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Reference Tissue Models for FDG–PET Data:
Identifiability and Solvability

Mara Scussolini, Sara Garbarino, Michele Piana, Gianmario Sambuceti, and Giacomo Caviglia

Abstract—A reference tissue model (RTM) is a compartmental
approach to the estimation of the kinetic parameters of the tracer
flow in a given two–compartment target tissue (TT) without
explicit knowledge of the time activity curve (TAC) of tracer
concentration in the arterial blood. An “indirect” measure of
arterial concentration is provided by the TAC of a suitably chosen
one–compartment reference tissue (RT). The RTM is formed by
the RT and the TT. In this paper, it is shown that the RTM
is identifiable, i.e., the rate constants are uniquely retrievable,
provided that a selection criterion for one of the coefficients,
which is based on the Logan plot of the RT, is introduced. The
exchange coefficients are then evaluated by the application of a
Gauss–Newton method, with a regularizing term, accounting for
the ill–posedness of the problem. The reliability of the method is
validated against synthetic data generated according to realistic
conditions, and compared with the full two–compartment model
for the TT, here used as “gold standard”. Finally, the RTM is
applied to the estimate of the rate constants in the case of animal
models with murine cancer cell lines CT26 inoculated.

I. INTRODUCTION

POSITRON emission tomography with 2-deoxy-2-18F-
fluoro-D-glucose (FDG–PET) is a widely used tool for in

vivo reconstruction of the tissue glucose metabolism, because
the process of flow or accumulation of tracer in a target tissue
is regarded to resemble rather closely the behaviour of glucose
[19], [24].

Following a model originated in the framework of phar-
macokinetics, the processing of FDG–PET data is based on
compartmental analysis. The unknown tracer concentrations
of the compartments of the target tissue (TT) satisfy a linear
non-homogeneous system of ordinary differential equations
(ODEs), with constant coefficients, expressing the general
principle of tracer conservation [11], [19], [24]. The tracer
concentrations are the state variables; the constant coefficients
represent the rate constants (or rate coefficients) of the tracer
flow between compartments; the input function (IF), or source
term, is proportional to the time activity curve (TAC) of the
tracer concentration in the arterial blood; the proportionality

M. Scussolini is with the Dipartimento di Matematica, Università di
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coefficient is a further unknown rate constant. In general, com-
partmental analysis aims at the determination of the unknown
rate coefficients from the TACs of arterial blood and TT,
which in turn are recovered by drawing regions of interest
(ROIs) on the reconstructed images of activity distribution.
Mathematically speaking, compartmental analysis deals with
the inverse problem of determining the coefficients of the
system of ODEs given dynamic PET data on TT and IF.

In principle the IF can be determined by measuring the
TAC on a ROI positioned over a sufficiently large blood
pool, such as the left ventricle. However, the procedure is
subject to systematic errors arising from, e.g., partial volume
effects, spillover, cardiac motion, and the low resolution of
PET cameras (see [25] and the related references). It is also
well known that at the very beginning of the diffusion process
the arterial TAC shows a very high peak, which is difficult to
estimate reliably. As a consequence, the estimate of the values
of the rate coefficients is subject to systematic errors.

To avoid direct reference to the IF, alternative approaches
have been developed which have been referred to as reference
tissue models (RTMs). The idea is that a TAC measured over
a ROI belonging to a suitably chosen reference tissue (RT)
may be used as an “indirect” IF for the TT [19]. Reference
tissue approaches are reported to provide robust estimates
of the unknown parameters if the RT can be modeled as a
one–compartment system, e.g., in the case of a radiotracer
with reasonably fast kinetics or negligible specific binding [8],
[15], [19], [20], [26], [27]. Rather similar approaches (dual-
tracer models) have also been developed such that, in place of
considering the RT, a second untargeted tracer is injected and
diffused inside the TT [20]–[23].

A further advantage associated with the use of RTMs, with
respect to semi–quantitative methods such as SUV or SUVr
measurements, depends on the fact that the distribution of FDG
at PET examinations is heavily influenced by renal and liver
absorption, pathological conditions, and assumption of drugs
[6], [7], [16]. While these effects might modify the diagnostic
interpretation of PET data, comparison of the activities in two
different (possibly nearby) tissues is likely to overcome these
distortion mechanisms.

The procedure described in the present paper may be
regarded as a revisitation of reference tissue approaches. We
consider an RTM which comprises a two–compartment TT
and a one–compartment RT. The TT contains both free and
bound tracer, while the RT is supposed to be free of tracer
receptors. We assume that the TACs of the TT and the RT are
reconstructed from image data. No a priori restriction on rate
coefficients is introduced; in particular, we do not require any
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equality of volume distributions for TT and RT, a rather strong
assumption which has been subject to criticism [20], [21]. In
principle the RTM depends on 6 unknown kinetic parameters,
which however are reduced to 5 with reference to the value
of the slope of the asymptotic Logan plot of the RT [14].

Our approach to the inverse problem for the RTM is driven
by the request of identifiability, which means that the kinetic
coefficients are requested to be uniquely determined by the
data (in a noise–free framework). We show that the RTM
with 5 coefficients, and in a general framework, is identifiable.
Identifiability does not hold in the case of negligible blood
fractions. In that case, the criterion for the selection of the
acceptable set of rate constants is provided by comparison
of the numerical results coming from the inversion procedure
with data from the asymptotic Logan plot of the RT. The
computational tool in our paper is a regularized Gauss–Newton
scheme [4], [7], which proves to be very efficient and robust.
The proposed RTM model together with the procedure for
the solution on the inverse problem are validated on synthetic
data, compared with the gold standard full kinetic approach
(comprising the IF), and applied to a group of four animal
models with murine cancer cell lines CT26.

