of the nanosystems developed. Adapted with permission from (Ref 211). Copyright (2013) 

American Chemical Society. 

In addition, the stability of the bioconjugate should be assessed for its final utility. A permanent 

linkage would be preferable for providing long-term stability to the nanoconjugate, while a reversible 

binding could be more desirable in case of NP-mediated drug delivery.[212] The later can be the case 

of antibodies labeled with radionuclides used for both targeting and for killing cancer cells. pH-

cleavable or matrix metalloproteinase (MMPs)-cleavable linkers can be used for spreading the 

nanoconjugate activity at the tumor site, once that the active drug or compound is released from the 

nanocarrier.[214] When designing an active targeting strategy for cancer therapy, the protein corona 

formation around the nanoparticles must be carefully considered. Indeed, the opsonization of plasma 

proteins on the NP surface can mask the active site of the immobilized protein, thus preventing the 

interaction with its target. As presented by Salvati et al., silica NPs conjugated with transferrin lost 

their ability to recognize transferrin receptor on cells in presence of high concentration of serum 

proteins.[215] This work spreads serious criticism on the thousands of published papers that carried out 

targeting studies at serum protein concentration of 10% (amount usually used for cell culture), which 

compared to pure plasma does not resemble the in vivo conditions. This result questions the relevance 

of the in vitro tests for NP-ligand/receptor recognition.[215] Furthermore, some doubts were raised on 

the real efficiency of an active targeting strategy compared to the non-active one. Indeed, designing 

a ligand-mediated targeting strategy can be onerous in terms of cost and time, but if it does not lead 

to an improved outcome in patients it may remain interesting only scientifically and not clinically.[6] 

Noteworthy, in animal models, it was observed that the tumor accumulation for a wide range of 

nanomaterials with targeting was modest compared to nanoparticles without targeting and not always 

higher.[216] However, the presence of targeting molecules can facilitate the uptake of the nanoparticles 

and promote their internalization through specific pathways,[217] like caveolin-mediated endocytosis, 

that facilitate the activity of a cargo drug avoiding its degradation inside the lysosomes.[184] In 

conclusion, due to the many challenges and factors that influence the efficiency of a ligand-mediated 

targeting strategy, the development of a suitable nanoplatform has to be carefully planned and 

evaluated for all the single aspects composing it: 1) size and shape of the magnetic support; 2) coating 

material and charge; 3) size and composition of attached biomolecules ; 4) carrier target specificity 

and escape to clearance. 
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6. How far we are? 

… 

To better understand the potentiality of nanomedicine and fix the milestones for future research, is 

opportune to ask ourselves “How far can we go?”. Several questions were moved to the nanomedicine 

in the early 2000’s.[218] Most of these questions still have to receive suitable answers. Nanoscientists 

have to face that even if great improvements were made in the direction of a more clear 

comprehension of the behavior of nanoparticles in biological environment, still major challenges 

remain. Bioavailability, accumulation at the desired site and efficient release of the therapeutic cargo 

are just a small part of the tasks that a nanodrug has to accomplish inside the biostructures of a 

complex organism, like a human being. Poor understanding of the biological barriers, 

misinterpretation of drug delivery concepts, cost-effectiveness, manufacturing and scaling up, and 

regulatory issues, have also affected the clinical translation of nanomedicines.[219] Another major 

limitation is related to the investigation approaches hitherto used. Although cell culture studies and 

small animal models continue to be essential for the investigation of fundamental bio-nano 

interactions, it remains challenging to use these types of models to predict clinical performances.[6] 

In vitro experimentation, the use of 2D culture, which has proven to be a valuable method for cell-

based studies and basic molecular interactions, presents intrinsic limitations. Indeed, this model does 

not adequately take into account the natural 3D environment of cells in vivo, in which they are 

surrounded by other cells and extracellular matrix[220, 221] Currently, in drug discovery, the standard 

procedure for screening compounds starts with the 2D cell culture-based tests, followed by animal 

experimentation. The most commonly used model for these studies is the mouse, often 

immunodeficient, which may poorly represent the behavior of a human body.[6] Three main issues 

can be pointed out from the use of these mice: 1) the impossibility to assess the role played by the 

immune system in cancer and how its interaction with nanomedicine does affect the therapy;[219] 2) 

the enhanced permeability and retention (EPR) effect which is not accurate for such models; 3) the 

different size of the xenograft tumors implanted in mice compared to a human tumor. The relative 

size of a tumor (2 – 10 g) in a patient (70 kg) is in the range of 0.003 – 0.01%. Unlikely, the relative 

mass of a tumor (0.1 - 4 g) xenografted into and growing in a nude mouse (15 – 30 g) is in the range 

of 0.3 – 30%.[6] A tumor of this size in a mouse would correspond to the size of a basketball in a 

human.[6] As consequence, one soon realizes that it is rather easier for nanoparticles to encounter the 

tumor in mouse model, while in human this cannot be easily assumed. Thus, the differences between 

human and current animal models (tumor microenvironment, dosing regimens, bioavailability, 

pharmacokinetics, pharmacodynamics, as well as a lack of standardization in the conducting and 

reporting of preclinical studies) may originate discrepancy between what is expected from preclinical 

mouse results and what is actually observed in clinics. So far, it seems that cancer nanomedicine has 

dramatically focused on treatment of mice rather than humans. Indeed, the EPR-driven xenograft 

tumor models are ideal for demonstrating enhanced therapeutic efficacy of nanomedicine 

formulations compared to free drug but are useless from a translational point of view.[219] However, 

having cleared the complexities and challenges that are emerging with nanomedicine, several 

advances in the development of new in vitro and in vivo assays are being proposed (Figure 6.1). For 

example in vitro, 3D tumor models and spheroids,[220-222] microfluidic-based assays[223] and culturing 

of tumor explants and organoids ex vivo[224, 225] are being pursued and have shown promising results.[6] 

Considering in vivo alternatives, it is possible to count the use of immunocompetent animal models 

in which tumors develop spontaneously and comparative oncology, which examines both cancer risk 

and tumor development across species. However, thinking of being “on the right way” could turn out 
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to be a simplistic illusion. Instead, it is reasonable to imagine that what is until now firmly established 

will have to be revised in the future. Nanoscientists have the duty to lead the nanomedicine to the 

development of better devices, drugs and technologies for early diagnosis or treatment of a wide range 

of diseases with high specificity, efficacy and personalization, thus overcoming the nowadays 

limitations for a precise theranostic approach (combination of diagnosis and therapy).[3, 226]. It is 

possible that “magic bullet” concept is definitively outdate.[227] Identify the weakness of NPs is the 

best way to find what will.  

 

Figure 6.1. Overview of the approaches for developing nanomaterials for cancer treatment. The “in vitro–in vivo 

gap” is that in vitro results cannot be easily translated to in vivo settings. The “translational gap” is that strategies 

developed with the help of animal models can be difficultly translated to human patients. New approaches are emerging, 

which can help to overcome these challenges, for example 3D cell cultures and comparative oncology.[6] Reprinted with 

permission from Mattias Björnmalm, Kristofer J. Thurecht, Michael Michael, Andrew M. Scott, and Frank Caruso, Bridging Bio-Nano 

Science and Cancer Nanomedicine. ACS Nano, 2017, 11 (10), pp 9594–9613. Copyright © 2017 American Chemical Society. 
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