The scheme of the paper is as follows. Section II provides
the mathematical setup of the RTM. Section III discusses
the identifiability problem for the RTM. Section IV provides
the numerical validation of the computational method for the
reduction of the RTM, while Section V applies the method
against experimental datasets. Our conclusions are offered in
Section VI.

II. MATHEMATICAL MODEL

Fig. 1. The reference tissue compartmental model used in this paper.

We assume that the conditions for applicability of compart-
mental analysis are satisfied [11]. Our aim is to reconstruct the
exchange coefficients for tracer kinetics in a given TT. Usually,
the input function is given by the arterial blood concentration
Cb but, by the introduction of an additional RT, we avoid
complete determination of the TAC for Cb.

The PET data considered in the evaluation of the exchange
coefficients are the TACs of the TT and the RT. Although the
concentration Cb is formally introduced in order to describe
the tracer kinetics in the TT and RT, only the asymptotic
values of Cb are involved in the solution of the inverse
problem for tracer coefficients.

A. Compartmental schemes

This subsection is devoted to the description of the
compartmental models adopted to characterize kinetic
processes of radio–tracer in RT and TT. The RT and TT
are represented as one–compartment and two–compartment
models, respectively, and the simultaneous interpretation of
the two models leads to the mathematical scheme of the RTM.

1) One–compartment reference tissue: The concentration
of bound tracer in the RT is taken as significantly low to
be neglected [8], [15], [19], [20], [26], [27]. Thus the RT is
modelled as a single compartment of tracer concentration CR.
As a consequence of the balance equation for tracer it is found
that CR solves the Cauchy problem

ĊR = −k2RCR + k1RCb, CR(0) = 0, (1)

where k1R and k2R (min−1) are the rate coefficients for
tracer exchange from arterial blood to reference tissue, and
conversely. The arterial blood concentration Cb is the input
function.

We assume that the volume fraction occupied by blood in
RT can be estimated or measured a priori, and is denoted with
VbR. Thus the total radioactivity concentration is given by

CR = (1− VbR)CR + VbRCb (2)

and is measured by drawing ROIs on the overall tissue selected
to work as a reference. Henceforth CR is regarded as a datum.

We let
k2R = λk1R. (3)

The interpretation of the constant adimensional parameter λ
follows from the observation that

λ =
k2R
k1R

=
1

DVRT
, (4)

where DVRT is the distribution volume [26] of the RT.
It is found from (1), (2) and the definition of λ that∫ t

t0

CR = β1

∫ t

t0

Cb +
(1− VbR)

k2R
(CR(t0)− CR) ,

where
β1 = (1− VbR)

1

λ
+ VbR (5)

and t0 < t. Division by CR leads to the equation

Y = β1X + β2, (6)

where

X =

∫ t
t0
Cb

CR
, Y =

∫ t
t0

CR

CR
, β2 =

(1− VbR)

k2R

(
CR(t0)− CR(t)

CR

)
.

(7)
In the plane referred to Cartesian axes (X,Y ) equation (6)
represents a curve parameterized by t. If we assume that t0
is sufficiently large that CR(t0) is close to the asymptotic
equilibrium value then the curve (6) is well approximated
by a line of slope β1. Therefore we can determine β1 by
means of a polynomial curve (of degree one) fitting procedure
on (6), utilizing the measured asymptotic values of CR and
Cb. From the knowledge of β1 and VbR, through equation
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(5) is straightforward to obtain λ: therefore, from now on the
parameter λ is regarded as known.

Since the concentration CR can be measured with more
accuracy than Cb, in the following analysis we replace Cb
with its expression in terms of CR, which follows from

Ċb = −γk1RCb +
1

VbR
(ĊR + λk1RCR), (8)

where
γ = (V −1

bR − 1) + λ.

Now, this is a differential equation in Cb, whose solution
(when Cb(0) = 0) is

Cb =
1

VbR

∫ t

0

e−γk1R(t−τ)(ĊR + λk1RCR) dτ, (9)

also expressed as

Cb =
1

VbR

(
CR − (V −1

bR − 1)k1R

∫ t

0

e−γk1R(t−τ)CR dτ

)
.

(10)
Here k1R is regarded as a free parameter. By (10), we will
get rid of explicit reference to the TAC of the input function
Cb in the analysis of the TT.

2) Two–compartment target tissue: With reference to
Fig. 1, the TT consists of a compartment of tracer concen-
tration Cf , accounting for free tracer, and a compartment of
concentration Cm, accounting for metabolized tracer. The state
variables Cf and Cm satisfy the Cauchy problem

Ċ = AC + k1e1Cb, C(0) = 0, (11)

where

C =

(
Cf
Cm

)
, A =

(
−(k2 + k3) k4

k3 −k4

)
, e1 =

(
1
0

)
. (12)

The rate constants k1, k2 (min−1) describe transfer from
arterial blood to free tracer, and conversely; similarly, k3 and
k4 (min−1) refer to transfer from free to metabolized tracer,
and conversely.

3) Reference tissue model: The previous models of RT
and TT are put together to define the RTM, whose related
differential equations are applied in order to determine the
rate coefficients from image data.

Replacement of Cb by its expression in terms of CR in
equation (11) gives

Ċ =AC +
k1e1
VbR

(
CR

− (V −1
bR − 1) k1R

∫ t

0

e−γk1R (t−τ) CR dτ
)
.

(13)

Equation (13) shows the connection between the state vari-
ables, their time-derivatives, and the rate constants of TT and
RT. It may be regarded as the differential formulation of the
mathematical model for the RTM.

Consider the differential equation (13), with the initial
condition C(0) = 0. The solution C in terms of CR is given
by

C =
k1
VbR

∫ t

0

eA(t−τ)e1

(
CR

− (V −1
bR − 1)k1R

∫ τ

0

e−γk1R (τ−σ)CR dσ
)
dτ.

(14)

Equation (14) is regarded as the integral form of the mathe-
matical model for the RTM.

In principle, the RT and the TT involve 6 rate coefficients,
but the condition that λ is known reduces the total number of
parameters to 5. All of them enter equations (13) and (14),
characterizing the RTM. A simplified formulation of the RTM
is obtained under the assumption that k3 = k4 = 0, which
means that the TT contributes only to 2 rate constants, instead
of the 4 considered here. This case is known as simplified
reference tissue model (SRTM, [15]).

We also remark that in a number of approaches to reference
tissue modelling [19], [26], [27] the total number of the un-
known parameters for the RTM is reduced by the assumption
that the distribution volumes of tracer of the two tissues are
equal. In our notations, this means that

k1
k2

=
k1R
k2R

, (15)

in the simplest cases. Due to recent criticism on this assump-
tion [20], [23] especially in the framework of tumor modelling,
we have simply considered the ratio k1R/k2R = DVRT as
experimentally determined by the Logan plot of the RT. An
alternative approach [5] has been recently introduced, and
relies on estimates of combinations of parameters based on
DCE–MRI data. The present paper has been concerned only
with PET data.

B. Measurements modelling

Equation (14) is the starting point for the compartmental
inverse problem of finding the exchange coefficients k1R, k1,
k2, k3, and k4 when the total concentrations of the reference
and target tissue are known.

As already observed, the total radioactivity concentration
CR in RT is measured by drawing ROIs on the overall tissue
selected to work as a reference.

The total concentration CT in TT is measured similarly, by
drawing ROIs on the overall organ or tissue of interest. If
the TT is modelled with a two–compartment compartmental
scheme, and the fraction of blood volume is denoted as VbT ,
the total radioactivity concentration in TT, say CT , can be
written as

CT = (1− VbT )(Cf + Cm) + VbTCb. (16)

By defining a vector

α =

(
1− VbT
1− VbT

)
, (17)

(16) can be thus re–written as

CT −α ·C− VbTCb = 0, (18)
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where C is represented as in (14) and Cb as in (10).
In an explicit form, (18) becomes

VbRCT−VbTCR −αk1

∫ t

0

eA(t−τ)e1

(
CR

− (V −1
bR − 1)k1R

∫ τ

0

e−γk1R(τ−σ)CR dσ
)
dτ

+ VbT (V −1
bR − 1)k1R

∫ t

0

e−γk1R (t−τ)CR dτ = 0,

(19)

Equation (19) is regarded as the RTM equation, where CT
and CR are measured, the blood fractions VbT ans VbR are
supposed to be known, and the kinetic coefficients are free.

III. IDENTIFIABILITY ISSUES

Before proceeding to the numerical evaluation of the rate
coefficients, we need to discuss the formal identifiability of
the problem, namely whether the rate coefficients are uniquely
determined by the given input data, under the assumption that
they are not contaminated by noise. Accordingly, uniqueness
plays the role of an a priori test on the mathematical model
proposed for the description of the flow of tracer, which can be
performed independently of the numerical values of the data.
It is shown in this section that uniqueness does hold for the
RTM when the rate coefficient k2R is constrained as λk1R,
and λ is estimated thanks to equation (5).

The discussion on uniqueness is based on the differential
form (11) of the mathematical model for the RTM; identifi-
ability of the RTM corresponds to uniqueness of the vector
k5 = (k1R, k1, k2, k3, k4) on R5∗

+ . Following the procedure
used in [3], we consider the Laplace transform of the dif-
ferential equation (11) in order to reduce our identifiability
problem to the identification of the coefficients of a rational
fraction.

Denote by f̃ the Laplace transform of any function f . Under
suitable assumptions of regularity, the Laplace transform of
system (11) takes the form

(sI−A)C̃ = k1e1C̃b, (20)

where

C̃b =
1

VbR

s+ λk1R
s+ γk1R

C̃R (21)

thanks to (8), and where I is the identity matrix of order 2.
Left multiplication by the inverse of (sI − A) provides C̃.
Replacing C̃ and C̃b into the Laplace transform of (18), which
relates the measured data to the solution C, gives

C̃T =
VbT
VbR

( k1
VbT

α(sI−A)−1e1 + 1
)s+ λk1R
s+ γk1R

C̃R. (22)

After substitution of the definitions of α, e1, and A,
equation (22) may be expressed in the equivalent form

VbR
VbT

C̃T

C̃R
=
Q(s,k5)

P (s,k5)
, (23)

where P (s;k5) and Q(s;k5) are polynomials in s, parame-
terized by the components of k5, defined by

Q(s,k5) =s3 + (k̄1 + λk1R + k2 + k3 + k4)s2

+
(
λk1R(k̄1 + k2 + k3 + k4) + k̄1(k3 + k4) + k2k4

)
s

+ λk1R
(
k̄1(k3 + k4) + k2k4

)
,

(24)

and

P (s,k5) =s3 + (k̄1R + λk1R + k2 + k3 + k4)s2

+
(
(k̄1R + λk1R)(k2 + k3 + k4) + k2k4

)
s

+ (k̄1R + λk1R)k2k4,

(25)

where P is also the characteristic polynomial of A, and

k̄1 = (V −1
bT − 1)k1, k̄1R = (V −1

bR − 1)k1R. (26)

We recall that λ is a fixed, known parameter and we also note
explicitly that the left-hand side of (23) is only dependent on
measurable (given) data. Suppose h5 = (h1R, h1, h2, h3, h4)
is an alternative choice of rate coefficients consistent with the
data of the problem. This means an equation of the form (23)
is necessarily satisfied, which implies that

VbR
VbT

C̃T

C̃R
=
Q(s,k5)

P (s,k5)
=
Q(s,h5)

P (s,h5)
. (27)

The discussion of uniqueness for the RTM is based on (27);
specifically, it is shown that (27) does imply that h5 = k5.

Under general conditions, the polynomials P and Q are
coprime; therefore the rational fraction Q/P is irreducible.
Next we observe that P (s,k5) and P (s,h5) have the same
leading coefficient, and the same condition holds for the
polynomials Q. This implies that equation (27) is verified if
and only if

P (s,k5) = P (s,h5), Q(s,k5) = Q(s,h5). (28)

It follows that equation (27) is equivalent to the following
equations

h̄1R + λh1R + φh = k̄1R + λk1R + φk, (29)

(h̄1R + λh1R)φh + h2h4 = (k̄1R + λk1R)φk + k2k4, (30)

(h̄1R + λh1R)h2h4 = (k̄1R + λk1R)k2k4, (31)

h̄1 + λh1R + φh = k̄1 + λk1R + φk, (32)

λh1R(h̄1 + φh) + h̄1(h3 + h4) + h2h4 =

= λk1R(k̄1 + φk) + k̄1(k3 + k4) + k2k4,
(33)

λh1R
(
h̄1(h3 + h4) + h2h4

)
= λk1R

(
k̄1(k3 + k4) + k2k4

)
,

(34)
for h5 in terms of k5, where φh = h2 + h3 + h4 and φk =
k2 + k3 + k4.



6

By comparison with (29), (32) can be replaced by

h̄1 − h̄1R = k̄1 − k̄1R. (35)

First, let us solve the sub-system (29)-(31) with respect to
h̄1R + λh1R = γh1R. We find three solutions:

γh
(1)
1R = γk1R,

γh
(2,3)
1R =

φk ±
√
φ2k − 4k2k4
2

.
(36)

Solution h
(1)
1R leads to h

(1)
5 = k5. Solutions h(2,3)1R a priori

define two distinct sets of solution. Nevertheless, we can
observe that, by replacing (32) in (33) and comparing to (34),
we obtain

(k1R − h1R)
(
(λh1R)2−(k̄1 + φk)λh1R

+ k̄1(k3 + k4) + k2k4
)

= 0.
(37)

Therefore, to be solutions of the system (29)-(34), the three
solutions defined in (36) have to satisfy (37). For h(1)1R = k1R,
(37) is easily satisfied. For h(2,3)1R , (37) becomes

(λh
(2,3)
1R )2−(k̄1 +φk)λh

(2,3)
1R + k̄1(k3 +k4)+k2k4 = 0. (38)

This equation (once k̄1 and φk are explicated), represents a
constraint on the components of k5, that, in general, is not
satisfied. Therefore we can state the following result.

Theorem 3.1: Provided that the components of k5 do not
satisfy the constraint (38), the RTM is identifiable.

We observe that in the case in which one of the blood
fractions is negligible, we still have uniqueness; the same thing
does not happen if both the blood fractions are set to zero. In
that case, we can’t extend the aforementioned computations
and the RTM is not identifiable. Indeed, we have two different
solutions:

h
(1)
5 = k5

and

h
(2)
5 = (

k3 + k4
λ

,
k1
k1R

h1R, k2 + k3 + k4 − λk1R,

λk1R −
k2k4
h2

,
k2k4
h2

).

In this case, uniqueness is ensured only if the value of k1R is
fixed. Although the kinetic coefficients are not generally iden-
tifiable, some macroparameters of clinical interest, such as the
total volumes of distribution, are here shown to be identifiable.
Indeed, the total volume of distribution for RT is DVRT =
1/λ, that in our framework is estimated (and therefore is
obviously identifiable) by means of the Logan plot. The total
volume of distribution for TT is DVTT (k) = k1

k2

(
1 + k3

k4

)
;

if h5 = h
(1)
5 , then clearly DVTT (h) = DVTT (k) holds. If

h5 = h
(2)
5 , then

DVTT (h) =
h
(2)
1

h
(2)
2

(
1 +

h
(2)
3

h
(2)
4

)

=
k1(k3 + k4)

λk1R(k2 + k3 + k4 − λk1R)

λk1R(k2 + k3 + k4 − λk1R)

k2k4

=
k1
k2

(
1 +

k3
k4

)
.

(39)

Therefore DVTT is identifiable. The distribution volume ratio
(with respect to the reference tissue) is also identifiable, being
DVTT /DVRT .

Finally, we point out three remarks.
Remark 3.2: If we consider the SRTM, corresponding, in

our notation, to the case k3 = k4 = 0, then the model is
identifiable.

Remark 3.3: Identifiability is also ensured for the simpli-
fying assumption (although less simplifying than the SRTM
case) of k4 = 0 (i.e. negligible de–phosphorylation).

Remark 3.4: The Logan plot step to estimate λ is necessary:
indeed, if we consider the model with 6 free parameters (i.e.
k2R is free) then identifiability does not hold.

IV. NUMERICAL VALIDATION WITH A GAUSS–NEWTON
SCHEME

The 5 tracer coefficients k1R, k1, k2, k3, and k4 are esti-
mated by utilizing measurements of the tracer concentration
provided by nuclear imaging and applying an optimization
scheme.

We re-write equation (18) for the unknown vector parameter
k = (k1R, k1, k2, k3, k4) in the form

CT −α ·C− VbTCb =: F(t;k) = 0, (40)

where CT is given, C is represented as in (14), Cb is defined
as in (10), and equation (40) is considered at the time points
of the observations. Thus, the numerical reduction of the
RTM requires the numerical solution of equation (40) by
means of an optimization–regularization method. For this
purpose we utilize an iterative regularized Gauss–Newton
(G–N) method as in [4]. The numerical procedure is first
validated by considering synthetic data and then applied to a
set of real data.

A. Gauss–Newton scheme
The present application of the G–N approach transforms the

non–linear optimization problem of finding the exchange co-
efficients into a linear problem; this is achieved by computing
the Frèchet derivatives of equation (40) with respect to the
exchange coefficients, and iteratively increasing the value of
the i−th approximation of k, say k(i), to k(i+1) = k(i) +δ(i),
where the step–size δ(i) is determined by equation

F(i)δ(i) = Y (i). (41)

Here the matrix F(i) encodes the Frèchet derivatives with
respect to the exchange coefficients at the i−th iteration, and
the datum Y (i) is the discrepancy between the measured datum
CT and the predicted datum at the i−th iteration C

(i−1)
T .

As in [4] we use a regularized version of equation (41), in
order to avoid the ill–posedness of the problem and to take
into account the fact that real data are finite in number and
affected by noise. Therefore, the equation for the regularized
G–N scheme is

(rI + FTF)δ = FTY, (42)

where r is the regularizing parameter which is allowed to
change at every iteration. Superscript (i) for the iteration is
omitted but implied.
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B. Validation on synthetic data

In this subsection we describe the performance of our
approach to reference tissue compartmental analysis in the
case of synthetic data simulated by mimicking the behaviour
of a real micro–PET system.

The first simulation is set up in order to test the sensitivity
of our model, when the assumption of a priori knowledge of
the blood volume fractions is broken. Indeed, in this case, we
simulate many data using varying blood fractions (for both
RT and TT) and then reconstruct the kinetic coefficients by
imposing known blood fractions, different from the one used
to generate the data. We show that our model is reliable in
retrieving the kinetic coefficients, when the blood fractions are
mis-estimated up to a 40% factor (see Table I). The results are
also compared with a full compartmental model (full–CM) for
the TT when Cb is known.

Further, we show the sensitivity of the standard RTM when
the assumption of equal distribution volumes (15) is broken:
the model exhibits a very high sensitivity, failing to reconstruct
reliable kinetic coefficients when the assumption is broken (see
Table II).

The last simulating experiment is presented to test the
reliability of our proposed G–N algorithm against the standard
Levenberg–Marquardt (L–M) algorithm [1] (see Table III).

In all the scenarios, in order to produce the synthetic
data we initially chose realistic ground–truth values for the
adimensional parameter λ and the tracer kinetic parameters
k1R, k1, k2, k3, k4. We chose VbR = 0.025 and VbT = 0.15
to be the realistic values for the blood fractions, for the
reference tissue and the target tissue respectively (see Real
Data Section V for references); in order to test the sensitivity
of our model to a non–precise volume fraction estimation, we
chose VbR = {0.015, 0.020, 0.025, 0.030, 0.035} and VbT =
{0.05, 0.10, 0.15, 0.20, 0.25} to be the values we computed
the RT and TT data for.

We created the IF Cb by fitting with a gamma variate
function [9] a set of real measurements acquired from a healthy
mouse in a very controlled experiment. We recall that the IF
is not directly involved in the numerical reduction except for
its asymptotic values, but in this framework the whole IF was
needed for the construction of the reference and target tissue
synthetic data. The reference tissue concentration was obtained
solving the differential equation (1) in the unknown CR and
then computing equation (2) for CR with the given VbR.
Next, equation (13) was solved for C. The total target tissue
concentration CT was computed by equation (18) with the
given VbT . Finally, the data were affected by white Gaussian
noise with a signal-to-noise ratio of 30 dB to produce realistic
signals for the activity of the radio–tracer in tissues.

The synthetic data for CR and CT were used to estimate
the RTM parameters. The angular coefficient β1 was obtained
from the asymptotic values of CR and Cb by means of equation
(6), where t0 was identified with a time point where the
concentrations started being almost constant. Consequently, by
equation (5) with the selected value for VbR, an estimate of
λ was obtained, and inserted into the subsequent inversion
procedure.

The regularized G–N scheme was applied to synthetic data
in order to reconstruct the exchange coefficients k1R, k1, k2,
k3, k4. The starting point of the method was randomly chosen
in the interval (0,1). To stop the iterative algorithm we checked
the discrepancy between the reconstructed concentration and
the original noisy one (the datum in the real data context),
using a threshold (10−2) as a stopping criterion. The regu-
larization parameter was optimized at each iteration through
the Generalized Cross Validation (GCV) [10] method, by the
requirement of a predefined range of variability (between 104

and 106).

The full compartmental model for TT, with known Cb,
and the standard RTM, have been built similarly, and the
kinetic coefficients estimated by means of the state–of–the–
art L–N algorithm. For the standard RTM, we have generated
the synthetic data without assumption of equal volumes of
distribution, and reconstructed the coefficients by imposing the
condition k1/k2 = εk1R/k2R, with ε ∈ U1 (a neighbourhood
of 1). The case ε = 1 obviously corresponds to the standard
RTM assumption, ε < 1 to some weaker standard RTM
assumption and ε > 1 to some stronger one, testing the limit
of sensitivity of the model.

In Table I and Table II results are shown concerning the
sensitivity of the proposed RTM and the standard RTM.
The proposed model results very stable with respect to mis–
estimation (up to a 40%) of both the volume fractions. The
standard RTM exhibits a lower robustness and stability. In this
case, data have been built imposing the condition ε = 0.6,
and reconstructing with varying ε. We can observe that the
reconstruction fails for ε = 1, meaning that the standard
RTM assumptions is not reliable when there is a 40% mis-
estimation. For weaker standard RTM conditions (correspond-
ing to ε < 1 values) the reconstructions gradually approach
the true values, while going beyond (i.e. for ε > 1) the
reconstructions get worse. This result shows that the standard
RTM assumption is very sensitive to the model hypothesis of
equal volumes of distribution.

Table III shows the comparison between the ground–truth
and the estimated values of the parameters retrieved with G–
N, providing information about the reliability of the inversion
procedure. It is apparent that the means provide a good
approximation of the ground–truth values while the standard
deviations are systematically small, thus showing the notable
numerical stability of the iterative reconstruction scheme with
respect to noise. Moreover, the observation that the complete
inversion procedure has been based on an approximate value
of λ shows that the algorithm is very robust. The proposed G–
N algorithm is also clearly compatible with the state–of–the–
art L–M algorithm, by producing the same mean values and
comparable standard deviations (see Table III). It has indeed
the advantage of being faster, given that in G–N it is possible
to compute the gradient of the functional to be minimized in
an analytical form, thus avoiding time–consuming numerical
differentiation step. The computational burden is ' 10 seconds
for one run of L–M and ' 2 seconds for one run of G–N (on
a Intel Core i7, 3.1GHz).
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λ k1R k1 k2 k3 k4
g. t. 2 0.1 0.3 0.2 0.05 0.02

proposed RTM (VbR = 0.015 VbT = 0.15) 1.917 0.097± 0.009 0.311± 0.036 0.208± 0.033 0.061± 0.015 0.019± 0.009
proposed RTM (VbR = 0.020 VbT = 0.15) 1.826 0.101± 0.008 0.316± 0.028 0.200± 0.030 0.058± 0.016 0.023± 0.011
proposed RTM (VbR = 0.025 VbT = 0.15) 1.811 0.099± 0.009 0.300± 0.033 0.181± 0.031 0.055± 0.015 0.023± 0.010
proposed RTM (VbR = 0.030 VbT = 0.15) 1.802 0.102± 0.008 0.300± 0.029 0.184± 0.028 0.055± 0.016 0.022± 0.011
proposed RTM (VbR = 0.035 VbT = 0.15) 1.793 0.105± 0.010 0.293± 0.031 0.187± 0.033 0.061± 0.019 0.026± 0.011

proposed RTM (VbR = 0.025 VbT = 0.05) 1.811 0.106± 0.007 0.293± 0.025 0.158± 0.031 0.052± 0.017 0.021± 0.011
proposed RTM (VbR = 0.025 VbT = 0.10) 1.811 0.108± 0.008 0.289± 0.023 0.169± 0.022 0.058± 0.015 0.026± 0.011
proposed RTM (VbR = 0.025 VbT = 0.15) 1.811 0.103± 0.008 0.311± 0.027 0.193± 0.027 0.058± 0.014 0.026± 0.012
proposed RTM (VbR = 0.025 VbT = 0.20) 1.811 0.099± 0.009 0.329± 0.038 0.218± 0.037 0.061± 0.021 0.027± 0.013
proposed RTM (VbR = 0.025 VbT = 0.25) 1.811 0.096± 0.008 0.327± 0.033 0.236± 0.029 0.065± 0.015 0.029± 0.008

full–CM − − 0.301± 0.009 0.204± 0.019 0.052± 0.012 0.021± 0.011

TABLE I
PROPOSED RTM VALIDATION EXPERIMENT: GROUND–TRUTH (G. T.) AND RECONSTRUCTED VALUES FOR THE ADIMENSIONAL PARAMETER λ WITH A

LOGAN PLOT APPROACH AND FOR THE TRACER KINETIC PARAMETERS WITH OUR REGULARIZED G–N METHOD IN THE CASE OF DATA GENERATED WITH
VARYING BLOOD VOLUME FRACTIONS (FOR BOTH RT AND TT). FOR THE INVERSION PROCEDURE, VbR = 0.025 AND VbT = 0.15. THE FULL–CM

MODEL WAS OPTIMIZED THROUGH THE L–MMETHOD AND VbT = 0.15 FIXED. MEANS AND STANDARD DEVIATIONS ARE COMPUTED OVER 50
DIFFERENT RUNS OF THE ALGORITHM, WITH 50 DIFFERENT RANDOM INITIALIZATION VALUES.

λ k1R k1 k2 k3 k4
g. t. 4 0.05 0.5 1.2 0.1 0.04

standard RTM (ε = 0.6) 3.613 0.054± 0.001 0.538± 0.028 1.166± 0.061 0.102± 0.005 0.041± 0.004
standard RTM (ε = 0.7) 3.613 0.047± 0.002 0.478± 0.031 1.208± 0.078 0.137± 0.007 0.046± 0.005
standard RTM (ε = 0.8) 3.613 0.043± 0.001 0.438± 0.023 1.266± 0.065 0.165± 0.008 0.047± 0.005
standard RTM (ε = 0.9) 3.613 0.039± 0.001 0.414± 0.026 1.345± 0.085 0.193± 0.008 0.047± 0.004
standard RTM (ε = 1.0) 3.613 0.037± 0.001 0.393± 0.025 1.421± 0.089 0.220± 0.011 0.047± 0.005
standard RTM (ε = 1.1) 3.613 0.035± 0.001 0.383± 0.026 1.521± 0.102 0.244± 0.011 0.046± 0.004
standard RTM (ε = 1.2) 3.613 0.033± 0.001 0.376± 0.026 1.631± 0.111 0.269± 0.009 0.046± 0.003
standard RTM (ε = 1.3) 3.613 0.032± 0.001 0.369± 0.024 1.736± 0.113 0.288± 0.012 0.044± 0.003
standard RTM (ε = 1.4) 3.613 0.031± 0.001 0.363± 0.027 1.835± 0.135 0.311± 0.015 0.043± 0.004

full–CM − − 0.498± 0.020 1.188± 0.081 0.097± 0.009 0.038± 0.005

TABLE II
STANDARD RTM VALIDATION EXPERIMENT: GROUND–TRUTH (G. T.) AND RECONSTRUCTED VALUES FOR THE ADIMENSIONAL PARAMETER λ WITH A

LOGAN PLOT APPROACH AND FOR THE TRACER KINETIC PARAMETERS WITH THE L–M METHOD IN THE CASE OF SYNTHETIC DATA GENERATED
WITHOUT ASSUMPTION OF EQUAL DISTRIBUTION VOLUMES. FOR THE INVERSION PROCEDURE, THE CONDITION k1/k2 = εk1R/k2R , WITH VARYING ε,

IS IMPOSED. THE FULL–CM MODEL WAS OPTIMIZED THROUGH THE L–M METHOD. MEANS AND STANDARD DEVIATIONS ARE COMPUTED OVER 50
DIFFERENT RUNS OF THE ALGORITHM, WITH 50 DIFFERENT RANDOM INITIALIZATION VALUES. HERE VbR = 0.025 AND VbT = 0.15.

λ k1R k1 k2 k3 k4
g. t. 2.5 0.08 0.1 0.4 0.2 0.05
G–N 2.261 0.082± 0.005 0.106± 0.014 0.383± 0.084 0.211± 0.044 0.053± 0.009
L–M 2.261 0.084± 0.011 0.121± 0.061 0.447± 0.271 0.202± 0.049 0.051± 0.010

TABLE III
ALGORITHM VALIDATION EXPERIMENT: GROUND–TRUTH (G. T.) AND RECONSTRUCTED VALUES FOR THE ADIMENSIONAL PARAMETER λ WITH A

LOGAN PLOT APPROACH AND FOR THE TRACER KINETIC PARAMETERS WITH OUR REGULARIZED G–N METHOD AND WITH THE L–M METHOD. MEANS
AND STANDARD DEVIATIONS ARE COMPUTED OVER 50 DIFFERENT RUNS OF THE ALGORITHM, WITH 50 DIFFERENT RANDOM INITIALIZATION VALUES.

HERE VbR = 0.025 AND VbT = 0.15.

V. RESULTS ON REAL DATA

An ‘Albira’ micro–PET system produced by Carestream
Health is currently operational at the IRCCS San Martino
IST, Genova, and experiments with mice are performed by
using different tracers, mainly for applications to oncology.
In this section, we show the results of our reference tissue
compartmental approach for the tumor environment on real
experiments, concerning murine models and FDG–PET ac-
quisition.

All animals were studied after a fasting period of six hours
to ensure a steady state of substrate and hormones governing
glucose metabolism. Animals were positioned on the bed
of ‘Albira’ micro–PET system whose two-ring configuration
permits to cover the whole animal body in a single bed

position. A dose of 3 to 4 MBq of FDG was injected through a
tail vein, soon after the start of a dynamic list mode acquisition
lasting 40 min. The acquisition was reconstructed using the
following framing rate: 10×15s + 1×22s + 4×30s + 5×60s
+ 2×150s + 5×300s and PET data were reconstructed using
a maximum likelihood expectation maximization (MLEM)
method. Animals were inoculated subcutaneously in the dorsal
hip muscles with 2×105 murine cancer cell lines CT26 (colon
carcinoma cell lines). In this contest, the tumor is the target
tissue. More information on the sex, weight, and glycemia of
the animals are reported in Table V.

In order to obtain the experimental concentrations, each
image dataset was reviewed by an experienced observer who
drew three ROIs: one over the cancer lesion, one around the
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resting thigh muscle (the reference tissue used in this work),
and one over the left ventricle, in order to compute the IF. We
are aware that the determination of the IF is a challenging task
in the case of mice. To accomplish it, for each animal model
the tracer first pass was viewed in cine mode. Then a ROI was
drawn in the aortic arc, in a frame where the left ventricle was
particularly visible, and maintained it for all time points. The
blood volume fractions were set to 0.15 and 0.025 for the
target tissue and the reference tissue, respectively, according
to [18] (for tumor in CT26-tumor bearing mice), [2] and [12]
(for the muscle).

The experimental data obtained for a group of four mice
were processed by the RTM approach proposed in this paper.
Estimates of the parameters obtained for each member of the
group are shown in Table IV. Means and standard deviations
were computed by using 50 runs of the code for the regularized
G–N algorithm, where the initialization of the kinetic parame-
ters was performed by picking up numbers in the interval (0, 1)
with uniform distribution and the regularization parameter was
determined at each iteration through the GCV method (with a
confidence interval ranging between 105 and 107). The starting
time point for the graphical analysis was chosen as the time
point at which the IF curve reached a plateau, that is, became
approximately asymptotic (and thus stable) to the time axis.

Table IV clearly shows that the proposed RTM is able
to effectively reconstruct the kinetic coefficients, with good
agreement with the ones reconstructed by means of the gold–
standard full compartmental model. Moreover, in Figure 2 it is
possible to observe that the IF generated by the reconstructed
parameters through equation (10) provides a good approxi-
mation of the experimental IF, measured on the ROI around
the left ventricle, for all the mice models considered in our
analysis. The red points describe the experimental IF curve,
together with its standard deviation (computed according to
the experimental noise level), while the black points represent
the reconstructed IF curve, computed with the averaged value
of the k1R parameter resulting from the 50 different runs of
the algorithm, together with its standard deviation. It is also
possible to observe that the reconstructed IF curves tend to
be smoother than the measured ones, as expectable, given that
they are model–based; this effect is particularly visible when
the measured IF has some oscillations (as, for instance, times
7min-17min for m2).

In general, the inter–animal variability of the estimated
parameters for the target tissue is quite low, meaning that the
inter–tumor variability is not significant since in all animals
the inoculated cancer cell lines are of the same type. Although,
the third model (m3) appears to slightly underestimate all the
parameters. This effect is visible in Figure 2(c), where the
comparison between the reconstructed IF and the experimental
one shows a subtle underestimation of the first points, that we
hypothesize is the reason for the underestimation of k1 and
consequently of the other coefficients. Finally, we observe
that the second mouse model (m2) appears to have a lower
λ and a higher k1R with respect to the values reconstructed
for the other mice models. This could be due to the quite low
blood sugar levels of m2 (the glycaemia is 30 mg/dl, see Table
V): when glycaemia is low, the FDG is highly absorbed by

the cells, due the shortage of sugar in blood. This appears
to cause a higher absorption rate in the reference tissue and
therefore an increase in k1R. This effect is not visible in the
parameters concerning the target tissue kinetics, which instead
are consistent with the values for the other mice. This can
be considered a consequence of the fact that the tumor is a
pathological tissue less affected by the environment conditions
than physiological tissues.

VI. CONCLUSIONS

Reference tissue modelling is a powerful tool in the analysis
of FDG–PET data. Comparison of tracer uptake between the
RT and the TT avoids explicit determination of the TAC
of arterial blood. In addition, comparison of tracer kinetics
in two nearby tissues is capable of reducing distortions in
the interpretation of FDG uptake, which is influenced by
physiological or pharmacological conditions and uptake by
other organs. First, in this paper we have shown that the RTM
based on a one–compartment RT and a two–compartment
TT, with given non–vanishing blood volume fractions, is
identifiable. Second, we have developed an algorithm for the
reduction of the RTM which leads to a unique determination
of the exchange parameters. Third, we have solved the inverse
problem by applying a Gauss–Newton algorithm which is very
efficient and robust. Fourth, we have validated our approach
with application to synthetic data and we have shown that it
works equally well in the case of real data.

Our approach depends on an application of the Logan
plot algorithm to the RT; indeed the procedure requires the
asymptotic behaviour of the tracer concentration Cb inside the
arterial blood, which however can be estimated rather reliably.
The estimated value of the angular coefficient reduces to five
the total number of unknown parameters.

Validation on synthetic data has shown that our approach is
capable of reconstructing with sufficient accuracy the ground–
truth values of the parameters. Moreover, the formulation
of the problem of determining the rate coefficients as the
solution of a zero finding problem, solved by application
of a Gauss–Newton approach, has given better results than
the approach based on multilinear fitting via the Levenberg–
Marquardt method, being faster in the numerical derivative
computation. In addition, results on real data seem to be in
agreement with recent findings in literature (see, for instance,
Figure 7 and Table 1 in [13]), even if our purpose was more
a model–validation one, and we did not mean to perform an
in–depth study of real oncological data.

The algorithm can be applied voxel–wise, which means
that dependence of the rate coefficients on position can be
explicitly considered. In view of forthcoming applications to
human patients we also observe that the approach can be
applied when the concentrations CR and CT (and Cb) are
evaluated on a time interval (t0, t), with t0 placed well after
the peak of the arterial blood concentration.
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Fig. 2. Experimental IF (red curve) together with reconstructed IF (black curve) and their standard deviations, for the four mice models analyzed in this
paper.
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